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1. Introduction.

Let A be a Noetherian local ring with maximal ideal m. We assume that
dim A=d>0. The local cohomology functor Hi(—) was defined by Grothen-
dieck and he showed that for any finitely generated A-module M, the i-th
local cohomology module Hi(M) vanishes unless

depth M £/ < dim M

and that HiM)#0 if j=depth M or i=dim,M. We refer to the local co-
homology modules Hi(M) for which depth M<:;<dim,M as the intermediate
local cohomology modules of M. Pathological behaviors of intermediate local
cohomology modules for general Noetherian local rings were reported by several
authors. Firstly Sharp gave examples of Noetherian local rings whose
intermediate local cohomology modules either all vanish or are all non-zero.
Furthermore Evans and Griffith gave a Noetherian local ring with pre-
scribed local cohomology modules, that is, let d=2 and hy, -+, hy_;==0 be
arbitrary integers. Then there is a Noetherian local domain A of dimension d
such that
IAHYA) =h; forall1<i<d-—1.

By modifying their argument, Goto [8] obtained such a ring from among
Buchsbaum local rings. Here a finitely generated A-module M is said to be
Buchsbaum if the difference [4(M/qM)—e, (M) is an invariant of M not depending
on the choice of the parameter ideal q for M. Moreover a Noetherian local
ring A is said to be Buchsbaum if it is a Buchsbaum module over itself.

In this paper we are interested in behaviors of local cohomology modules of
finitely generated indecomposable modules. Goto gave a structure theorem
for maximal Buchsbaum modules over regular local rings, that is, if A is a
regular local ring of dimension d>0 and M is an indecomposable maximal
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Buchsbaum A-module of depth¢<d, then its intermediate local cohomology
modules all vanish and ¢-th local cohomology module Hi(M) is isomorphic to
the residue class field, where an A-module is said to be maximal if its dimension
is equal to d. The author improved this structure theorem for maximal
surjective-Buchsbaum modules of finite injective dimension; see the next section
for details. Furthermore Amasaki [1], Cipu-Herzog-Popescu [4], and Yoshino
[23] observed behaviors of local cohomology modules of maximal Buchsbaum
modules or of maximal quasi-Buchsbaum modules. '

The aim of this paper is to give indecomposable maximal surjective-
Buchsbaum modules with prescribed local cohomology modules.

THEOREM 1.1. Let A be a Gorenstein local ring of dimension d>0. We
assume that its multiplicity is greater than 2. Let h,, -+, hqy_,=0 be arbitrary
integers. Then there exists an indecomposable maximal surjective-Buchsbaum
module M such that

L4(HiM)) =h; for all 0 =i d—1.

A concept of minimal finite injective hull, which was introduced by
Auslander and Buchweitz [2], plays a key role in this paper. In the preceding
studies on local cohomology modules of finitely generated modules, we assumed
that the.modules have finite injective dimension implicitly or explicitly. We,
however, need to consider modules of infinite injective dimension for the
theorem. By the minimal finite injective hull, we are able to separate a
general finitely generated module into a pair of a maximal Cohen-Macaulay
module and a finitely generated module of finite injective dimension. We have
known the structure theorem for maximal surjective-Buchsbaum modules of
finite injective dimension and many authors studied 1ndecomposable maximal
Cohen-Macaulay modules. We will combine them,

It should be noted here that the assumption of the theorem on multiplicity
is not superfluous. In fact, Goto [10, Corollary 1.2] showed that there exist
only finitely many isomorphism classes of indecomposable maximal surjective-
Buchsbaum modules over a Gorenstein local ring of dimension 1 and of multi-
plicity 2.

2. Preliminaries.

Throughout this paper, A denotes a Noetherian local ring with maximal
ideal m and with residue class field .. We assume that d=dim A>0. For
each A-module M, [,(M) denotes the length of M.

Firstly we recall that the local cohomology functor Hi(—) with respect to
m is naturally equivalent to the functor lim Exti(A/m”, —). And so there
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exists a natural map
@l : Exti(k, M) —> HEM)
for all 7.

DEFINITION 2.1 ([22], Definition 1.1). A finitely generated A-module M is said
to be surjective-Buchsbaum if the natural map ¢} is surjective for all 7#dim,M.

A surjective-Buchsbaum module M is Buchsbaum [21, Theorem 1] and the
converse holds if A is a regular local ring. Naturally, every Cohen-Macaulay
module is surjective-Buchsbaum because Hi(M)=0 for all /dim M.

We will state the structure theorem for maximal surjective-Buchsbaum
modules of finite injective dimension. From now on, we assume that A is a
Gorenstein local ring, that is, A has finite injective dimension over itself. Then
there exists a natural isomorphism

HYM) = Hom(Exti™ (M, A), E)

for any finitely generated A-module M, where E denotes the injective envelope
of the residue field k. Refer to [13, Vortrag 5] for details.

Let (F., d.) be the minimal free resolution of 2 and (—)*=Hom,(—, A4). We
put

(2.2) Y, = Coker d%_;

for all 0=</<d. In particular Y;=A. Then for all 0</<d, there exists an
exact sequence

2.3) 0 (Fo)* (Fa-)* —Y;—>0

because Ext/(k, A)=0 for all j<d—i. Therefore Y; has finite injective dimen-
sion and
kR, J=1;
Hi(Y ) = {
0, 7+#4d
for all 0<=/<d.

THEOREM 2.4 ([15], Theorem 3.1). Assume that A is not regular. ThenY,
is an indecomposable maximal surjective-Buchsbaum module for all 0<i<d. Fur-
thermore any maximal surjective-Buchsbaum module of finite injective dimension
is isomorphic to a unique direct sum of finite copies of Yo, Y., -, Y.

In particular a maximal Cohen-Macaulay module of finite injective dimension
is a free module.
Next we state on the finite injective hull.

DEFINITION 2.5. Let M be a finitely generated A-module. An exact
sequence of A-modules
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2.6) Vs MV 2o X —0

is said to be a finite injective hull of M if Y is of finite injective dimension
and X is a maximal Cohen-Macaulay module or a zero module. A finite injec-

tive hull is said to be minimal if X and Y have no common direct
summand under ¢.

Auslander and Buchweitz [2] showed that, over a Cohen-Macaulay local
ring possessing the canonical module, there exists a minimal finite injective hull
of arbitrary finitely generated module M and that it is determined by M up to
isomorphisms, that is, let 0-M—-Y—-X—0 and 0-M—-Y'—X'—0 be two
minimal finite injective hulls of M. Then there exists a commutative diagram

0—>M—>Y —> X —> 0
|
0—> M —>Y" —> X' —> 0,

For the sake of completeness, we give a brief proof of them.

THEOREM 2.7. There exists a unique minimal finite injective hull of arbitrary
finitely generated A-module M.

PrROOF. We will use a dualizing complex ; refer the reader to [18, Chapter
2] for a notation of complexes and for a dualizing complex. Let D3 be a
dualizing complex of A, which is the minimal injective resolution of A. Let
D(—)=Homy(—, D) and (F,, d) be the minimal free resolution of D(M). Since
there exist quisms

M —s DD(M) — D(F.,) <— FX*(—d),

the homology modules of F* all vanish except —d-th one and H_,(F¥)=M.
Hence there are three exact sequences

(2.8) 0—>M-—Cokerd} —>Imd},,—>0;
(2.9) 0 F§ Fx F¥ Coker d¥ — 0;
(2.10) 0 — Im d%., F¥a Fips

The exact sequence implies that Y =Coker d% is of finite injective dimen-
sion. If M is not of finite injective dimension, then F;#0 for all 7>d because
the rank of F; is equal to the /-th Bass number of M. And so [2.10) implies
that X=Im d%*,, is a maximal Cohen-Macaulay module or a zero module. There-
fore is a finite injective hull of M. If X and Y have a common direct
summand Z, then Z is a free module. By taking (—)* of [2.10), we find that
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Z is also a direct summand of FJF,,. However there exists a commutative
diagram
dE

Ff —— F¥

l T

Y —— X

which contradicts the fact that Im d¥,,SmFg,. Thus the finite injective hull
2.8) is minimal.

Nextly we show that the uniqueness of minimal finite injective hull. Take
a minimal finite injective full of M:

¢
(2.11) 0 M Y X 0.

Let F. and G. be the minimal injective resolutions of D(X) and DY), respec-
tively. Then

F;=0 foralli<d
and

G, =0 for all i >d.

Furthermore D(¢) induces a homomorphism ¢.: F,— G, which makes the follow-
ing diagram

D(X) DY)

T T

F, — G.

P,

commutative up to homotopy. We remark that the minimality of implies
that ¢,@%=0. Since there exist quisms

Mc(g.) — Mc(D(¢)) — DIM),

where Mc(—) denotes the mapping cone, Mc(¢.) is the minimal free resolution
of D(M). The uniqueness of minimal free resolution implies the uniqueness of
minimal finite injective hull. O

By the above proof, we find that the finite injective hull is minimal
if and only if X has no free summand. Furthermore the above proof gives an
effective construction of the minimal finite injective hull. In fact, let G. be
the minimal free resolution of a finitely generated A-module M. Then there
exists the minimal free resolution F, of G¥(d) because H;(G¥)=Ext3'(M, A)=0
for all i<—d. Since there are quisms

DIM) — D(G.) <— G¥a),



556 T. KAWASAKI

the free complex F, is also the minimal free resolution of D(M). Of course,
when A is a Cohen-Macaulay local ring possessing the canonical module K4, we
can similarly prove the theorem by letting (—)*=Hom(—, K,).

Finally we state on matrix factorizations. A Noetherian local ring A is
said to be hypersurface if the m-adic completion of A is a residue class ring of
a regular local ring with respect to a principal ideal. Matrix factorizations
describe maximal Cohen-Macaulay modules over a hypersurface.

Let B be a regular local ring with maximal ideal n and 0+ f€n®.

DEFINITION 2.12. A matrix factorization of f is a pair (¢: F—F’, ¢':
F'— F) of homomorphisms between two finitely generated free B-modules such
that

¢-¢' = f-idp and ¢’ ¢ = f-idp.

When this is the case, the rank of F’ is equal to the one of F. A morphism
between two matrix factorizations (¢: F—F’, ¢': F'—F) and (¢: G—G', ¢ :
G'—G) is a pair (a: F—G, a': F’—G’) of homomorphisms which makes the
following diagram

Pt ¥ g
o 7
LAy VA,

commutative. A matrix factorization (¢, ¢') is called reduced if Im gCmF’
and Im¢’'CmF. The matrix factorizations of f form an additive category,
denoted by MF3z(f).

Let (¢, ¢’) be a matrix factorization of f. Then it is easy to check that
Coker ¢ is a maximal Cohen-Macaulay module over a hypersurface A=B/fB.
Furthermore if (¢, ¢') is reduced, then

®A ¢’ ®A PR A

F'@QA FQA F'RQA < ...

is the minimal free resolution of Coker ¢ as an A-module. This correspondence
is an additive functor from MFg(f) to the category of the maximal Cohen-
Macaulay A-modules. Eisenbud [6, Corollary 6.3] showed that the functor
induces a one-to-one correspondence between reduced matrix factorizations of
f and maximal Cohen-Macaulay A-modules having no free summand. By the
correspondence, we often identify them.
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3. Proof of Theorem 1.1.

We will prove [Theorem 1.1 in this section. Let A be a Gorenstein local
ring of dimension d and of multiplicity en(4)>2. We divide the proof to two
parts.

CASE 1. When A is a hypersurface of dimension 1.

In this case, we will refine Nishida’s argument [16]. Let B be a 2-dimen-
sional regular local ring with maximal ideal n=(x, y) and 0#fen such that
B/fB=A, where A denotes the completion of A. Since eq(A)>2, there exist
elements a, b, cen such that f=ax®*+bxy+cyd: Let X be the second syzygy
of . Then X is a maximal Cohen-Macaulay module and X®,A is associated
to the matrix factorization of f:

N ((CY ax-+by vy ax-+by
(¢’¢)_<(x —y )’(x —cy ))
In the other word, there exists an exact sequence

R L 9®4A g @4A
0« XR.A A? A2 A2 .,

Therefore ExtL(X, k):Extfa(X@A/i, k) is a k-vector space of dimension 2. The
endomorphism ring End (X) of X acts on Exty(X, k) as k. In fact, an endo-
morphism of (@, ¢’) is a linear combination of following four morphisms:

(o DG D) (@ oG 0™
(A G I (CR N )l

The later three morphism act on Extf;(X(X)AA, k) as a zero map. In particular,
X is indecomposable.

Let {e,, e;} be a basis of Exti(X, k) and A>0 an integer. Take an exten-
sion of k" by X*":

0 k" M X" 0

which corresponds to

e @ 0

e e
L < Exti(X", k") = Exty(X, k)"
)

0 o
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Then M is a maximal surjective-Buchsbaum module with H3(M)=k" by [21,
Corollary 4.1]. We will show that M is indecomposable. We may assume that
A is complete. If there were non-trivial decomposition M=M'PM”, then
[M'/JHYM")IPIM”/HXM”)]=X". By the uniqueness of direct sum decom-
position, we obtain

HYM') = k¥ M'/HXM) = X™ ;
HyM”) = k*; M”"/HaM")=X"";
and the following commutative diagram
00— #» — M — X —0

| | H

0 — R"PEY —> M'PM” — X™'PX™ — 0.

It means that there are invertible matrix P and @ with entries in £ such that

e; e O
e . ez. H'
P 1-.._.-.62 o=y 7o)
0 e

where IT’ (resp. I1”) is h’Xm’ (resp. h” Xm”) matrix with entries in Ext4(X, k).
It is impossible by [16, Lemma 2.2]. O

CASE 2. When A is not a hypersurface or Ais a hypersurface of dimension
d=2.

We may assume that (h,, -+, hg_)#(1, 0, ---, 0. Let Y,; be an indecom-
posable maximal surjective-Buchsbaum module of finite injective dimension
defined as [2.2).

When this is the case, there exists an indecomposable maximal Cohen-
Macaulay module X such that

3.1) BaiX) = 3 B,(Wh,; for all 0= i< d—1,
Jj=0

where B#(—) denotes the i-th Betti number. In fact, when A is not a hyper-
surface, Herzog showed that for arbitrary integer n>0, there exists an inde-
composable maximal Cohen-Macaulay module X such that S§(X)=n, in the proof
of [12, Satz 1.2]. Furthermore Ramras [17, Corollary 4] gave an inequality
for any maximal Cohen-Macaulay module X over arbitrary Cohen-Macaulay
ring A
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(3.2) Brar(X) > ~é—"—l%4~>—,8n(X) for all >0,

where » is the Cohen-Macaulay type of A. Now, since A is Gorenstein, a
maximal Cohen-Macaulay module X having no free summand is the first syzygy
of another maximal Cohen-Macaulay module. And so the inequality holds
for n=0 if X is maximal Cohen-Macaulay module having no free summand.
Therefore we can take an indecomposable maximal Cohen-Macaulay module X
which satisfies [3.1). When A is a hypersurface, we leave to show that such
a module exists for the next section.

Let G. be the minimal free resolution of X and &:G,—X the canonical
epimorphism. We will give a epimorphism from Y=(P{ Y )PG, to X. Let
F! be the minimal free resolution of Y?: Then (F)* is a finite copy of a
part of the minimal free resolution of k; see [2.3). First we determine
¢t: Fi—G, for all 0<;<d—1. Assume that hy= - =h,_,=0 and h,#0. Then
let ¢%, -+, ¢'"! be zero maps and take a split monomorphism ¢4_,: Fo_,—Ga_:.
It induces a commutative diagram

0 Y F§ Foin<—Fi,<— 0
(3.3) meH| e P |
0 X G, Goto1<—Gaor<— Gagpr<—
by considering (FY)* and G*. When ¢, ---, ¢!! are given, take a homomorphism

(]531_1'3 Fii—> Gqy
such that dim,Im ¢j_;&@k=h,; and

3.4) Im ¢fi_i®km[§)1m ¢z,_,.®k] —0

as a subspace of G.,_..Xk; we can take such a homomorphism by inequality

(3.1). In the same way as [3.3), we get ¢¢ and H,(¢d%).
Let

6= Hig))De: ¥ — X

and M=Ker ¢. Then ¢ is epimorphism and 0—M—-Y—-X—0 is the minimal
injective hull of M. We will show that M is indecomposable except a maximal
Cohen-Macaulay module and that its non-Cohen-Macaulay component is the
required module. If there were an decomposition M=M'GEM” where neither
component is a maximal Cohen-Macaulay module. Take the minimal finite
injective hull of M’ and M”:
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0— M’ Y’ X’ 0 and 0 M Y7 X 0.

Then there exists a commutative diagram with exact rows

(3.5 ll e a
0 — M'PM" — Y'QY” —> X'PX" —> 0

because the lower row is the minimal finite injective hull of M’'@M”. Without
loss of generality, we may assume that X”=0 because X is indecomposable. Let

v =(@rr)@c and v’ = (d@o Y )BG”,

where G’ and G” are free and A;=h;+h? for all 0<;<d—1. Recall that Y~
is not Cohen-Macaulay, and so hY7+#0 for some t<s<d—1. We regard G, as a
complex concentrated at degree 0. Then G, is the minimal free resolution of
itself. The automorphism ¢ of Y induces an automorphism

A Y/
g QU | g
T
of (P FHDG,, where ¢/ : FI—Fi, ¢i:Gy—Fi, §l: FI—G, and ¢.: G,—G,.
We find that ¢¥®~E=0 if i>; and %£>0 by considering (¢¥)*: (Fi)*—(Fi)*,
And so ¢i; must be an automorphism of Fj_, for all 0=<:<s. The commuta-
tive diagram means that

dim, 3} Im(g}_-P% )@k < h} < hy,
1=0

which contradicts to [3.4). Hence M is indecomposable except for Cohen-Macaulay
summands.

Let M=M'@M” where M’ is indecomposable and M” is a maximal Cohen-
Macaulay module or a zero module. If dimsM’'=d, then M’ is surjective-
Buchsbaum by the commutative diagram

Exti(k, M') = Exti(k, Y)

Sl l ¢{>l for all 7 < d.
HM) —  HiP) =

Thus the proof of Case 2 is completed. We assume that s=dim,M’'<d. It is
easy to show that Hi(M’) is not finitely generated if s3=0. Therefore s must
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be equal to 0 and hy= - =h4_,=0, however, M'=HYM’) is a k-vector space
of dimension h,>1, which is a contradiction. [

4. Maximal Cohen-Macaulay module of high Betti numbers.

This section is devoted to the proof of the following theorem, by which we
can take an indecomposable maximal Cohen-Macaulay module satisfying if
d=2.

THEOREM 4.1. Let A be a hypersurface with maximal ideal m of dimension
d. We assume that the multiplicity e is greater than 2. Then for any integer
n>e, a maximal Cohen-Macaulay module Syz4., A/m™ is indecomposable and

d+n—1

Bi(Syzi. A/m™) = ( i1

This theorem was firstly proved by Herzog and Sanders in the graded
case. We will modify their proof to the local case.

We may assume that A is complete without loss of generality. Hence there
exists a regular local ring B with maximal ideal n and 0+ f=n® such that A=
B/fB. First we construct the minimal free resolution of A/m®. There is an
exact sequence

f
0— B/n"¢— B/1" — A/m" — 0,

Let (F., d.) and (F?, d.) be the minimal free resolution of B/n""¢ and of B/u"
as a B-module, respectively. Then F, is an Eagon-Northcott complex with
respect to an (n—e)X(n—e+d) matrix

Xg Xy crereeeeses X4 0
Xo X1 Xa
0 Ko Ky eeeeeeeens Xg
where x,, X1, -, X¢ i$ @ minimal basis of n, see and [3, p. 15], and F! is

also an Eagon-Northcott complex. The homomorphism f: B/n*"¢— B/n" lift to
a homomorphism ¢.: F,— F!.

LEMMA 4.2. For all i>0, ¢; is a split monomorphism.

Before the proof, we state a notation on graded rings. Since B is regular,
the associated graded ring gr.(B)=@®%,n'/n'*!, denoted by R, is isomorphic to
a polynomial ring. Let I be the homogeneous maximal ideal of R and f* the
leading term of f. For any B-module M, gr,(M)=@7nw'M/n'*'M is a graded
R-module. Let a: M—N be a B-homomorphism such that Im acCu™N. Then
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it induces an R-homomorphism gr¥*(a): gr.(M)—gr,(N)(n) in a natural way.
In this notation, the following diagram

gri %(d, griy(ds) grlll(d3)
gro(F)(—e) «——— gry(F)(—n) <——— gry(Fy)(—n—1) «<— -
@y | gri(6y) | grigy) |
gry(Fy) <—— gry(F)(—n)«——— gr (Fy)(—n—1) «<—
gri(dy) gri(ds) gri(ds)

is commutative and each row is the minimal free resolution of R/M” ¢ and
R/M", respectively, because it is an Eagon-Northcott complex.

PROOF OF LEMMA 4.2. We work by induction on 7. Firstly we take the
n-th homogeneous component of

nn—e/nn—e+1 -— F1®k - O
fi l¢1®k

nw/nttt <— FiQQk <— 0,

which is a commutative diagram of k-vector spaces with exact rows. Since
the composite homomorphism

F]@k — nn——e/nn-eﬂ — nn/nnﬂ

is a monomorphism, ¢,&*% is a split monomorphism. Therefore ¢, is also. If
¢; is a split monomorphism, then we have a monomorphism

gri(g:) .
Fi+1®k - grn<Fi)1 — grn(}'i 1

by taking the (n—i)-th homogeneous component of [4.3). And so ¢,,, is a split
monomorphism by the same way. [

Therefore we can write ¢.: F.— F! as the following form

Fre—n F «——— F <«—— ..
id id
GO (5|
F, (fd ) FIEBGITFZGBGZ tt
1 2 (g d3 as
(O gz) (0 gz)
where a; is a homomorphism from G; to F;_, and g; is a homomorphism from

G; to G;_,. Taking the mapping cone of ¢., we have the minimal free
resolution of A/m™ as a B-module
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(dlag
(f 0’1) 8 83 84
Fy < FOEBGI G, G,

and denote it by (H., d.).
In the same way, we obtain the minimal free resolution of R/(M"+f*R) as
an R-module
grﬁ‘“’(dxaz)>

(f* griay) grhgs
grn(FO) A gru<F0)(_e>®grn<Gl)(—n) <

gri(gs) gri(gs)
<— gry(Gy)(—n—1) «<—— gr (G:)(—n—2) «<— -

and denote it by (H., 0.).
We will construct the minimal free resolution of A/m® as an A-module
after Shamash [19] and Eisenbud [6, Section 7].

LEMMA 4.4. There exists a family of homomorphisms
{sj: Hi— Hjpi114, 120}
such that
(1) s9=0; for all j;
@) for all m, Disjes s;'n+2j_ls;1:{f'i51,nnl, /;Z%
(3 si= id()p,,) and s§=0 for i=2;
4) si(Fy=0 for all 1>0;

(5) si=0 modulo w® for all i, j=1.

A family satisfying (1) and (2) was given by Shamash [19]. But to show
(3)-(5), we review his argument.

PROOF OF LEMMA 4.4. We will construct the family by induction on .
Let s3=d; for all ; and si= 1d0F0>. Since H. is acyclic and f-idg,—sts? is

concentrated in G,, there is a homomorphism 7: G,— G, such that

d.a,

fridm,—shst = ( .

)(o 7).

Consider the following commutative diagram with exact row
gra(Gi)

(—géLﬁIE*f‘)(m)) gri(r)

grn(Fo)n—e-rl@grn(Gl)l D — grn(Gz)u «— (.
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Since Im a,Cn°F,, the vertical homomorphism is a zero morphism. Therefore
Imz is contained in nG,. Furthermore by the following commutative diagram
with exact row

grn(G 1)0

(—gr" ) gri(r)
gri(f

grn(Fo)n-uz@grn(Gl)z D e grn(Gz)l — grn(Ga)O,

we find a homomorphism 7’:G,—G; such that Im(r+g.,t")Cn’G,. Let si=
(0 z+gs7'). Then f-idy,=sjsi+sisi. In the same way, we obtain {si|i>1}
which satisfy (2), (3) and (5).

When the family {s]|k=0, 1<7<i} is given, let

i
= 3ysiifhsii Hy — Hppoi.

Jj=1

Then o.: H.— H.(2/) is a chain homomorphism, which is homotopic to the zero
map. Furthermore ¢,=0, ¢, is concentrated in G, and ¢;=0 modulo n® for 7>1
by the induction hypothesis. And so in the same way, we obtain {s}*'|;=0}
satisfying (2)-(5). O

Let Hi=(H;DH; D ---)XsA and

S Sk, erens

o = s32
= |®sA.
0

Then (H!, d7) is a free resolution of A/m™ as an A-module and we obtain the
reduced matrix factorization of f:

(¢: GL@G3 e G2EBG4 e ¢’ : 62@04 RPN G]@G3 )

* g 0 g 0\
* s 84

which corresponds to Syz4,, A/m™ if d is odd or to Syz4 A/m™ if d is even.
Here (x) parts of ¢ and ¢’ are equal to zero modulo n’. Since the rank of

Gq.1 is equal to (d—é—n)__(d+gﬂe>’ we obtain
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d—!—n—l).

BiSyzta A/mm = (717

Finally we will prove that Syzj,, A/m™ is indecomposable. Let

Xy Qg e Aoy Oyy -
N
(a, a’) = a3y g3 ’ Ay Ry

be an endomorphism of (¢, ¢’), where a;; is a homomorphism from G; to G,.
Then the diagram

grn(Gl)(_n) <« gru(G2)<—n_l) < grn(Gs)(—n_2> <
(4.5) | grt@a) | grtai | #rtarnn
gro(G)(—n) <— gry(Gi)(—n—1) <— gry(Gi)(—n—2) <— -+

is commutative for all 7=1. Since Homg(H., R) is acyclic, induces a chain
homomorphism B.: H.—H.G—1). If i>1, then B. is homotopic to zero. Hence
we have a;,=0 modulo n for j>k. If i=1, then §. induces an endomorphism
of Hy(H.)=R/(M"+ f*R) which is homotopic to the multiplication of a homo-
geneous element of R. Therefore there is an element c= A such that

¢ 0
Ay = (modn) for all ¢
0 ‘¢
and
¢ 3k ¢ %k
(a, a') = s (mod ).

O ' C 0 ' C
Thus End(Syzg., A/m™) is local, that is, a sum of non-units is not unit. There-
fore Syz,,, A/m" is indecomposable. The proof of is completed. [
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