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Consider a Radon measure $\mu$ of not necessarily constant sign on a subregion
$W$ of the Euclidean space $R^{d}$ of dimension $d\geqq 2$ . A function $u$ on an open
subset $U$ of $W$ is said to be $\mu$-harmonic on $U$ if $u$ is continuous on $U$ and
satisfies the Schr\"odinger equation $(-\Delta+\mu)u=0$ on $U$ in the sense of distributions.
The family of $\mu$-harmonic functions on open subsets of $W$ determines a sheaf
$H_{\mu}$ of functions on $W$ (cf. \S 1.1 below), i.e., $H_{\mu}(U)$ is the set of $\mu$-harmonic
functions on $U$ . In order for us to be able to effectively discuss various global
structures such as the Martin boundary related to the equation $(-\Delta+\mu)u=0$ on
$W$ , it is the least requirement for the sheaf $H_{\mu}$ to give rise to a Brelot harmonic
space, or simply Brelot space, $(W, H_{\mu})$ (cf. \S 1.2). This paper concerns the
question under what condition on $\mu$ the sheaf $H_{\mu}$ generates a Brelot space
$(W, H_{\mu})$ . It was shown by Boukricha [3] for a positive measure $\mu$ and by

Boukricha-Hansen-Hueber [4] for a signed measure $\mu$ that $(W, H_{\mu})$ is a Brelot
space if $\mu$ is of Kato class (cf. \S 2.2). It is a natural question to ask whether
for $\mu$ to be of Kato class is the widest possible condition for $(W, H_{\mu})$ to be a
Brelot space; specifically we ask whether $\mu$ is of Kato class if $(W, H_{\mu})$ is a
Brelot space. The answer to this question is given as follows:

MAIN THEOREM. Although a Radon measure $\mu$ of constant sign being of
Kato class is necessary and sufficient for the pair $(W, H_{\mu})$ to be a Brelot space,
a Radm measure $\mu$ of nonconstant stgn being of Kato class is sufficient but not
necessary in general for $(W, H_{\mu})$ to be a Brelot space.

We will give a self contained complete proof to the above assertion and
actually more than described in the above statement as follows. We introduce
a new notion of, what we call, a Radon measure of quasi Kato class (cf. \S 3.2).
We then have the following result:

THEOREM 1. If $\mu$ is a Radon measure of $qua\Re$ Kato class, then the pair
$(W, H_{\mu})$ is a Brelot space.
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Since it is easily seen, by examining the very definitions of both classes,
that a Radon measure $\mu$ on $W$ is of quasi Kato class on $W$ if it is of Kato
class on $W$ , the above theorem 1 is, at least superficially, a generalization of
the above cited results of Boukricha [3] and Boukricha-Hansen-Hueber [4] (cf.

also Strum [11] $)$ . That it is a strict and essential generalization is seen by
the following result:

THEOREM 2. On any Euclidean subregion $W$ there always exists a Radon
measure $\mu$ which is of quast Kato class on $W$ but not of Kato class on $W$ .

From theorems 1 and 2 the main theorem follows at once except for the
part that a Radon measure $\mu$ of constant sign is of Kato class if $(W, H_{\mu})$ is a
Brelot space. The proof of this fact is quite easy and will briefly be given in
\S 2.2 among other things. Thus we only have to concentrate ourselves upon
the proofs of theorems 1 and 2.

The paper consists of six sections. Brelot spaces are explained in \S 1.
Here a simple example of $(W, H_{\mu})$ which is not a Brelot space is stated. In \S 2
measures of Kato class are considered. A central fact treated in this section
concerns the Brelot spaces $(W, H_{\mu})$ witb positive or negative measures $\mu$ A
new notion of measures of quasi Kato class is introduced in \S 3 and Green
potentials of measures of quasi Kato class are discussed in \S 4. Based upon the
results in the preceding section, the proof of Theorem 1 is given in \S 5. In
the last \S 6, Theorem 2 is proved. The flat cone criterion for Dirichlet regu-
larity is used in \S 6 and thus a proof for this fact is given in Appendix at the
end of this paper.

1. Brelot spaces.

1.1. We denote by $R^{\dot{a}}$ the Euclidean space of dimension $d\geqq 2$ and $\lambda=\lambda^{d}$

the Lebesgue measure on $R^{f}$( We sometimes use the notation $|X|$ to mean the
volume $\lambda(X)$ of a measurable subset $X$ of $R^{d}$ . We also denote the volume
element $d\lambda(x)$ by $dx=dx_{1}$ ... $dx_{a}$ where $x=(x_{1}$ , $\cdot$ .. , $x_{d})$ is a point of $R^{d}$ . The
length of $x$ is denoted by $|x|$ . A subregion or region $W$ of $R^{d}$ is an open
and connected set. A typical example of regions is an open ball $B(a, r)$ of
radius $r>0$ centered at $a\in R^{a}$ . We also denote by $\overline{B}(a, r)$ the closed ball
$\overline{B(a,r)}=B(a, r)\cup\partial B(a, r)$ . A Radon measure $\mu$ on a region $W$ is a difference
of two regular positive Borel measures on $W$ (i.e., defined for Borel subsets of
$W)$ so that the total variation $|\mu|$ of $\mu$ and the positive (negative, resp.) part
$\mu^{+}=(|\mu|+\mu)/2$ ($\mu^{-}=(|\mu|-\mu)/2$ , resp.) of $\mu$ are positive regular Borel measures
on $W$ . If a Radon measure $\mu$ on $W$ takes only nonnegative (nonpositive, resp.)

values, then $\mu$ is said to be positive (negative, resp.), $\mu\geqq 0$ (\mu $0, resp.) in
notation. Positive or negative Radon measures are said to be of constant sign.
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Otherwise they are said to be of nonconstant sign. To stress that $\mu$ is not
necessarily positive or negative we sometimes say that $\mu$ is a signed Radon
measure.

Using a Radon measure $\mu$ on a region $W$ in $R^{d}(d\geqq 2)$ as its potential we
consider a stationary (i.e., time independent) Schr\"odinger operator $-\Delta+\mu$ on
$W$ . By a solution $u$ on an open subset $U$ of $W$ of the Schr\"odinger equation

(1.1) $(-\Delta+\mu)u=0$ $(\Delta=\partial^{2}/\partial x_{1}^{2}+\cdots+\partial^{2}/\partial x_{d}^{2})$

we mean that $u\in L_{1.1oc}(U, \lambda+|\mu|)$ and $u$ satisfies (1.1) on $U$ in the sense of
distributions, i.e.,

(1.2) $- \int_{U}u(x)\Delta\varphi(x)dx+\int_{U}u(x)\varphi(x)d\mu(x)=0$

for every test function $\varphi\in C_{0}^{\infty}(U)$ . A solution $u$ of (1.1) on $U$ may not be
continuous ( $i.e.$ , may not have a continuous representative as an element of
$L_{1.1oc}(U, \lambda+|\mu|))$ even if $\mu$ is of Kato class defined later (cf. [10] and also
[11] $)$ unless $\mu$ is absolutely continuous with respect to $\lambda$ (cf. [1]) and thus we
have to assume it if we wish to have the continuity of a solution $u$ . A function
$u$ defined on an open subset $U$ of $W$ is said to be $\mu$-harmonic on $U$ if $u\in C(U)$

and $u$ is a solution of (1.1) on $U$ . Thus we may say that $u$ is a $\mu$-harmonic
function on $U$ if and only if $u\in C(U)$ and satisfies (1.2).

We denote by $H_{\mu}(U)$ the set of all $\mu$-harmonic functions on an open subset
$U$ of $W$ . Then we can define a sheaf $H_{\mu}$ of functions in $W$ , i.e., $H_{\mu}$ gives
rise to a mapping $U\mapstoarrow H_{\mu}(U)$ defined on the family of all open sets $U$ of $W$

satisfying the following three sheaf axioms:
(S. 1) For any open set $U$ in $W,$ $H_{\mu}(U)$ is a family of functions on $U$ ;
(S. 2) For any two open sets $U$ and $V$ in $W$ such that $U\subset V$ , the restriction

to $U$ of a function in $H_{\mu}(V)$ belongs to $H_{\mu}(U)$ , i.e., $H_{\mu}(V)|U\subset H_{\mu}(U)$ ;
(S. 3) For any family $\{U_{l}\}_{c\in I}$ of open sets $U_{\ell}$ in $W$ and any function $u$ on

$\bigcup_{\ell\in I}U_{\ell},$ $u\in H_{\mu}(U_{\ell\in I}U_{\ell})$ if $u|U_{f}\in H_{\mu}(U_{\ell})$ for every $c\in I$ .
It is entirely obvious that $H_{\mu}$ certainly satisfies (S.1) and (S.2). It may be

less obvious that $H_{\mu}$ satisfies (S. 3). Suppose a function $u$ on $\bigcup_{\ell\in I}U_{f}$ satisfies
$u|U_{t}\in H_{\mu}(U)$ for every $eEL$ In particular $u|U_{\ell}\in C(U_{\ell})$ implies that
$u\in C(U_{\ell\in I}U_{t})$ . Fix a partition $\{\phi_{a}\}_{\alpha\in A}$ of unity subordinate to a locally finite
refinement of $\{U_{\ell}\}_{e\in I}$ . Choose an arbitrary $\varphi\in C_{0}^{\infty}(U_{c\in I}U_{f})$ . Since $supp\varphi$ is
compact, $\{\alpha\in A:\varphi\phi_{\alpha}\not\equiv 0\}$ is a finite set $\{\alpha(k):1\leqq k\leqq n\}$ . Let $\varphi_{k}=\varphi\acute{\varphi}_{a(k)}$ and
$c(k)\in I$ be such that $supp\varphi_{k}\subset U_{t(k)}$ . From $u|U_{\ell(k)}\in H_{\mu}(U_{p(k)})$ it follows that

$- \int_{U_{l(k)}}u(x)\Delta\varphi_{k}(x)dx+\int_{U_{\ell(k)}}u(x)\varphi_{k}(x)d\mu(x)=0$ $(k=1, \cdots n)$ .



278 M. NAKAI

Adding the above identities for $k=1,$ $\cdots,$ $n$ and then observing that $\varphi=\Sigma_{k\Rightarrow 1}^{n}\varphi_{k}$ ,

we deduce (1.2) for $U=U\in IU_{t}$ .

1.2. An open set $U$ in $W$ is said to be regular for $H_{\mu}$ if it is relatively
compact in $W$ and $\partial U\neq\emptyset$ and for every continuous function $f$ defined on $\partial U$

there is a unique continuous function $u$ on $\overline{U}$ such that

$u|\partial U=f$ , $u|U\in H_{\mu}(U)$ and $u\geqq 0$ if $f\geqq 0$ .
We say that a pair $(W, H_{\mu})$ forms a Brelot harmonic space or simply Brelot
space if the following three axioms are satisfied:

AXIOM 1 (Lineanty). For any open set $U$ of $W,$ $H_{\mu}(U)$ is a linear subspace

of the space $C(U)$ ;

AXIOM 2 (Local solvabnlity of Dinchlet problem). There is a base for the
topology of $W$ such that each set in the base is a regular region for $H_{\mu}$ ;

AXIOM 3 (The Harnack pnnctple). If $U$ is a region in $W$ and $\{u_{n}\}$ is any
increasing sequence in $H_{\mu}(U)$ , then $u= \sup_{n}u_{n}$ belongs to $H_{\mu}(U)$ unless $u$ is
identically $+\infty$ .

For a general theory of harmonic spaces including Brelot spaces, see e.g.,
Maeda [9] and Constantinescu-Cornea [5], among others. Under Axioms 1 and
2, Axiom 3 is seen to be equivalent to the following property (cf. e.g., Loeb-
Walsh [8] $)$ : For each region $U$ in $W$ and each compact subset $K$ of $U$ there
exists a constant $c>0$ such that for any $u\in H_{\mu}^{+}(U)$ (where $\mathscr{F}^{+}$ always indicates
the subfamily of a family $\mathscr{F}$ of functions consisting of all nonnegative members
in $\mathscr{F}$ )

$\sup_{x\in K}u(x)\leqq c\cdot\inf_{x\in K}u(x)$ (The Hamack inequality).

AS an example consider the Radon measure $0$ on $R^{d}$ , i.e., the Radon
measure whose values at every Borel sets are zero. The corresponding equation
is the Laplace equation -Au $=0$ . For any distributional solution $u\in L_{1,1oc}(U, \lambda)$

of $-\Delta u=0$ on an open set $U$ , there exists a classical harmonic function $u^{\sim}\in C^{\infty}(U)$

satisfying $-\Delta u^{\sim}=0$ on $U$ in the genuine sense such that $u^{\sim}=u\lambda- a.e$ . on $U$ .
This is known as the Weyl lemma which is an easy consequence of the standard
mollifier method. In this case, hence, there is no essentially discontinuous
solutions of $-Au=0$ other than $0$-harmonic functions. Thus in this case the
sheaf $H_{0}$ is determined by $H_{0}(U)=$ { $u\in C_{0}^{\infty}(U)$ : $-Au=0$ on $U$ } for each open
subset $U$ of $R^{d}$ . Then it is a well known classical result that $(R^{d}, H_{0})$ is a
Brelot space. It is one of traditional ways to treat the equation $(-\Delta+\mu)u=0$

by reducing it to $-Au=0$ through harmonic Green potentials.
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1.3. Needless to say a sheaf $H_{\mu}$ on $W$ need not generate a Brelot space
$(W, H_{\mu})$ in general. For example, take $W$ as any subregion of $R^{a}$ containing
the origin $0$ of $R^{a}$ and $\delta$ the Dirac measure at $0$ . Then $\delta$ is a positive Radon
measure on $W$ and we can form the sheaf $H_{\delta}$ of $\delta$-harmonic functions on open
sets of $W$ . We maintain that $(W, H_{\delta})$ does not form a Brelot space. Of course
Axiom 1 is always satisfied by any sheaf of functions on $W$ as far as it comes
from a linear equation like the one $(-\Delta+\delta)u=0$ for $H_{\delta}$ . Thus if we assume
$(W, H_{\delta})$ forms, contrary to our assertion, a Brelot space, then it simply means
that $(W, H_{\delta})$ satisfies both of Axioms 2 and 3. By Axiom 2 there is a regular
subregion $U$ of $W$ for $H_{\delta}$ containing the origin $0$ . We can find a $u\in C(\overline{U})\cap H_{\delta}(U)$

with $u|\partial U=1$ so that (1.2) with $\mu$ replaced by $\delta$ is satisfied. Hence we have

$\int_{U}u(x)\Delta\varphi(x)dx=u(O)\varphi(O)$

for every $\varphi\in C_{0}^{\infty}(U)$ . By considering $\varphi$ with $supp\varphi\subset U\backslash \{0\}$ we see that $u$ is
harmonic in $U\backslash \{0\}$ . The Riemann removability theorem (cf. $e.g.,$ $[2]$ , p. 32, or
[12], $P\cdot 67)$ assures that $u\in H_{0}(U)$ and therefore the left hand side of the above
identity must be zero for every $\varphi\in C_{0}^{\infty}(U)$ . A fortiori $u(O)\varphi(O)=0$ for every
$\varphi\in C_{0}^{\infty}(U)$ which means that $u(O)=0$ . Since $u|\partial U=1\geqq 0$ , Axiom 2 implies that
$u|U\geqq 0$ . Observe that $\{nu\}_{n\geqq 1}$ is an increasing sequence in $H_{\delta}(U)$ . Again by
$u|\partial U=1$ , there exists a point $a\in U$ such that $u(a)>0$ . Hence, if we set
$v= \sup.nu$ on $U$ , then $v(a)=+\infty$ and $v(O)=0$ , contradicting Axiom 3. Thus we
have shown that $(W, H_{\delta})$ is not a Brelot space.

2. Measures of Kato class.

2.1. AS before we fix a subregion $W$ of $R^{d}$ . A kernel $k$ on $W$ is a
continuous mapping $k$ of $W\cross W$ to $(-\infty, +\infty]$ such that $k(x, y)$ is finitely
continuous on $W\cross W$ outside its diagonal set and bounded from below on $K\cross K$

for any compact subset $K$ of $W$ . The k-potential $k\mu$ of a Radon measure $\mu$ on
$W$ is defined by

$k \mu(x)=\int_{W}k(x, y)d\mu(y)$

as far as it is meaningful, which is the case, for example, if $\mu\geqq 0$ and has a
compact support in $W$ . Clearly $k\mu\in C(W\backslash supp\mu)$ if $\mu$ has a compact support
in $W$ and $k\mu$ is well defined. If $\mu\geqq 0$ has a compact support in $W$ , then $k\mu$ is
lower semicontinuous on $W$ . If $\mu$ and $v$ are positive and have compact supports
in $W$ , then $k(\mu+v)\in C(W)$ implies $k\mu,$ $k_{P\in}C(W)$ since $k\mu=k(\mu+v)-kv$ is also
upper semicontinuous.
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TO talk about a certain kind of regularity of $\mu$ and $k\mu$ we introduce the
following quantity

$\gamma(a, \mu, k)=\lim_{\epsilon\downarrow 0}(\sup_{x\in B(a.\epsilon)}\int_{B(a,\epsilon)}k(x, y)d|\mu|(y))$

for each point $a\in W$ . Note that the quantity 7 concerns the potential $k|\mu|$ and
not $k\mu$ and in fact $\gamma(a, \mu, k)=\gamma(a, |\mu|, k)$ . If $k(a, a)<+\infty$ , then $7(a, \mu, k)=$

$k(a, a)|\mu|(\{a\})$ and, in particular, $7(a, \mu, k)=0$ if and only if $|\mu|(\{a\})=0$ . If
$k(a, a)=+\infty$ , then $\gamma(a, \mu, k)\geqq k(a, a)|\mu|(\{a\})$ . Hence in this case of $k(a, a)$

$=+\infty$ we see that $|\mu|(\{a\})=0$ if $\gamma(a, \mu, k)<+\infty$ .

LEMMA 2.1. Suppose $k=+\infty$ on the diagonal set of $W\cross W$ and $\mu$ (and hence
$|\mu|)$ has a compact support in W. Then $k|\mu|\in C(W)$ if and only if $7^{(a},$ $\mu,$

$k$) $=0$

for every $a\in W$ .
PROOF. Take an arbitrary point $a\in W$ and assume $\gamma(a, \mu, k)=0$ . For each

$\epsilon>0$ let $\mu_{\epsilon}$ be the restriction of $\mu$ to $\overline{B}(a, \epsilon)$ and $\nu_{\epsilon}=\mu-\mu_{\epsilon}$ For any $\delta>0$ there
exists an $\epsilon>0$ such that $\overline{B}(a, \epsilon)\subset W$ and $|k|\mu_{\epsilon}||<\delta/2$ on $B(a, \epsilon)$ . Then $k|\mu|$

$=k|\mu_{\epsilon}|+k|\nu_{\epsilon}|$ and

$|k|\mu|(x)-k|\mu|(a)|\leqq|k|\nu_{\epsilon}|(x)-k|\nu_{\epsilon}|(a)|+\delta$

for every $x\in B(a, \epsilon)$ . Since $k|\nu_{\epsilon}|\in C(B(a, \epsilon))$ , we have

$\lim_{xarrow}\sup_{a}|k|\mu|(x)-k|\mu|(a)|\leqq\delta$

so that $k|\mu|$ is continuous at $a$ and therefore $k|\mu|\in C(W)$ .
Assume $k|\mu|\in C(W)$ and again take an arbitrary $a\in W$ . Let $\mu_{\epsilon}$ and $\nu_{\epsilon}$ be

as above. Since $k|\mu_{\epsilon}|$ and $k|\nu_{\epsilon}|$ are lower semicontinuous on $W$ , the fact that
$k|\mu_{\epsilon}|+k|\nu_{\epsilon}|=k|\mu|\in C(W)$ implies that $k|\mu_{\epsilon}|$ is continuous (and so is $k|\nu_{\epsilon}|$ ) on
$W$ . From

$k(a, a)|\mu_{\epsilon}|(\{a\})\leqq k|\mu_{\epsilon}|(a)<+\infty$

and $k(a, a)=+\infty$ it follows that $|\mu_{\epsilon}|(\{a\})=|\mu|(\{a\})=0$ . Hence $k|\mu_{\epsilon}|(x)\downarrow$

$k(x, a)|\mu|(\{a\})=0(\epsilon\downarrow 0)$ at each point $x\in W$ and thus the Dini theorem assures
that the convergence is uniform on each compact subset of $W$ . Thus $\gamma(a, \mu, k)$

$=0$ . $\square$

Let $N(x, y)$ be the Newtonean kernel on $R^{d}$ , i.e., $N(x, y)=1/|x-y|^{a-z}$ for
$d\geqq 3$ and $N(x, y)=\log(1/|x-y|)$ for $d=2$ . It is a kernel on $R^{d}$ and hence on
any subregion $W$ of $R^{d}$ in the sense of this section. We say that a kernel $k$

on $W$ is an $N$-kernel if there exists a constant $c>0$ such that $k-cN\in C(W\cross W)$ .

LEMMA 2.2. Let $k$ be an $N$-kernel on $W$ with the associated constant $c$ on
$W$ and $a\in W$ . Then $\gamma(a, \mu, k)<+\infty$ if and only if $\gamma(a, \mu, N)<+\infty$ and in this
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case $7^{(a},$ $\mu,$
$k$ ) $=c_{7}(a, \mu, N)$ .

PROOF. By the above remark, $|\mu|(\{a\})=0$ if either $\gamma(a, \mu, k)$ or $\gamma(a, \mu, N)$

is finite. Then $7^{(a},$ $\mu,$ $k-cN$) $=_{7^{(a}},$ $\mu,$ $cN-k$ ) $=0$ . Hence $\gamma(a, \mu, k)=\gamma(a, \mu, cN)$

$=c\gamma(a, \mu, N)$ assures the assertion. $\square$

2.2. A Radon measure $\mu$ on an Euclidean subregion $W$ is said to be of
Kato class on $W$ if

(2.1) $\gamma(a, \mu, N)=\lim_{\text{\’{e}}\downarrow 0}(\sup_{x\in B(a\epsilon)}.\int_{B(a,\epsilon)}N(x, y)d|\mu|(y))=0$

for every $a$ in $W$ . By Lemma 2.1, the condition (2.1) is equivalent to that the
potential $N|\mu_{B}|\in C(W)$ (or equivalently $N|\mu_{B}|\in C(R^{d})$ in this case) for every
open ball $B$ with $\overline{B}\subset W$ , where $\mu_{B^{-}}-\mu|B$ (cf. [4], [11]). That $N|\mu_{B}|\in C(W)$ is
equivalent to $N\mu_{B}^{\pm}\in C(W)$ and, in particular, $N\mu_{B}\in C(W)$ is deduced. It is
extremely important to keep it in mind that $N\mu_{B}\in C(W)$ need not imply
$N|\mu_{B}|\in C(W)$ and actually we will give such an example in \S 6. Originally the
Kato class is considered for functions $f$ on $W$ (cf. e.g., [1]) : $f$ is a function of
Kato class on $W$ if and only if, in our present terminology, $f\lambda(i.e., d(f\lambda)=fd\lambda)$

is a Radon measure of Kato class. Here recall $\lambda$ is the Lebesgue measure on $R^{d}$ .
We will prove a fact (i.e., Theorem 1) which contains a result of Boukricha-

Hansen-Hueber [4] : If $\mu$ is a Radon measure of Kato class on $W$ , then $(W, H_{\mu})$

is a Brelot space. We will also prove that the converse of the above is not
true in general (cf. Theorem 2). However we have the following result:

PROPOSITION 2.1. Suppose $\mu$ is a Radon measure of constant sign on a sub-
region $W$ so that $\mu$ is positive or negative on W. In this case the fact lhat the
pair $(W, H_{\mu})$ forms a Brelot space implies that $\mu$ is of Kato class on $W$ .

PROOF. We only consider the case $\mu\geqq 0$ . (The case of $\mu\leqq 0$ can be treated
similarly.) We only have to show that $\gamma(a, \mu, N)=0$ for any fixed $a\in W$ .
Axiom 2 assures that there is a regular region $V$ for $H_{\mu}$ such that
$a\in V\subset B(a, 1/2)$ . We choose a function $u\in C(\overline{V})\cap H_{\mu}(V)$ such that $u|\partial V=1$ .
Since $u|\partial V=1\geqq 0$ , we have $u\geqq 0$ on $V$ . We maintain that actually $u>0$ on $V$

and in particular $u(a)>0$ . Contrary to the assertion suppose there is a $b\in V$

such that $u(b)=0$ . By continuity of $u$ on $\overline{V},$ $u|\partial V=1$ assures the existence of
a $c\in V$ with $u(c)>0$ . The sequence $\{nu\}_{n\geqq 1}$ is an increasing sequence in $H_{\mu}(V)$

and hence $v= \sup_{n}nu\in H_{\mu}(V)$ or $v\equiv+\infty$ on $V$ in view of Axiom 3. However
$v(b)=0$ and $v(c)=+\infty$ , a contradiction. Therefore $u(a)>0$ .

For simplicity we set $\nu=u\mu$ (i.e., $d\nu=ud\mu$ ) which is a Radon measure
on $W$ with compact support in $W$ by defining $u=0$ on $W\backslash \overline{V}$ . Consider the
function
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$U(x)=(1/ \kappa_{d})N\nu(x)=(1/\kappa_{d})\int_{V}N(x, y)u(y)d\mu(y)$

for $x\in R^{d}$ , where the space constant $\kappa_{d}=2\pi$ for $d=2$ and $\kappa_{d}=(d-2)\sigma_{a}$ for $d\geqq 3$

with $\sigma_{a}$ the surface area of the unit sphere $S^{d-1}$ in $R^{d}$ . Since $V\subset B(a, 1/2)$ and
$N>0$ on $B(a, 1/2)\cross B(a, 1/2)$ for every dimension $d\geqq 2$ , we see that $0\leqq U(x)$

$\leqq+\infty$ on V. (In the case of $\mu\leqq 0$ , consider $-U$ instead of $U.$ ) By the Fubini
theorem we see that

$\kappa_{d}\int_{V}U(x)dx=\int_{V}(\int_{V}N(x, y)dx)u(y)d\mu(y)\leqq K\cdot(\sup_{V}u)\mu(\overline{V})<+\infty$

so that $U\in L_{1}(V, \lambda)$ where

$\int_{V}N(x, y)dx\leqq\int_{B(y.1)}N(x, y)dx=\int_{B(0.1)}N(x, O)dx=K<+\infty$

for every $y\in V$ . Using the well known identity

$\varphi(y)=-(1/\kappa_{f}()\int_{V}N(x, y)\Delta\varphi(x)dx$ $(y\in V)$

for every $\varphi\in C_{0}^{\infty}(V)$ (cf. $e.g.,$ $[12]$ , $P$ . 13), the Fubini theorem again assures that

$\int_{V}U(x)\Delta\varphi(x)dx=\int_{V}\frac{1}{\kappa_{d}}(\int_{V}N(x, y)\Delta\varphi(x)dx)u(\gamma)d\mu(y)=-\int_{V}\varphi(y)u(y)d\mu(y)$

so that we have $\Delta U=-u\mu$ on $V$ in the sense of distributions. The $\mu$-harmonicity
of $u$ of course implies tbat $\Delta u=u\mu$ in the sense of distributions. We set
$h=u+U$ on $V$ . Then $\Delta h=\Delta u+\Delta U=u\mu-u\mu=0$ on $V$ in the distributional
sense. Hence by the Weyl lemma there is a classical harmonic function $(i.e.$ ,
a $0$-harmonic function) $h^{\sim}\in C_{0}^{\infty}(V)$ such that $h=h^{\sim}\lambda- a.e$ . on $V,$ $\lambda$ being the
$d$-dimensional Lebesgue measure.

Let M. be an averaging operator so tbat for any function $f\in L_{1,1oc}(V, \lambda)$

$M_{\epsilon}f(x)= \frac{1}{|B(0,\epsilon)|}\int_{B(0.\epsilon)}f(x+y)dy$ $(x\in V)$

for any $\epsilon>0$ with $\overline{B}(x, \epsilon)\subset V$ , where $|B(0, \epsilon)|=\lambda(B(0, \epsilon))$ is the volume of $\epsilon$ -ball
$B(O, \epsilon)$ . From the identity $h=u+U$ valid in $L_{1}(V, \lambda)$ and hence valid only $\lambda- a.e$ .
on $V$ , we deduce a numerical identity

M. $h(x)=M_{\epsilon}u(x)+M_{\epsilon}U(x)$

valid for every $x\in V$ . Since $h=h^{\sim}\lambda- a.e$ . on $V$ we see that $M_{\epsilon}h(x)=M_{\epsilon}h^{\sim}(x)$

for every $x\in V$ and then by the mean value property for $0$-harmonic functions
we see $M_{\epsilon}h^{\sim}(x)=h^{\sim}(x)$ for every $x\in V$ so that
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$h^{\sim}(x)-M_{\epsilon}u(x)+M_{\epsilon}U(x)$

for every $x\in V$ . The continuity of $u$ on $V$ , and of course at $x$ , implies that
M. $u(x)arrow u(x)(\epsilon\downarrow 0)$ . It is an elementary knowledge that the superharmonicity
( $i.e.,$ $0$-superharmonicity) of $U$ on $V$ assures that $M_{\epsilon}U(x)\uparrow U(x)(\epsilon\downarrow 0)$ for every
$x\in V$ (cf. $e.g.,$ $[6]$ , p. 71). (In the case of $\mu\leqq 0$ , consider $-U$ instead of $U.$ )

Hence on letting $\epsilon\downarrow 0$ in the above identity we see that

$h^{\sim}(x)=u(x)+U(x)$

for every $x\in V$ . Hence $U=h^{\sim}-u\in C(V)$ or $N\nu\in C(V)$ . By Lemma 2.1,
$7(a, \nu, N)=0$ . If we choose $\epsilon>0$ sufficiently small so that $\overline{B}(a, \epsilon)\subset V$ and
$u>u(a)/2$ on $\overline{B}(a, \epsilon)$ , then

$\int_{B(a.\epsilon)}N(x, y)d\nu(y)\geqq\frac{u(a)}{2}\int_{B(a.\epsilon)}N(x, y)d\mu(y)$

which in turn implies that $\gamma(a, \nu, N)\geqq(u(a)/2)\gamma(a, \mu, N)$ . (In the case of $\mu\leqq 0$ ,

consider $-\mu$ instead of $\mu$ ) Tbis proves that $\gamma(a, \mu, N)=0$ along with $\gamma(a, \nu, N)$

$=0$ . $\square$

3. Measures of quasi Kato class.

3.1. We will make the essential use of the harmonic Green function
$G_{0}^{B(a.\epsilon)}(x, y)$ of the open ball $B(a, \epsilon)$ . We denote by $x^{*}$ the inversion of
$x\in R^{d}\backslash \{a\}$ with respect to the boundary sphere $\partial B(a, \epsilon)$ of $B(a, \epsilon):x^{*}=$

$a+\epsilon^{2}|x-a|^{-2}(x-a)$ . Recall that (cf. $e.g.,$ $[6]$ , p. 77), for $d=2$

(3.1) $\kappa_{I}(G_{0}^{B(a.\epsilon)}(x, y)=\log(\frac{|a-x|}{\epsilon}\frac{|y-x^{*}|}{|y-x|})$ $(y\in B(a, \epsilon)\backslash \{x\},$ $x\neq a)$ ,

$\log(\epsilon/|y-a|)(y\in B(a, \epsilon)\backslash \{a\},$ $x=a)$ , and $+\infty(y=x)$ ; for $d\geqq 3$

(3.2) $\kappa_{d}G_{0}^{B(\alpha,\epsilon)}(x, y)=\frac{1}{|y-x|^{tl- 2}}(\frac{\epsilon}{|x-a|})^{d-2}\frac{1}{|y-x^{*}|^{\dot{a}- 2}}$

$(y\in B(a, \epsilon)\backslash \{x\}$ , $\chi\neq a)$ , $1/|y-a|$ $’-2-1/\epsilon^{d-2}(y\in B(a, \epsilon)\backslash \{a\},$ $x=a)$ , and $+\infty$

$(y=x)$ . Here $\kappa_{d}$ is the space constant already considered in \S 2.2, $i.e.,$ $\kappa_{d}=2\pi$

for $d=2$ and $\kappa_{d}=(d-2)\sigma_{d}$ for $d\geqq 3$ where $\sigma_{d}$ is the surface area of the unit
sphere $S^{d-1}=\partial B(0,1)$ of $R^{d}$ .

We consider another space constant $\tau_{a}$ given by

(3.3) $\tau_{\dot{a}}=\sup_{x.yz\in B(0}1)(_{\overline{G}_{0}^{\overline{B(0}1)}}\frac{G_{0}^{B(01)}(x,z)G_{0}^{B(0.1)}(z,y)}{(x,y)\cdot\max(G_{0}^{B(0,2)}(x,z),G_{0}^{B(0.2)}(z,y))})$ .

It is far from being trivial to see that $\tau_{d}<+\infty$ (cf. $e.g.,$ $[4],$ $[13]$ among others)

but $\tau_{d}>1$ can be easily seen by considering the value of the ratio under the



284 M. NAKAI

supremum sign at $e.g.,$ $x=-y=(1/2,0, \cdots 0)$ and $z=(0, \cdots, 0)$ :

(3.4) $1<\tau_{a}<+\infty$ .

We also remark that in the definition of $\tau_{d}$ we may replace $B(O, 1)$ and $B(O, 2)$

by $B(a, \rho)$ and $B(a, 2\rho)$ , respectively, where $a$ is any point in $R^{a}$ and $\rho$ is any
positive number. Although the value itself is changed but the finiteness is
unchanged in the right hand side of (3.3) if we replace $B(O, 1)$ and $B(O, 2)$ by
$B(a, r)$ and $B(a, \rho)$ , respectively, with $0<r<\rho<+\infty$ . Here, if $d\geqq 3$ , then we
may take $0<r<\rho\leqq+\infty$ or even $r=\rho=+\infty$ .

3.2. The condition $\gamma(a, \mu, N)=0(a\in W)$ for a Radon measure $\mu$ on a
subregion $W$ to be of Kato class implies the following two properties: $\gamma(a,$

$\mu,$ NI
is less than any fixed positive constant on $W;N\mu_{B}\in C(R^{d})$ for any open ball $B$

with $\overline{B}\subset W$ where $\mu_{B^{--\mu}}|B$ . The latter is a consequence of $N|\mu_{B}|\in C(R^{d})$ (cf.
Lemma 2.1). We will show that to ensure for $(W, H_{\mu})$ to be a Brelot space the
full powers of $\gamma(a, \mu, N)=0(a\in W)$ are not needed but only weak forms of the
above two consequences suffice.

We say that a Radon measure $\mu$ on a subregion $W$ of $R^{cL}$ is of quasi Kato
class if the following two conditions are fulfilled: Firstly, $\mu$ satisfies

(3.5) $\gamma(a, \mu, N)=\lim_{\epsilon\downarrow 0}(\sup_{x\in B(a.\epsilon)}\int_{B(a,\epsilon)}N(x, y)d|\mu|(y))<\frac{\kappa_{d}}{4\tau_{d}}$

for every $a\in W$ ; Secondary, there is a base of neighborhood system at any
point $a\in W$ such that each set in the base is an $N$-regular ball for $\mu$ centered
at $a$ . Here an open ball $B$ is said to be $N$-regular for $\mu$ if $\overline{B}\subset W$ and

(3.6) $N \mu_{B}=\int_{B}N(\cdot, y)d\mu(y)\in C(R^{d})$ .

AS we have observed at the beginning of this \S 3.2, a Radon measure $\mu$ on
$W$ of Kato class is automatically a Radon measure of quasi Kato class.

For simplicity we write $\nu=\mu_{B^{-}}-\mu|B$ for a Radon measure $\mu$ of quasi Kato
class on a region $W$ and an $N$-regular ball $B$ for $\mu$ in $W$ . In view of (3.5)
$N|\nu|$ is locally bounded on $R^{d}$ and by (3.6) $N\nu\in C(R^{d})$ . For such a measure
we have the following result.

LEMMA 3.1. Let $\nu$ be a Radon measure on $R^{d}$ with compact support such
that $N|\nu|$ is locally bounded and $Nv\in C(R^{d})$ . Then for any $f\in C(supp\nu)$

$N(f \nu)=\int_{\sup pv}N(\cdot, y)f(y)d\nu(y)\in C(R^{d})$ .
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PROOF. We fix a ball $B=B(O, \rho)\supset K=supp\nu$ and se $t$

$M= \sup_{x\in B}\int_{K}|N(x, y)|d|\nu|(y)<+\infty$ .

Clearly $N(fv)\in C(R^{d}\backslash K)$ and hence we only have to prove the continuity of
$N(f\nu)$ at an arbitrary point $a\in K$. For any positive number $\epsilon>0$ there is a
ball $V=B(a, \eta)(\eta>0)$ with $\overline{V}\subset B$ such that $N>0$ on $V\cross V$ and

$yS\in uVR_{K}^{|f(y)-f(a)|}<\epsilon/2M$ .

In terms of $\alpha=\nu|V$ and $\beta=\nu|(R^{a}\backslash V)$ we have

$N(f\nu)(x)-N(f\nu)(a)=(N(f\alpha)(x)-N(f\alpha)(a))+(N(f\beta)(x)-N(f\beta)(a))$

for any $x\in V$ and the first term on the right hand side of the above is ex-
pressed as

$(N(f\alpha)(x)-N(f(a)\alpha)(x))+(N(f(a)\alpha)(x)-N(f(a)\alpha)(a))$

$+(N(f(a)\alpha)(a)-N(f\alpha)(a))$ .

The first term of the above in the absolute value is dominated by

$( \sup_{y\in V\cap K}|f(y)-f(a)|)N|\nu|(x)\leqq(\epsilon/2M)\cdot M=\epsilon/2$

for every $x\in V$ and similarly the last term of the above in the absolute value
is dominated by

$( \sup_{y\in V\cap K}|f(y)-f(a)|)N|\nu|(a)\leqq(\epsilon/2M)\cdot M=\epsilon/2$ .

The second term of the above in the absolute value is $|f(a)||N\alpha(x)-N\alpha(a)|$ .
Thus we deduce that

$|N(f\nu)(x)-N(f\nu)(a)|\leqq|f(a)||N\alpha(x)-N\alpha(a)|+|N(f\beta)(x)-N(f\beta)(a)|+\epsilon$ .
Observe that $N(f\beta)$ and $N\beta$ are continuous at $a$ since $a\not\in(supp\beta)\cup(supp(f\beta))$ .
In view of $N\alpha=N\nu-N\beta$ and $N\nu\in C(R^{d}),$ $Na$ is also continuous at $a$ along with
$N\beta$ . Therefore, taking the superior limits of both sides of the above inequality
as $xarrow a$ , we see that

$\lim_{xarrow}\sup_{\alpha}|N(f\nu)(x)-N(f\nu)(a)|\leqq\epsilon$ . $\square$

3.3. Take a Radon measure $\mu$ of quasi Kato class on a region $W\subset R^{d}$ so
that $\gamma(a, \mu, N)<\kappa_{d}/4\tau_{d}(a\in W)$ and there exists a sequence of $N$-regular balls $B$

for $\mu$ centered at any given point $a\in W$ and shrinking to $a$ . Recall that
$N\mu_{B}\in C(R^{d})$ for $N$-regular balls $B$ for $\mu$ Since $\gamma(a, \mu, N)$ is upper semiconti-
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nuous on $W$ as a function of $a\in W$ , there is an $a_{1}\in K$ for any compact subset
$K\subset W$ such that

$suP^{7^{(a}},$ $\mu,$ $N)=_{7^{(a_{1}}},$ $\mu,$
$N)<\kappa_{d}/4\tau_{d}$ .

Therefore we can find a positive number $q=q(K, \mu)$ such that

$\frac{2\tau_{d}}{\kappa_{d}}\cdot\sup_{a\in K}\gamma(a, \mu, N)<q<1/2$ .

It is convenient to call $q=q(K, \mu)$ a $\mu$-constant for $K$, and in particular, a
$\mu$-constant at $a$ when $K=\{a\}$ . For any $\mu$-constant $q\in((2\tau_{d}/\kappa_{d})\gamma(a, \mu, N), 1/2)$

at $a\in W$ tbere is a ball $B(a, \epsilon)$ of radius $\epsilon\in(0,1/2)$ centered at $a$ such that
$B(a, \epsilon)$ is $N$-regular for $\mu$ and

(3.7) $\frac{2\tau_{d}}{\kappa_{a}}\sup_{x\in B(a\epsilon)}.\int_{B(a,\epsilon)}N(x, y)d|\mu|(y)<q<\frac{1}{2}$

Such a ball $B(a, \epsilon)$ is said to be a $\mu$-ball at $a$ associated with a $\mu$-constant $q$

at $a$ .
We denote by $G(x, y)=G_{0}^{B(a.\epsilon)}(x, y)$ the harmonic Green function on $B(a, \epsilon)$

(cf. \S 3.1). Since $(1/\kappa_{tr})N(x, y)-G(x, y)$ is nonnegative and finitely continuous
for $(x, y)\in B(a, \epsilon)\cross B(a, \epsilon)$ as a consequence of $\epsilon\in(0,1/2)$ , we have

(3.8) $\sup_{x\in B(a.\epsilon)}\int_{B(a,\epsilon)}G(x, y)d|\mu|(y)<q/2\tau_{d}<q$

where $q\in(O, 1/2)$ is a $\mu$-constant at $a$ and $B(a, \epsilon)$ is a $\mu$ -ball at $a$ associated
with $q$ . Here we must recall (3.4) : $1<\tau_{d}<+\infty$ .

4. Potential operator.

4.1. Let $\mu$ be a Radon measure of quasi Kato class on a subregion $W$ of
$R^{d}$ . We fix an arbitrary point $a\in W$ , a $\mu$-constant $q\in(O, 1/2)$ at $a$ , and a
$\mu$-ball $V=B(a, \epsilon)$ at $a$ associated with $q$ . We consider the Banach space $C(\overline{V})$

of continuous functions $f$ on $\overline{V}$ equipped with the norm $||f||=supr|f|$ . We
denote by $G(x, y)=G_{0}^{V}(x, y)$ the harmonic Green function on $V$ . First we
prove the following result.

LEMMA 4.1. For any $f\in C(\overline{V})$ the Green potential

$G(f \mu_{V})=\int_{V}G(\cdot, y)f(y)d\mu(y)\in C(\overline{V})$

and $G(f\mu_{V})|\partial V=0$ where $\mu_{V}=\mu|V$ .

PROOF. TO begin with we consider the behavior of $G(f\mu_{V})$ on $V$ . Since
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$N-\kappa_{d}G\in C(V\cross V)$ and $|f\mu|(V)<+\infty$ , we see that

$N(f\mu_{V})-\kappa_{d}G(f\mu_{V})=(N-\kappa_{a}G)(f\mu_{V})\in C(V)$ .
By virtue of the $N$-regularity of $V$ for $\mu$ , Lemma 3.1 can be applied to $\mu_{V}$ to
conclude that $N(f\mu_{V})\in C(R^{f}()$ . Thus we can see that $G(f\mu_{V})\in C(V)$ .

Next we examine the behavior of $G(f\mu_{V})$ on $\overline{V}\backslash \{a\}$ . We need to consider
cases of $d=2$ and $d\geqq 3$ separately. If $d=2$ , then by (3.1) we have

$\kappa_{d}G(f\mu_{V})(x)=N(f\mu_{V})(x)-N(f\mu_{V})(x^{*})+(\log\frac{|a-x|}{\epsilon})\int_{V}fd\mu$

for $x\in\overline{V}\backslash \{a\}$ . By Lemma 3.1, $N(f\mu_{V})\in C(R^{a})$ so that $N(f\mu_{V})(x)$ and $N(f\mu_{V})(x^{*})$

are continuous functions of $x$ on $\overline{V}\backslash \{a\}$ . Hence we see that $G(f\mu_{V})\in C(\overline{V}\backslash \{a\})$ .
If $x\in\partial V$ , then $|a-x|=\epsilon$ and $x=x^{*}$ assure that $G(f\mu_{V})(x)=0$ . If $d\geqq 3$ , then
(3.2) implies that

$\kappa_{cl}G(f\mu_{V})(x)=N(f\mu_{V})(x)-(\frac{\epsilon}{|x-a|})^{a-2}N(f\mu_{V})(x^{*})$

for $x\in\overline{V}\backslash \{a\}$ . By the same fashion as in the case of $d=2$ , we see that
$G(f\mu_{V})\in C(\overline{V}\backslash \{a\})$ and $G(f\mu_{V})|\partial V=0$ . $\square$

4.2. We now define a linear operator $T$ of $C(\overline{V})$ into itself by

(4.1) $Tf(x)= \int_{V}G(x, y)f(y)d\mu(y)$ $(x\in\overline{\mathfrak{s}\nearrow})$

for each $f\in C(\overline{V})$ . Lemma 4.1 assures that $Tf=G(f\mu_{V})\in C(\overline{V})$ and

(4.2) $Tf|\partial V=0$ .
We also consider an auxiliary linear operator $|T|$ of $C(\overline{V})$ into $L_{\infty}(\overline{V}, \lambda)$ defined by

$|T|f(x)= \int_{V}G(x, y)f(y)d|\mu|(y)$ $(x\in\overline{V})$

for every $f\in C(\overline{V})$ . By (3.8) we see that

$|Tf(x)|,$ $||T|f(x)|;;!|T||f|(x)\leqq||f|||T$ ll(x);$ $(q/2\tau_{d})||f||\leqq q||f||$

for every $x\in\overline{V}$ and for every $f\in C(\overline{V})$ . Hence

(4.3) $||T||$ ;;; $q/2\tau_{d}<q/2<q<1/2<1$

which assures the existence of the inverse linear operator $(I+T)^{-1}$ of $C(\overline{V})$ onto
itself of the operator $I+T$ where $I$ is tbe identity operator of $C(\overline{V})$ onto itself.
AS is well known, $(I+T)^{-1}$ is given by the C. Neumann series:

(4.4) $(I+T)^{-1}= \sum_{n=0}^{\infty}(-1)^{n}T^{n}$ .
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4.3. Recall that we denoted by $\mathscr{F}^{+}$ the class of nonnegative members of a
class $\mathscr{F}$ of functions. Hence $H_{0}^{+}(V)$ is the class of nonnegative classical harmonic
(i.e., $0$-harmonic) functions on $V$ . The following is the crucial property of the
potential operator $T$ in the proof of Theorem 1:

LEMMA 4.2. For any $h\in C(\overline{V})\cap H_{0}^{+}(V)$ , the inequalities

(4.5) $|T^{n}h|\leqq q^{n}h$ $(n=1, 2, )$

hold on $V$ .

PROOF. Fix an arbitrary $h\in C(\overline{V})\cap H_{0}^{+}(V)$ . For each $m=1,2,$ $\cdots$ let
$h_{m}\in C(\overline{V})\cap H_{0}(V\backslash \overline{B}(a, \epsilon-\epsilon/2m))$ such that $h_{m}|\overline{B}(a, \epsilon-\epsilon/2m)=h$ and $h_{m}|\partial V=0$ .
Then $h_{m}$ is a potential on $V=B(a, \epsilon),$ $i.e.$ , a nonnegative superharmonic function
with vanishing greatest harmonic minorant on $V$ . By the Riesz decomposition
theorem (cf. $e.g.,$ $[6]$ , pp. 116-117) there is a unique positive Radon measure $\nu_{m}$

on $V$ with $supp\nu_{m}\subset\partial B(a, \epsilon-\epsilon/2m)$ such that

$h_{m}(x)= \int G(x, y)d\nu_{m}(y)$ $(x\in V)$ .

By the Fubini theorem, (3.3) and (3.7), we see that

$| \int_{V}G(x, z)h_{m}(z)d\mu(z)|\leqq\int_{V}G(x, z)h_{m}(z)d|\mu|(z)$

$= \int_{V}G(x, z)(\int_{V}G(z, y)d\nu_{m}(y))d|\mu|(z)$

$= \int_{V}(\int_{V}G(x, z)G(z, y)d|\mu|(z))d\nu_{m}(y)$

$\leqq\int_{V}(\int_{V}\tau_{d}G(x, y)\max(G_{0}^{B(a,2e)}(x, z),$ $G_{0}^{B(a.2\epsilon)}(z, y))d|\mu|(z))d\nu_{m}(y)$

$\leqq\frac{\tau_{d}}{\kappa_{d}}\int_{V}G(x, y)(\int_{B(a,\epsilon)}\max(N(x, z),$ $N(z, y))d|\mu|(z))d\nu_{m}(y)$

$\leqq\frac{\tau_{d}}{\kappa_{d}}\int_{V}G(x, y)(\int_{B(a,\epsilon)}N(x, z)d|\mu|(z)+\int_{B(a,\epsilon)}N(y, z)d|\mu|(z))d\nu_{m}(y)$

$\leqq q\int_{V}G(x, y)d\nu_{m}(y)=qh_{m}(x)$

for every $x\in V$ , i.e., we have shown that

$| \int_{V}G(x, y)h_{m}(y)d\mu(y)|\leqq\int_{V}G(x, y)h_{m}(y)d|\mu|(y)\leqq qh_{m}(x)$ $(x\in V)$ .

Since $h_{m}\uparrow h(m\uparrow\infty)$ and $h$ is $(G(x, )d\mu^{\pm})-$ and $(G(x, )d|\mu|)$-integrable over $V$ ,

by the Lebesgue dominated convergence theorem, we deduce, on making $m\uparrow\infty$
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in the above identity, that

$| \int_{V}G(x, y)h(y)d\mu(y)|\leqq\int_{V}G(x, y)h(y)d|\mu|(y)\leqq qh(x)$ $(x\in V)$ .

In terms of the operator $T$ and $|T|$ we can restate the above as

(4.6) Th $|$ ;$I $|T|h\leqq qh$

on $V$ . We now show (4.5) inductively. It is true for $n=1$ by (4.6). Suppose
$|T^{n}h|\leqq q^{n}h$ on $V$ . Then, since $|T|$ is order preserving, we see, by (4.6), that

$|T^{n+1}h|=|T(T^{n}h)|\leqq|T||T^{n}h|\leqq|T|(q^{n}h)=q^{n}|T|h\leqq q^{n}(qh)=q^{n+1}h$ .
The induction is herewith complete. $\square$

5. Proof of Theorem 1.

5.1. Let $\mu$ be a Radon measure of quasi Kato class on a Euclidean region
$W$ . We wish to show that $(W, H_{\mu})$ satisfies Axioms 1, 2 and 3. Since the
Schr\"odinger operator $-\Delta+\mu$ is linear, the class $H_{\mu}(U)$ of $\mu$-harmonic functions
on an open set $U\subset W$ forms a linear subspace of $C(U)$ and thus Axiom 1 is
trivially satisfied.

We proceed to the proof for that $(W, H_{\mu})$ satisfies Axiom 2. For the
purpose choose any point $a\in W$ and an open set $U$ containing $a$ . We only
have to show the existence of a regular region for $H_{\mu}$ contained in $U$ and
containing $a$ . Take a $\mu$-constant $q\in(O, 1/2)$ at $a$ and a $\mu$-ball $V=B(a, \epsilon)$ at $a$

associated with $q$ . We maintain that $V$ is a required regular region for $H_{\mu}$ .
We take the potential operator associated with $V$ (cf. (4.1)).

Choose an arbitrary $f\in C(\partial V)$ . There is an $h\in C(\overline{V})\cap H_{0}(V)$ such that
$h|\partial V=f$ . Set $u=(I+T)^{-1}/\iota\in C(\overline{V})$ , i.e., $h=u+Tu$ . By using the well known
identity

$\int_{V}G(x, y)\Delta\varphi(y)dy=-\varphi(x)$

for every $\varphi\in C_{0}^{\infty}(V)$ (cf. $e.g.,$ $[6]$ , p. 71), we see, by the Fubini theorem, that

$\int_{V}Tu(x)\Delta\varphi(x)dx=\int_{V}(\int_{V}G(x, y)u(y)d\mu(y))\Delta\varphi(x)dx$

$= \int_{V}(\int_{V}G(x, y)A\varphi(x)dx)u(y)d\mu(y)=\int_{V}(-\varphi(y)u(y))d\mu(y)$

so tbat $\Delta Tu=-u\mu$ on $V$ and $\Delta u=\Delta/?-\Delta Tu=0-(-u\mu)=u\mu$ on $V$ in the sense
of distributions, i. e., $u\in C(\overline{V})\cap H_{\mu}(V)$ . Since $Tu|\partial V=0$ , we have $u|\partial V=$

$h|\partial V-Tu|\partial V=f$ .
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Suppose $v\in C(\overline{V})\cap H_{\mu}(V)$ such that $v|\partial V=f$ . Then $w=u-v\in C(\overline{V})\cap H_{\mu}(V)$

by Axiom 1 and $w|\partial V=u|\partial V-v|\partial V=f-f=0$ . Let $k=w+Tw$ on $\overline{V}$ . By the
same method as above we see that $\Delta Tw=-w\mu$ Thus $\Delta k=\Delta w+\Delta Tw=$

$w\mu-w\mu=0$ . A fortiori $k\in C(\overline{V})\cap H_{0}(V)$ and $k|\partial V=w|\partial V+Tw|\partial V=0$ and
therefore $k=0$ on $\overline{V}$ , or $w=-Tw$ on $\overline{V}$ . The inequality $||w||=||Tw||\leqq q||w||$

with $q\in(O, 1/2)$ yields that $w=0$ on $V$ and thus we have seen the uniqueness
of $u$ with $u\in C(\overline{V})\cap H_{\mu}(V)$ and $u|\partial V=f$ .

TO complete tbe proof concerning Axiom 2 we need to show that $f\geqq 0$ on
$\partial V$ implies $u\geqq 0$ on $V$ . Set $h=u+Tu\in C(\overline{V})\cap H_{0}(V)$ . Since $h|\partial V=u|\partial V=f\geqq 0$,

we see that $h\geqq 0$ on $\overline{\mathfrak{s}\nearrow}$ . By (4.4) we see that

$u=(I+T)^{-1}h= \sum_{n=0}^{\infty}(-1)^{n}T^{n}h=h+\sum_{n=1}^{\infty}(-1)^{n}T^{n}h\geqq h-\sum_{n=1}^{\infty}|T^{n}h|$

on $V$ . By (4.5) and $q\in(O, 1/2)$ , we then deduce

$u \geqq h-\sum_{n=1}^{\infty}q^{n}h=\frac{1-2q}{1-q}h\geqq 0$

so that we have shown $u\geqq 0$ on $V$ .

5.2. Before proceeding to the proof for that $(W, H_{\mu})$ satisfies Axiom 3, we
prove a form of the Harnack inequality. For an arbitrary $a\in W$ , choose a
$\mu$-constant $q\in(O, 1/2)$ at $a$ and a $\mu$-ball $V=B(a, \epsilon)$ at $a$ associated with $q$ . We
prove the following Harnack inequality:

(5.1) $C^{-1}u(y)$ $ $u(x)\leqq Cu(y)$ $(C=4\cdot 3^{a}/(1-2q))$

for any pair of points $x$ and $y$ in $\overline{B}(a, \epsilon/2)$ and for every $u\in C(\overline{B}(a, \epsilon))\cap$

$H_{\mu}^{+}(B(a, \epsilon))$ , where $H_{\mu}^{+}(B(a, \epsilon))$ is the family of nonnegative $\mu$-harmonic func-
tions $u$ on $V=B(a, \epsilon)$ . Set $h=(I+T)u$ . Because of the fact that $h|\partial V=$

$u|\partial V+Tu|\partial V=u\geqq 0$ on $\partial B(a, \epsilon)$ , we see that $h\in H_{0}^{+}(B(a, \epsilon))$ . As is well
known

(5.2) $(1/4\cdot 3^{a})h(y)\leqq h(x)\leqq 4\cdot 3^{a}h(y)$

for every pair of points $x$ and $y$ in $\overline{B}(a, \epsilon/2)$ (cf. $e.g.,$ $[6]$ , p. 29 or [2], p. 47,
etc.). Similar to the proof of $u\geqq((1-2q)/(1-q))h$ on $V$ given in \S 5.1, we can
show that u$(l/(l--q))h on $V$ . In fact, by (4.4) and (4.5), we see that

$u=(I+T)^{-1}h= \sum_{n=0}^{\infty}(-1)^{n}T^{n}h=h+\sum_{n=1}^{\infty}(-1)^{n}T^{n}h$

$\leqq h+\sum_{n=1}^{\infty}|T^{n}h|\leqq h+\sum_{n=1}^{\infty}q^{n}h=\frac{1}{1-q}h$

on $V$ . Hence we have
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(5.3) $\frac{1-2q}{1-q}h(z)\leqq u(z)\leqq\frac{1}{1-q}h(z)$

for every $z\in V$ . Combining inequalities (5.2) and (5.3) with $z=x$ and $z=y$ , we
deduce (5.1).

5.3. We now complete the proof of Theorem 1 by showing that $(W, H_{\mu})$

satisfies Axiom 3. For the purpose, fix an arbitrary region $U$ in $W$ and choose
any increasing sequence $\{u_{n}\}$ in $H_{\mu}(U)$ and set $u= \sup_{n}u_{n}$ . We have to show
that $u\in H_{\mu}(U)$ unless $u\equiv+\infty$ . Replacing $\{u_{n}\}$ by $\{u_{n}-u_{1}\}$ if necessary, we
may assume that $\{u_{n}\}$ is an increasing sequence in $H_{\mu}^{+}(U)$ . Put

$E= \{x\in U : u(x)=\sup_{n}u_{n}(x)<+\infty\}$ .

If $E=\emptyset$ , then $u\equiv+\infty$ on $U$ and the proof is over. Thus we assume that
$E\neq\emptyset$ . For any $a\in W$ , let $q\in(O, 1/2)$ be a $\mu$-constant at $a,$ $B(a, \epsilon)$ a $\mu$-ball at
$a$ associated with $q$ and $C=4\cdot 3^{d}/(l-2q)$ . If $a\in E$ , then by (5.1)

$u_{n}(x)\leqq Cu_{n}(a)$ $(x\in\overline{B}(a, \epsilon/2))$

for every $n=1,2$ , . Hence $u(x)\leqq Cu(a)<+\infty$ , i.e., $B(a, \epsilon/2)\subset E$ . This
proves that $E$ is open. If $a\in\overline{E}$ , then there is a $b\in E\cap B(a, \epsilon/2)$ . Thus again
by (5.1) we see that $u_{n}(a)\leqq Cu_{n}(b)$ for every $n=1,2$, . Hence $u(a)\leqq Cu(b)$

$<+\infty$ , i.e., $a\in E$ . This proves that $E$ is closed. Therefore $E=U$ and $u(x)$

$= \sup_{n}u_{n}(x)=\lim_{n}u_{n}(x)$ defines a numerical function on $U$ . Again by (5.1)

$0\leqq u_{n+p}(x)-u_{n}(x)\leqq C(u_{n+p}(a)-u_{n}(a))$ $(x\in\overline{B}(a, \epsilon/2))$

for every $n$ and $p=1,2$ , $\cdot$ . On letting $P\uparrow\infty$ we see that

$0\leqq u(x)-u_{n}(x)\leqq C(u(a)-u_{n}(a))$ $(x\in\overline{B}(a, \epsilon/2))$

for every $n=1,2,$ $\cdots$ . Since $a\in W$ is arbitrary, the above proves that $\{u_{n}\}$

converges to $u$ locally uniformly on $W$ so that $u\in C(U)$ . On each $V=B(a, \epsilon)$

above, set $h_{n}=u_{n}+Tu_{n}$ , which belongs to $C(\overline{V})\cap H_{0}^{+}(V)$ . Since $||u_{n}-u||arrow 0$

$(n\uparrow\infty)$ in $C(\overline{V})$ , we see that $h= \lim_{n}h_{n}=\lim_{n}(u_{n}+Tu_{n})=u+Tu$ . As a uniform
limit of the sequence $\{h_{n}\}$ of harmonic functions, $h=u+Tu\in C(\overline{V})$ is harmonic
on $V$ . Thus

$\Delta u=\Delta h-\Delta Tu=0-(-u\mu)=u\mu$

(cf. \S 5.1 for $\Delta Tu=-u\mu$) shows that $u\in H_{\mu}(V)$ for every admissible $V$ so that
$u\in H_{\mu}(U)$ .

The proof of Theorem 1 is herewith complete. $\square$



292 M. NAKAI

6. Proof of Theorem 2.

6.1. It may be convenient to say that a Radon measure $\mu$ on a Euclidean
region $W$ is of Brelot class if $(W, H_{\mu})$ forms a Brelot space. Then we have
seen, as consequences of Theorem 1 and Proposition 2.1 that

{Kato class} $\subset$ {quasi Kato class} $\subset$ {Brelot class}
and

$\{$ Kato class $\}^{\pm}=$ $\{$quasi Kato class $\}^{\pm}=$ {Brelot class} ‘,

where, $e.g.$ , {Kato class} mean the set of all Radon measures of Kato class on
an arbitrarily fixed region and $\{$ Kato class $\}^{+}$ ({Kato class}, resp.) is the
subfamily of positive (negative, resp.) measures in {Kato class}. We now wish
to show that the first inclusion relation in the above displayed diagram is strict
or equivalently there is a measure $\mu$ in

{quasi Kato $class$ } $\backslash$ { $Kato$ class} $\neq\emptyset$

on any region $W$ . Thus the required $\mu$ must be of nonconstant sign.
Hence for any Euclidean region $W$ we will construct a signed measure $\mu$

on $W$ which is of quasi Kato class but not of Kato class. Fixing an arbitrary
point $a\in W$ and an arbitrary ball $B(a, r)\subset W$ we only have to construct a
required $\mu$ with compact support in $B(a, r)$ . By translation and dilation we
may suppose that $a=0$ and $r=1$ . Thus all we have to do is to construct a
signed Radon measure $\mu$ of compact support on the open unit ball $R=B(O, 1)$

which is of quasi Kato class on $R$ but not of Kato class on $R$ . The measure
$\mu$ we are going to construct satisfies $\gamma(a, \mu, N)=0$ for every $a\in R\backslash \{0\}$ and
$\gamma(0, \mu, N)>0$ so that $\mu$ is certainly not of Kato class on $R$ but of Kato class
on $R$ except for a miserable meager set consisting of only one point $0$ . It is
of quasi Kato class if $\gamma(0, \mu, N)<\kappa_{d}/4\tau_{a}$ which is achieved by multiplying a
small constant to $\mu$ as far as $\gamma(0, \mu, N)<+\infty$ .

6.2. Let $R=B(O, 1)$ in $R^{d}$ $(d\geqq 2)$ . Fix a sequence $\{a_{n}\}$ of points $a_{n}$

contained in the $x_{1}$-axis such that

$0<a_{n+1}^{\wedge}<a_{n}^{\wedge}<1$ and $\lim_{narrow\infty}a_{n}^{\wedge}=0$

where $a_{n}=(a_{n}^{\wedge}, 0, \cdots , 0)$ . Fix a sequence $\{r_{n}\}$ in $(0,1)$ so small that $\overline{B}(a_{n}, r_{n})$

$\subset R\backslash \{0\}$ and $\overline{B}(a_{n}, r_{n})\cap\overline{B}(a_{n+1}, r_{n+1})=\emptyset(n=1,2, \cdots)$ . Choose one more sequence
$\{s_{n}\}$ with $0<s_{n}<r_{n}(n=1,2, \cdots)$ which will be determined below. Since every
boundary point of $R\backslash B_{(}a.,$

$s_{n}$ ) satisfies the cone condition (or even ball condi-
tion), it is regular for $H_{0}$ by the Zaremba theorem (cf. $e.g.,$ $[6]$ , p. 173). Take
a $w_{n}\in C(\overline{R})\cap H_{0}(R\backslash \overline{B}(a_{n}, s_{n}))$ such that $w_{n}|\overline{B}(a_{n}, s_{n})=1$ and $w_{n}|\partial R=0$ for each
$n=1,2,$ $\cdots$ . For each fixed $n,$ $w_{n}$ I $0(s_{n}\downarrow 0)$ on $\overline{R}\backslash B(a_{n}, r_{n})$ . We can thus
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determine $s_{n}\in(0, r_{n})$ so small that

(6.1) $w_{n}|(\overline{R}\backslash B(a_{n}, r_{n}))<1/5^{n}$ $(n=1,2, \cdots)$ .

We put $P=\{x=(x_{1}, \cdots, x_{c1})\in R^{a} : X_{(:}=0\}$ , the $(d-1)$-dimensional hyperplane
perpendicular to $x_{a}$ -axis. Consider the compact set $K_{n}=P\cap\overline{B}(a_{n}, s_{n}/2)$ contained
in $B(a_{n}, s_{n})(n=1,2, \cdots)$ . Choose and fix an $\epsilon_{n}\in(0, (1-a_{n}^{\wedge}-r_{n})/4)\cap(0, s_{n}/2)$ so
small that

(6.2) $w_{n}|(^{-}\backslash B(0,1-4\epsilon_{n}))<1/3\cdot 2^{n}$ $(n=1,2, \cdots)$ .

Choose the third sequence $\{t_{n}\}$ with $t_{n}\in(0, \epsilon_{n})$ which will be again deter-
mined below. Take the vector $e_{f}(=(0, , 0,1)$ and set $K_{n}^{\pm}=K_{n}\pm t_{n}e_{\mathfrak{c}l}$ which is
contained in $B(a_{n}, s_{n})$ by the choice of $t_{n}$ : $0<t_{n}<\epsilon_{n}<s_{n}/2$ . Since every
boundary point of the region $R \backslash K\frac{arrow}{n}$ satisfies the flat cone condition, it is regular
for $H_{0}$ (see Appendix at the end of this paper). Thus we can construct
functions $u_{n}^{+}\in C(\overline{R})\cap H_{0}(R\backslash K_{n}^{\pm})$ such that $u_{n}^{\pm}|K_{n}^{\neq}=1$ and $u_{n}^{\pm}|\partial R=0$ for all
$n=1,2,$ $\cdots$ , where double signs on shoulders are taken in the same order.
Since $K_{n}^{\pm}\subset B(a_{n}, s_{n})$ , by the maximum principle, (6.1) assures that

(6.3) $u_{n}^{\pm}|(\overline{R}\backslash B(a_{n}, r_{n}))<1/5^{n}$ $(n=1,2, )$ .

For each fixed $n$ , we choose and then fix a $t_{n}\in(0, \epsilon_{n})$ so small that

(6.4) $\sup_{x\in\overline{R}}|u_{n}^{+}(x)-u_{n}^{-}(x)|<1/2^{n}$ $(n=1,2, \cdots)$ .

We need a proof for the possibility of choosing such a $t_{n}$ . For the purpose we
take an auxiliary function $v_{n}\in C(R^{a})\cap H_{0}(B(0,1-2\epsilon_{n})\backslash K_{n})$ such that $v_{n}|K_{n}=1$

and $v_{n}|(R^{d}\backslash B(0,1-2\epsilon_{n}))=0$ for every $n=1,2$ , . We then set $v_{n}^{\pm}(x)=$

$v_{n}(x\pm t_{n}e_{a})$ . By the uniform continuity of $v_{n}$ , there exists a $t_{n}\in(0, \epsilon_{n})$ such
that

$|v_{n}^{+}(x)-v_{n}^{-}(x)|<1/3\cdot 2^{n}$ $(x\in R^{a})$ .

Consider the function $u_{n}^{\pm}-v_{n}^{\pm}$ on $R$ . In view of (6.2) and $ufi\leqq u_{n}^{f}$ on $R$ , the
maximum principle yields

$|u_{n}^{\pm}(x)-v_{n}^{\pm}(x)|<1/3\cdot 2^{n}$ $(x\in\overline{R})$ .

Using these two inequalities we deduce

$|u_{n}^{+}-u_{n}^{-}|\leqq|u_{n}^{+}-v_{n}^{+}|+|v_{n}^{+}-v_{n}^{-}|+|v_{n}^{-}-u_{n}^{-}|<1/2^{n}$

on $\overline{R}$ , i.e., we have chosen $t_{n}\in(0, \epsilon_{n})$ such that (6.4) is valid.

6.3. We denote by $G(x, y)=G_{0}^{R}(x, y)$ the harmonic Green function on $R$ .
Judging from the boundary values of ufi, we see that $u_{n}^{\pm}$ is the capacitary
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potential of $K_{n}^{\pm}$ relative to $R$ . Hence $u \frac{arrow}{n}$ is represented as a Green potential

$u_{n}^{\pm}(x)= \int G(x, y)d\nu_{n}^{\pm}(y)$ $(x\in\overline{R})$

by using the capacitary distribution $\nu_{n}^{\pm}$ for Kfi which is a positive Radon measure
with support in $K_{n}^{\pm}$ (cf. e.g., [6], p. 128). We set

$\nu=\sum_{n=1}^{\infty}(\nu_{n}^{+}-\nu_{n}^{-})$ ,

which is easily seen to define a Radon measure on $R^{a}$ with support in the
comPact set

$K=(_{n} \infty U_{=1}K_{n}^{+})\cup(\bigcup_{n=1}^{\infty}K_{n}^{-})\cup\{0\}\subset R$ .

Then the total variation $|\nu|$ of $v$ is

$| \nu|=\sum_{n=1}^{\infty}(\nu^{+}+\nu^{-})$ .

We set

$u(x)= \sum_{n=1}^{\infty}(u_{n}^{+}(x)-u_{n}^{-}(x))=\int G(x, y)d\nu(y)$ $(x\in\overline{R})$ .

By (6.4), the Weierstrass $M$-test assures that the series converges uniformly on
$\overline{R}$ . Since $u_{n}^{+}-u_{n}^{-}\in C(\overline{R})$ , we conclude that $u\in C(\overline{R})$ . Finally we set

$U(x)= \sum_{n=1}^{\infty}(u_{n}^{+}(x)+u_{n}^{-}(x))=\int G(x, y)d|\nu|(y)$ $(x\in\overline{R})$ .

6.4. We maintain that $U\in C(\overline{R}\backslash \{0\}),$ $U$ is discontinuous at $x=0$ , and $U$ is
bounded on $\overline{R}$ : $U(x)\leqq 5/2(x\in\overline{R})$ .

First choose an arbitrary $x\in K$. Then either there is an $m$ such that
$x\in K_{m}^{+}\cup K_{m}^{-}$ or $x=0$ . In the former case, by (6.3), we see that

$U(x)= \sum_{n\geq 1,n\neq m}(u_{n}^{+}(x)+u_{n}^{-}(x))+(u_{m}^{+}(x)+u_{m}^{-}(x))$ $ $\sum_{n=1}^{\infty}2/5^{n}+2=5/2$ .

In the latter case we also see by (6.3) that

$U(x)=U(0)= \sum_{n=1}^{\infty}(u_{n}^{+}(0)+u_{\overline{n}}(0))\leqq\sum_{n=1}^{\infty}2/5^{n}=1/2<5/2$ .

We have thus seen that U$5/2 on the support of the measure $|\nu|$ of the Green
potential $U$ . By the Maria-Frostman domination principle (cf. $e.g.,$ $[6]$ , p. 134),

we conclude that $U\leqq 5/2$ on $\overline{R}$ .
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We set $R^{+}=\{x\in R:x>0\}$ and $R^{-}=\{x\in R: x<0\}$ where, as before, $x$

is the first component of $x=(x_{1}$ , $\cdot$ .. , $x_{d})$ so that $x=x_{1}$ . If $x\in R^{-}$ , then (6.3)

assures that $u_{n}(x)<1/5^{n}$ and thus $U(x)<1/2$ . Hence

$\lim_{xarrow}\inf_{0}U(x)\leqq 1/2$ .

On the other hand, observe that $0$ is an accumulation point of $K\backslash \{0\}$ so that
there exists a sequence $\{x_{m}\}$ in $K\backslash \{0\}$ converging to $0$ . For each $x_{m}$ there is
an $n$ such that $x_{m}\in K_{n}^{+}\cup K_{n}^{-}$ . Hence $U(x_{m})>u_{n}^{+}(x_{m})+u_{n}^{-}(x_{m})\geqq 1$ and thus

$\lim_{xarrow}\sup_{0}U(x)\geqq\lim_{marrow}\sup_{\infty}U(x_{m})\geqq 1$ .

Therefore $U$ is not continuous at $x=0$ .
Finally, there is an $\overline{n}$ for any $\eta\in(0,1)$ such that $\overline{B}(a_{n}, r_{n})\cap\{\eta\leqq|x|\leqq 1\}=\emptyset$

for all $n\geqq\overline{n}$ . By (6.3), the Weierstrass $M$-test assures that $\Sigma_{n\geqq\hslash}(u_{n}^{+}+u_{n}^{-})$ is
uniformly convergent on $\{\eta\leqq|x|\leqq 1\}$ . Since $u_{n}^{+}+u_{n}^{-}\in C(\overline{R})$ for any $n,$ $U$ is
continuous on $\overline{R}\backslash \{0\}$ .

6.5. By $U(x)\leqq 5/2(x\in R)$ , we have $\gamma(a, \nu, G)\leqq 5/2(a\in R)$ . Since $G$ is an
$N$-kernel, $i.e.,$ $G-\kappa_{d}^{-1}N\in C(R\cross R)$ , Lemma 2.2 assures that $\gamma(a, \nu, N)=\kappa_{d}\gamma(a, \nu, G)$

$: 5\kappa_{a}/2(a\in R)$ . By the fact that $U\in C(\overline{R}\backslash \{0\})$ , Lemma 2.1 assures that
$\gamma(a, \nu, N)=\kappa_{d}\gamma(a, \nu, G)=0$ for every $a\in R\backslash \{0\}$ .

Fix an arbitrary $\alpha\in(0,1/10\tau_{d})$ and set $\mu=\alpha\nu$ . Then $\gamma(a, \mu, N)=a\gamma(a, \nu, N)$

$=0(a\in R\backslash \{0\})$ and $\gamma(0, \mu, N)=\alpha\gamma(0, v, N)\leqq\alpha\cdot 5\kappa_{a}/2<\kappa_{d}/4\tau_{d}$ . Thus $\mu$ satisfies
the condition (3.5) on $R$ .

Take an arbitrary $a\in R\backslash \{0\}$ and an arbitrary ball $B=B(a, \epsilon)$ with
$\overline{B}\subset R\backslash \{0\}$ . Let $\mu_{B}=\mu|B$ . Since $\alpha U=G|\mu|=G|\mu_{B}|+G|\mu-\mu_{B}|$ is continuous
on $R\backslash \{0\}$ , we see that $G|\mu_{B}|$ is continuous on $R\backslash \{0\}$ . Clearly $G|\mu_{B}|$ is
continuous at $0$ and thus $G|\mu_{B}|$ is continuous on $R$ . Clearly ($N-\kappa$ a $G$ ) $|\mu_{B}|=$

$N|\mu_{B}|-\kappa_{d}G|\mu_{B}|$ is continuous on $R$ and hence $N|\mu_{B}|$ is continuous on $R$ .
Clearly $N|\mu_{B}|$ is continuous on $R^{a}\backslash B$ and a fortiori $N|\mu_{B}|$ is continuous on
$R^{d}$ . Thus $N\mu_{B}\in C(R^{a})$ . Thus the family of $N$-regular balls for $\mu$ centered at
$a$ forms a base of neighborhood system at $a\in R\backslash \{0\}$ .

Take any ball $B=B(O, \epsilon)$ with $\overline{B}\subset R$ . Clearly $G\mu_{B^{-}}-G\mu-G(\mu-\mu_{B})=$

$\alpha u-G(\mu-\mu_{B})\in C(B)$ . Since $G|\mu|=G|\mu_{B}|+G|\mu-\mu_{B}|\in C(R\backslash \{0\})$ , we see that
$G|\mu_{B}|\in C(R\backslash \{0\})$ and thus $G\mu_{B}\in C(R\backslash \{0\})$ . Hence $G\mu_{B}\in C(R)$ and a fortiori
$N\mu_{B}\in C(R)$ . It is clear that $N\mu_{B}\in C(R^{d}\backslash B)$ and finally we have $N\mu_{B}\in C(R^{d})$ .
Thus the family of $N$-regular balls for $\mu$ centered at $0$ forms a base of neigh-
borhood system at $0$ . Therefore we have seen that the Radon measure $\mu$

constructed above is of quasi Kato class.
Finally we maintain that $\gamma(0, \mu, N)=\kappa_{a}\gamma(0, \mu, G)>0$ . Otherwise, since

$\gamma(a, \mu, N)=\kappa_{d}\gamma(a, \mu, G)=a\kappa_{d}\gamma(a, \nu, G)=0$ $(a\in R\backslash \{0\})$ , we have $\gamma(a, \mu, G)=0$
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$(a\in R)$ and therefore by Lemlna 2.1, $G|\mu|=aG|\nu|=\alpha U\in C(R)$ , which contradicts
the discontinuity of $U$ at $0$ . Thus $\mu$ is not of Kato class.

The proof of Theorem 2 is herewith complete. $\square$

Appendix: Flat cone condition.

A.1. Let $D$ be a bounded region in the Euclidean space $R^{a}$ $(d\geqq 2)$ . We
denote by $H_{f}^{D}$ the harmonic Dirichlet solution on $D$ for a boundary function $f$

in $C(\partial D)$ obtained by the Perron-Wiener-Brelot method (cf. $e.g.,$ $[6]$ , pp. 156-
162). A point $x\in\partial D$ is Dirichlet regular if $H_{f}^{D}(y)$ approaches to $f(x)$ as $y\in D$

tends to $x$ for every $f\in C(\partial D)$ . A cone $\Lambda(x, a ; \theta)$ with $x$ as its vertex and $\theta$

as its half of the opening angle and containing $a$ on its axis of symmetry is
given by

$\Lambda(x, a;\theta)=\{y\in R^{d} : (x-a)\cdot(x-y)\geqq|x-a||x-y|\cos\theta\}$

where $(x-a)\cdot(x-y)$ denotes the inner product of $x-a$ and $x-y$ . A truncated
flat cone with vertex $x$ is the set of the form $\Lambda(x, a ; \theta)\cap P\cap\overline{B}(x, r)(r>0)$

where $P$ is a $(d-1)$-dimensional hyperplane containing the axis of symmetry of
$\Lambda(x, a;\theta)$ .

THEOREM A. A boundary $p\alpha ntx$ of a bounded region $D$ in $R^{a}(d\geqq 2)$ is
Dirichlet regular if there is a truncated flat cone with vertex $x$ in the complement
$\sim D=R^{d}\backslash D$ of $D$ .

An interesting but unique proof is found in Kuran [7]. For the convenience
of the reader we give here a proof to the above theorem simply by combining
the standard common knowledge: Bouligand barrier criterion, monotoneity and
subadditivity of the capacity, and Wiener test.

A.2. A function $w$ is a barrier at $x\in\partial D$ if $w$ is defined on $B\cap D$ for
some open ball $B$ centered at $x$ and possesses the following properties: (i) $w$

is superharmonic on $B\cap D$ ; (ii) $w>0$ on $B\cap D$ ; (iii) $w(y)arrow 0$ as $y\in B\cap D$ tends
to $x$ . The Bouligand criterion then states that $x\in\partial D$ is Dirichlet regular if
and only if there is a barrier at $x$ (cf. e.g., [6], p. 171).

Suppose $S$ is a region in $R^{d}$ with a harmonic Green function $G$ . The
caPacity of any compact subset $K$ of $S$ relative to $S$ is given by $C(K)=$

$\sup$ {$\mu(K)$ : G\mu $l on $S,$
$\mu$ a positive Radon measure with support in $K$ }. Then

we have the monotoneity: $K_{1}\subset K_{2}$ implies $C(K_{1})SC(K_{2})$ , and the subadditivity:
$C(K_{1}\cup K_{2})+C(K_{1}\cap K_{2})\leqq C(K_{1})+C(K_{2})$ (cf. $e.g.,$ $[6]$ , p. 141).

Fix a point $x\in\partial D$ and consider the capacity $C$ relative to the open ball $S$

of radius 1/2 centered at $x$ . For $\lambda>1$ we consider spherical rings
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$A(\lambda, n)=\{y\in R^{d} : \lambda^{n}\leqq N(x, y)\leqq\lambda^{n+1}\}$ $(n=1,2, \cdots)$

where $N(x, y)$ is the Newtonean kernel on $R^{f}((d\geqq 2)$ . Let $n$ be tbe least
positive integer such that $A(\lambda, n)\subset S$ for every $n\geqq\overline{n}$ . The Wiener test maintains
(cf. $e.g.,$ $[6]$ , p. 220) that $x\in\partial D$ is Dirichlet regular if and only if

$\sum_{n\geq\overline{n}}\lambda^{n}C((\sim D)\cap A(\lambda, n))=+\infty$ .

A.3. Proof of Theorem A. By translation we may assume that $x=0$ is
the boundary point of $D$ in question. We assume that a truncated flat cone $T$

with vertex $0$ is contained in $\sim D$ . By rotation about the origin we can assume
that $T$ is contained in the hyperplane $P=\{y=(y_{1}, \cdots , y_{d})\in R(f : y_{d}=0\}$ so that
$T$ is expressed as follows:

$T=\Lambda(O, a ; \theta)\cap P\cap\overline{B}(0, p)\subset\sim D$

where $\rho\in(0,1/2)$ and $\theta\in(0, \pi/2)$ . We can also take $|a|=p$ . Observe that
there is a finite number of points $a_{1}=a,$ $a_{2}$ , $\cdot$ . , $a_{m}$ in $P\cap\partial\overline{B}(0, \rho)$ such that

$K=P \cap\overline{B}(0, \rho)\subset\bigcup_{j=1}^{m}T_{j}$ , $T_{j}=\Lambda$ ( $0$ , a $j$ ; $\theta$ ) $\cap P\cap\overline{B}(0, p)$ .

We consider the capacity $C$ relative to the open ball $S=B(O, 1/2)$ . Since $C$ is
clearly invariant under rotation of $S$ around the origin and all $T_{j}\cap A(\lambda, n)$ are
congruent to $T\cap A(\lambda, n)$ by suitable rotations of $S$ about the origin, we see that

$C(T_{j}\cap A(\lambda, n))=C(T\cap A(\lambda, n))$ $(j=1, \cdots, m ; n=1, 2, )$ .

By the monotoneity and the subadditivity of $C$ we see that

$C(K \cap A(\lambda, n))\leqq C((_{j=1}^{m}UT_{j})\cap A(\lambda, n))\leqq\sum_{j=1}^{m}C(T_{j}(\eta A(\lambda, n))=mC(T\cap A(\lambda, n))$ .

Observe that $w(y)=w(y_{1}$ , $\cdot$ .. , $y_{(I})=|y_{d}|$ is a barrier at $0\in\partial(S\backslash K)$ since it is
superharmonic (and actually harmonic) on $B(O, \rho)\cap(S\backslash K)$ and has vanishing
boundary values on $B(O, \rho)\cap\partial(S\backslash K)=B(O, \rho)\cap K$ and in particular at $x=0$ . A
fortiori $x=0\in\partial(S\backslash K)$ is Dirichlet regular for the region $S\backslash K$ . Hence by the
Wiener criterion

$+ \infty=\sum_{n\geqq\overline{n}}\lambda^{n}C((\sim(S\backslash K))\cap A(\lambda, n))=\sum_{n\geqq\overline{n}}\lambda^{n}C(K\cap A(\lambda, n))$

$\leqq m\sum_{n\geqq\overline{n}}\lambda^{n}C(T\cap A(\lambda, n))$ $ $m \sum_{n\geq\overline{n}}\lambda^{n}C((\sim D)\cap A(\lambda, n))$

and, again by the Wiener criterion, $x=0\in\partial D$ is Dirichlet regular for the
region D. $\square$
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