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1. Introduction.

In this paper we are concerned with the gradient estimates of solutions to
the initial boundary value problem of the quasilinear parabolic equation

w—dw{e(|Vu|®)Vu} =0 in 2X[0, o), (1.1)
u(x, 0) = uyo(x) and u(x, )]0 =0 for t =0, (1.2)

where £ is a bounded domain in RY with a smooth, say C?® class, boundary 0£2
and ¢(v) is a function like o(v)=1/+1+v.

When oc(v)=|v|?"2/2 p=2, Alikakos and Rostamian derived an estimate
for ||Vu(®)|~ for the solutions of the equation with Neumann boundary condition,
which includes a smoothing effect and decay properties. The argument can be
applied to the case of Dirichlet problem. In [1], a strong coerciveness condition
on —div{e(|Vu|®)Vu} is used essentially and the mean curvature type nonlinearity
c(v)=1/+/1+v is excluded.

Recently, Engler, Kawohl and Luckhaus have treated the problem (1.1)-
for a class of ¢(v) including o()=|v|®®/2 and 1/+/14+v and derived
estimates for |Vu(t)l, in particular if ¢’(v)=¢,>0, the decay estimate

IVu@®l, < Vuolge™*, 2>0, (1.3)

for any ¢=2. In [2], however, no result concerning smoothing effect nor decay
estimate for [|Vu(t)|. is given.

The object of this paper is to derive an estimate for |Vu(¢)||l. to the problem
(1.1)-(1.2) with ¢(v) like 1/+/14+v. Our result includes both of smoothing effect
and exponential decay. More precisely, we prove

IVu@®lle < CliVatoll pyt~#e~** (1.4)

for po>3N/2 (p,=3 if N=1), where 1 is a positive constant and p=N/(2p,—3N).

As in and [2] (see Serrin [9]) we make a certain geometric condition on
0f2, which is essential for our argument. Such a condition is useful even for
some type of quasilinear wave equations ([6]).
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The equation (1.1) with ¢(v)=1/+14+v was treated by Lichnewsky and
Temam [4], and there a decay property for |u(f)|, as well as the existence and
uniqueness was discussed under a general boundary condition.

Quite recently, another type of mean curvature flow

ut—\/mﬁ?div{m%u;ﬁ} —0
has been investigated by Oliker and Uraltseva [8]. In [8], a precise exponential
decay estimate for ||[Vu(t)].. is established by Nash-Giorgi type argument combined
with classical maximum principle. But, initial data are assumed to be C% class
and smoothing effect near =0 is not known at all.

For the proof of our result we employ Moser’s technique as in Alikakos
and Rostamian and make some device as in Nakao [6] to overcome the lack
of coercivity of the nonlinear term —div{o(|Vu|®)Vu}. A delicate estimate near
t=0 will be derived by use of a result for a singular differential inequality
proved in Ohara [7]. Véron is a pioneering work proving smoothing effect
and decay for nonlinear parabolic equations by use of Moser’s technique.

2. Preliminaries and result.

The function spaces we use are all standard and the definition of them are
omitted. But, we note that [|-]|,, I<p=oco, denotes L? norm on £.

We make the following assumption on ¢(v).

Hyp. 1. o) belongs to C*R*), R*=[0, o), and satisfies the conditions :

(1) k(I4+v)* = 0(v) < &y,

(2) o@)+2¢" W = ky(14+v)7372,
and
(3) lao'w| = kio(v),

with some positive constants k&,, 4.
As a definition of solution for (1.1)-(1.2) we employ a standard one.

DEFINITION. We say a measurable function u(x, ) on £ X R* to be a solution
of the problem (1.1)-(1.2) if

u(t) € Lioe([0, o0); W§*(R2))

and the variational equality

S:Sg{—u¢t+a(IVu 1OVu-Vg} dxdt = S9u0¢(0)dx @.1)

is valid for any ¢=Cy[0, =) ; C¥£2)).
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Our result reads as follows.

THEOREM 1. Suppose that the mean curvature H(x) of 08 at x with respect
to the outward normal is nonnegative. Let u,cWyPo(Q) with p,>3N/2 if N=2
and p,=3 if N=1. Then, the problem (1.1)-(1.2) admits a unique solution u(t) in
the class

L2(R* 5 L(@)NL=(R* ; WEP(2)N LR WE=(@NNWEA(R* ; L(2))  (2.2)
and the estimate
IVu@)llee < CliVitgllpgt ™/ @P073Ve= 2t ¢ > 0, (2.3)
holds for some A>0, where C is a constant independent of u, and p,.
For the proof of Theorem we use the following lemmas.

LEMMA 1 (Gagriardo-Nirenberg). Let 1=r<qs<Np/(N—p) (1sr=qgso if
N<p and 1=r=q<co if N=p). Then, for ueW+?(Q), p=1, we have

lulle < CllullF°ulif » (2.4)

(K

where C is a constant independent of p, q, r.

In fact we use in the following form.

with

LEMMA 2. If |ulPuceW"?(Q), p=1, >0, we have

lullg < CYE DN ul 30 |u | Pul 985w (2.5)
with

r=ee0(s Ny )

where we assume B-+1=q and 1<r=<q<(B+1LNp/(N—p) (1=sr=q<co if p=N
and 1=Sr<g=o if N<p).

(Cf. Véron [10], Nakao [5], Ohara [7].)

LEMMA 3. Let y(t) be a nonnegative differentiable function on (0, T], T >0,
satisfying the inequality

Y O+A Y@ = By@+Ct 0, 0<t < T, (2.6)

with A>0, B=0, C=0, 1>0, >0 and —o<d<oo such that 16=1 and A>0.
Then, we have
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y(t < {(PERBT Y 20ET s o

for 0<t<T.
For a proof of see Ohara [7].

3. Some differential inequalities for |Vu(?)i,.

In this section we want to derive some differential inequalities and a priori
estimates concerning |[Vu(?)||,, p=2. For construction of the solutions, however,
we treat in fact approximate solutions u.(1).

Let u, . =C%(£2) and consider the approximate equations

u,—div{e.(|Vu|®Vu} =0 in 2X[0, =), 3.1

u(x, 0) = u, (x) and u(x, t)|50 =0, (3.2)
where we set

o.(v) = a(v)+e (3.3)

and u, . should be chosen so that u, .—u, in W§? as ¢—0.

When >0 the nonlinear term in ((3.1) is uniformly elliptic, and hence the
problem (3.1)-(3.2) admits a unique smooth solution wu.(¢) for each u,. (Lady-
zhenskaya, Solonnikov and Uraltseva [3]).

We write u for u. for simplicity of notation.

The following is the basic differential inequality for our argument.

PROPOSITION 1. For approximate solution u=u. we have, for p=2,

S L yvuiongr P et R 19019 (V17 V(T 2

< —(N=D|_o.(1Vu|9|Vu|?Hx)dI (3.4)

where H(x) denotes the mean curvature of 0Q at x.

RROOF. We write u; for du/dx; and employ the notation of summation
convention.

Multiplying the equation by —(|Vu|? %*u;); and integrating over 2 we
have, by integration by parts, (cf. and [2Z]).

SQIVu ] p—2ujuj;dx

= | {0V D oVl 2 tusd o= (o.(1VulDud | Vul 2 *um,dl
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= = lo(1Vulud (Va7 u)idx
+Sag{{05(|VuI2)ui}leulp‘zujni— {o.(IVul®u}|Vul??un} d I

= |, o (vu 1 (112w dx—(N=D|_o.(1Vu|)|Vul?PHAT  (35)

where n=(n,, -, ny) denotes the exterior normal vector at the boundary.
Here, we see

{o(IVuud; {IVulP"ust;
= {ocui;+20 usupurst {{Vul? 7 uy+(p—2) |V | P usu w44
= {0.u}j4+20" uuy - uptiy;} |Vu|?®

F(p—=2)|Vu| P o uuys- Uty ;20" Up Uil s U U Uy}

= {0.|V?u|*+20'2|Vu-Vu,|?% |Vu|?7?
7

+*@levu|p-4 {0, 1V(|Vu|?) |20 |V2e-V(| V| 9|

2 {ert bl Va7 (Va2 v+ P2 e v va )

> Lpzlill{wko(lJr V| %72} [V P4 V(| Vu )" (3.6)

(Note that the term |Vu|?*|V(|Vu|?)|® contains no singularity if p=2.)
follows from (3.5) and [3.6).

From we have further the following inequality by which we
can overcome the difficulty of the noncoerciveness of —div{g(|Vu|*)Vu} and
apply Moser’s technique.

PROPOSITION 2. Let p,>>3N/2 (po=3 if N=1) and assume that H(x)=0 on
0. Then, for p=p,, we have

LAVUOg+ CIV(Tu ) = 0 3.2

with Cozc.(|Q|1/Po+|]Vu0Hp0)‘3 and k=(p,—3)/(Ppo+3), where C is a positive
constant independent of u, p and p,.

PROOF. Since H(x)=0 we have from

L Ivuoig < 0

and, in particular,
IVu@llpy = Vo, ellp,, = 0. (3.8)
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Now, noting that
2
IV(|VuI"’2)I2=‘L-fquI""IV(IVulZ)I2 (3.9)

we have
V(I V| P23

= LI (vure-or v vuyeeax)
g [

<£{S |V [P~ V(1 V) |?
= 4 Ue A+ [Vupyr

2/ (1+K)

(+x)/2
] <1+|Vu|2)3(1+x)/4dx}

3(1+k)/(1-kK)
dxHSQ(H—IVuI)( a-n gy

}(l-x)/(1+x)

|Va] 24 V(| Vu %)
9 I+ |V

2
< {’Tug|1/po+||Vuo,sHpo)3S dx, (3.10)

where we have used at the last step (note that 3(1+x)/(1—&)=p,).
The inequalities and imply immediately.
To derive the exponential decay of |[Vu(f)|. as t—c we prepare:

PROPOSITION 3. Assume that H(x)=0 on 02 and there exists t,=0 such that
My=|Vu(ty)|o<<oo. Then, for any 2< p<<oco, we have

IVu®llp, < [Vu®)l et for t = £, (3.11)
where A is a positive constant depending on M, and p.
ProOOF. From (3.5) or we have
IVu@®lp, = Vulto)ll, < oo (3.12)
and hence, taking the limit as p - oo,
[Vu@®)lw = IVu(ts)] o < oo (3.13)
for t=t,.
Once the boundedness of [|[Vu(#)|.. is known the exponential decay

follows from an argument as in [2]. Indeed, setting w=+/0.(|[Vu|?[VL|? we
see, by the assumption on ¢, that

|Vw|* = i*G?‘qulp“‘(PoerZU’ IVu | V(IVu|9)|®

16
< b2k e Vu V(| Vu )
-1 (Z)—l) 2\-3/2 —4 2\ 12
< C; e kol VD2 Va4 |V( VoD%, (3.14)

4
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where we put

i Ri(pt2k))° 2ye/2
0= gpg(pn) MV

Hence, by the inequality we have

% L vuig+ CoVu I+ (N -D|, Hewmdr <0, 3.15)

Here, by an argument of elliptic eigenvalue problem there exists 4,>0 such that
CyllVw HH(N—I)SMH(X)wzdF = Apliwll? (3.16)

(cf. [2]).

Since

lw@ls = | jo.1VulPdx = ko/~/TFM3IVul

we obtain from [3.15) and [(3.16) that

L IVuOIg+ pAITHOIE < 0 3.17)

with 2=2,k,/~/14+ M2, which implies [3.11).

4. Estimate near =0.

In this section we shall derive an estimate for ||[Vu.(t)||. near =0, which
will yield near t=0, by taking the limit as ¢—0.
Let u=u.(t) be the approximate solution as in the previous section and set

v(t)=|Vu(t)|. First, we note that
lv@l py = IVto,ellp, for ¢t = 0. 4.1)

For a sequence {p,} defined by p,=2"p,, n=1, 2, ---, we shall show that there
exist sequences {u,} and {£,} of nonnegative numbers such that

lv®llp, = éat™#» for t (0, T, (4.2)

where 7' >0 is an arbitrarily fixed number.

We prove by induction. It holds certainly for n=0 by taking &,=
Vo el p, and po=0. Assume that it is valid for n=k—1. To show for
n=rk we utilize the inequality

Ivllp, < CPelvllyy, (IV@PREIE, 0P r/2]3, /P (4.3)

with £=(p,—3)/(p,+3) and §=N{1+k)/2(Nt-+k+1), which follows easily by
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In what follows we denote by C general positive constants independent of
k and . Now, by with n=Fk—1 and (4.3) we have

g;”v(t)ll B+ CoC™0E 1t #a-1) PRA=DI (1) || 3110 < Collu(t)?#/%] 1, . (4.5)

Since
lv@)?e2|3,, < Cllv@)|5E

we have from (4.5)
d
,Z[“v(t)upk+COC—z/ap}:l(&k_lt—#kﬂ)—pk(1—(9)/0”v|‘;~kpk+pk/0 < Coitlv®lp,, (4.6)

which is rewritten as

YO+ CoC™H0 gt sd 7 3108 < C ity (D) %)

where we set
¥ = lv®llp, 0r= pr(1—6)/0 and pp= pr_+1/0,.

Thus, applying to we obtain
[, = (C5'C*0 &3t 2per+2C pg'T)} Mokt 4 (4.8)

for t=(0, T], T>0. This inequality means that [(4.2) is valid for n=*% if we
define
Er = &t {CT' CYOpr(Rpr+2C pg* TH} 0% 4.9)

To take the limit in [(4.2) as n—co we must check the behaviour of {u,} and
{&.}. First, from the definition

ﬂn - ﬂn__1+0/2np0(1'—0> and #0 — 0
we see that
- 4 0 N

Heo = }zl_{l;lo[,tn - k§=31 zkp0(1—0~—5~"—— bo(1—8) a 2po—3N g

0. (4.10)
Next, we show that {£,} is bounded. Indeed, by the definition (4.9) we
have
0
logé, < logé,+——+—{C+log pa
gé génat pn(l—l?){ +log pat
<log &, +C(A+4n)27"
for some C=C(T)>0. Hence,
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log &, < log &,+C é b2k
< log &+C = log(&,0) (4.11)
for some 6:5(’1‘), that is,

£, = C& = Clug.lly,- (4.12)

A

From [4.2), {4.10) and [4.12)] we conclude that

IVet)lw = 0@ e = Clittg, ol 5yt > (4.13)
for t=(0, T] with po=N/(2ps—3N).

5. Estimate for large : and completion of the proof of Theorem.

Let us proceed to the estimation of |Vu(t)|. for large t, where u=u.(t) is
the approximate solution of the problem (3.1)-(3.2). We take T=1 in and
fix this. Then,

IVuDlle < ClVuto, el (5.1)
and hence, by [Proposition 3 and [3.13),
IVu@®ll < CliVuo, ol 5, (5.2)
and
IVu()llp, < IVu(L)]| p e 20D < [Vt || p e 200 (5.3)

for t=1 with some 4,>0 independent of e.

From and we have
d
@B+ CUVEr I = 0 G5.4)
for some constant C,=C,(|Vu, .|) independent of k.
By we see (cf. (4.3))
o] B5/0 < C*O || B D18 {| V(P /)34 [l B8} (5.5)

with 8=2/(N+2).
Since, generally, the inequality a'/?<b(c+a), 0<B<1, implies

a < max{[(p-+1)p]F1a=5 p=ic} (5.6)
for any p>0, we have from (5.5) that
[vl3: < max{(p,+1)"-OCH OO p|Be_, pit|VwPF*)|3}. (6.7

We shall derive exponential decay for |[Vu(?)|. from and (5.7). For this
we shall prove
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lv@®llp, < nue ¢ for t =1 (5.8)

with a certain {n,} and A=min{4, C,}. [5.8) is valid for n=0 if we take
7e=C|Vu,,|lp,. Suppose that is valid for n=Fk—1 and define

e = {(pp+DPCHVA DRy, . (5.9)
Then, by (5.7),
[v(®)12% < max {nrte 4P pd|V(vPr/%)||3}. (5.10)

Here, we see

Pr = Paos = CUPkpy = CYPEC ||V ol o = CHPe 0D (C > 1)

and hence, we may assume
1Dl < IoDlle] 21125 < 7

by taking C>max(l, |£]). This means that is valid on some interval
[1, 1401, 6>0. If was false, then there would exist #4>1 such that

lo@tllp, = pee**0 (5.11)
and

[o®llp, > nre ¢ (5.12)

for tx<t<tyx+0 with some 6>0.
But then, by [(5.10)] we have

lv@®l3: < ptllV@@®)P*?|3 on [k, tx+8]
and, by the differential inequality [(5.4),

LI S0, b St btd, 513

where we note that A<C,. This together with implies
[v®I2E < lo(ts)||Bre4Prto

— vg’ke"lpk(t-l)

for tx<t<tx+0, which contradicts to [5.12)
Thus, we conclude that is valid for n=*/ and consequently for all n.
Finally we shall check the boundedness of {7,} in [5.8) By the definition
we see

log px—log i1 = 55 k’(@ log(1+pe)+C)

and hence,
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Mo o 0 [ & logd+pe) o 1
log 7]0 = 1““0{};1 pk +Ck§l pk}
co
é*i—_ﬁfz log C, < oo
Thus, we have
Nn = C27]0 (5.14)
and we conclude
VU@l < CCofl Vg, efle 240 (5.15)
for t=1.
Combining and [5.15) we obtain the desired estimate
Vi)l < ClIVitk, el pt ™/ 2P078M g~ 2 (5.16)

with some constant C independent of u, and p,.
To show the convergence of u. as e—0 we need further estimate:

[ Iucts s+ F (V) = Ful(0) = ClIVus, o] .17)

for any >0, where we set

F(Vu) = -;—SQS;V”’Z(;(wdvdx.

follows easily if we multiply the equation by u., and integrate.
Now, by a standard compactness argument we have, along a subsequence,

u(t) —> u(?) weakly* in L7.(L0, o) ; W5 Po)\ L5 ([0, o0); W§)
and a.e. in [0, )X,
Uet(t) —> uo(t) weakly in Lio([0, e0); LX),
and
Acu. = —divio (|Vu)1")Vu(t)} —> 2L weakly in LI, ([0, o) ; W)

for a measurable function u(¥)=u(t, x).

Since A. is monotone operator from L,,([0, o) ; W§?) to Li([0, ) Wit?)
we see X=0(|Vu|?)Vu by Minty’s trick. The limit function u(¢) satisfies
and the estimates [5.15) and [5.16)] remain valid for u(#) with u, . replaced by u,.
Uniqueness is trivial. The proof of Theorem is now complete.
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