
J. Math. Soc. Japan
Vol. 48, No. 1, 1996

$N$-body resolvent estimates

By Christian G\’ERARD, Hiroshi ISOZAKI and Erik SKIBSTED

(Received April 14, 1994)

1. Introduction.

This paper concerns micro-local resolvent estimates for a large class of
$N$-body Schr\"odinger operators. It seems that further progress in our under-
standing of some basic problems in many-body scattering theory relies on such
estimates. In any case recent success in the study of scattering amplitudes and
eigenfunction expansion for some specific cases (channels), cf. [B], [I2], [I3],
[S1], [HSk], is based heavily on results of this type. The main purPose of
our PaPer is to generalize known micro-local resolvent estimates as far as
possible by a new method that we find elementary and easy to handle. Basically
(as for Previous proofs) the problem boils down to the so called Mourre estimate.
Further progress would probably need additional new tools.

We consider $N(\geqq 2)\nu$-dimensional particles labelled 1, $\cdots$ $N$ in the configu-
ration space

$X= \{x=(x_{1}, \cdots x_{N})|x_{i}\in R^{\nu},\sum_{i\Rightarrow 1}^{N}m_{i}x_{i}=0\}$ .

Here $x_{i}$ and $m_{i}$ denote the position vectors and the masses, respectively.
AS usual we order the set of all cluster $decompositi\otimes nsa=(C_{1}, \cdots , C_{\# a})$ by

inclusion of respective clusters. The $N-1$ cluster decomposition defined by
letting particle $i$ and particle $j$ form a cluster is denoted by $(ij)$ .

Throughout the paper the potential $V= \sum_{(ij)}v_{ij}(x_{i}-x_{j})$ obeys the following.

CONDITION. There exists $1>\epsilon_{1}>0$ such that for all pairs $(ij),$ $v_{tj}(y)=$

$vf_{j}^{1)}(y)+v1_{J}^{2)}(y)$ , where
1) $v_{lj}^{(1)}(y)$ is smooth and for any multiindex $\alpha$

$|\partial_{y}^{a}v\}_{j}^{1)}(y)|\leqq C_{a}(1+|y|)^{-|a|-\epsilon_{1}}$ ,

2) $v\ell_{j}^{2)}(y)$ is compactly supported and $vj_{j}^{2)}(-\Delta_{y}+1)^{-1}$ is compact $mL^{z}(R_{y}^{v})$ .
Here and in the sequel the notation $C$ is used for various constants.
Equipping ee with the metric $x\cdot y=\Sigma_{i=1}^{N}2m_{i}x_{i}\cdot y_{i}$ , the Hamiltonian is given

by $H=-\Delta+V$ on $\mathcal{H}:=L^{2}(X)$ . Let $\mathscr{F}$ be the set of thresholds ( $i.e.$ , eigenvalues
for subsystems), and $\sigma_{c}(H)$ and $\sigma_{pp}(H)$ the continuous respective the pure point
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spectrum. Let $\Lambda=\mathscr{F}\cup\sigma_{pp}(H)$ . The resolvent of $H$ is denoted by $R(z)=(H-z)^{-1}$ ;
$z\not\in R$ .

Let $X$ be the (maximal) operator of multiplication by $X(x)=\langle x\rangle=(1+|x|^{2})^{1/2}$

on $\mathcal{H}$ .
NOW one of our results (see Definition 2.11 and Theorem 2.12 (1) for the

precise formulation) can be stated as follows:
Let $\lambda\in\sigma_{c}(H)\backslash \Lambda,$ $l\in Ns’>s>l-1/2$ and $P_{-}$ be a bounded Pseudodifferential

operator suPPorted in the region $x/\langle x\rangle\cdot\xi\leqq C$ where $C$ is a certain posrtive constant
depending on the distance from $\lambda$ to the nearest smaller threshold. Then there
exists a constant C’ such that

$||X^{s-\iota}P_{-}R(z)^{\iota}X^{-s’}||\leqq C’$ ,

uniformly in ${\rm Re} z\in N_{\lambda}$ , a neighborhood of $\lambda$ , and ${\rm Im} z>0;||\cdot||$ being the operator
norm $mL^{2}(X)$ .

Different types of estimates that accommodate the $N$-body geometry are also
discussed. More specifically we shall prove estimates involving only pseudo-
differential localization for the intercluster motion when localizing to some
geometrically determined regions of the configuration space. We have results
for energy-dependent symbols (Theorem 3.5), but also one for low energies for
energy-independent symbols (see Definition 3.6 and Theorem 3.7). As for the
latter type of symbols there is a complete result for $N=3$ and partial results in
the general case for high energies (Theorem 3.8). It is clear from the context
(cf. Definition 3.6) what the conjecture would be for the general case.

While we shall not give an account for the large literature on micro-local-
ization for two-body operators (see though [I1], [J]), let us mention that for
the free channel the above mentioned result for energy-indePendent symbols
was first proved by a time-dependent method (based among others on [SS]) by
one of the authors [S2]. It was implicitly suggested in [S1] that an application
of a “conjugate“ operator with “symbol“ $x\cdot\xi-C\langle x\rangle$ and Mourre theory ([J],
[JMP], [M1], [PSS] $)$ would provide another proof. This line was pursued by
Wang [W2] independently with whom we have many overlapping results. The
present paper presents a third method. In common are the technical tools of
positive commutators and calculi for associated (functions of) selfadjoint operators
and pseudodifferential operators. These tools date back to the pioneering works
[M1], [M2]. In this paper we (roughly speaking) invent an appropriate calculus
not for the “symbol” mentioned above but rather for the “symbol” obtained by

dividing it by $\langle x\rangle$ . The method facilitates calculations and allows a simple
stationary approach that in its basic form is well known (see for example the
proof of Theorem 30.2.6 in [H1] $)$ . Except for the Mourre estimate and the
limiting absorption principle the paper is comPletely selfcontained.
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We complete thls section by a piece of notations. Given a cluster decom-
position $a$ we introduce the following classes of Ps.D.Op.’s on the corresponding
subspace

$X_{a}=$ { $x\in X|x_{i}=x_{j}$ if $i,$ $J\in C$ for some $C\in a$ }

of intercluster motion.
For $r,$ $l\in R$ the class $S_{l}^{r}(X_{a})$ consists of the smooth functions $p(x_{a}, \xi_{a})$ on

$X_{a}\cross X_{a}^{*}$ such that

$|\partial_{x_{a}}^{\alpha}\partial\xi_{a}p(x_{a}, \xi_{a})|\leqq C_{\alpha,\beta}\langle x_{a}\rangle^{\iota-\rceil\alpha|}\langle\xi_{a}\rangle^{r}$

for all multiindices $\alpha$ and $\beta$ ; $\langle x_{a}\rangle=(1+|x_{a}|^{2})^{1/2}$ .
We put $S(X_{\alpha})=S_{0}^{0}(X_{a})$ and $S_{comp}(X_{a})=\{p\in S(x_{a})|\exists C>0:p(x_{a}, \xi_{a})=0$ for

$\ovalbox{\tt\small REJECT}\xi_{a}|^{2}>C\}$ .
We quantize according to the standard formula

$(P(x_{a}, D_{a}) \Psi)(x_{a})=(2\pi)^{-\dim t_{a}/2}\int e^{ix_{a}}\xi_{a}p(x_{a}, \xi_{a})\hat{\Psi}(\xi_{a})d\xi_{a}$ .

Let $X^{a}$ be the orthogonal complement of $X_{a}$ . Then the notation for the
corresponding decomposition of any $x\in X$ reads $x=x^{a}\oplus x_{a}\in X^{a}\oplus X_{a}$ .

We shall frequently use the subscript prime to indicate objects of same
type as those discussed in a given context. In case of functions this notation
should not be confused with derivatives (indicated by a different notation).

2. Commutator calculus and “global” estimates.

In this section we develop a calculus that consecutively is used for proving
resolvent estimates. The first type of such estimates (Theorem 2.10) involves
localization in terms of some operators defined by the functional calculus for
selfadjoint operators. The other type (Theorem 2.12) involves pseudodifferential
localization in terms of operators with symbols in $S_{comp}(X)$ satisfying a certain
energy-dependent support condition (see Definition 2.11).

We introduce

DEFINITIONS.
(1) Let $\varphi$ be the algebra of $C^{\infty}$-functions $v$ on ee such that

$|\partial_{x}^{\alpha}(x\cdot\nabla)^{k}v(x)|\leqq C_{\alpha,k}$ ; Va, $k$ .

(2) Let $\subset\nu_{+}^{1}$ be the class of positive $C^{\infty}$-functions $r$ on ee such

$r(x)^{2}-|x|^{2}\in CV$ .

For $\lambda\in\sigma_{c}(H)\backslash \Lambda$ we denote by
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$a( \lambda)=\inf\{\lambda-\mu|\mu\in \mathscr{F}, \mu<\lambda\}$ ;

$i$ . $e.$ , the distance to the nearest threshold to the left of $\lambda$ . We want to study
the evolution at some fixed $\lambda\in\sigma_{c}(H)\backslash \Lambda$ . Our calculus is based on the commu-
tators of $H$ and certain selfadjoint operators. In order to accommodate local
singularities of the potentials, instead of using the usual generator of dilations,
we adopt the vector field of Graf [Gr]. The following lemma is proved in [S2].

LEMMA 2.1. Let $\lambda\in\sigma_{c}(H)\backslash \Lambda$ and $\epsilon>0$ be given. Then there exist an open
neighborhood $N_{\lambda}$ of $\lambda$ and $r\in\varphi_{+}1$ such that with A given as the selfadjoint
operator on $\mathcal{H}$

$A=(\omega\cdot D+D\cdot\omega)/2;\omega=r\nabla r$ , $D=-i\partial_{x}$ ,

(1) $i[H, A]$ defined as a form on $9(H)\cap 9(A)$ extends to a symmetnc operator
on $9(H)$ , and in fact

$i[H, A]= \sum_{|\alpha_{|\leq 2}}v_{\alpha}D^{\alpha}$ ; $v_{\alpha}\in\varphi$ .

(2) $\varphi(H)i[H, A]\varphi(H)\geqq 2a(\lambda)(1-\epsilon)\varphi(H)^{2}$ for all real-valued $\varphi\in C_{0}^{\infty}(N_{\lambda})$ .

Let in the following $\lambda\in\sigma_{c}(H)\backslash \Lambda$ and $\epsilon>0$ be fixed. Then we choose (and

fix) $N_{\lambda}$ and $r\in^{c}V_{+}^{1}$ accordingly. (Note that the assertion (1) follows from the
fact that $i[v_{ij}^{(2)}, A]=0.)$ We can assume that $N_{\lambda}\cap\Lambda=\emptyset$ .

DEFINITIONS. With $B$ given as the selfadjoint operator on $\mathcal{H}$

$B=r^{-1/2}Ar^{-1/2}=(\nabla r\cdot D+D\cdot\nabla r)/2$ ,

we let 9 be the (dense) domain

$9=\cap 9(Q)$ ,

where the intersection is over all polynomials $Q$ in $X$ and $B$ .
Then we define for any $m\in R$ the class $\mathcal{O}p^{m}(X)$ of operators $P$ with the

properties
1) $9(P)$ and $9(F^{*})$ contain 9 and $P$ and $P^{*}$ restricted to 9 map into itself.
2) $\forall n\in N\cup\{0\}\forall\alpha,$ $\beta\in R$ such that $\alpha+\beta=n-m:X^{\alpha}ad_{n}(P, B)X^{\beta}$ extends to a

bounded operator on $\mathcal{H}$ .
Here $P^{*}$ is the adjoint of $P$, and tbe iterated commutator $ad_{n}(P, B)$ is given by
$ad_{0}(P, B)=P$ and $ad_{n}(P, B)=[ad_{n-1}(P, B), B];n\geqq 1$ .

REMARK. It is readily verified that [X, $B$ ] $\in V,$ $[B, v]\in X^{-1}\varphi(\subset V)$ for
any $v\in V$ , and in fact that $V\subset op^{0}(X)$ and $X^{\iota}\in \mathcal{O}p^{\iota}(X)$ for any $l\in R$ . Also it
is remarked that these properties as well as the definition above are independent
of the particular choice of $X(\cdot)\in\varphi_{+}1$ In particular we could take $X(\cdot)=r(\cdot)$ .

We omit the straightforward proof of the following result:
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LEMMA 2.2 (Algebraic properties).

(1) $P\in \mathcal{O}p^{m}(X)\Rightarrow[P, B]\in op^{m-1}(X)$ .
(2) $P\in op^{m}(X)\Rightarrow P^{*}\in op^{m}(X)$ .
(3) $P\in op^{m}(X),$ $Q\in op^{m_{1}}(X)\Rightarrow PQ\in op^{m+m_{1}}(X)$ .

We will give some examples of operators in $\mathcal{O}p^{0}(X)$ and discuss associated
commutator properties. For that we will use the following general facts.

Let for any $m\in R,$ $\mathscr{F}^{m}$ be the class of $C^{\infty}$-functions on $R$ such that

$|f^{(k)}(t)|\leqq C_{k}(1+|t|)^{m-k}$ , $\forall k\geqq 0$ .

Let $f\in \mathscr{F}^{m}$ . Then one can choose (cf. [Ge]) an almost analytic extension
$\tilde{f}\in C^{\infty}(C)$ of $f$ with (more precisely) the properties:

$\tilde{f}(t)=f(t)$ for $t\in R$ ,

(2.1) $|\partial_{i}f(z)|\leqq C_{N}\langle z\rangle^{m-1-N}|{\rm Im} z|^{N}$ for all $N\in N;\langle z\rangle=(1+|z|^{2})^{1/2}$ ,

$supp\tilde{f}(\cdot)\subset\{z\in C||{\rm Im} z|\leqq 1+|{\rm Re} z|\}$ .

Furthermore $\partial_{t}^{k}\tilde{f}(t+i{\rm Im} z)$ is an extension of $f^{(k)}(t)$ with the same properties
(with $m$ replaced by $m-k$ ).

For $f\in \mathscr{F}^{m}$ with $m<0$ and $\tilde{f}$ as above the following formula holds for any
selfadjoint operator $S$ (cf. [H2, p. 63], [HSj]).

(2.2) $f(S)= \frac{1}{\pi}\int_{c}\partial_{\overline{z}}f(z)(S-z)^{-1}dudv;z=u+iu$ .

Moreover if $f\in \mathscr{F}^{m}$ for arbitrarily given $m$ and $S$ and $T$ are linear operators
on the same Hilbert space, $S$ selfadjoint and $T$ bounded, then for any positive
integer $N>m$

$N-1(-1)^{k-1}$
(2.3) $[T, f(S)]= \sum_{k=1}\overline{k!}ad_{k}(T, S)f^{(k)}(S)+R_{N}$ ,

(2.4) $R_{N}=- \frac{1}{\pi}\int_{c}\partial_{\overline{z}}f(z)(S-z)^{-1}ad_{N}(T, S)(S-z)^{-N}dud_{l)}$ ; $z=u+iv$ ,

provided that all the commutators $ad_{k}(T, S)$ up to order $k=N$ are given as
bounded operators (defined iteratively as extensions of forms on $9(S)$).

This statement follows readily from (2.2).

LEMMA 2.3.
(1) $P_{2.0}R(z)\in op^{0}(X)$ for ${\rm Im} z\neq 0$ and $2.0=\Sigma_{1a}$ ls2

$v_{\alpha}D^{\alpha}$ ; $v_{\alpha}\in^{c}V$ .
(2) $f(H),$ $f(B)\in op^{0}(X)$ if $f\in \mathscr{F}^{m}$ for some $m<0$ .
(3) For $f\in \mathscr{F}^{m}$ for some $m\in R$ and $\varphi\in C_{0}^{\infty}(R),$ $f(B)\varphi(H)\in op^{0}(X)$ .
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PROOF. We first show (1). We notice that $[B, P_{2.0}]=X^{-1}P_{2.0}’$ , where $P_{2.0}’$

has the same form as $P_{2.0}$ . Let in the following $P_{j}$ and $P_{i}’$ denote operators
of this type. By induction one can show that $ad_{n}(P_{2,0}R(z), B)$ is a finite sum,
each term being a product

$A_{1}\cdots A_{k}$ ,
where $k\leqq n+1$ and

$A_{j}=X^{-\alpha_{j}}P_{j}R(z)$ , $\alpha_{j}\geqq 0_{c}^{1_{\iota}}$ ,

and

$\sum_{j=1}^{k}\alpha_{j}=n$ .

For any real $\alpha$ and $\beta$ with $\alpha+\beta=n$ we can write

$X^{\alpha}A_{1}\cdots A_{k}X^{\beta}=(X^{\alpha}A_{1}X^{a_{1}-\alpha})(X^{\alpha-\alpha_{1}}A_{2}X^{a_{1}+a_{2}-\alpha})\cdots(X^{\alpha_{k}-\beta}A_{k}X^{\beta})$ .

But for any real $\gamma,$
$X^{\gamma}R(z)X^{-\gamma}$ is a finite sum of products of the form

$A_{1}’\cdots A_{k’}’$ ,
where $k’\leqq|\gamma|+2$ and

$A_{i}’=P_{i}’R(z)$ .
Puttlng together we see that

$X^{\alpha}ad_{n}(P_{2,0}R(z), B)X^{\beta}$

is a finite sum of operators of the product type

$P_{1}R(z)P_{2}R(z)\cdots P_{k}R(z)$ ,

where
1; $k \leqq(n+1)(\max(|\alpha|, |\beta|)+2)=:\gamma$

Since a similar argumentation works for the adjoint we have proved (1).

AS for the statement of (2), that $f(H)\in op^{0}(X)$ if $f\in \mathscr{F}^{m}$ for $m<0$ , we use
(2.2) with $S=H$ and the arguments above which for $P_{2,0}=I$ leads to a similar
expansion with $P_{1}=I$ . Hence we obtain the estimate

$||X^{\alpha}ad_{n}(R(z), B)X^{\beta}||\leqq C\langle z\rangle^{\gamma-1}|{\rm Im} z|^{-\gamma}$ ,

which together with the bound

$|\partial_{i}F(z)|\leqq C_{\gamma}\langle z\rangle^{m-\gamma-1}|{\rm Im} z|^{\gamma}$

gives a representation in terms of a norm-convergent integral.
AS for the second statement in (2) we need only to show that

$||X^{a}(B-z)^{-1}X^{-\alpha}||\leqq C_{\alpha}|{\rm Im} z|^{-|\alpha|-2}\langle z\rangle^{|a|+1}$ .

But this bound follows from the fact that the operator is represented as a sum
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of products
$v_{1}(B-z)^{-1}v_{2}(B-z)^{-1}\cdots v_{k}(B-z)^{-1}v_{k+1}$ ,

where $v_{j}\in CV$ and 1S $k\leqq|\alpha|+2$ .
It remains to prove(3). This is done by writing (for $m\in N$)

$f(B)\varphi(H)=\{f(B)(B-i)^{-m-1}\}(B-i)^{m+1}R(i)^{m+1}\{(H-i)^{m+1}\varphi(H)\}$

and then using (1) and (2). $\square$

LEMMA 2.4. Let $f\in \mathscr{F}^{0}$ and $P\in \mathcal{O}p^{m}(X);m\in R$ . Then for any $po\alpha tive$

integer $N>m$ there exists $P_{m-N}\in op^{m-N}(X)$ such that, as an identity on 9,

$[P, f(B)]- \sum_{k=1}^{N-1}\frac{(-1)^{k-1}}{k1}ad_{k}(P, B)f^{(k)}(B)=P_{m- N}$ .

Moreover for any postive integer $J<N,$ $B^{j}P_{m-N}\in \mathcal{O}p^{m-N}(X)$ .

PROOF. We replace $P$ by $T=(1+\kappa|x|^{2})^{-m}P$ for $\kappa>0$ , use (2.3) and (2.4) in
which formulas we let $\kappa\downarrow 0$ . The latter statement follows also by inspection
of (2.4). $\square$

COROLLARY 2.5. Let I be an open interval, $f_{0}\in \mathscr{F}^{0}$ and $P\in \mathcal{O}p^{m}(X);m\in R$ .
Suppose $suppf_{0}\subset I$ . Then for any $M\in R$ the operators $f_{0}(B)P$ and $Pf_{0}(B)$ can
be wntten, modulo terms in $op^{M}(X)$ , as finite sums of terms

$f(B)P_{m}f’(B)$ ,

where $f,$ $f’\in \mathscr{F}^{0},$ $suppf,$ $suppf’\subset I$ and $P_{m}\in \mathcal{O}p^{m}(X)$ .

PROOF. We can write $f_{0}=f\cdot f’$ for some $\beta$ and $f’$ as in the statement.
Then we write

$f_{0}(B)P=f(B)Pf’(B)-f(B)[P, f’(B)]$ ,

and use Lemmas 2.3 (2) and 2.4 for the second term.
AS for $Pf_{0}(B)$ we use the result just proven for the adjoint. $\square$

We shall use Corollary 2.5 with $I=I_{-}=(-\infty, \sqrt{C_{0}})$ , where we put

$C_{0}=C_{0}(\lambda, \epsilon)=a(\lambda)(1-\epsilon)$ .
(Here $\epsilon$ is the fixed constant.)

So by assumption (cf. Lemma 2.1 (2)), the Mourre estimate reads

$\varphi(H)i[H, A]\varphi(H)\geqq 2C_{0}\varphi(H)^{2}$

for all real-valued $\varphi\in C_{0}^{\infty}(N_{\lambda})$ .

DEFINITION. For $m\in R$ we let $\mathscr{F}_{-}^{m}$ denote the class of $f\in \mathscr{F}^{m}$ such that
$suppf\subset I_{-}$ . $\mathscr{F}_{-}:=\mathscr{F}_{-}^{0}$ .
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We shall now consider the following special functions of this type.
For fixed $0<\epsilon_{0}<C_{0}/3$ we use the notation $F_{0}$ for any function in $\mathscr{F}_{-}$ , sucb

that
$suppF_{0}\subset(-\infty, \sqrt{C_{0}-2\epsilon_{0}})$ ,

$F_{0}(t)\geqq 0,$ $\sqrt{}\overline{F_{0}(t)}\in C^{\infty}(R)$ ,

$--- F_{0}(t)dtd\leqq 0,$ $\mapsto\frac{d}{dt}F_{0}(t)\in C^{\infty}(R)$ ,

$F_{0}(t)=1$ , if $t<\sqrt{C_{0}-3\epsilon_{0}}$ .

We put $C_{1}=C_{1}(\epsilon_{0})=\sqrt{C_{0}-\epsilon_{0}}$ , and introduce for $m>-1/2$

$F_{m}(t)=(C_{1}-t)^{m}F_{0}(t)$

and
$\tilde{F}_{2m+1}(t)=(C_{1}-t)F_{m}(t)^{2}$ .

The crucial ingredient of our approach is the following positivity statement.

LEMMA 2.6. Let $m>-1/2,$ $C_{0}/3>\epsilon_{0}>0$ and $F_{0},$ $F_{m}$ and $fi_{2m+1}$ be as above.
Let for real-valued $\varphi\in C_{0}^{\infty}(N_{\lambda})$

$P_{m}=r^{m}F_{m}(B)\varphi(H)$ .

Then for any $M\in R$ (and as forms on 9)

$-{\rm Re}\varphi(H)i[H, r^{2m+1}F_{2m+1}(B)]\varphi(H)$

$\geqq 2(2m+1)\epsilon {}_{0}P_{m}^{*}P_{m}+\sum_{finite}f(B)P_{zm-1}’f’(B)+P_{M}’$ ,

where $f,$ $f’\in \mathscr{F}_{-},$ $P_{2m-1}’\in op^{2m-1}(X)$ , and $P_{M}’\in op^{M}(X)$ .

PROOF. The proof relies on all the machinery developed so far; i. e.,
Lemmas 2.1-2.4 and Corollary 2.5. Instead of giving a full formal proof we
start by explaining the idea. Afterwards we indicate how to perform the
computation rigorously.

We “compute” the (leading) term in $op^{zm}(X)$ modulo $op^{2m-1}(X)$ . By use of
the identities

$i[H, r]=2B$

$i[H, B]=r^{-1/2}(i[H, A]-2B^{2})r^{-1/2}+P_{-2}$

with $P_{-2}=\nabla r\cdot(\partial^{2}r/\partial x^{2})\nabla r/2r^{2}\in op^{-2}(X)$ , we get

$i[H, r^{2m+1}]\cong(2m+1)r^{2m}2B$ ,

$i[H, F_{2m+1}(B)] \cong\{-(2m+1)F_{m}(B)^{2}+(C_{1}-B)^{2m+1}(\frac{d}{dt}F_{0}^{2})(B)\}$ ,

$r^{-1}\{i[H, A]-2B^{2}\}$ ,
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and hence that

$-{\rm Re}\varphi(H)i[H, r^{2m+1}P_{2m+1}(B)]\varphi(H)$

$\cong-\varphi(H)(2m+1)r^{2m}\{2B(C_{1}-B)-i[H, A]+2B^{2}\}F_{m}(B)^{2}\varphi(H)$

$- \varphi(H)r^{2m}(C_{1}-B)^{2m+1}(\frac{d}{dt}F_{0}^{2})(B)\{i[H, A]-2B^{2}\}\varphi(H)$

$\sim>(2m+1)\{2C_{0}-2\frac{C-2\epsilon}{00}C_{1}\}P_{m}^{*}P_{m}$

$- \varphi(H)^{2}r^{2m}(C_{1}-B)^{2m+1}(\frac{d}{dt}F_{0}^{2})(B)\{2C_{0}-2(C_{0}-2\epsilon_{0})\}$

$\sim>2(2m+1)\epsilon_{0}P_{m}^{*}P_{m}$ .

In the first estimate we used the Mourre estimate and the support property of
$F_{m}$ . In the second we removed the term containing $-(dF_{0}^{2}/dt)(B)$ as can be
done by the non-negativity of the latter operator.

This was the idea. In order to justify the computations one can proceed
as follows. At first we notice that for any $\varphi_{1}\in$ cge$(N_{\lambda})$ and real $m_{1}$ ,

(2.5) $i[\varphi_{1}(H), r^{m_{1}}]-\varphi_{1}^{(1)}(H)2m_{1}r^{m_{1}-1}B\in op^{m_{1}-2}(X)$ .
This identity follows by the same method that was used in the proof of Lemma
2.3.

We choose $\varphi_{1}\in C_{0}^{\infty}(N_{\lambda})$ such that the function $\varphi_{1}(t)=t$ in a nelghborhood of
the support of $\varphi$ Then

$\varphi(H)i[H, r^{2m+1}F_{2m+1}(B)]\varphi(H)$

$=\varphi(H)\{i[\varphi_{1}(H), r^{2m+1}]F_{2m+1}(B)+r^{2m+1}i[\varphi_{1}(H), fi_{2m+1}^{i}(B)]\}\varphi(H)$ .

For the first term we use the identity (2.5). For the second term we use
Lemma 2.4. We need to look at the term

$\varphi(H)r^{2m+1}i[\varphi_{1}(H), B]F_{2m+1}^{(1)}(B)\varphi(H)\in \mathcal{O}p^{2m}(X)$ .
Up to remainders in $op^{2m-1}(X)$ it is equal to

$r^{2m+1}\varphi(H)i[H, B]\varphi(H)F_{-m+1}^{(1)}’(B)$ .

Then we insert the expression for the commutator and use (2.5) again to
pull $r^{-1/2}$ through $\varphi(H)$ . After symmetrizing we can then estimate by the
assumption of Lemma 2.1 (2). To treat the contribution from $-2B^{2}$ we apply
Lemma 2.4 (again). We omit the straightforward details. $\square$

LEMMA 2.7. Let $m>-1/2,$ $t>1$ and $F\in \mathscr{F}_{-}$ . Then for any $\varphi\in C_{0}^{\infty}(N_{\lambda})$

$r^{m}F(B)\varphi(H)R(z)r^{-m-t}$

is bounded uniformly in ${\rm Im} z>0$ .
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PROOF. By Mourre theory and Lemma 2.1 one gets for all $l\in N,$ $s’\in R$

with $s’>l-1/2$ , and $\varphi\in C_{0}^{\infty}(N_{\lambda})$ the bound

(2.6) $||X^{-S}$
‘
$\varphi(H)R(z)^{l}X^{-S’}||\leqq C$

uniformly in ${\rm Im} z\neq 0$ (cf. [J], [JMP], [M1], [PSS]).

We will use (2.6) with $l=1$ and Lemma 2.6. Let $\delta$ be fixed such that
$0< \delta<\min((t-1)/2,1/2)$ . We will show by induction in $k\in N$ that

$q(k)$ : Let $m=-1/2+k\delta$ . Then for all $F\in \mathscr{F}_{-}$ and all real-valued $\varphi\in C_{0}^{\infty}(N_{\lambda})$

$||r^{m}F(B)\varphi(H)R(z)r^{-m-t}||\leqq C$ ,

uniformly in ${\rm Im} z>0$ .
If we know $q(k)$ , then we are done by (2.6) and a simple interpolation.
In the following we give preliminary steps for $q(k)$ . We use the notation

$P_{m’}’$ for operators in $op^{m’}(X)$ . Let $m>-1/2,$ $F\in \mathscr{F}_{-}$ and $\varphi\in C_{0}^{\infty}(N_{\lambda})$ be given.
Let $\varphi’$ be any real function in $C_{0}^{\infty}(N_{\lambda})$ such that $\varphi’\varphi=\varphi$ .

At first we claim that we can find $F’\in \mathscr{F}_{-}$ , and $P_{m}$ as in Lemma 2.6 for $\epsilon_{0}$

sufficiently small, such that

(2.7) $r^{m}F(B)\varphi(H)=P_{0}’P_{m}\varphi’(H)+P_{m-1}^{f}F’(B)\varphi(H)+P_{-1}’\varphi(H)$ .

TO see this we write for $\epsilon_{0}$ small enough

$r^{m}F(B)\varphi(H)=P_{0}^{f}P_{m}\varphi’(H)+r^{m}(I-\varphi^{f}(H))F(B)\varphi(H)$ ,

where $P_{0}^{f}=r^{m}\varphi’(H)F(B)(C_{1}-B)^{-m}r^{-n\iota}$ . As for the second term we apply Lemma
2.4 to the commutator $[\varphi’(H), F(B)]$ .

We use the notation

$u=R(z)r^{-m-t}v$ for $v\in 9$ and ${\rm Im} z>0$ .
By Lemma 2.6

$2(2m+1)\epsilon_{0}||P_{m}\varphi’(H)u||^{8}\leqq A_{1}+\cdots+A_{5}$ ;

$A_{1}=-2{\rm Im} z{\rm Re}\langle u, \varphi(H)r^{2m+1}\hat{F}_{2m+1}(B)\varphi(H)u\rangle$ ,

$A_{2}=|\langle\varphi(H)r^{-m-t}v, r^{2m+1}F_{2m+1}(B)\varphi(H)u\rangle|$ ,

$A_{3}=|\langle\varphi(H)u, r^{2m+1}F_{2m+1}(B)\varphi(H)r^{-m-t}v\rangle|$ ,

$A_{4}= \sum_{finite}|\langle\varphi’(H)u, f(B)P_{2m-1}’f’(B)\varphi’(H)u\rangle|$ ,

$A_{5}=|\langle\varphi’(H)u, P_{M}’\varphi’(H)u\rangle|$ .
Here we choose $M=-2$ . We want $A_{1}+\cdots+A_{6}\leqq C||v||^{2}$ , uniformly in ${\rm Im} z>0$ .

AS for $A_{1}$ an application of Lemma 2.4 and Corollary 2.5 gives

${\rm Re}\varphi(H)r^{2m+1}F_{2m+1}(B)\varphi(H)\geqq\varphi(H)\{f(B)P_{2m- 1}’f(B)+P_{-2}\}\varphi(H)$

for some real $f\in \mathscr{F}_{-}$ .
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By this estimate and (2.6) it suffices to look at terms of the form $A_{2},$ $A_{3}$

and $A_{4}$ .
We can now prove $q(1)$ :
By (2.6) and (2.7) it suffices to bound $A_{2},$ $A_{3}$ and $A_{4}$ . Since $m+1-t<-t/2$ ,

we have that

$r^{-m-t}\varphi(H)r^{2m+1}F_{2m+1}(B),$ $r^{-m-t}\varphi(H)P_{2m+1}(B)r^{2m+1}\in op^{-t/2}(X)$ ,

and hence by (2.6) that
$A_{2},$ $A_{3}$ $ $C||v||^{2}$ .

Clearly the same bound holds for terms of the form $A_{4}$ (since $2m-1<-1$ ).

Suppose we have shown $q(k-1)$ ; $k>1$ . We need to prove $q(k)$ . By (2.6),

(2.7) and $q(k-1)$ it suffices to bound $A_{2},$ $A_{3}$ and $A_{4}$ .
Writing

$r^{-m-t}\varphi(H)r^{2m+1}\hat{F}_{2m+1}(B)=P_{1+\delta-t}’r^{m-\delta}f(B)$ ,

$r^{-m-t}\varphi(H)\tilde{F}_{2m+1}(B)r^{2m+1}=P_{1+\delta-t}’’r^{m-\delta}f(B)+P_{-1}’$ ,

the bounds for $A_{2}$ and $A_{3}$ follow from (2.6) and $q(k-1)$ . (Notice that $1+\delta-t\leqq 0.$ )

Since by $q(k-1)$

$||r^{m-1/2}f(B)^{*}\varphi’(H)u||,$ $||r^{m-1/2}f^{f}(B)\varphi’(H)u||\leqq C||v||$ ,

we get the bound for $A_{4}$ also. This proves $q(k)$ . $\square$

DEFINITION. Let $I.=(-\sqrt C_{0}^{-}, \infty)$ and $\mathscr{F}_{+}$ be the class of functions $f\in \mathscr{F}^{0}$

such that $suppf\subset I_{+}$ .

By the same method one can prove the following analogue of Lemma 2.7.

LEMMA 2.8. Let $m>-1/2,$ $t>1$ and $F\in \mathscr{F}_{+}$ . Then for any $\varphi\in C_{0}^{\infty}(N_{l})$

$r^{m}F(B)\varphi(H)R(z)r^{-m-t}$

is bounded uniformly in ${\rm Im} z<0$ .
Also, by a simple interpolation and by changing “the weights” to the right

in the proofs of Lemmas 2.7 and 2.8 one can prove following two sided estimate.

LEMMA 2.9. Let $m\in R,$ $F_{-}\in \mathscr{F}_{-}$ and $F_{+}\in \mathscr{F}_{+}$ . Suppose there exzsts $\sigma\in R$

such that $suppF_{-}\subset(-\infty, \sigma)$ and $suppF_{+}\subset(\sigma, \infty)$ . Then for any $\varphi\in C_{0}^{\infty}(N_{\lambda})$

$r^{m}F_{-}(B)\varphi(H)R(z)F_{+}(B)r^{m}$

is bounded uniformly in ${\rm Im} z>0$ .
By combining Lemmas $(2.7)-(2.9)$ and (2.6) (actually only the statement for

$l=1$ is needed) one can get bounds for powers of the resolvent. This is done
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by introducing repeatedly suitable splittings $I=F_{-}+F_{+}$ (cf. Jensen [J] and
Isozaki [I1] $)$ .

The result is

THEOREM 2.10.
(1) Let $l\in N,$ $s’>s>l-1/2,$ $F_{-}\in \mathscr{F}_{-}$ and $\varphi\in C_{0}^{\infty}(N_{\lambda})$ . Then

$||X^{s-l}F_{-}(B)\varphi(H)R(z)^{\iota}X^{-s}$
‘ 1 $ $C;{\rm Im} z>0$ .

(2) Let $l\in N,$ $s>s>l-1/2,$ $F_{+}\in \mathscr{F}_{+}$ and $\varphi\in C_{0}^{\infty}(N_{\lambda})$ . Then

$||X^{s-\iota}F_{+}(B)\varphi(H)R(z)^{\iota}X^{-S’}||\leqq C;{\rm Im} z<0$ .

(3) Let $l\in N$ $s\in R$ , $F_{-}\in \mathscr{F}_{-}$ , $F_{+}\in \mathscr{F}_{+}$ and $\varphi\in C_{0}^{\infty}(N_{\lambda})$ . Suppose there exists
$\sigma\in R$ such that $suppF_{-}\subset(-\infty, \sigma)$ and $suppF_{+}\subset(\sigma, \infty)$ . Then

$||X^{\epsilon}F_{-}(B)\varphi(H)R(z)^{\iota}F_{+}(B)X^{s}||\leqq C;{\rm Im} z>0$ .

The last issue of this section is to convert these estimates into pseudodif-
ferential analogues. For that we need

DEFINITION 2.11. For $-1<\rho<1$ the notation S&(\rho ) stands for the class of
symbols $p_{-}\in S_{comp}(X)$ such that

$suppp_{-}\subset\{(x, \xi)|\frac{x}{\langle x\rangle}\cdot\xi$ $ $\rho^{\sqrt{a(\lambda)}\}}$ ,

and similarly $S_{+}^{\lambda}(\rho)$ for the class with

$suppp_{+}\subset\{(x, \xi)|\frac{x}{\langle x\rangle}\cdot\xi\geqq\rho\sqrt{a(\lambda)}\}$ .

For a symbol $p_{-}\in S^{\underline{\lambda}}(\rho)$ the corresponding Ps.D.Op. is denoted by $P_{-}$ .
Similarly for $p_{+}\in S_{+}^{\lambda}(\rho)$ .

We shall show (for fixed $\lambda\in\sigma_{c}(H)\backslash \Lambda$ )

THEOREM 2.12.
(1) Let $-1<\rho<1$ . Then there exists a neighborhood $N_{\lambda}^{f}$ of $\lambda$ such that for any

$l\in Ns’>s>l-1/2,$ $p_{-}\in S_{-}^{\lambda}(\rho)$

$||X^{s-\iota}P_{-}R(z)^{\iota}X^{-S’}||\leqq C$ ,

uniformly in ${\rm Re} z\in N_{\lambda}’$ and ${\rm Im} z>0$ .
(2) Let $-1<\rho<1$ . Then there exists a neighborhood $N_{\lambda}’$ of $\lambda:Vl\in Ns’>s>$

$l-1/2,$ $p_{+}\in S_{+}^{\lambda}(\rho)$

$||X^{s-\iota}P_{+}R(z)^{\iota}X^{-i’}||\leqq C$ ,

uniformly in ${\rm Re} z\in N_{\lambda}’$ and ${\rm Im} z<0$ .
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(3) Let $-1<\rho_{-}<\rho_{+}<1$ . Then there exests a neighborhood $N_{\lambda}’$ of $\lambda:Vl\in N$,
$s\in R,$ $p_{-}\in S_{-}^{\lambda}(\rho-),$ $p_{+}\in S_{+}^{\lambda}(\rho_{+})$

$||X^{s}P_{-}R(z)^{\iota}P_{+}X^{s}||\leqq C$ ,

uniformly in ${\rm Re} z\in N_{\lambda}’$ and ${\rm Im} z>0$ .

TO show Theorem 2.12 we notice that for given $-1<\rho<1$ we can choose
$\epsilon>0$ such that $\prime 1-\epsilon>|p|$ . With such $\epsilon$ taken as input in the definition of $B$

in the beginning of this section we can write for a suitable splitting $I=F_{-}+F_{+}$

$X^{s-l}P_{-}=A_{1}X^{s-l}F_{-}(B)+A_{2}X^{-s’}$ ,

where
$A_{1}=X^{s-l}P_{-}X^{l-s}$

and
$A_{2}=X^{s-l}P_{-}F_{+}(B)X^{S’}$

Since $A_{1}$ is bounded we see that Theorem 2.12 (1) follows from Theorem 2.10
(1) and (2.6) provided we can show that $A_{2}$ is bounded. For that it is most
convenient to assume that $F_{-}$ is of the form $F_{-}.=F_{0}$ for some $\epsilon_{0}>0$ .

We claim that indeed for $\epsilon_{0}$ small enough, $A_{2}$ is bounded. To see this we use
the calculus of Ps.D.Op.’s and Lemma 2.4 to reduce the problem to the following
statements for fixed $\rho_{1}\in(\rho, \sqrt{1-\epsilon})$ and $f_{+}\in \mathscr{F}^{0}$ with $suppf_{+}\subset(\rho_{1^{\sqrt{a(\lambda)}}}, \infty)$ .

$q(k)$ : For any $\rho_{2}<\rho_{1},$ $p_{-}\in S_{-}^{\lambda}(\rho_{2})$ and $P_{k/2}\in op^{k/2}(X),$ $P_{-}P_{k/2}f_{+}(B)$ is bounded.

So suppose $q(k-1)$ . Then we need to verify $q(k)$ . To the operator $B_{1}=$

$B-\rho_{2}^{\sqrt{a(\lambda)}}$ we associate the “symbol” $(x/\langle x\rangle)\cdot\xi-\rho_{2}^{\sqrt{(}}\lambda\overline{)}$ . This is motivated
by the following formula valid on $9(D)$ ,

$B_{1}= \frac{x}{\langle x\rangle}\cdot D-\rho_{2}\sim a(\lambda)+\frac{1}{\langle x\rangle}P_{1.0}$ ,

where $P_{1.0}=\Sigma_{1a}vD^{a}$ ; $v_{\alpha}\in\varphi$ .
Obviously the “symbol” is non-positive on $suppp_{-}$ for $p_{-}\in S_{-}^{\lambda}(p_{2})$ . Further-

more $e^{-tB_{1}}f_{+}(B)$ is exponentially decreasing for $tarrow+\infty$ .
Let for given $p_{-}\in S_{-}^{\lambda}(\rho_{2})$ and $P_{k/2}\in \mathcal{O}p^{k}/2(X)$

$P(t)=Q(t)^{*}Q(t);Q(t)=P_{-}P_{k/2}f_{+}(B)e^{-tB_{1}}$ .

We need to show that $P(O)$ is bounded.
By the identity $P( O)=-\int_{0}^{\infty}(d/dt)P(t)dt$ it is enough to show that

$- \frac{d}{dt}P(t)$ $ $P^{f}(t)$ ,

where $||P’(t)||\leqq Ce^{-e’t}$ for some $\epsilon’>0$ .
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By $q(k-1)$ this will hold if

${\rm Re} \{P_{k^{*}},{}_{2}P_{-}^{*}P_{-}P_{k\prime 2}B_{1}\}\leqq\sum_{finite}{\rm Re}\{P_{(k-1)/2}^{*}P_{-}’P_{(k-1)/2}’\}+C$ ,

where $P_{(k-1)/2},$ $P_{(k-1)/2}’$ and $P_{-}’$ satisfy the condltions of $q(k-1)$ .
Since $[P_{k/2}, B_{1}]\in op^{(k-2)/2}(X)$ it suffices to look at

${\rm Re}\{P_{k/2}^{*}P_{-}^{*}P_{-}B_{1}P_{k/2}\}$ ,

or by the same argument,

${\rm Re} \{P_{k’ 2}^{*}P_{-}^{*}P_{-}(\frac{x}{\langle x\rangle}\cdot D-\rho_{2}^{\sqrt{a(\lambda)})P_{k/z\}}}$

But by the Garding inequality and the sign property mentloned, we can estimate

${\rm Re} \{P_{-}^{*}P_{-}(\frac{x}{\langle x\rangle}\cdot D-p_{2}^{\sqrt{a(\lambda)}})\}\leqq\langle x\rangle^{-1/2}P_{-}\langle x\rangle^{-1/2}+C\langle x\rangle^{-k}$ .

This completes the proof of $q(k)$ , and hence of Theorem 2.12 (1).

The proof of the other statements of the theorem goes along the same
line. $\square$

REMARK. The proof of Theorem 2.12 can be extended to a more general
symbol class than $S_{comp}(X)$ in Definition 2.11 (see [GIS]). This fact plays a
role in [I4] but not for the application given in the next section.

3. Geometrical resolvent estimates.

In this section we convert the statements of Theorem 2.12 into some more
natural geometrical ones. By this we mean estimates that (converted to time
decay estimates) reflect our expectation for disintegration of the motion into
stable clusters moving freely in the remote future (cf. asymptotic completeness
[D], [Gr] $)$ . As is natural these estimates involve pseudodifferential localization
for the intercluster motion only, which of course put on restrictions on what
regions in the configuration space should be considered. In addition to the
PS.P.Op.’s introduced in Section 1 we need the following notations for any
cluster decomposition $a$ .

$S=\{x\in X||x|=1\}$ ,

$\wp_{a}=x\backslash \bigcup_{b\not\subset a}x_{b},$
$\wp_{a}^{1}=oi_{a}\cap S$ ,

and for $\epsilon>0$

$qJ_{a.g}=Qf_{a}\cap\{x\in X||x^{a}|<\epsilon|x|\},$ $cq_{a.\epsilon}^{1}=cq_{a.e}\cap S$ .
For later use we state
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LEMMA 3.1. Let $\mathscr{K}\subset\wp_{a}^{1}$ be compact. Then for any $\epsilon>0$ we can find com-
pact sets $\mathscr{K}_{b}\subset\wp_{b.\epsilon}^{1}$ for $b\subsetneqq a$ such that

$\mathscr{K}=(\mathscr{K}\cap^{q}j_{a,\epsilon}^{1})\cup\bigcup_{b\subsetneqq a}\mathscr{K}_{b}$ .

PROOF. Notice that the compact set $\mathscr{K}\cap\{x||x^{a}|\geqq\epsilon|x|\}$ is contained in the
open covering $U_{ba^{\zeta}}\overline{\neq}q_{b}^{1}$ ,. Then the result follows from a simple compactness
argument. $\square$

We also need the following notations:
Smooth functions: $Xarrow C$ are denoted by $J_{a.\epsilon}$ respectively $J_{a}$ , if they are

homogeneous of degree zero outside $S$ and if

$suppJ_{a,\epsilon}\subset^{q}J_{a}$ , . or $suppJ_{a}cg$ . .

Smooth functions: $Rarrow R$ are denoted by $F(t>C)$ or $F(t<C)$ , if they are
locally constant outside some compact set and if

$suppF(\cdot>C)\subset(C, \infty)$ or $suppF(\cdot<C)\subset(-\infty, C)$ .

Similarly to Definition 2.11 we introduce for $-1<\rho<1$ , the class $S_{-}^{\lambda}(\rho, a)$

of symbols $p_{-}\in S(x_{a})$ such that

$suppp_{-}\subset\{(x_{a}, \xi_{a})|\frac{x_{a}}{\langle x_{a}\rangle}\cdot\xi_{a}\leqq\rho^{\sqrt{a(}}\lambda)\}$ ,

and the class $S_{+}^{\lambda}(p, a)$ of symbols $p_{+}\in S(X_{a})$ such that

$suppp_{+}\subset\{(x_{a}, \xi_{a})|\frac{x_{a}}{\langle x_{a}\rangle}\cdot\xi_{a}\geqq p^{\sqrt a}(\overline{\lambda)}\}$ .

We introduce the sub-Hamiltonian

$H^{a}=(D^{a})^{2}+V^{a}$ ; $V^{a}= \sum_{(ij)\subset a}v_{ij}(x_{i}-x_{j})$ ,

and
$H_{a}=D^{2}+V^{a}=(D.)^{2}+H^{a}$ ,

$R_{a}(z)=(H_{a}-z)^{-1}$ ; $z\not\in R$ .

Let $E.= \inf a(H.)=\inf\sigma(H^{a})$ .
The following kind of result is well known.

LEMMA 3.2. For given $\lambda\in R$ and $F(\cdot>\lambda-E_{a})$ there exists a neighborhood
$N_{\lambda}$ , such that for any $m\in R,$ $J_{a}$ (as defined above) and $\varphi\in C_{0}^{\infty}(N_{\lambda})$

$X^{m}J_{a}F(D_{a}^{2}>\lambda-E_{a})\varphi(’H)X^{m}$

is bounded.
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PROOF. For fixed $\epsilon>0$ and $m\geqq 0$ we will show the following statement by

induction.
$q(k)$ : For any $F(\cdot>\lambda-E_{a}+\epsilon),$ $J_{a}$ and $\varphi\in C_{0}^{\infty}((-\epsilon+\lambda, \lambda+\epsilon))$

$X^{k\epsilon_{1}-m}F(D_{a}^{2}>\lambda-E_{a}+\epsilon)J_{a}\varphi(H)X^{m}$

is bounded. (Here $\epsilon_{1}$ is the constant of the Condition in Section 1.)

Given $q(k-1)$ we need to show $q(k)$ . So let $F,$ $J_{a}$ and $\varphi$ be given accord-
ingly. Then we choose similar functions $F^{f},$ $J_{a}’$ and $\varphi’$ which are equal to one
on the supports of their respective counterparts. Let $\tilde{\varphi}^{f}\in C_{0}^{\infty}(C)$ be an almost
analytic extension of $\varphi’$ . For bounded operators $B_{1},$ $B_{2}$ we write $B_{1}\cong B_{2}$ if
$X^{k\epsilon_{1}-m}(B_{1}-B_{2})X^{m}$ is bounded. Then, by $q(k-1)$ and the calculus of Ps.D.Op.’s,

$F(D_{a}^{2}>\lambda-E_{a}+\epsilon)J_{a}\varphi(H)$

$\cong J_{a}FJ_{a}’\varphi=J_{a}FF^{f}(H_{a}-E_{a}>\lambda-E_{a}+\epsilon)J_{a}^{f}\varphi$

$=:J_{a}FF’ J_{a}’\varphi$

$\cong J_{a}FF’J_{a}’F_{R}\varphi^{f}\varphi$ (with $F_{R}:=F(|x|>R);R>0$)

$= \frac{-1}{\pi}J_{a}FF’\int_{c}\partial_{\overline{z}}\tilde{\varphi}’(z)R_{a}(z)$

. $\{J_{a}’F_{R}(V-V^{a})+[J_{a}’F_{R}, D^{2}]\}R(z)\varphi dudv$ (with $z=u+iv$)

$\cong\frac{-1}{\pi}J_{a}\int_{c}\partial_{\overline{z}}\tilde{\varphi}’(z)R_{a}(z)F(V-V^{a})F_{R}J_{a}’\varphi R(z)dudv$

$\cong 0$ (for $R$ large and by a commutation). $\square$

The key for applying Theorem 2.12 is the following technical result.

LEMMA 3.3. Let $p.<p<1$ and $\delta>0$ be given. There exists $\epsilon>0$ such that
the followzng statement holds.

For any (fixed) $\lambda>E_{a}$ with $a(\lambda)>\delta\langle\lambda\rangle$ and function $F(t<2\langle\lambda\rangle)$ , we let
$F_{\lambda}=F(H<2\langle\lambda\rangle)$ and introduce the notation

$Q_{m}=X^{m}P_{\overline{a}}J_{a.\epsilon}F_{\lambda}$

for any operator of this form for $m\in R,$ $p_{\overline{a}}\in S_{-}^{\lambda}(p_{a}, a)$ and $J_{a,\epsilon}$ as $g_{Y}ven$ above.
For any $N>0$ we can wnte (any) $Q_{m}$ as a finite sum of terms, each one

being of one of the following three forms:
$A_{1}=TX^{m}P_{-}F_{\lambda}$ ; $p_{-}\in S\ (p)$ ,

$A_{2}=TX^{-N}F_{\lambda}$ ,

$A_{3}= \int_{c}T(z)Q_{m-\epsilon_{1}}R(z)dudv;z=u+iv$ .
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The $T’ s$ are bounded operators and for $A_{3},$ $T(\cdot)\in C_{0}^{0}(C, \ovalbox{\tt\small REJECT}(\mathcal{H}))$ such that moreover
for all $M>0$

$||T(z)||\leqq C_{M}|{\rm Im} z|^{M}$ .

REMARK. By some more work one can put $A_{3}=0$ .

PROOF. We have to explain how to choose $\epsilon$ . Let $F_{1}$ denote a function
$F_{1}(t)=F(t<1)$ with $F_{1}(t)=1$ for $t<1/2$ . We claim that for $C>0$ large enough,
and independently of $\lambda$ , the operator

$T=T(C, \lambda)=(I-F_{1}(\frac{D^{2}}{C\langle\lambda\rangle}))F_{1}(\frac{H_{a}}{5\langle\lambda\rangle})$

satisfies the bound $||T||<1/2$ .
TO see this we let $f\in C_{0}^{\infty}(R)$ be given such that $f(t)=1$ for $t\in[E_{a}, 5]$ and

$\tilde{f}\in C_{0}^{\infty}(C)$ be an almost analytic extension. Then for $C$ large we can insert
$f(H_{a}/\langle\lambda\rangle)-f(D^{2}/\langle\lambda\rangle)$ in the middle of the two factors in the definition of $T$ and
apply (2.2). This leads to

$T= \frac{-1}{\pi}\int_{c}\partial_{\overline{z}}\tilde{f}(z)(I-F_{1}(\frac{D^{2}}{C\langle\lambda\rangle}))(\frac{D^{2}}{\langle\lambda\rangle}z)^{-1}\frac{V^{\alpha}}{\langle\lambda\rangle}(\frac{H_{a}}{\langle\lambda\rangle}z)^{-1}F_{1}(\frac{H_{a}}{5\langle\lambda\rangle})dudv$ .

By the relative boundedness of the potential we have uniformly in $\langle\lambda\rangle$ and
$z\in supp\partial_{l}\tilde{f}$

$|| \frac{V^{a}}{\langle\lambda\rangle}(\frac{H_{a}}{\langle\lambda\rangle}z)^{-1}||$ $ $C_{1}|{\rm Im} z|^{-1}$

and

$||(I-F_{1}( \frac{D^{2}}{C\langle\lambda\rangle}))(\frac{D^{2}}{\langle\lambda\rangle}z)^{-1}||\leqq\frac{C_{1}}{C}$ .

So $T=O(1/C)$ uniformly in $\langle\lambda\rangle$ . We fix $C$ such that $||T||<1/2$ and choose $\epsilon>0$

such that uniformly in $\lambda$ (with $a(\lambda)>\delta\langle\lambda\rangle$ )

$2\epsilon\sqrt{C\langle\lambda\rangle}\leqq(p-\rho_{a})\sqrt{a(\lambda)}$ .
Under this condition it follows from the calculus of Ps.D.Op.’s tbat for any
$m\in R$ and $p_{a}^{-}\in S^{\underline{\lambda}}(p_{a}, a)$ , the operator

$S=F_{1}( \frac{D^{2}}{C\langle\lambda\rangle})X^{m}P_{a}^{-}F_{1}(\frac{|x^{a}|}{|x|2\epsilon})$

has the form $S=X^{m}P_{-}+T’X^{-N}$ for any given $N$ and with $p_{-}\in S_{-}^{\lambda}(\rho)$ and $T^{f}$

bounded.
NOW, let any $N$ and $Q_{m}$ be given. Then using the operators $S$ and $T$

introduced above we can write
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$(I-T)Q_{m}=SJ_{a.\epsilon}F_{\lambda}+(I-F_{1}( \frac{D^{2}}{C\langle\lambda\rangle}))\tilde{Q}_{m}$ ,

where

$\tilde{Q}_{m}=(I-F_{1}(\frac{H_{a}}{5\langle\lambda\rangle}))Q_{m}$ .

By applying the inverse of $(I-T)$ on both sides it suffices to look at $\tilde{Q}_{m}$ . We
choose $f\in C_{0}^{\infty}((-\infty, 5\langle\lambda\rangle/2))$ such that $f(t)=1$ for $t \in[\inf\sigma(H), 2\langle\lambda\rangle]$ and let
$\tilde{f}\in C_{0}^{\infty}(_{\backslash }C)$ be an almost analytic extension.

Then (cf. a similar formula in the first part of the proof)

(3.1) $\tilde{Q}_{m}=\frac{-1}{\pi}\int_{c}\partial_{\overline{z}}\tilde{f}(z)(I-F_{1}(\frac{H_{a}}{5\langle\lambda\rangle}))R_{a}(z)(S_{1}+S_{2})R(z)F_{\lambda}dudv$ ,

where
$S_{1}=X^{m}P_{a}^{-}J_{a.\epsilon}(V-V^{a})$ ,

and
$S_{2}=[X^{m}P_{\overline{a}}J_{a,e}, D^{2}]$ .

We can write $S_{1}+S_{2}$ as a finite sum of operators of the form

(3.2) $P_{2,0}(X^{m-\epsilon_{1}}P_{a}^{-\prime}J_{a.\epsilon}’+T’X^{-N})$ ,

where $P_{2.0}=\Sigma_{|_{\alpha}|2}\leqq v_{\alpha}D^{\alpha}$ for $v_{\alpha}\in CV(i$ . $e.$ , the class of functions introduced in
the beginning of Section 2) and the prime indicates an operator of same type.
(For $T’$ , just a bounded operator.)

By using the bounds

$||R_{a}(z)P_{2.0}|| \leqq\frac{C_{1}}{|{\rm Im} z|}$

and

$||X^{-N}R(z)X^{N}|| \leqq\frac{C_{1}}{|{\rm Im} z|^{N+2}}$

(cf. the proof of Lemma 2.3), we are done by inserting the expressions (3.2)

into the integrand on the right hand side of (3.1). $\square$

REMARK 3.4. A similar result holds for $P_{a}^{-}$ (and $P_{-}$ in the conclusion)
replaced by $P$ (and $P_{+}$ in the conclusion) upon replacing the condition $\rho_{a}<\rho<1$

by $-1<p<\rho_{a}$ .

THEOREM 3.5. Let $a$ be an arbitrary cluster decomposrtion, and $\lambda\in(E_{a}, \infty)\backslash \Lambda$ .
Then
(1) For any $p_{a}<1$ there exist $\epsilon>0$ and a neighborhood $N_{\lambda}$ of $\lambda$ : $\forall l\in N$

$s’>s>l-1/2,$ $p_{-}\in S_{-}^{\lambda}(p_{a}, a)$ and $J_{a,\text{\’{e}}}$

$||X^{s-l}P_{-}J_{a.\text{\’{e}}}R(z)^{l}X^{-s’}||\leqq C$ ,
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unif rmly in ${\rm Re} z\in N_{\lambda}$ and ${\rm Im} z>0$ .
(2) For any – $1<\rho_{a}$ there exest $\epsilon>0$ and a neighborhood $N_{\lambda}$ : $\forall l\in Ns’>s>l-1/2$ ,

$p_{+}\in S_{+}^{\lambda}(\rho_{a}, a)$ and $J_{a,s}$

$||X^{s-\iota}P_{+}J_{a.\epsilon}R(z)^{\iota}X^{-s}||\leqq C$ ,

unif rmly in ${\rm Re} z\in N_{\lambda}$ and ${\rm Im} z<0$ .
(3) Suppose $b$ is another cluster decomposrtion and that $\lambda>E_{b}$ . Then for any

$-1<\rho_{a}<p_{b}<1$ there exist $\epsilon>0$ and a neighborhood $N_{\lambda}$ : $\forall l\in N$ $s\in R$ ,
$p_{-}\in S_{-}^{\lambda}(p_{a}, a),$ $p_{+}\in S_{+}^{\lambda}(\rho_{b}, b),$ $J_{a.\epsilon},$ $J_{b.e}$ and $F_{\lambda}$ $:=F(H<2\langle\lambda\rangle)$

$||X^{s}P_{-}J_{a.\epsilon}F_{\lambda}R(z)^{l}J_{b}.{}_{\epsilon}P_{+}X^{s}||\leqq C$

uniformly in ${\rm Re} z\in N_{\lambda}$ and ${\rm Im} z>0$ .

PROOF. The idea is to reduce to Theorem 2.12 by use of Lemma 3.3 (and

Remark 3.4).

TO see how (1) follows from Theorem 2.12 (1) and Lemma 3.3 we choose
for fixed $\rho_{\alpha}<1$ a $\rho$ such that $\rho_{a}<p<1$ . Also we choose $\delta>0$ small enough to
assure $a(\lambda)>\delta\langle\lambda\rangle$ . We determine $\epsilon$ by using these numbers as input in Lemma
3.3. We let $F(t<2\langle\lambda\rangle)$ be equal to one in a neighborhood of $\lambda$ , say $N_{\lambda}’’$ , and
let $N_{\lambda}’$ be the neighborhood in Theorem 2.12 (1). Then we claim that the
statement (1) holds for any neighborhood $N_{\lambda}$ with the property that its closure
is a subset of the interior of $N_{\lambda}’\cap N_{\lambda}’’\cap\Lambda^{c}$ . To see this we fix any such set,
and insert (for given 1, $s’,$ $s,$ $p_{-}$ and $J_{a,\epsilon}$ ) $I=F_{\lambda}+(I-F_{\lambda})$ in front of the power
of the resolvent; $F_{\lambda}$ $:=F(H<2\langle\lambda\rangle)$ . Only the contribution from the first term
requires attention. With notation of Lemma 3.3 we have to bound

$||Q_{S-1}R(z)^{\iota}X^{-s’}||\leqq C$ ,

uniformly in ${\rm Re} z\in N_{\lambda}$ and ${\rm Im} z>0$ . For that we iterate the statement of
Lemma 3.3 with $N\geqq s’$ to obtain, using the notation $A$ for operators of the
form $A_{1}$ or $A_{2}$ , that $Q_{s-l}$ is a finite sum of operators of the form $A$ or (for

some $J\in N$)

$\int_{c}\cdots\int_{c}T_{1}(z_{1})\cdots T_{j}(z_{j})AR(z_{1})\cdots R(z_{j})du_{1}dv_{1}\cdots du_{j}dv_{f}$ ; $1\leqq j\leqq J$ .

We can then bound each of these when applied to the power of the resolvent
(times weight) by removing $F_{\lambda}$ in the definition of $A_{1}$ and $A_{2}$ . Here we use
the above argument in reverse order. We are then left with operators that
can easily by estimated on $N_{\lambda}’\cap\Lambda^{c}$ (and hence on $N_{\lambda}$ ) by Tbeorem 2.12 (1)

(and the limiting absorption type bound (2.6)). This completes the proof of (1).

The proofs of (2) and (3) are similar, although as for the proof of (3) one
needs (for some terms) a slight extension of Theorem 2.12 (3) which easily
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follows by its proof. $\square$

REMARKS.
(1) In the stated form Theorem 3.5 is useful in the study of regularity of

scattering amplitudes (cf. recent papers by Bommier [B], Isozaki [I2] and
Skibsted [S1] $)$ . For some related problems we refer to [I3], [HSk].

(2) Theorem 3.5 might not be the best general result of this type. For the
applications mentioned above and other purposes (including conceptual ones)

it would be interesting if one could imProve the constant $\sqrt{a(\lambda)}$ in the
definition of p-and $p_{+}$ . In particular it would be a very powerful result
(in our opinlon) if this constant could be replaced by the optimal one, $|\xi_{a}|$ .
We discuss partial results below.

For $\mathscr{M}\subset S$ open and with $\hat{x}$ $:=x/|x|$ we use the notation $\chi_{\ovalbox{\tt\small REJECT}}$ for operators
of multiplication by the characteristic function $1_{\mathscr{M}}(\hat{x})$ , and introduce the follow-
ing strong notion of non-ProPagation. For simplicity we restrict ourselves to
one-sided estimates in the upper half plane only (similar to those of Theorem
3.5 (1) $)$ .

DEFINITION 3.6. For $\sigma>0$ the notation $S_{-}(a, a)$ stands for the class of
symbols $p_{-}\in S(X_{a})$ such tbat

$suppp_{-}\subset\{(x_{a}, \xi_{a})|\frac{x_{a}}{\langle x_{a}\rangle}\cdot\xi_{a}$ $ $(1-\sigma)|\xi_{a}|,$ $\sigma\leqq|\xi_{a}|\}$ .

A pair $(\lambda, \theta)\in((E_{a}, \infty)\backslash \Lambda)x^{\zeta}q_{a}^{1}$ is said to be $a$-regular if for any $\sigma>0$ there
exist open neighborhoods $N\subset R$ and $\mathscr{M}\subset S$ of $\lambda$ and $\theta$ , respectively:

$\forall l\in Ns’>s>l-\frac{1}{2}$ and $P-\in S_{-}(\sigma, a)$

$||x^{s-\iota}x_{\mathscr{M}}P_{-}R(z)^{\iota}X^{-s}||\leqq C$ ,

uniformly in ${\rm Re} z\in N$ and ${\rm Im} z>0$ .
The set of $a$-regular points is denoted by $SFI_{a}$ . If $((E_{a}, \infty)\backslash \Lambda)\cross Qf_{a}^{1}=R_{a}$ the

cluster decomposition $a$ is regular.

REMARK. There is a time-dependent equivalent to the introduced notion of
”

$a$ -regularity”. In particular (by velocity estimates cf. [SS], [S2]) one obtains
an equivalent notion by fixing $s=l$ (but not $l$ and $s’>l-1/2$).

AS shown by Perry [P], the set $\{E>E_{a}|(E_{a}, E)\cap \mathscr{F}=\emptyset\}$ is non-empty. We
denote its supremum by $E_{a}’$ .

THEOREM 3.7.
$((E_{a}, E_{a}’)\backslash a_{pp}(H))\cross\wp_{a}^{1}\subset R_{a}$ .
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PROOF. We proceed by induction in $\# a$ starting from $\# a=N$ in which
case the result follows easily from Lemma 3.2, Theorem 3.5 (1) and (2.6).

NOW, suppose the result is known for $\# b\geqq N-k+1$ , then we have to show it
for an arbitrarily given $a$ with $\# a=N-k$ . So let $(\lambda, \theta)\in(E_{a}, E_{\mathfrak{a}}’)\cross\wp_{a}^{1}$ and
$(2>)\sigma>0$ be given. Suppose $\theta\in\wp_{a}^{1}\cap x_{a}$ then we are done by the same argu-
ments as for the case $\# a=N$. If $\theta\in\wp_{a}^{1}\backslash x_{a}$ we need to specify the neighbor-
hoods $N$ and $\mathscr{M}$ . As for $\mathscr{M}$ we choose an arbitrary compact neighborhood
$\mathscr{K}\subset cy_{a}^{1}\backslash X_{a}$ and let $\mathscr{M}$ be the interior of $\mathscr{K}$ . As for $N$ we choose for $(1>)\epsilon>0$

small and for $b\subseteqq a$ , a compact set $\mathscr{K}_{b}\subset QJ_{b}^{1}$ . ,, such that $\mathscr{K}\subset\bigcup_{b\cong a}\mathscr{K}_{b}$ . Here we
used Lemma 3.1. In the sequel these sets are fixed. The idea is now to exploit
the induction hypothesis on $\mathscr{K}_{b}$ if $\lambda>E_{b}$ . (In this case $E_{b}=E_{a}.$ ) Notice that in
conjunction with a compactness argument it gives the following bounds for any
given $\sigma_{b}>0$ and for some neighborhoods $N_{b}’$ and $\mathscr{M}_{b}$ of $\lambda$ and $\mathscr{K}_{b}$ , respectively:

$\forall l\in Ns>s>l-\frac{1}{2}$ and $p_{b}^{-}\in S_{-}(\sigma_{b}, b)$

(3.3)
$||x^{s-l}x_{\mathscr{M}_{b}}P_{b}^{-}R(z)^{l}X^{-S’}||\leqq C$ ,

uniformly in ${\rm Re} z\in N_{b}’$ and ${\rm Im} z>0$ . We can assume that $\mathscr{M}_{b}\subset cq_{b,\epsilon}^{1}$ .
In order to choose $\sigma_{b}$ we first prove that on the support of any $p_{-}\in S_{-}(\sigma, a)$

(3.4) $\overline{\langle}_{b}^{\frac{x}{x}}\rangle^{-\cdot\xi_{b}}b$ $ $| \xi_{b}|(1-a^{3}(1-\frac{\sigma}{2})|\xi_{b}|^{-2})$ and $a\leqq|\xi_{b}|$ .

TO prove (3.4), since we are going to treat vectors $x_{b}$ , we regard $X_{b}$ as ec
and drop the subscript $b$ . Then on the support of any $p_{-}\in S_{-}(\sigma, a)$

$\sigma(\leqq|\xi_{a}|)\leqq|\xi|$

and
$x\cdot\xi=x_{a}\cdot\xi_{a}+x^{a}\cdot\xi^{a}$

$ $(1-\sigma)\langle x_{a}\rangle|\xi_{a}|+|x^{a}||\xi^{a}|$ (by the support proPerty)

$ $\langle x\rangle((1-\sigma)^{2}|\xi_{a}|^{2}+|\xi^{a}|^{2})^{1/2}$ (by the Cauchy Schwarz inequality)

$= \langle x\rangle|\xi|(1-(1-(1-\sigma)^{2})||\frac{\xi_{a}}{\xi}|\frac{1^{2}}{2})^{1/2}$ (by orthogonality)

$ $\langle x\rangle|\xi|(1-2\eta)^{1/2}$ ; $\eta=\sigma^{3}(1-\frac{\sigma}{2})|\xi|^{-2}$ (by the support property)

$ $\langle x\rangle|\xi|(1-\eta)$ .

We have proved (3.4).

Motivated by (3.4) we choose some $\sigma_{b}<\min(\sigma^{3}(1-\sigma/2)(\lambda-E_{b})^{-1}, a)$ . This
cho\’ice and the calculus allows the construction of $p_{b}^{-}\in S_{-}(\sigma_{b}, b)$ and $F(\cdot>\lambda-E_{b})$

such that for any $p_{-}\in S_{-}(a, a)$
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$P_{-\infty}:=P_{-}(I-P_{b}^{-})(I-F(D_{b}^{2}> \lambda-E_{b}))\in S_{-\infty}^{0}(X_{b})=\bigcap_{l}S_{l}^{0}(X_{b})$ .

According to Lemma 3.2 there is associated to $\lambda$ and this $F(\cdot>\lambda-E_{b})$ an
open neighborhood of $\lambda$ which we denote by $N_{b}’’$ .

NOW to the choice of the neighborhood $N$ of $\lambda$ . We claim it can be taken
as any neighborhood with the property that its closure is contained in

$( \bigcap_{\lambda>E_{b}}. N_{b}’\cap N_{b}’’)\cap\Lambda^{c}\cap\bigcap_{bb\subsetneqq a\subsetneqq a}.(-\infty, E_{b})$

.

TO see this we fix such $N$, and let $l\in N,$ $s’>s>l-1/2$ and $p_{-}\in S_{-}(\sigma, a)$ be
given. Then with the notations above it suffices to estimate

$||X^{s-l}1_{\mathscr{K}_{b}}(\hat{x})P_{-}R(z)^{\iota}X^{-s}$

‘
$||\leqq C$

for ${\rm Re} z\in N$ and ${\rm Im} z>0$ .
By an application of Lemma 3.2 we only need to deal with the cases $\lambda>E_{b}$ .

But for such $b$ we can decompose $P_{-}=P_{-}P_{b}^{-}+P_{-}(I-P_{b}^{-})F(D_{b}^{2}>\lambda-E_{b})+P_{-\infty}$ , and
estimate separately. Only the first two terms requires attention. For that we
pick $J_{b.*}$ such that $1_{\mathscr{K}_{b}}(\hat{x})=1_{JC_{b}}(\hat{x})J_{b.\epsilon}(x)$ outside $S$ and $S\cap suppJ_{b,\epsilon}\subset \mathscr{M}_{b}$ . Then
by inserting we can write

$X^{s-l}1_{X_{b}}(\hat{x})P_{-}P_{b}^{-}=\tau_{1}x^{s-l}x_{\mathscr{M}_{b}}P_{b}^{-}+T_{2}X^{-S’}$ ; $T_{j}$ bounded.

By (3.3) this gives the estimate for the first term. To deal with the second
term we pick $\varphi\in C_{0}^{\infty}(N_{b}’’)$ such that $\varphi=1$ on a neighborhood of $N$ . Then it is
enough to estimate

$X^{s-l}J_{b}.{}_{\text{\’{e}}}P_{-}(I-P_{b^{-}})F(D_{b}^{2}>\lambda-E_{b})\varphi(H)R(z)^{\iota}X^{-s}$
‘

But by the calculus $X^{s-\iota}J_{b},{}_{\epsilon}P_{-}(I-P_{b}^{-})$ can be written as a finite sum of terms
of the form $T_{1}X^{s-\iota}J_{b}’$ . , plus $T_{2}X^{-s}$ ‘, where $J_{b.\epsilon}’$ is of the same type and the $T’ s$

are bounded. By Lemma 3.2 $X^{s-l}J_{b.\epsilon}’F(D_{b}^{2}>\lambda-E_{b})\varphi(H)X^{s’}$ is bounded. So
(again) we have reduced to (2.6). $\square$

It is clear that unless $H^{a}\geqq 0$ (a condition that always holds for the free
channel $a=(1)\cdots(N))$ , then the statement of Theorem 3.7 is a statement for
very low energies only. For high energies there are partial results as it
follows from the following theorem (cf. [Ge], [I2] and [W1]).

THEOREM 3.8. Suppose $(0, \infty)\cap\Lambda=\emptyset$ . Then
(1) For $N=3$ all $a$ are regular.
(2) If $\# a=N-1$ and $d_{a}(\cdot)$ denotes the distance function to $\bigcup_{b\not\subset a}X_{b}$ , then

$\{(\lambda, \theta)\in((E_{a}, \infty)\backslash \Lambda)\cross\wp_{a}^{1}|(1-\frac{d_{a}(\theta)^{2}}{8})(\frac{\lambda-E_{a}}{a(\lambda)})^{1/2}<1\}\subset R_{a}$ .
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(3) For any compact $\mathscr{K}\subset\wp_{a}^{1}$ there exests $E>0$ such that

$[E, \infty)\cross \mathscr{K}\subset\ovalbox{\tt\small REJECT}_{a}$ .

In particular if $\# a=2$ , then $[E, \infty)\cross\wp_{a,\epsilon}^{1}\subset R_{a}$ for some $E,$ $\epsilon>0$ .

We shall give a brief outline of a proof of Theorem 3.8. The idea is in
all cases the same namely to use Theorem 3.5 (1) to localize the following
“two-body observable” to the region $QJa.8s$ for $\epsilon>0$ small. We consider the
real part of Ps.D.Op.’s on $X_{a}$ that have symbols of the form

$-( \langle x_{a}\rangle|\xi_{a}|-x_{a}\cdot\xi_{a})^{m}F(\frac{x_{a}}{\langle x_{a}\rangle}\cdot\frac{\xi_{a}}{|\xi_{a}|}<1-\frac{\sigma}{2})F(|\xi_{a}|>\frac{\sigma}{2})$ ; $m>0$ .

By a somewhat similar computation to the one in the proof of Lemma 2.6
we see that to “first order“ these observables are non-positive with a non-
negative Heisenberg derivative (when localized to $\wp_{a}$ ).

TO explain how to localize to the region $\wp_{\alpha,t\epsilon}$ we introduce the following
notations:

$S_{a}=S\cap X_{a}$ , $Z_{a}^{1}=^{q}j_{a}\cap S_{a}$ .

For given compact $Jkr_{a}\subset \mathcal{Z}_{a}^{1}$

$J_{a}1j_{a,2}$ : $S_{a}arrow[0,1]$

denote smooth functions supported in $\mathcal{Z}_{a}^{1}$ and with the properties that $j_{a.2}=1$

on a neighborhood of $\mathscr{K}_{a}$ and $j_{a,1}=1$ on a neighborhood of $suppj_{a,2}$ .
NOW we multiply the previous symbols by the “localization factor”

$j_{\alpha}1( \frac{x_{a}}{|x_{a}|})ja.2(\frac{\xi_{a}}{|\xi_{a}|})F(\frac{|x^{a}|}{|x|}<2\epsilon)F(|x|>R)$ .

In this way we obtain symbols on $X$ that as a function of $x$ is supported in
$cq_{a,2\epsilon}$ . The parameter $R$ is a large positive constant introduced only for
accomodating local singularities of the potentials.

After symmetrizing the above symbols we go through tbe same scheme as
in the proof of Lemma 2.7 starting with small $m$ . For that we need to control
terms containing derivatives of the “localization factor” with respect to $x$ . One
term is supported in the free channel region (in case of (1) or (2)) so that
Theorem 3.7 can be applied, or in a region where an induction hypothesis
(only for (3), see below) can be applied. Another term comes from differenti-
ating $]_{a.1}$ . However by the properties of $j_{a,1}$ and $j_{a.2}$ the resulting symbol
has the form needed for applying Theorem 3.5 (1).

Given the estimates resulting from the above described procedure we can
obtain the statement of the theorem for points $\theta$ near $\mathscr{K}_{a}$ by removing the
factor $j_{a.2}$ . This is possible by another application of Theorem 3.5 (1).



158 C. GERARD, H. ISOZAKI and E. SKIBS $\Gamma ED$

We now briefly discuss the three statements of the theorem separately.
Since $\mathcal{Z}_{a}^{1}=S_{a}$ if $\# a=2$ we can choose $Ja.1=j_{a.2}=1$ in this case. So the

statement (1) follows from the known result in the free channel region.
AS for (2), the set is found by optimizing the choice of $Ja.1$ and $j_{a.S}$ (given

a one-point set $\mathscr{K}_{a}$ ). The distance function $d_{a}$ should for that purpose most
conveniently be replaced by the quasi-distance function $\tilde{d}_{a}(\theta_{1}, \theta_{2})=1-\theta_{1}\cdot\theta_{2}=$

$(d_{a}(\theta_{1}, \theta_{2}))^{2}/2$ .
AS for (3) we proceed by induction with respect to $\# a$ as in the proof of

Theorem 3.7. As was the case for that proof we shall use Lemmas 3.1 and
3.2 and Theorem 3.5 (1). In addition we need the observation that the proof
of Theorem 3.5 (1) shows that we can choose $\epsilon$ in the statement independent
of R.

So suppose $\mathscr{K}\subset Qf^{1}a$ is compact. Then we pick a compact $\mathscr{K}_{a}\subset \mathcal{Z}_{a}^{1}$ such that
for all small enough $\epsilon>0$

$\mathscr{K}\cap^{q}j_{a.\epsilon}^{1}\subset\{\theta\in s||\theta^{a}|\leqq\epsilon,$ $\frac{\theta_{a}}{|\theta_{a}|}\in \mathscr{K}_{a}\}\subset\wp_{a}^{1}$ .

Next we choose functions $Ja.1$ and $J_{a.2}$ as discribed above. Clearly for all
small enough $\epsilon>0$

$\{\theta\in s||\theta^{a}|\leqq 2\epsilon,$ $\frac{\theta_{a}}{|\theta_{a}|}\in \mathscr{K}_{a}’\}\subset cq_{a}^{1}$ ; $\mathscr{K}_{a}’=supp]_{a}$ . , .

AS outlined we need two applications of Theorem 3.5 (1) with some $\rho_{a}’s$ given
by the properties of $\mathscr{K}_{a},$ $]_{a.1}$ and $Ja,2$ . In accordance with these inputs we fix
a small $\epsilon>0$ (independently of $\lambda$ ). We assume that the function $F(t<2\epsilon)$

appearing in the “localization factor” obeys $F(t<2\epsilon)=1$ for $t\leqq\epsilon$ . Using Lemma
3.1 we decompose

$\mathscr{K}=(\mathscr{K}\cap^{c}q_{a,\text{\’{e}}}^{1})\cup\bigcup_{b\subsetneqq a}\mathscr{K}_{b}$ ; $\mathscr{K}_{b}\subset cq_{b}^{1}$ . .,
and

$\{\theta\in S|\epsilon\leqq|\theta^{a}|$ $ $2\epsilon,$ $\frac{\theta_{a}}{|\theta_{a}|}\in \mathscr{K}_{a}’\}=\bigcup_{b\subsetneqq a}\mathscr{K}_{b}’$ ; $\mathscr{K}_{b}’\subset\wp_{b.\epsilon}^{1}$ .

For the compact sets $\mathscr{K}_{b}\cup \mathscr{K}_{b}(\subset^{c}q_{b}^{1})$ the induction hypothesis applies (cf. the
proof of Theorem 3.7). For the set $\mathscr{K}\cap^{Q}f^{1}a$ . , we apply the described observables
to get the estimates. $\square$
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