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Introduction.

Let $M$ be an $n$ -dimensional K\"ahler manifold with $C^{\infty}$ K\"ahler metric $G$ , let
$D$ be an open subset of $M$, and let $d_{\partial D}$ be the boundary distance function of $D$

induced by the metric $G$ .
When $D$ is pseudoconvex (in the usual sense) in $M$, the plurisubharmonicity

of the function $-\log d_{\partial D}$ is closely related to the holomorphic bisectional curvature
of $M$. Takeuchi [26] first showed that, if $D$ is a pseudoconvex open subset
of the complex Projective sPace $P^{n}(C)$ and if $d_{\partial D}$ is the boundary distance
function of $D$ with respect to the Fubini-Study metric on $P^{n}(C)$ , the function
$-\log d_{\partial D}$ is strongly plurisubharmonic on $D$ . After the works of Takeuchi [27],

Elencwajg [6], Suzuki [24] and others, Greene-Wu [11] differential-geometrically
gave an estimate from below for ‘ the modulus of plurisubharmonicity’ of the
function $-\log d_{\partial D}$ , and showed that a relatively compact, pseudoconvex open
subset $D$ of $M$ is 1-complete (and hence Stein) if $M$ has positive holomorphic
bisectional curvature.

In this paper, we shall extend the result to the case where $D$ is pseudoconvex
of order $n-q$ in $M$ and show that $D$ is $q$-convex or q-complete (with corners)

in several cases.
An open subset $D$ of $M$ is said to be pseudoconvex of order $n-q,$ $1\leqq q\leqq n$ ,

in $M$ if, roughly speaking, the complement $M\backslash D$ has the same continuity as an
analytic set of pure dimension $n-q$ . Pseudoconvex open subsets in the usual
sense are pseudoconvex of order $n-1$ . If $D\subset M$ is weakly $q$-convex, then $D$ is
pseudoconvex of order $n-q$ in $M$. However, when $2\leqq q\leqq n-1$ , the converse is
not valid even if $D\subset C^{n}$ (see Diederich-Fornaess [4] and Matsumoto [13]). By
Fujita [8], an open subset $D$ of $C^{n}$ is pseudoconvex of order $n-q$ in $C^{n}$ , if and
only if $D$ has an exhaustion function which is pseudoconvex of order $n-q$ on
$D$ . Therefore, by the approximation theorem of Bungart [3], an open subset $D$

of $M$ is pseudoconvex of order $n-q$ in $M$, if and only if $D$ is locally q-complete
with corners in $M$ in the sense of Peternell [16] (for the precise, see \S \S 1 and 2).
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The main results of this paper are as follows.
At first, let $M$ be an $n$ -dimensional K\"ahler manifold with positive holomorphic

bisectional curvature and let $D$ be a relatively compact, pseudoconvex open subset
of order $n-q$ in $M$. Then the function $-\log d_{\partial D}$ is strongly pseudoconvex of
order $n-q$ whole on $D$ and particularly $q$-convex on the open subset of $D$ (if it
exists) where $d_{\partial D}$ is of class $C^{2}$ (see Corollary 6.5). ’I’herefore, by the approxi-
mation theorems of Bungart and Diederich-Fornaess, the set $D$ is q-complete
with corners and hence q-complete, where $\tilde{q}=n-[n/q]+1$ and $[]$ denotes the
Gauss symbol (see Theorem 6.6). Moreover, if the boundary $\partial D$ is also a real
submanifold of class $C^{2}$ in $M$, then $D$ is $q$-convex (see Theorem 6.2).

Secondly, let $M$ be an $n$ -dimensional Stein manifold and let $D$ be a pseudo-

convex open subset of order $n-q$ in $M$. Let $d_{\partial D}$ be a boundary distance function
of $D$ induced by a complete K\"ahler metric on $M$. Then there exists a l-convex
function $h$ on $M$ such that the function $-\log d_{\partial D}+h$ is strongly pseudoconvex
of order $n-q$ on $D$ (see Proposition 7.2). Therefore, the set $D$ is q-complete
with corners and hence $\tilde{q}$-complete (see Theorem 7.3). Moreover, if the boundary
$\partial D$ is also a real submanifold of class $C^{2}$ in $M$, then $D$ is $q$-complete (see

Theorem 7.6).

The above results are extensions (and different proofs) of that of Barth [2]

and that of Suria [23] (or Eastwood-Suria [5]), respectively.
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to Prof. O. Fujita and Prof. A. Takeuchi for their valuable advice, guidance
and encouragement.

1. Pseudoconvex functions of general order and $q$-convex functions
with corners.

Throughout this paper, let $D$ be a paracompact complex manifold of pure
dimension $n$ and $q$ an integer with $1Sq\leqq n$ . After \S 4 we consider only the
case where $D$ is an open subset of another connected K\"ahler manifold $M$, but
we do not require $D$ to be K\"ahlerian in the first three sections.

A function $\varphi:Darrow R$ is said to be $q$-convex (resp. weakly $q$-convex), if $\varphi$ is of
class $C^{2}$ on $D$ and if its Levi form $\partial\partial\varphi$ has at least $n-q+1$ positive (resp. non-
negative) eigenvalues on the bolomorphic tangent space $T_{P}(D)$ for each $P\in D$

(see Andreotti-Grauert [1]). As extensions of the notion of weakly q-convex
functions or (upper semi-continuous) plurisubharmonic functions, Hunt-Murray
[12] and Fujita [8] introduced that of $(q-1)$-plurisubharmonic functions and that
of pseudoconvex functions of order $n-q$ , respectively. Further, Fujita [9]

proved that they are equivalent. For the original definitions and fundamental
properties of them, see Fujita [8], Hunt-Murray [12] and Slodkowski [21], [22].
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In tbis paper we shall give the definition as follows.

DEFINITION 1.1. An upper semi-continuous function $\varphi:Darrow R\cup t-\infty$ } is said
to be pseudoconvex of order $n-q$ at $P\in D$ if, for each weakly $(n-q+1)$-convex
function $f$ defined near $P$, one can find a neighborhood $U(f)$ of $P$, so that

$( \varphi+f)(P)\leqq\max\{(\varphi+f)(Q):Q\in\partial\Delta\}$

for every domain $\Delta$ with $P\in\Delta$ and $\Delta\Subset U(f)$ . A function $\varphi:Darrow R\cup\{-\infty\}$ is
said to be Pseudoconvex of order $n-q$ on $D$ , if $\varphi$ is upper semi-continuous on
$D$ and if $\varphi$ is pseudoconvex of order $n-q$ at each $P\in D$ .

Using the criterion of $(q-1)$-plurisubharmonicity due to Slodkowski ([21],

Proposition 1.1, (iii) $)$ , we can immediately prove that $\varphi$ is pseudoconvex of
order $n-q$ on $D$ in the sense of Definition 1.1, if and only if $\varphi$ is $(q-1)$-pluri-
subharmonic on $D$ in the sense of Hunt-Murray [12]. Therefore, $\varphi$ is pseudo-
convex of order $n-q$ on $D$ in the sense of Definition 1.1, if and only if so is
$\varphi$ in the sense of Fujita [8].

Plurisubharmonic functions in the usual sense are pseudoconvex functions of
order $n-1$ .

If $f$ is weakly $(n-q+1)$-convex and if $h$ is weakly 1-convex, then $f+h$ is
weakly $(n-q+1)$-convex. Using this fact, we can easily verify that if $\varphi$ is
pseudoconvex of order $n-q$ at $P$ and if $h$ is weakly 1-convex near $P$, then
$\varphi+/\iota$ is pseudoconvex of order $n-q$ at $P$.

LEMMA 1.2. An upper semi-continuous functim $\varphi:Darrow R\cup\{-\infty\}$ is pseudo-
convex of order $n-q$ at $P\in D$ , if there exists an $(n-q+1)$-dimensional complex

submanifold $L$ defined near $P$ and cmtaining $P$ such that the restriction $\varphi|_{L}$ is
pseudocmvex of order $n-q$ at $P\in L$ (and particularly plunsubharmonic near
$P\in L)$ .

PROOF. Let $f$ be a weakly $(n-q+1)$-convex function defined near $P\in D$ .
Then $f|_{L}$ is also weakly $(n-q+1)$-convex near $P\in L$ . If $\varphi|_{L}$ is pseudoconvex
of order $n-q$ at $P\in L$ , we can by definition find a neighborhood $U’=U’(f|_{L})$

$(\subset L)$ of $P\in L$ , so that

$( \varphi|_{L}+f|_{L})(P)\leqq\max\{(\varphi|_{L}+f|_{L})(Q):Q\in\partial\Delta’\}$

for every domain $\Delta’$ with $P\in\Delta’$ and $\Delta’\subset\subset U’$ . Choose a neighborhood $U=U(f)$
$(\subset D)$ of $P\in D$ so that $U\cap L\subset U’$ . Let $\Delta$ be a domain with $P\in\Delta$ and $\Delta\subset\subset U$ ,
and denote by $\Delta’$ the connected component of $\Delta\cap L$ containing $P$. Then $P\in\Delta’$

and $\Delta’$ @U’. Moreover, we have

$( \varphi+f)(P)\leqq\max\{(\varphi|_{L}+f|_{L})(Q):Q\in\partial\Delta’\}$

$\leqq\max\{(\varphi+f)(Q):Q\in\partial\Delta\}$ .
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This implies that $\varphi$ is pseudoconvex of order $n-q$ at $P\in D$ . $\square$

A $C^{2}$ function $\varphi$ is pseudoconvex of order $n-q$ on $D$ , if and only if $\varphi$ is
weakly $q$-convex on $D$ (see Fujita [8], Proposition 8). It is well-known that
every (upper semi-continuous) plurisubharmonic function defined on an open
subset of $C^{n}$ can be approximated by 1-convex functions. However, pseudo-
convex functions of order $n-q$ cannot be approximated by $q$-convex functions
in general. We shall next recall the approximation theorems of Diederich-
Fornaess and Bungart.

DEFINITION 1.3 (Diederich-Fornaess [4]). A function $\varphi:Darrow R$ is said to be
$q$-convex with corners on $D$ if, for each $P\in D$ , there exist a neighborhood $U$ of
$P$ and (strongly) $q$-convex functions $\varphi_{1},$ $\varphi_{2},$

$\cdots$ , $\varphi_{t(P)}$ on $U$ such that $\varphi|_{U}=$

$\max\{\varphi_{1}, \varphi_{2}, \cdots \varphi_{t(P)}\}$ .

DEFINITION 1.4 (cf. Bungart [3]). A function $\varphi:Darrow R\cup\{-\infty\}$ is said to
be srrongly pseudoconvex of order $n-q$ on $D$ (or strictly $(q-1)$-plurisubharmonic
on $D$ in the sense of Bungart [3] $)$ if, for each $P\in D$ , there exist a neighborhood
$U$ of $P$ and a (strongly) 1-convex function $h$ on $U$ such that $\varphi-h$ is pseudo-

convex of order $n-q$ on $U$ .
It is clear that every $q$-convex function with corners is strongly pseudo-

convex of order $n-q$ . Conversely, if $\varphi$ is strongly pseudoconvex of order
$n-q$ and if $\varphi$ is piecewise $C^{2}$ , that is, $\varphi$ is locally a maximum of a finite
number of $C^{2}$ functions, then $\varphi$ is $q$-convex with corners (see Matsumoto [13],

p. 73).

Diederich-Fornaess showed the following approximation theorem.

THEOREM 1.5 ([4], Theorem 1). Let $D$ be an $n$ -dimensional paracompact
complex manifold and $\varphi$ a $q$-cmvex function with corners $m$ D. Then, for any
continuous functim $\epsilon>0$ on $D$ , there exists a $\tilde{q}$-convex function $\psi$ on $D$ such that
$|\varphi-\psi|<\epsilon$ on $D$ , where $\tilde{q}=n-[n/q]+1$ and $[]$ denotes the Gauss symbol.

Diederich-Fornaess ([4], Theorem 2) further showed that the number $\tilde{q}$ in
Theorem 1.5 is best possible for any pair $(n, q)$ . Note that $\tilde{q}>q$ when $2\leqq q\leqq n-1$ .

On the other hand, Bungart showed the following approximation theorem.

THEOREM 1.6 ([3], Theorem 5.3). Let $D$ be an $n$ -dimensimal paracompact
complex manifold and $\varphi$ a continuous strmgly pseudocmvex function of order
$n-q$ on D. Then, for any continuous functim $\epsilon>0$ on $D$ , there exists a q-convex
function $\psi$ with corners $mD$ such that $|\varphi-\psi|<\epsilon$ on $D$ .

REMARK 1.7. Bungart [3] asserted Theorem 1.6 only when $D\subset C^{n}$ . In
view of his proof, the theorem remains valid when $D$ is a paracompact complex
manifold.
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REMARK 1.8. By the definition in this paper, a $q$-convex function with
corners is piecewise $C^{2}$ . Since every $C^{2}$ function can be locally approximated by
$C^{\infty}$ functions with respect to (Whitney) $C^{2}$ topology, every $q$-convex function
with corners defined on a paracompact complex manifold can be globally approx-
imated by such piecewise $C^{\infty}$ functions. Therefore, we can choose the q-convex
function $\psi$ with corners in Theorem 1.6 so that it is also piecewise $C^{\infty}$ .

2. Pseudoconvex domains of general order and $q$-convex domains
with corners.

Let $D$ be a complex manifold and $\varphi:Darrow R\cup\{-\infty\}$ an upper semi-continuous
function. Then $\varphi$ is said to be an exhaustion function of $D$ if $\{P\in D:\varphi(P)<A\}\Subset D$

for every $A\in R$ .
A complex manifold $D$ is said to be $q$-convex (resp. $q$-convex with corners) if

$D$ has a continuous exhaustion function which is $q$-convex (resp. $q$-convex with
corners) outside some compact subset of $D$ . Further, $D$ is said to be $q$-complete
(resp. q-complete with corners) if $D$ has an exhaustion function which is q-convex
(resp. $q$-convex with corners) whole on $D$ (see Andreotti-Grauert [1] and
Diederich-Fornaess [4] $)$ .

It is clear that $D$ is $q$-convex (resp. $q$-complete) with corners if $D$ is q-convex
(resp. $q$-complete). When $2\leqq q\leqq n-1$ , the converse is not valid even if $D\subset C^{n}$

(see Diederich-Fornaess [4] and Matsumoto [13]). By the Diederich-Fornaess
approximation theorem (Theorem 1.5), an $n$ -dimensional complex manifold $D$ is
$\tilde{q}$-convex (resp. q-complete) if $D$ is $q$-convex (resp. q-complete) with corners,
where $\tilde{q}=n-[n/q]+1$ . Moreover, by the Bungart approximation theorem
(Theorem 1.6), $D$ is $q$-complete with corners, if and only if $D$ has an exhaustion
function which is strongly pseudoconvex of order $n-q$ on $D$ .

In what follows, let $M$ be a connected, paracompact complex manifold of
dimension $n$ .

An open subset $D$ of $M$ is said to be Pseudoconvex of order $n-q$ in $M$, if
the complement $M\backslash D$ satisfies ’the Hartogs continuity principle of dimension
$n-q$

‘ (see Tadokoro [25] for the precise definition; and see also Riemenschneider
[18] and Fujita [8] $)$ .

The pseudoconvexity of order $n-q$ of an open subset $D$ in $M$ is a local
property of the boundary $\partial D(\subset M)$ of $D$ . More precisely, $D$ is pseudoconvex
of order $n-q$ in $M$ if, for each $Q\in\partial D$ , there exists a neighborhood $V(\subset M)$

of $Q$ such that $D\cap V$ is pseudoconvex of order $n-q$ in $V$ .
When $M=C^{n}$ , Fujita showed the following.

THEOREM 2.1 ([8], Th\’eor\‘eme 2). For an open subset $D$ of $C$ “, the follow-
ing conditions are equivalent:
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(a) $D$ is pseudoconvex of order $n-q$ in $C^{n}$ .
(b) $D$ has an exhaustim function which is pseudoconvex of order $n-q$ on $D$ .
(c) $-\log d_{\partial D}(z)$ is pseudoconvex of order $n-q$ on $D$ , where $d_{\partial D}(z)= \inf\{||z-w||$ :

$w\in\partial D\}$ is the Euclidean boundary distance of $D$ at $z\in D$ .
Using Theorem 2.1 and the Bungart approximation theorem (Theorem 1.6),

we can easily prove the following.

PROPOSITION 2.2. An open subset $D$ of $C^{n}$ is pseudoconvex of order $n-q$ in
$C^{n}$ , if and only if $D$ is $q$-complete with corners. Therefore, an open subset $D$ of
an $n$ -dimensional complex manifold $M$ is pseudoconvex of order $n-q$ in $M$, if and
only if $D$ is locally $q$-complete with corners in $M$ in the sense of Peternell [16].

NOW we shall give some examples of pseudoconvex open subsets of order
$n-q$ .

EXAMPLE 2.3. Let $D$ be an open subset of an $n$ -dimensional complex man-
ifold $M$ and suppose tbat the boundary $\partial D$ is a real hypersurface of class $C^{2}$

in $M$, that is, there exist, for each $Q\in\partial D$ , a neighborhood $V$ of $Q$ and a $C^{2}$

function $\rho:Varrow R$ such that $d\rho(Q)\neq 0$ and $D\cap V=\{P\in V:\rho(P)<0\}$ . Then $D$ is
pseudoconvex of order $n-q$ in $M$, if and only if the Levi form $\partial\overline{\partial}\rho$ has at least
$n-q$ non-negative eigenvalues on $T_{Q}’(\partial D)$ for each $Q\in\partial D$ and for each defining
function $\rho$ of $D$ near $Q$ , where $T_{Q}’(\partial D)(\subset T_{Q}(\partial D))$ is the holomorphic tangent
space of the real hypersurface $\partial D$ at Q. (Eastwood-Suria [5] and Suria [23]

called such a subset $D$ a $(q-1)$-pseudoconvex open subset with $C^{2}$ boundary.)

EXAMPLE 2.4. Let $S$ be an analytic subset of an $n$ -dimensional complex
manifold $M$ and denote by le the minimum of dimensions of irreducible com-
ponents of $S$ . Then the complement $M\backslash S$ is pseudoconvex of order $n-q$ in $M$

if and only if $k\geqq n-q$ . Moreover, an open subset $D$ of $M$ is pseudoconvex of
order $n-q$ in $M$ if, for each $Q\in\partial D$ , there exists a purely $(n-q)$-dimensional
analytic subset $S$ defined near $Q$ such that $Q\in S$ and $S\subset M\backslash D$ .

In this paper, we introduce the following condition $(C_{q})$ .

DEFINITION 2.5. We say that an open subset $D$ of an $n$ -dimensional complex
manifold $M$ satisfies the condition $(C_{q})$ in $M$, if

$(C_{q})$ For each $Q\in\partial D$ , there exists an $(n-q)$-dimensional complex subman-
ifold defined near $Q$ such that $Q\in S$ and $S\subset M\backslash D$ .
For the sake of simplicity, we agree that $M$ itself and the empty set satisfy the
condition $(C_{q})$ in $M$.

Every open subset with the condition $(C_{q})$ in $M$ is pseudoconvex of order
$n-q$ in $M$. If $S$ is a complex submanifold of $M$ and if each connected component
of $S$ has at least dimension $n-q$ , the complement $M\backslash S$ obviously satisfies the
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condition $(C_{q})$ in $M$.
LEMMA 2.6. Let $\varphi$ be a $q$-convex function with comers defined on a complex

manifold $D$ and suppose that $\varphi$ is also piecewise $C^{\infty}$ . Then there exists a subset
$\Lambda$ of Lebesgue measure zero in $R$ such that the set $\{P\in D:\varphi(P)<A\}$ satisfies the
condition $(C_{q})$ in $D$ for every $A\in R\backslash \Lambda$ .

PROOF. Let $U$ be an open subset of $D$ and $\psi:Uarrow R$ a $q$-convex function
of class $C^{\infty}$ . For each $A\in R$ , define the set $U_{A}$ by $U_{A}=\{P\in U:\psi(P)<A\}$ . If
the value $A$ of $\psi$ is not critical and if the boundary $\partial U_{A}(\subset U)$ of $U_{A}$ is not
empty, then $\partial U_{A}$ is a real hypersurface of class $C^{\infty}$ in $U$ and so $U_{A}$ satisfies the
condition $(C_{q})$ in $U$ . On the other hand, the Sard theorem asserts that the set
of the critical values of $\psi$ is of Lebesgue measure zero in $R$ , if $\psi:Uarrow R$ is of
class $C^{\infty}$ (at least of class $C^{2n}$ ). The lemma follows from the two facts. $\square$

Using Lemma 2.6 we can easily prove the following.

LEMMA 2.7. If a complex manifold $D$ is $q$-convex with corners, there exists
a sequence $\{D_{\nu}\}_{\nu\in N}$ of open subsets with the cmdition $(C_{q})$ in $D$ such that
$D_{\nu}\subset\subset D_{\nu+1}\subset\subset D$ for each $\nu\in N$ and $\bigcup_{\nu=1}^{\infty}D_{\nu}=D$ .

3. The definition and some properties of the operator $W_{q}$ .
Throughout \S 3, let $M$ be a connected, paracompact complex manifold of

dimension $n$ and $G$ a (fixed) Hermitian metric on $M$. Let $D$ be an open subset
of $M$ and $q$ an integer with l\leqq q$n.

Given a continuous function $\varphi:Darrow R$ and a point $P\in D$ , the quantity
$W[\varphi](P)$ introduced by Takeuchi [26], [27] is very useful to study plurisub-
harmonic functions defined on K\"ahler manifolds (see also Elencwajg [6], Suzuki
[24] and Greene-Wu [11] $)$ . Roughly speaking, the quantity $W[\varphi](P)$ means
‘the modulus of plurisubharmonicity’ of $\varphi$ at $P$. In this section, we shall
introduce the quantity $W_{q}[\varphi](P)$ meaning ’the modulus of pseudoconvexity of
order $n-q$

’ of $\varphi$ at $P$ and give some properties of the operator $W_{q}$ (see

Remark 3.5 below for the relation between the operators $W$ and $W_{q}$ ).

DEFINITION 3.1. A local coordinate system $(z_{1}, \cdots , z_{n})$ around $P\in M$ is said
to be normal at $P$ (with respect to $G$ ), if

$z_{i}(P)=0$ , $G( \frac{\partial}{\partial z_{i}}$ , $\frac{\partial}{\partial z_{j}})(P)=\delta_{i_{j}}$ for $1\leqq i,$ ] $\leqq n$ .

Every point $P$ of $M$ has a normal coordinate system at $P$. If local coordi-
nate systems $(z_{1}, , z_{n})$ and $(w_{1}, \cdot , w_{n})$ are both normal at $P$, the transfor-
mation matrix $(\partial z_{i}/\partial w_{j})$ is unitary at $P$. Therefore, if a function $\varphi$ defined
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near $P$ is of class $C^{2}$ , all the eigenvalues of the Hermitian matrix $(\partial^{2}\varphi/\partial z_{i}\partial\overline{z}_{j})(P)$

coincide those of $(\partial^{2}\varphi/\partial w_{i}\partial w_{j})(P)$ . We shall only call them eigenvalues of the
Levi form $\partial\partial\varphi$ at $P$.

DEFINITION 3.2. Let $\varphi:Darrow R\cup\{-\infty\}$ be upper semi-continuous and $P\in D$ .
Let $z=(z_{1}, \cdots , z_{n})$ be a normal coordinate system at $P$. We define the quantity
$W_{q}[\varphi](P)$ as the supremum of $\alpha\in R$ such that $\varphi-\alpha||z||^{2}$ is pseudoconvex of
order $n-q$ at $P$, where $||z||^{2}=\Sigma_{i=1}^{n}|z_{i}|^{2}$ . If no such $\alpha\in R$ exists, we put
$W_{q}[\varphi](P)=-\infty$ .

The following lemma implies that the quantity $W_{q}[\varphi](P)$ is well-defined,
that is, it is independent of the choice of a normal coordinate system at $P$.

LEMMA 3.3. Let $\varphi:Darrow R\cup\{-\infty\}$ be upper semi-continuous and $P\in D$ . SuP-
pose that $z=(z_{1}, \cdots, z_{n})$ and $w=(w_{1}, \cdots , w_{n})$ are both normal coordinate systems
at P. If $\varphi-\alpha||z||^{2}$ is Pseudoconvex of order $n-q$ at $P$, so is $\varphi-\beta||w||^{2}$ for every
$\beta<\alpha$ .

PROOF. We put $h=\alpha||z||^{2}-\beta||w||^{2}$ . Then $h$ is 1-convex near $P$ because all
the eigenvalues of $\partial\overline{\partial}h$ are equal to $\alpha-\beta(>0)$ at $P$. Therefore, $\varphi-\beta||w||^{2}=$

$\varphi-\alpha||z||^{2}+h$ is pseudoconvex of order $n-q$ at $P$ if so is $\varphi-\alpha||z||^{2}$ . $\square$

In particular, Lemma 3.3 implies that $\varphi$ is pseudoconvex of order $n-q$ at
$P$ if $W_{q}[\varphi](P)>0$ .

Using Lemma 3.3, we can immediately prove the following.

LEMMA 3.4. Let $\varphi:Darrow R\cup\{-\infty\}$ be upper semi-continuous, $P\in D$ , and $\alpha\in R$ .
Then the following conditions are equivalent:

(a) $W_{q}[\varphi](P)\geqq\alpha$ .
(b) There exists a normal coordinate system $z=(z_{1}, \cdots , z_{n})$ at $P$ such that

$\varphi-\beta||z||^{2}$ is pseudoconvex of order $n-q$ at $P$ for every $\beta<\alpha$ .
(c) $\varphi-\beta||z||^{2}$ is pseudoconvex of order $n-q$ at $P$ for every normal coordinate

system $z=(z_{1}, , z_{n})$ at $P$ and for every $\beta<\alpha$ .

Let $\varphi:Darrow R$ be of class $C^{2}$ and $P\in D$ . Denote all the eigenvalues of $\partial\overline{\partial}\varphi$

at $P$ by $\alpha_{1},$ $\alpha_{2},$
$\cdots$ , $\alpha_{n}$ , where $a_{1}\geqq\alpha_{2}\geqq\ldots\geqq\alpha_{n}$ . Then we have $W_{q}[\varphi](P)=\alpha_{n-q+1}$ .

Moreover, $W_{q}[\varphi]:Darrow R$ is continuous if $\varphi$ is of class $C^{2}$ . When $\varphi$ is not of
class $C^{2}$ , the function $W_{q}[\varphi]$ is not continuous in general.

REMARK 3.5. If $W$ denotes the operator introduced by Takeuchi, then
$W[\varphi]\equiv 4W_{1}[\varphi]$ for every $C^{2}$ function $\varphi$ (see Takeuchi [27], p. 335). The author
does not know whether the operators $W$ and $4W_{1}$ exactly coincide or not.

A $C^{2}$ functlon $\varphi:Darrow R$ is $q$-convex (resp. weakly $q$-convex) on $D$ if and
only if $W_{q}[\varphi]>0$ (resp. $W_{q}[\varphi]IO$ ) on $D$ . Moreover, we obtain the following.
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PROPOSITION 3.6. Let $\varphi:Darrow R\cup\{-\infty\}$ be an upper semi-continuous functim.
Then

(a) $\varphi$ is pseudoconvex of order $n-q$ on $D$ if and only if $W_{q}[\varphi]\geqq 0$ on $D$ .
(b) $\varphi$ is strongly pseudoconvex of order $n-q$ on $D$ if and only if, for

each $P\in D$ , there exist a neighborhood $U$ of $P$ and a constant $\epsilon>0$ such that
$W_{q}[\varphi]\geqq\epsilon$ on $U$.

PROOF. The proof of (b) is easy. The necessity of (a) is obvious. To prove
the sufficiency of (a), suppose that $W_{q}[\varphi]\geqq 0$ on $D$ and $(U, z),$ $z=(z_{1}, , z_{n})$ , is
any coordinate neighborhood of $D$ . For each $\nu\in N$, define the function $\varphi_{\nu}$ on
$U$ by $\varphi_{\nu}=\varphi+(1/\nu)||z||^{2}$ . Then $W_{q}[\varphi_{\nu}]>0$ on $U$ . This implies that each $\varphi_{\nu}$ is
pseudoconvex of order $n-q$ at each point of $U$ and hence on $U$ . Therefore,
by Fujita ([8], Proposition 7), the limit $\varphi$ of the decreasing sequence $\{\varphi_{v}\}_{v\in N}$ is
pseudoconvex of order $n-q$ on $U$ , which proves the sufficiency of (a). $\square$

PROPOSITION 3.7. Let $\varphi_{\nu}$ : $Darrow R\cup\{-\infty\},$ $\nu\in N$ be upper semi-cmtinuous and
let $\alpha:Darrow R$ be continuous. SuPPose that $W_{q}[\varphi_{\nu}]\geqq\alpha mD$ for all $\nu\in N$ If the
sequence $\{\varphi_{\nu}\}_{\nu\in N}$ is decreasing or uniformly convergent on $D$ , then $W_{q}[\varphi]\geqq\alpha m$

$D$ , where $\varphi=\lim_{\nuarrow\infty}\varphi_{\nu}$ .

PROOF. Let $P$ be a point of $D$ and $\beta$ a real number with $\beta<\alpha(P)$ . Let
$(U, z),$ $z=(z_{1}, \cdots , z_{n})$ , be a normal coordinate neighborhood at $P$. Choose a
neighborhood $V(\subset U)$ of $P$ so that $W_{1}[\beta||z||^{2}]<\alpha$ on $V$ . Then, for each $\nu\in N$

we have $W_{q}[\varphi_{\nu}-\beta||z||^{2}]>0$ on $V$ and so $\varphi_{\nu}-\beta||z||^{2}$ is pseudoconvex of order
$n-q$ on $V$ . Since the sequence $\{\varphi_{\nu}-\beta||z||^{2}\}_{v\in N}$ is decreasing or uniformly
convergent on $V$, it follows by Fujita ([8], Proposition 7) that the limit $\varphi-\beta||z||^{2}$

is also pseudoconvex of order $n-q$ on $V$ . Therefore, we have $W_{q}[\varphi](P)\geqq\alpha(P)$

for every $P\in D$ . $\square$

The following criterion will be used frequently in this paper.

LEMMA 3.8. Let $\varphi$ and $\psi$ be upper semi-cmtinuous functions from $D$ to
$R\cup\{-\infty\}$ and $P$ a $p\alpha nt$ of D. If $\varphi(P)=\psi(P)$ and $\varphi\geqq\psi$ on $D$ , then $W_{q}[\varphi](P)$

$\geqq W_{q}[\psi](P)$ .

PROOF. Let $z=(z_{1}, \cdots , z_{n})$ be a normal coordinate system at $P$ and $\alpha$ a real
number with $\alpha<W_{q}[\psi](P)$ . Then $\psi-\alpha||z||^{2}$ is pseudoconvex of order $n-q$ at $P$.
Hence, for each weakly $(n-q+1)$-convex function $f$ defined near $P$, one can
find a neighborhood $U(f)$ of $P$, so that

$( \psi-\alpha||z||^{2}+f)(P)\leqq\max\{(\psi-\alpha||z||^{2}+f)(Q):Q\in\partial\Delta\}$

for every domaln $\Delta$ with $P\in\Delta$ and $\Delta\subset\subset U(f)$ . If $\varphi(P)=\psi(P)$ and $\varphi\geqq\psi onD$ , the
above inequality replaced $\psi$ with $\varphi$ remains valid. Therefore, $\varphi-\alpha||z||^{2}$ is also
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pseudoconvex of order $n-q$ at $P$ for every $\alpha<W_{q}[\psi](P)$ and hence we obtain
$W_{q}[\varphi](P)\geqq W_{q}[\psi](P)$ . $\square$

Next, let $L$ be a $t$-dimensional complex submanifold of $D(\subset M),$ $1\leqq t\leqq n$ .
Then $L$ has the $C^{\infty}$ Hermitian metric $G|_{L}$ induced by the metric $G$ on $M$. In
exactly the same way as the definition of the operators $W_{q},$ $1\leqq q n,$ on $M$ with
respect to the metric $G$ on $M$, we can define the operators on $L$ with respect
to the metric $G|_{L}$ on $L$ . We shall denote them by $W_{q}^{(L)},$ $1\leqq q\leqq t$ . The results
about $W_{q}=W_{q}^{(M)}$ are naturally valid for $W_{q}^{(L)}$ .

LEMMA 3.9. Let $L$ be a $t$-dimensimal complex submanifold of D. Let
$\varphi:Larrow R\cup\{-\infty\}$ be upper semi-cmtinuous, $P\in L$ , and $\alpha\in R$ . Then the following
conditims are equivalent:

(a) $W_{q}^{(L)}[\varphi](P)\geqq\alpha$ .
(b) There exists a normal coordinate system $z=(z_{1}, \cdots , z_{n})$ at $P\in D$ such that

$\varphi-\beta(||z||^{2})|_{L}$ is pseudoconvex of order $t-q$ at $P\in L$ for every $\beta<\alpha$ .
(c) $\varphi-\beta(||z||^{2})|_{L}$ is pseudocmvex of order $t-q$ at $P\in L$ for every normal

coordinate system $z=(z_{1}, \cdots , z_{n})$ at $P\in D$ and for every $\beta<\alpha$ .
PROOF. If $w=(w_{1}$ , $\cdot$ .. , $w_{n})$ is a normal coordinate system of $D$ at $P\in D$

with respect to the metric $G$ on $D$ and if $L$ is written by $w_{t+1}=w_{t}=+2$ $=w_{n}$

$=0$ near $P$, then $w’=(w_{1}, , w_{t})$ is a normal coordinate system of $L$ at $P\in L$

with respect to the metric $G|_{L}$ on $L$ . Hence it follows from Lemma 3.4 that
$W_{q}^{(L)}[\varphi](P)\geqq\alpha$ if and only if $\varphi-\beta(||w||^{2})|_{L}=\varphi-\beta||w’||^{2}$ is pseudoconvex of order
$t-q$ at $P\in L$ for every $\beta<\alpha$ . This implies that $(c)\Rightarrow(a)\Rightarrow(b)$ .

TO prove $(b)\Rightarrow(c)$ , suppose that $z=(z_{1}, , z_{n})$ and $w=(w_{1}, , w_{n})$ are both
normal coordinate systems of $D$ at $P\in D$ . Let $\beta$ and $\gamma$ be real numbers with
$\beta<\gamma<\alpha$ . Then the function $h$ $:=\gamma||w||^{2}-\beta||z||^{2}$ is 1-convex near $P\in D$ and so
the restriction $h|_{L}$ is also 1-convex near $P\in L$ . Therefore, if $\varphi-\gamma(||w||^{2})|_{L}$ is
pseudoconvex of order $t-q$ at $P\in L$ , so is $\varphi-\beta(||z||^{2})|_{L}=\varphi-\gamma(||w||^{2})|_{L}+h|_{L}$ .
This implies that $(b)\Rightarrow(c)$ . $\square$

LEMMA 3.10. Let $\varphi:Darrow R\cup\{-\infty\}$ be uPPer semi-cmtinuous and $P\in D$ . Then
$W_{q}[\varphi](P)\geqq\alpha$ , if there emsts an $(n-q+1)$-dimenstonal complex submanifold $L$

defined near $P$ such that $P\in L$ and $Wi^{L)}[\varphi|_{L}](P)\geqq\alpha$ .

PROOF. Let $z=(z_{1}, \cdot , z_{n})$ be a normal coordinate system of $D$ at $P\in D$

and $\beta$ a real number with $\beta<\alpha$ . Since $W_{1}^{(L)}[\varphi|_{L}](P)\geqq\alpha$ , it follows from
Lemma 3.9 that $(\varphi-\beta||z||^{2})|_{L}=\varphi|_{L}-\beta(||z||^{2})|_{L}$ is pseudoconvex of order $n-q$

$(=(n-q+1)-1)$ at $P\in L$ . Hence, by Lemma 1.2, $\varphi-\beta||z||^{2}$ is pseudoconvex of
order $n-q$ at $P\in D$ for every $\beta<\alpha$ . This means that $W_{q}[\varphi](P)\geqq\alpha$ . $\square$

LEMMA 3.11. Let $\varphi:Darrow R\cup\{-\infty\}$ be upper semi-cmtinuous and $P\in D$ . Then
$W_{1}[\varphi](P)\geqq\alpha$ if, for every 1-dimensimal $C$-linear subspace $E_{P}$ of $T_{P}(D)$ , there
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exists $a$ 1-dimensional complex submanifold $E$ of $D$ defined near $P$ such that
$P\in E,$ $T_{P}(E)=E_{P}$ and $Wf^{E)}[\varphi|_{E}](P)\geqq\alpha$ .

PROOF. Let $z=(z_{1}, , z_{n})$ be a normal coordinate system of $D$ at $P\in D$

and $\beta$ a real number with $\beta<\alpha$ . To prove the pseudoconvexity of order $n-1$

of $\varphi-\beta||z||^{2}$ at $P\in D$ , let $f$ be a weakly $n$ -convex function defined near $P\in D$

and $\gamma$ a real number with $\beta<\gamma<\alpha$ . Since the function $h$ $:=f+(\gamma-\beta)||z||^{2}$ is
strongly $n$ -convex near $P\in D$ , there exists a 1-dimensional $C$-linear subspace
$E_{P}$ of $T_{P}(D)$ such that $\partial\overline{\partial}h$ has a positive eigenvalue on $E_{P}$ . By the assumption
of the lemma, choose a 1-dimensional complex submanifold $E$ of $D$ defined near
$P$ such that $P\in E$ , $T_{P}(E)=E_{P}$ and $W_{1}^{(E)}[\varphi|_{E}](P)\geqq\alpha$ . Then $h|_{E}$ is l-convex
near $P\in E$ and $\varphi|_{B}-\gamma(||z||^{2})|_{E}$ is pseudoconvex of order $0(=1-1)$ at $P\in E$ .
Hence we can find a neighborhood $U’=U’(h|_{E})(\subset E)$ of $P\in E$ , so that

$( \varphi-\gamma||z||^{2}+h)(P)\leqq\max\{(\varphi-\gamma||z||^{2}+h)|_{E}(Q):Q\in\partial\Delta’\}$

for every domain $\Delta’$ with $P\in\Delta’$ and $\Delta’\subset\subset U’$ . Choose a neighborhood $U=U(f)$

$(\subset D)$ of $P\in D$ so that $U\cap E\subset U’$ . Let $\Delta$ be a domain with $P\in\Delta$ and $\Delta\Subset U$ ,

and denote by $\Delta’$ the connected component of $\Delta qE$ containing $P$. Then $P\in\Delta’$

and $\Delta’\subset\subset U’$ . Moreover, we have

$( \varphi-\beta||z||^{2}+f)(P)\leqq\max\{(\varphi-\beta||z||^{2}+f)|_{E}(Q):Q\in\partial\Delta’\}$

$\leqq\max\{(\varphi-\beta||z||^{2}+f)(Q):Q\in\partial\Delta\}$ .
Therefore, $\varphi-\beta||z||^{2}$ is pseudoconvex of order $n-1$ at $P\in D$ for every $\beta<\alpha$

and hence $W_{1}[\varphi](P)\geqq\alpha$ . $\square$

4. Distance functions to complex submanifolds.

After \S 4, let $M$ be an $n$ -dimensional connected Kahler manifold with $C^{\infty}$

K\"ahler metric $G$ . Then $M$ can be also regarded as a $2n$-dimensional Riemannian
manifold with the $C^{\infty}$ Hermitian metric $g\cong{\rm Re} G$ . We denote by $J$ the complex
structure tensor field of $M$, and denote by $\nabla$ and $R$ the covariant derivation and
the curvature tensor field (of covariant degree 4) with respect to the Riemannian
connection of $M$, respectively.

If $\sigma$ and $\tau$ are holomorphic planes, i. e., $J$-invariant planes in the (real)
tangent space $T_{P}(M)$ at $P\in M$, the holomorphic bisectional curvature $H(\sigma, \tau)$

of them is defined by

$H(\sigma, \tau):=R(X, JX, Y, JY)$

$=R(X, Y, X, Y)+R(JX, Y, JX, Y)$ ,

where $X$ and $Y$ are unit vectors in $\sigma$ and $\tau$ , respectively (see Goldberg-Kobayashi
[10] $)$ .
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For two points $P$ and $Q$ of $M$, denote by $d(P, Q)$ the distance between $P$

and $Q$ induced by the metric $g(\equiv{\rm Re} G)$ . Given a subset $E$ of $M$, we define
the distance function $d_{E}$ : $Marrow R$ to $E$ by

$d_{E}(P)=d(P, E)= \inf\{d(P, Q):Q\in E\}$ for $P\in M$.

When $D$ is a pseudoconvex open subset (in the usual sense) in $M$, the
plurisubharmonicity of the function $-\log d_{M\backslash D}$ was differential-geometrically
studied by Takeuchi [27], Elencwajg [6], Suzuki [24] and Greene-Wu [11]. In
this section we shall prove the following fundamental lemma. The proof is
based on that of Greene-Wu ([11], Theorem 1).

LEMMA 4.1. Let $M$ be an $n$ -dimensional Kahler manifold, $D$ an open subset
of $M$, and $P$ a $p\alpha nt$ of D. Suppose that there exists (at least me) $Q\in\partial D$ such
that

(i) $d_{\partial D}(P)=d(P, Q)$ ,

(ii) The $p\alpha ntsP$ and $Q$ can be $J^{mned}$ by a geodestc $\xi$ in $M$,
(iii) There exists an $(n-q)$-dimensional complex submanifold defined near $Q$

such that $Q\in S$ and $S\subset M\backslash D$ .
Then we have the estimate

$W_{q}[- \log d_{\partial D}](P)\geqq\frac{1}{4}\min\{\frac{\Theta}{3},$ $\Theta\}$ ,

where $\Theta$ is the minimum of the holomorphic bisectional curvatures of $M$ on the
geodesic $\xi$ in (ii).

PROOF. If $S$ is an $(n-q)$-dimensional complex submanifold defined near
$Q\in\partial D$ , and if $Q\in S$ and $S\subset M\backslash D$ , we have $d_{S}\geqq d_{M\backslash D}=d_{\partial D}$ on $D$ and hence
$-\log d_{\partial D}\geqq-\log d_{S}$ on $D$ . Moreover, since $d_{S}(P)=d(P, Q)=d_{\partial D}(P)$ , we have
$-\log d_{\partial D}(P)=-\log d_{S}(P)$ . Hence, by Lemma 3.8, we first see

$W_{q}[-\log d_{\partial D}](P)\geqq W_{q}[-\log d_{S}](P)$ .

Let $\xi=\xi(t)$ , $t\in[0,1]$ , be a geodesic in $M$ from $P\in D$ to $Q\in\partial D$ , where
$\xi(0)=P,$ $\xi(l)=Q,$ $l=d_{\partial D}(P)=d(P, Q)$ , and the parameter $t$ is canonical. Let $N_{t}$ ,
$t\in[0,1]$ , be the unit tangent vector field of $\xi=\xi(t)$ . Then the vector $N_{t}$ is
orthogonal to the (real) tangent space $T_{Q}(S)$ at $Q=\xi(l)\in S$ . Let $F_{P}$ be the
parallel translate of $T_{Q}(S)$ along $\xi$ back to $P=\xi(O)$ . Since $T_{Q}(S)$ is J-invariant
and of real dimension $2(n-q)$ , so is $F_{P}$ . Moreover, $F_{P}$ is orthogonal to both
$N_{0}$ and $JN_{0}$ . We denote by $L_{P}$ the $J$-invariant $R$-linear subspace of real
dimension $2(n-q+1)$ in $T_{P}(M)$ which is generated by $N_{0},$ $JN_{0}$ and the elements
of $F_{P}$ .

Since the metric $G$ on the complex manifold $M$ is now K\"ahlerian, we can
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choose a local coordinate system $(z_{1}, \cdots , z_{n})$ around $P$, so that $(z_{1}, \cdots , z_{n})$ is
normal at $P$ (in the sense of Definition 3.1) and moreover satisfies $(\partial G_{ij}/\partial z_{k})(P)$

$=0$ for $1\leqq i,$ $Jk\leqq n$ , where $G_{ij}=G(\partial/\partial z_{i}, \partial/\partial z_{j})$ . Let $L$ be the $(n-q+1)-$

dimensional complex submanifold defined near $P$ such that $P\in L,$ $T_{P}(L)=L_{P}$

and $L$ is linear with respect to $(z_{1}, \cdots , z_{n})$ . Making a unitary transformation
of $(z_{1}, \cdots , z_{n})$ if necessary, we may assume that $L$ is given by $z_{n-q+2}=z_{n-q+3}$

$=\cdots=z_{n}=0$ near $P$.
We put $\alpha=\min\{\Theta/3, \Theta\}/4$ . To prove $W_{q}[-\log d_{S}](P)\geqq\alpha$ , it is sufficient

by Lemma 3.10 to show that $W_{1}^{(L)}[(-\log d_{S})|_{L}](P)\geqq$ a for the $L$ chosen above.
Moreover, it is sufficient by Lemma 3.11 to show that $W_{1}^{(E)}[(-\log d_{S})|_{E}](P)\geqq$ a
for every 1-dimensional complex submanifold $E$ of $L$ defined near $P$ such that
$P\in E$ and $E$ is linear with respect to $(z_{1}, , z_{n})$ .

Making a unitary transformation of $(z_{1}, \cdots , z_{n-q+1})$ if necessary, we may
without loss of generality assume that $E$ is given by $z_{2}=z_{3}=\cdots=z_{n}=0$ near $P$.
For the sake of simplicity, we write $z$ instead of $z_{1}$ , and put $z=x+\sqrt{-1}y$ ,
$x,$ $y\in R$ . Since the vector $(\partial/\partial z)_{P}$ is unit with respect to the metric $G$ , the
vectors $V_{0}=(\partial/\partial x)_{P}$ and $JV_{0}=(\partial/\partial y)_{P}$ are unit with respect to the metric $g$

$(\equiv{\rm Re} G)$ . Since $T_{P}(E)$ is a $J$-invariant $R$-linear subspace of $L_{P}=T_{P}(L)$ , we
can, by making a rotation of $z_{1}$ -plane if necessary, write $V_{0}=\alpha N_{0}+\beta X_{0}$ for
some $\alpha,$ $\beta$ and $X_{0}$ , where $X_{0}\in F_{P}$ is unit and $\alpha^{2}+\beta^{2}=1$ .

Let $X_{t},$ $t\in[0,1]$ , be the parallel translate of $X_{0}$ along $\xi$ to $\xi(t)$ . Then the
unit vectors $X_{t},$ $JX_{t},$ $N_{t}$ and $JN_{t}$ are mutually orthogonal at $\xi(t)$ for each
$t\in[0, l]$ . We now define the vector field $V$ along $\xi$ by

$V_{t}=( \frac{l-t}{l})\alpha N_{t}+\beta X_{t}$ for $t\in[0,1]$ ,

and put $U_{\epsilon}=\{(x, y)\in E : |x|<\epsilon, |y|<\epsilon\}$ for $\epsilon>0$ . Then, for sufficiently small
$\epsilon>0$ , we can take a $C^{\infty}$ mapping $k$ : $[0, l]\cross U\wedgearrow M\vee$ such that

(i) $k(f;0,0)\equiv\xi(t)$ ,

(ii) $k_{*}( \frac{\partial}{\partial x})_{(t;0,0)}\equiv V(t)$ , $k_{*}(\begin{array}{l}\partial\partial\overline{y}\end{array})\equiv JV(t)$ ,

(iii) $k(O;x, y)\equiv x+\sqrt{-1}y\in E$ , $k(l;x, y)\in S’$ ,

for $t\in[0,1]$ and $(x, y)\in U_{\epsilon}$ , where $S’$ is some 1-dimensional complex submanifold
of $S$ defined near $Q$ and containing $Q$ , and $k_{*}$ denotes the differential of the
mapping $k$ .

For $(x, y)\in U_{\epsilon}$ , we define the function $h$ : $U_{\epsilon}arrow R$ by

$h(x, y)= \int_{0}^{\iota}\sqrt{g(k_{*}(\frac{\partial}{\partial t}),k_{*}(\frac{\partial}{\partial t}))_{(t;xy)}}dt$ ,

i. e., the length of the curve $k_{(\cdot,y^{)}}=k_{(,y)}(t):=k(t;x, y)\in M,$ $t\in[0,1]$ . Since
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$h(P)=h(O, O)=l=d_{S}(P)$ , we have $(-\log h)(P)=(-\log d_{S})|_{E}(P)$ . Moreover, it
follows from the condition (iii) of the mapping $k$ that $h\geqq d_{S}|_{E}$ on U. and hence
$-\log h\leqq(-\log d_{S})|_{E}$ on U.. Therefore, by Lemma 3.8, we have

$W_{1}^{(E)}[(-\log d_{S})|_{E}](P)\geqq W_{1}^{(E)}[-\log h](P)$ .

Since the function $-\log h$ is of class $C^{\infty}$ on U. $(\subset E)$ and the local coordi-
nate $z=x+\sqrt{-1}y$ of $E$ is normal at $P\in E$ , we have

(1) $W_{1}^{(E)}[- \log h](P)=\frac{\partial^{2}}{\partial_{Z}\partial\overline{z}}(-\log h)(P)$

$= \frac{1}{l^{2}}|\frac{\partial h}{\partial z}(P)|^{2}-\frac{1}{l}(\frac{\partial^{2}h}{\partial_{Z}\partial\overline{z}})(P)$

$= \frac{1}{4l^{2}}\{(\frac{\partial h}{\partial_{X}}(P))^{2}+(\frac{\partial h}{\partial y}(P))^{2}\}-\frac{1}{4l}\{\frac{\partial^{2}h}{\partial x^{2}}(P)+\frac{\partial^{2}h}{\partial y^{2}}(P)\}$ .

We shall now apply to (1) the variation formulas in Riemannian geometry. The
first variation formula gives

$\frac{\partial h}{\partial_{X}}(P)=g(V_{t}, N_{t})|_{t=0}^{t=l}=-\alpha$ ,

and hence we first obtain

$\frac{\partial h}{\partial y}(P)=g(JV_{t}, N_{t})|_{t=0}^{t=l}=0$ ,

(2) $( \frac{\partial h}{\partial x}(P))^{2}+(\frac{\partial h}{\partial y}(P))^{2}=\alpha^{2}$ .
Next, the second variation formula gives

$\frac{\partial^{2}h}{\partial x^{2}}(P)=g((\nabla_{V}V)_{(t;0.0)}, N_{t})|_{t=0}^{t=t}$

$+ \int_{0}^{t}[-R(V_{t}, N_{t}, V_{t}, N_{t})+g((\nabla_{N}V)_{t}, (\nabla_{N}V)_{t})-\{\frac{d}{dt}g(V_{t}, N_{t})\}^{2}]dt$ ,

$\frac{\partial^{2}h}{\partial y^{2}}(P)=g((\nabla_{JV}JV)_{(t;0,0)}, N_{t})|_{t=0}^{t=l}$

$+ \int_{0}^{\iota}[-R(JV_{t}, N_{t}, JV_{t}, N_{t})+g((\nabla_{N}JV)_{t}, (\nabla_{N}JV)_{t})-\{\frac{d}{dt}g(JV_{t}, N_{t})\}^{2}]dt$ ,

where we have put

$V_{(t;x.y^{)}}=k_{*}( \frac{\partial}{\partial x})_{(t;x,y)}$ , $JV_{(t:x.y)}=k_{*}( \frac{\partial}{\partial y})_{(t;x.y)}$

NOW, by the condition (iii) of the mapping $k$ , the vector fields

$V_{(0;x.y)} \equiv(\frac{\partial}{\partial x})_{(x,y)}$ , $JV_{(0;x,y)} \equiv(\frac{\partial}{\partial y})_{(x,y)}$

are restrictions to $U_{\epsilon}(\subset E)$ of the coordinate vector fields with respect to the
normal coordinate system $(z_{1}, \cdots, z_{n})$ of $M$ at $P\in M$. Hence we have
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$(\nabla_{V}V)_{(0:0.0)}=(\nabla_{JV}JV)_{(0;0.0)}=0$ .

Moreover, since $V_{(l;x,y)}$ and $JV_{(l;x,y)}$ are vector fields on the complex subman-
ifold $S’$ , and since the vector $N_{t}$ is orthogonal to $S’(\subset S)$ at $Q$ , we have

$g((\nabla_{V}V)_{(l:0,0)}, N_{\iota})+g((\nabla_{JV}JV)_{(\iota;0.0)}, N_{l})=g(J[JV, V]_{(l:0.0)}, N_{l})=0$

(see Frankel [7], p. 171). Therefore, we have

(3) $- \frac{2h}{x^{2}}(P)+\frac{\partial^{2}h}{\partial y^{2}}(P)\partial\partial=\frac{\alpha^{2}}{l}-\int_{0}^{\iota}R(V_{t}, JV_{t}, N_{t}, JN_{t})dt$ ,

exactly as in the proof of Greene-Wu ([11], pp. 177-178). Substituting (2) and
(3) for (1), we obtain

(4) $W_{1}^{(E)}[- \log h](P)=\frac{1}{4l}\int_{0}^{\iota}R(V_{t}, JV_{t}, N_{\iota}, JN_{t})dt$ .

If $\Theta$ is the minimum of the holomorphic bisectional curvatures of $M$ on the
geodesic $\xi=\xi(t),$ $t\in[0, l]$ , then

$R(V_{t}, JV_{t}, N_{t_{y}}JN_{t}) \geqq\Theta\{(\frac{l-t}{l})^{2}\alpha^{2}+\beta^{2}\}$ for $t\in[0, l]$ .

Hence, by (4), we have

$W_{1}^{(E)}[- \log h](P)\geqq\frac{\Theta}{4l}\int_{0}^{l}\{(\frac{l-t}{l})^{2}\alpha^{2}+\beta^{2}\}dt$

$= \frac{\Theta}{4}(\frac{\alpha^{2}}{3}+\beta^{2})$ .
Noting that $\alpha^{2}+\beta^{2}=1$ and hence $1/3\leqq(\alpha^{2}/3)+\beta^{2}\leqq 1$ , we finally obtain

$W_{q}[- \log d_{\partial D}](P)\geqq W_{1}^{tE)}[-\log h](P)\geqq\frac{1}{4}\min\{\frac{\Theta}{3}$, $\Theta\}$ ,

which completes the proof of the lemma. $\square$

5. Boundary distance functions of pseudoconvex domains of
general order.

Let $M$ be a K\"ahler manifold and $D$ an open subset of $M$. For $P\in M$ and
$r>0$ , we use the notation

$B(P, r)=\{Q\in M:d(PQ)<r\}$ .
Then $B(P, d_{\partial D}(P))\subset D$ for every $P\in D$ . We further denote by $e(P),$ $P\in D$ , the
infimum of the holomorphic bisectional curvatures on $B(P, d_{\partial D}(P))$ . It is easy
to see that the function $\Theta:Darrow R$ is continuous, if $D\cap B(P, r)\subset\subset M$ for every
$P\in D$ and for every $r>0$ . Note that the condition is satisfied, either if $M$ is
complete or if $D\subset\subset M$.
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AS an application of Lemma 4.1, we shall first prove the following local
result on boundary distance functions of pseudoconvex open subsets of general
order.

PROPOSITION 5.1. Let $M$ be an $n$ -dimenstonal Kahler manifold and let $D$ be
a pseudocmvex open subset of order $n-q$ in M. Then there exists an open subset
$\Delta$ of $M$ such that $\partial D\subset\Delta$ and

$W_{q}[- \log d_{\partial D}]\geqq\frac{1}{4}\min\{\frac{\Theta}{3},$ $\Theta\}$ on $D\cap\Delta$ ,

where $\Theta=\Theta(P),$ $P\in D$ , is the infimum of the holomorphic bisectional curvatures
on $B(P, d_{\partial D}(P))$ .

PROOF. We put $\alpha=\min\{\Theta/3, \Theta\}/4$ . To prove the proposition, it is suffi-
cient to show that each $Q\in\partial D$ has a neighborhood $V$ such that $W_{q}[-\log d_{\partial D}]$

$\geqq\alpha$ on $D\cap V$ .
Let $V^{*}$ be a Stein neighborhood of $Q\in\partial D$ which is relatively compact in

some coordinate neighborhood of $M$. Then the set $D^{*}:$ $=D\cap V^{*}$ is biholomorphic
to a pseudoconvex open subset of order $n-q$ in $C^{n}$ . Hence, by Proposition 2.2
and Lemma 2.7, we can take a sequence $\{D_{\nu}^{*}\}_{\nu\in N}$ of open subsets with the
condition $(C_{q})$ in $D^{*}$ such that $D_{\nu}^{*}\subset\subset D_{\nu+1}^{*}\subset\subset D^{*}$ for each $\nu\in N$ and $U_{\nu=1}^{\infty}D_{\nu}^{*}=D^{*}$ .
Then, for each $P\in D_{\nu}^{*}$ , there exists (at least one) $Q\in\partial D_{\nu}^{*}$ which satisfies the
conditions (i), (ii) and (iii) of Lemma 4.1. Hence, by Lemma 4.1, we have

$W_{q}[-\log d_{\partial D_{\mathcal{V}}^{*}}]$ $)$ $\frac{1}{4}$ mln $\{\frac{\Theta*}{3},$ $\Theta^{*}\}$ on $D_{\nu}^{*}$

for each $\nu\in N$ where $\Theta^{*}=\Theta^{*}(P),$ $P\in D^{*}$ , is the infimum of the holomorphic
bisectional curvatures on $B(P, d_{\partial D*}(P))$ . Note here that, because $D^{*}\subset\subset M,$ $\Theta*$

and hence $\alpha^{*}:=\min\{\Theta*/3, \Theta^{*}\}/4$ are continuous functions from $D^{*}$ to $R$ . On
the other hand, for each $v\in N$ the sequence $\{-\log d_{\partial D_{\mu}^{*}}\}_{\mu\geqq\nu}$ decreases on D*

and converges to $-\log d_{\partial D*}$ . Therefore, it follows from Proposition 3.7 that
$W_{q}[-\log d_{\partial D*}]\geqq\alpha^{*}$ on $D_{\nu}^{*}$ for each $\nu\in N$ and hence $W_{q}[-\log d_{\partial D*}]\geqq\alpha^{*}\geqq\alpha$

on $D^{*}$ .
NOW choos$er>0$ so that $B(Q, 2r)\subset\subset V^{*}$ , and put $V=B(Q, r)$ . Then we

have $d_{\partial D}=d_{\partial D*}$ on $D\cap V(\subset D^{*})$ , which implies that $W_{q}[-\log d_{\partial D}]\geqq\alpha$ on $D\cap V$

for this V. $\square$

We shall later show that the estimate in Proposition 5.1 holds not only near
$\partial D$ but also whole on $D$ in some cases ($see$ Proposition 6.4 and Proposition 7.1).

In this section we give the following global estimate for $W_{q}[-\log d_{\partial D}]$ under
the assumption stated below.

LEMMA 5.2. Let $M$ be an $n$ -dimensional Kahler manifold and let $D$ be a
pseudocmvex open subset of order $n-q$ in $M$ such that $D\cap B(P, r)\subset\subset M$ for every
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$P\in D$ and for every $r>0$ . Suppose that there exists an open subset $\Delta$ of $M$ with
$\partial D\subset\Delta$ , and that one can for each $r>0$ find a positive number $C^{(r)}$ and a q-convex
function $\psi^{(7)}$ with comers on $D^{(T)}\cap\Delta$ satisfying $|$ - $\log d_{\partial D}-\psi^{(\tau)}|<C^{(r)}mD^{(r)}\cap\Delta$ ,

where $D^{(r)}=D\cap B(O, r)$ and $O\in\partial D$ is fixed. Then we have the estimate

$W_{q}[- \log d_{\partial D}]\geqq\frac{1}{4}\min\{\frac{\Theta}{3},$ $\Theta\}$ whole $mD$ ,

where $\Theta=\Theta(P),$ $P\in D$ , is the infimum of the holomorphic bisectimal curvatures
on $B(P, d_{\partial D}(P))$ .

PROOF. We may assume that each $\psi^{(r)}$ is piecewise $C^{\infty}$ . Then, by Lemma
2.6, there exists a subset $\Lambda^{(r)}$ of Lebesgue measure zero in $R$ such that the set
$\{P\in D^{(r)}\cap\Delta:\psi^{(r)}(P)<A\}$ satisfies the condition $(C_{q})$ in $D^{(r)}\cap\Delta$ for every
$A\in R\backslash \Lambda^{(r)}$ . On the other hand, by assumption, $D^{(r)}\Subset M$ and hence $D^{(r)}\backslash \Delta\Subset D$

for each $r>0$ . We can thus choose $A_{0}^{(r)}>0$ , so that

$D^{(r)}\backslash \Delta\subset\{P\in D^{(r)} : -\log d_{\partial D}(P)+C^{(r)}<A_{0}^{(\gamma)}\}$ .

For $A>0$ and $r>0$ , we define the set $D_{A}^{(\gamma)}$ by

$D_{A}^{(\gamma)}-(D^{(\gamma)}\backslash \Delta)\cup\{P\in D^{(r)}\cap\Delta:\psi^{(r)}(P)<A\}$ .

Since $\psi^{(T)}>-\log d_{\partial D}-C^{(\gamma)}$ on $D^{(r)}\cap\Delta$ , we have $D_{A}^{(\gamma)}\subset\subset D$ for every $A>0$ .
Moreover, since $\psi^{(r)}<-\log d_{\partial D}+C^{(r)}$ on $D^{(r)}\cap\Delta$ , the set $D_{A}^{(r)}$ satisfies the
condition $(C_{q})$ in $D^{(r)}$ if $A>A_{0}^{(r\rangle}$ and $A\in R\backslash \Lambda^{(r)}$ .

For each $P\in D_{A}^{(r)}$ , let $Q\in\partial D_{A}^{(2r)}$ be a point such that $d_{\partial D_{A}^{(2r)}}(P)=d(P, Q)$ .
Then the point $Q$ is necessarily an interior point of $D^{(2r)}$ because $d_{\partial D_{A}^{(2r)}}(P)<$

$d(O, P)<r$ . Hence, if $A>A_{0}^{(2r)}$ and $A\in R\backslash \Lambda^{(2r)}$ , the point $Q$ belongs to
$D^{(2r)}\cap\Delta$ and satisfies $\psi^{(2r)}(Q)=A$ , and fulfills the conditions (i), (ii) and (iii)

of Lemma 4.1 with respect to the set $D_{A}^{(2r)}$ . Therefore, it follows from Lemma
4.1 that

$W_{q}[- \log d_{\partial D_{A}^{(2\gamma)}}]\geqq\frac{1}{4}\min\{\frac{\Theta^{(2\gamma)}}{3},$ $\Theta^{(2r)}\}$ on $D_{A}^{(r)}$

for every $A$ with $A>A_{0}^{(2r)}$ and $A\in R\backslash \Lambda^{(2r)}$ , where $\Theta^{(r)}=\Theta^{(r)}(P),$ $P\in D^{(r)}$ ,
is the infimum of the holomorphic bisectional curvatures on $B(P, d_{\partial D^{(r)}}(P))$ .
Note here that $\Theta^{(r)}$ : $D^{(r)}arrow R$ is continuous because $D^{(r)}\subset\subset M$. Furthermore,
$-\log d_{\partial D_{B}^{(2r)}}$ , where $B>A$ , decreases on $D_{A}^{(r)}$ and converges to $-\log d_{\partial D}$ as
$Barrow\infty$ . Therefore, using Proposition 3.7, we can conclude that

$W_{q}[- \log d_{\partial D}]\geqq\frac{1}{4}\min\{\frac{\Theta^{(2r)}}{3},$ $\Theta^{(2r)}\}\geqq\frac{1}{4}\min\{\frac{\Theta}{3},$ $\Theta\}$

on $D^{(r)}$ for every $r>0$ , which proves the lemma. $\square$
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6. Pseudoconvex domains of general order in K\"ahler manifolds of
positive holomorphic bisectional curvature.

In \S 6, we consider the case where a K\"ahler manifold $M$ has positive or
non-negative holomorphic bisectional curvature.

The following is the direct result of Proposition 5.1 and Proposition 3.6.

COROLLARY 6.1. Let $M$ be an $n$-dimensional Kahler manifold with non-
negative (resP. Positive) holomorphic bisectimal curvature and let $D$ be a pseudo-
cmvex open subset of order $n-q$ in M. Then there exists an open subset $\Delta$ of
$M$ such that $\partial D\subset\Delta$ and the function $-\log d_{\partial D}$ is pseudoconvex(resp. strongly
pseudoconvex) of order $n-q$ on $D\cap\Delta$ .

If the boundary $\partial D$ of an open subset $D$ of $M$ is a real submanifold of class
$C^{2}$ in $M$ (whose irreducible components may have different dimensions from
each other), there exists an open subset $\Gamma$ of $M$ such that $\partial D\subset\Gamma$ and the
boundary distance function $d_{\partial D}$ is of class $C^{2}$ on $D\cap\Gamma$ (see Matsumoto [14]).

Using this fact and Proposition6.1, we first obtain the following result on the
$q$-convexity of domains.

THEOREM 6.2. Let $M$ be an $n$ -dimensional Kahler manifold with nm-negative
(resP. Positive) holomorPhic bisectimal curvature and let $D$ be a pseudocmvex
open subset of order $n-q$ in M. Moreover, suppose that $D\subset\subset M$ and the boundary
$\partial D$ is a real submanifold of class $C^{2}$ in M. Then $D$ is weakly (resp. strmgly)

q-convex.

REMARK 6.3. The $n$ -dimensional complex projective space $P^{n}(C)$ has posi-
tive holomorphic bisectional curvature with respect to the Fubini-Study metric
on $P^{n}(C)$ . Theorem 6.2 is an extension of the Barth theorem ([2], Satz 3)

asserting that the complement $P^{n}(C)\backslash S$ is strongly $q$-convex, if $S$ is a complex
submanifold (and hence an algebraic submanifold) of $P^{n}(C)$ and if each con-
nected component of $S$ has at least dimension $n-q$ (cf. Example 2.4). When
$M=P^{n}(C)$ , Theorem 6.2 is the result of Schwarz ([20], Theorem 6.4) and
Matsumoto ([15], Corollary of Theorem 2). As another extension of the Barth
theorem, Schneider [19] has also showed the $q$-convexity of $M\backslash S$ under the
assumption that $M$ and $S$ are compact and $S$ has positive normal bundle in $M$.

In what follows, we consider only the case where $M$ has positive holo-
morphic bisectional curvature. Then we can extend Proposition 5.1 to the
following global result.

PROPOSITION 6.4. Let $M$ be an $n$ -dimensional Kahler manifold with positive
holomorphic bisectional curvature and let $D$ be a pseudoconvex open subset of
order $n-q$ in M. Moreover, suppose either that $M$ is complete or that $D\subset\subset M$.



Boundary distance functions and q-convexity 103

Then we have the estimate
$W_{q}[- \log d_{\partial D}]\geqq\frac{\Theta}{12}$ whole on $D$ ,

where $\Theta=\Theta(P),$ $P\in D$ , is the infimum of the holomorphic bisectimal curvatures
on $B(P, d_{\partial D}(P))$ .

PROOF. By Corollary 6.1, there exists an open subset $\Delta$ of $M$ such that
$\partial D\subset\Delta$ and $-\log d_{\partial D}$ is strongly pseudoconvex of order $n-q$ on $D\cap\Delta$ . Hence,
by the Bungart approximation theorem (Theorem 1.6), we can find a q-convex
function $\psi$ with corners on $D\cap\Delta$ such that $|-\log d_{\partial D}-\psi|<1$ on $D\cap\Delta$ . The
Proposition thus follows from Lemma 5.2. $\square$

COROLLARY 6.5. Uuder the same assumption as in Proposition 6.4, the func-
tion $-\log d_{\partial D}$ is strongly pseudoconvex of order $n-q$ whole on $D$ .

Using the approximation theorems of Bungart and Diederich-Fornaess, we
obtain from Corollary 6.5 the following theorem and its corollary on the
$q$-completeness (with corners) of domains.

THEOREM 6.6. Let $M$ be an $n$ -dimensimal Kahler manifold with Posrtive
holomorphic bisectimai curvature and let $D$ be a relatively comPact, pseudoconvex
open subset of order $n-q$ in M. Then $D$ is $q$-comPlete with corners.

COROLLARY 6.7. Under the same assumption as in Theorem 6.6, $D$ is
q-complete, where $\tilde{q}=n-[n/q]+1$ .

When $M=P^{n}(C)$ , Theorem 6.6 is particularly stated as follows (see Prop-
osition 2.2).

COROLLARY 6.8. Let $D$ be an open subset of $P^{n}(C)$ . If $D$ is locally
$q$-comPlete with corners in $P^{n}(C)$ (in the sense of Petemell [16]), then $D$ is
globally $q$-comPlete with corners and hence globally q-complete, where $\tilde{q}=$

$n-[n/q]+1$ . In Particular, if $S$ is an algebraic subset of $P^{n}(C)$ and if each
irreducible compment of $S$ has at least dimension $n-q$ , then $P^{n}(C)\backslash S$ is globally
q-complete with corners and hence globally $\tilde{q}$-complete.

REMARK 6.9. In Corollary 6.8, the case where $S$ is non-singular has been
showed by Schwarz ([20], Theorem 6.5). When $S$ is non-singular, the set
$P^{n}(C)\backslash S$ is further $\min\{2q-1,\tilde{q}\}$ -complete (see Peternell [17]).

7. Pseudoconvex domains of general order in Stein manifolds.

Finally in \S 7, we consider the case where a K\"ahler manifold $M$ admits a
(strongly) 1-convex function. Then we can extend Proposition 5.1 to the
following global result.
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PROPOSITION 7.1. Let $M$ be an $n$ -dimensional Kahler manifold and let $D$

be a pseudocmvex oPen subset of order $n-q$ in M. Suppose that there exists
an open subset $\Delta$ of $M$ such that $\partial D\subset\Delta$ and $\Delta$ admits $a$ 1-convex function.
Moreover, suppose either that $M$ is complete or that $D\Subset M$. Then we have the
estimate

$W_{q}[- \log d_{\partial D}]\geqq\frac{1}{4}\min\{\frac{\Theta}{3},$ $\Theta\}$ whole on $D$ ,

where $e_{=}e(P),$ $P\in D$ , is the infimum of the holomorphic bisectional curvatures
on $B(P, d_{\partial D}(P))$ .

PROOF. Shrinking $\Delta$ if necessary, we may assume that there exists a
1-convex function $h$ which is defined on an open subset including a. Moreover,
we may by Proposition 5.1 assume that the estimate in Proposition 7.1 holds
on $D\cap\Delta$ .

Let $O$ be a fixed point of $\partial D$ and put $D^{(r)}=D\cap B(O, r)$ for $r>0$ . Then,
by the assumption of the proposition, $D^{(r)}\subset\subset M$ for each $r>0$ . We put

$\alpha^{(r)}=\frac{1}{4}\inf\{\frac{\Theta}{3}(P),$ $\Theta(P):P\in D^{(r)}\cap\Delta\}$ ,

$\beta^{(r)}=\inf\{W_{1}[h](P):P\in D^{(r)}\cap\Delta\}$ .

Then $\alpha^{(r)}\in R$ and $\beta^{(\gamma)}>0$ . If we choose $A^{(\gamma)}>0$ so that $\alpha^{(r)}+A^{(r)}\beta^{(r)}>1$ ,
we have $W_{q}[-\log d_{\partial D}+A^{(r)}h]>1$ on $D^{(r)}\cap\Delta$ . By Proposition 3.6, the function
$-\log d_{\partial D}+A^{(\gamma)}h$ is strongly pseudoconvex of order $n-q$ on $D^{(r)}\cap\Delta$ . Hence,
by the Bungart approximation theorem (Theorem 1.6), we can find a q-convex
function $\psi^{(r)}$ with corners on $D^{(r)}\cap\Delta$ such that

$|$ – $\log d_{\partial D}+A^{(\gamma)}h-\psi^{(r)}|<1$ on $D^{(7)}\cap\Delta$ .

If we choose $C^{(\gamma)}>0$ so that $C^{(r)}>1+A^{(r)}|h|$ on $D^{(r)}\cap\Delta$ , then $|$ – $\log d_{\partial D}-\psi^{(\gamma)}|$

$<C^{(\gamma)}$ on $D^{(r)}\cap\Delta$ . The proposition thus follows from Lemma 5.2. $\square$

In what follows, let $M$ be a Stein manifold. Then $M$ admits a complete
K\"ahler metric.

PROPOSITION 7.2. Let $M$ be an $n$ -dimensional Stein manifold and let $D$ be
a pseudoconvex open subset of order $n-q$ in M. Let $d_{\partial D}$ be a boundary distance
function of $D$ induced by a complete Kahler metric on M. Then there exists
$a$ 1-convex function $h$ on $M$ such that the function $-\log d_{\partial D}+h$ is strongly
pseudocmvex of order $n-qmD$ .

PROOF. Let $f$ be a 1-convex exhaustion function of $M$. For eacb $v\in N$

define the set D. by $D_{V}=\{P\in D:f(P)<v\}$ and denote by $\alpha_{\nu}$ the infimum of
the function $\{\Theta/3, \Theta\}/4$ on $D_{\nu}$ , where $\Theta=\Theta(P),$ $P\in D$ , is the infimum of the
holomorphic bisectional curvatures on $B(P, d_{\partial D}(P))$ . Then, by Proposition 7.1,
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we have $W_{q}[-\log d_{\partial D}]\geqq\alpha_{V}$ on $D_{V}$ . Let $\beta_{\nu}$ be tbe infimum of the function
$W_{1}[f]$ on D.. Then $\beta_{\nu}>0$ because $D_{\nu}\Subset M$.

Take a sequence $\{C_{\nu}\}_{\nu\in N}$ such that $0<C_{\nu}<C_{\nu+1}$ and $a.+C_{V}\beta.>l$ for $\nu\in N$.
Choose a $C^{2}$ function $u:Rarrow(1, +\infty)$ such that $u’>C_{1}>0,$ $u’’>0$ and $u’(\nu)\geqq C_{\nu+i}$

for $\nu\in N$ and put $h=u\circ f$ . Then $h$ is 1-convex on $M$. On the other hand,
since $W_{1}[h]\geqq C_{\nu}\beta_{\nu}$ on $D_{\nu}\backslash D_{\nu-1}$ , we have $W_{q}[-\log d_{\partial D}+h]>1$ on $D_{\nu}\backslash D_{\nu-1}$ for
each $\nu\in N$ and hence on $D$ . Therefore, $-\log d_{\partial D}+h$ is strongly pseudoconvex
of order $n-q$ on D. $\square$

Using the approximation theorems of Bungart and Diederich-Fornaess, we
obtain from Proposition 7.2 the following theorem and its corollary.

THEOREM 7.3. Let $M$ be an $n$ -dimensional Stein manifold and let $D$ be a
pseudoconvex open subset of order $n-q$ in M. Then $D$ is q-complete with comers.

COROLLARY 7.4. Under the same assumption as in Theorem 7.3, $D$ is $\tilde{q}-$

complete, where $\tilde{q}=n-[n/q]+1$ .

REMARK 7.5. Using the Bungart approximation theorem, we can also obtain
Theorem 7.3 directly from the result of Peternell ([16], Theorem 2) or that of
Matsumoto ([13], Theorem 1).

If the boundary $\partial D$ of an open subset $D$ of $M$ is a real submanifold of class
$C^{2}$ in $M$ (whos $e$ irreducible components may have different dimensions from
each other), we further obtain the following.

THEOREM 7.6. Let $M$ be an $n$ -dimensional Stein manifold and let $D$ be a
pseudoconvex open subset of order $n-q$ in M. Moreover, suppose that the
boundary $\partial D$ is a real submanifold of class $C^{2}$ in M. Then $D$ is $q$-complete.

PROOF. By Proposition 7.2, we can find a 1-convex function $h$ on $M$ such
that $\varphi=-\log d_{\partial D}+h$ is strongly pseudoconvex of order $n-q$ on $D$ , where $d_{\partial D}$

is a boundary distance function of $D$ induced by a complete K\"ahler metric on
$M$. Let $\Delta$ be an open subset of $M$ such that $\partial D\subset\Delta$ and $d_{\partial D}$ is of class $C^{2}$ on
$D\cap\Delta$ . Then $\varphi$ is (strongly) $q$-convex on $D\cap\Delta$ .

Choose a 1-convex exhaustion function $f$ of $M$ so that $f>\varphi$ on $D\backslash \Delta$ and
put $\Phi=\max\{\varphi, f\}$ on $D$ . Since $\Phi\equiv f$ on $D\backslash \Delta$ and since $\varphi$ is $q$-convex on
$D\cap\Delta$ , we can, by the Diederich-Fornaess approximation theorem (cf. [4], \S 5),
find a $q$-convex function $\Psi$ (without corners) on $D$ such that $|\Phi-\Psi|<1$ on $D$ .
Then the function $\Psi$ is further an exhaustion function of $D$ , which proves the
theorem. $\square$

REMARK 7.7. When $\partial D$ is a real bypersurface of class $C^{2}$ in $M$, Theorem
7.6 has been showed by Suria [23] and Eastwood-Suria [5] (cf. Example 2.3).
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Theorem 7.6 is an extension of the result. Schwarz ([20], Corollary 6.3) has
also proved Theorem 7.6 in another way.
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