Boundary distance functions and q-convexity of pseudoconvex domains of general order in Kähler manifolds

By Kazuko Matsumoto

(Received Mar. 18, 1994)

Introduction.

Let M be an n-dimensional Kähler manifold with C^{∞} Kähler metric G, let D be an open subset of M, and let $d_{\partial D}$ be the boundary distance function of D induced by the metric G.

When D is pseudoconvex (in the usual sense) in M, the plurisubharmonicity of the function $-\log d_{\partial D}$ is closely related to the holomorphic bisectional curvature of M. Takeuchi [26] first showed that, if D is a pseudoconvex open subset of the complex projective space $P^{n}(\boldsymbol{C})$ and if $d_{\partial D}$ is the boundary distance function of D with respect to the Fubini-Study metric on $P^{n}(\boldsymbol{C})$, the function $-\log d_{\partial D}$ is strongly plurisubharmonic on D. After the works of Takeuchi [27], Elencwajg [6], Suzuki [24] and others, Greene-Wu [11] differential-geometrically gave an estimate from below for 'the modulus of plurisubharmonicity' of the function $-\log d_{\partial D}$, and showed that a relatively compact, pseudoconvex open subset D of M is 1-complete (and hence Stein) if M has positive holomorphic bisectional curvature.

In this paper, we shall extend the result to the case where D is pseudoconvex of order $n-q$ in M and show that D is q-convex or q-complete (with corners) in several cases.

An open subset D of M is said to be pseudoconvex of order $n-q, 1 \leqq q \leqq n$, in M if, roughly speaking, the complement $M \backslash D$ has the same continuity as an analytic set of pure dimension $n-q$. Pseudoconvex open subsets in the usual sense are pseudoconvex of order $n-1$. If $D \subset M$ is weakly q-convex, then D is pseudoconvex of order $n-q$ in M. However, when $2 \leqq q \leqq n-1$, the converse is not valid even if $D \subset C^{n}$ (see Diederich-Fornaess [4] and Matsumoto [13]). By Fujita [8], an open subset D of \boldsymbol{C}^{n} is pseudoconvex of order $n-q$ in \boldsymbol{C}^{n}, if and only if D has an exhaustion function which is pseudoconvex of order $n-q$ on D. Therefore, by the approximation theorem of Bungart [3], an open subset D of M is pseudoconvex of order $n-q$ in M, if and only if D is locally q-complete with corners in M in the sense of Peternell [16] (for the precise, see $\S \S 1$ and 2).

The main results of this paper are as follows.
At first, let M be an n-dimensional Kähler manifold with positive holomorphic bisectional curvature and let D be a relatively compact, pseudoconvex open subset of order $n-q$ in M. Then the function $-\log d_{\partial D}$ is strongly pseudoconvex of order $n-q$ whole on D and particularly q-convex on the open subset of D (if it exists) where $d_{\partial D}$ is of class C^{2} (see Corollary 6.5). Therefore, by the approximation theorems of Bungart and Diederich-Fornaess, the set D is q-complete with corners and hence \tilde{q}-complete, where $\tilde{q}=n-[n / q]+1$ and [] denotes the Gauss symbol (see Theorem 6.6). Moreover, if the boundary ∂D is also a real submanifold of class C^{2} in M, then D is q-convex (see Theorem 6.2).

Secondly, let M be an n-dimensional Stein manifold and let D be a pseudoconvex open subset of order $n-q$ in M. Let $d_{\partial D}$ be a boundary distance function of D induced by a complete Kähler metric on M. Then there exists a 1 -convex function h on M such that the function $-\log d_{\partial D}+h$ is strongly pseudoconvex of order $n-q$ on D (see Proposition 7.2). Therefore, the set D is q-complete with corners and hence \tilde{q}-complete (see Theorem 7.3). Moreover, if the boundary ∂D is also a real submanifold of class C^{2} in M, then D is q-complete (see Theorem 7.6).

The above results are extensions (and different proofs) of that of Barth [2] and that of Suria [23] (or Eastwood-Suria [5]), respectively.

Acknowledgement. The author would like to express her sincere tha $\urcorner \mathrm{ks}$ to Prof. O. Fujita and Prof. A. Takeuchi for their valuable advice, guidance and encouragement.

1. Pseudoconvex functions of general order and q-convex functions with corners.

Throughout this paper, let D be a paracompact complex manifold of pure dimension n and q an integer with $1 \leqq q \leqq n$. After § 4 we consider only the case where D is an open subset of another connected Kähler manifold M, but we do not require D to be Kählerian in the first three sections.

A function $\varphi: D \rightarrow \boldsymbol{R}$ is said to be q-convex (resp. weakly q-convex), if φ is of class C^{2} on D and if its Levi form $\partial \bar{\partial} \varphi$ has at least $n-q+1$ positive (resp. nonnegative) eigenvalues on the holomorphic tangent space $T_{P}(D)$ for each $P \in D$ (see Andreotti-Grauert [1]). As extensions of the notion of weakly q-convex functions or (upper semi-continuous) plurisubharmonic functions, Hunt-Murray [12] and Fujita [8] introduced that of ($q-1$)-plurisubharmonic functions and that of pseudoconvex functions of order $n-q$, respectively. Further, Fujita [9] proved that they are equivalent. For the original definitions and fundamental properties of them, see Fujita [8], Hunt-Murray [12] and Slodkowski [21], [22].

In this paper we shall give the definition as follows.
Definition 1.1. An upper semi-continuous function $\varphi: D \rightarrow \boldsymbol{R} \cup\{-\infty\}$ is said to be pseudoconvex of order $n-q$ at $P \in D$ if, for each weakly $(n-q+1)$-convex function f defined near P, one can find a neighborhood $U(f)$ of P, so that

$$
(\varphi+f)(P) \leqq \max \{(\varphi+f)(Q): Q \in \partial \Delta\}
$$

for every domain Δ with $P \in \Delta$ and $\Delta \Subset U(f)$. A function $\varphi: D \rightarrow \boldsymbol{R} \cup\{-\infty\}$ is said to be pseudoconvex of order $n-q$ on D, if φ is upper semi-continuous on D and if φ is pseudoconvex of order $n-q$ at each $P \in D$.

Using the criterion of ($q-1$)-plurisubharmonicity due to Slodkowski ([21], Proposition 1.1, (iii)), we can immediately prove that φ is pseudoconvex of order $n-q$ on D in the sense of Definition 1.1, if and only if φ is $(q-1)$-plurisubharmonic on D in the sense of Hunt-Murray [12]. Therefore, φ is pseudoconvex of order $n-q$ on D in the sense of Definition 1.1 , if and only if so is φ in the sense of Fujita [8].

Plurisubharmonic functions in the usual sense are pseudoconvex functions of order $n-1$.

If f is weakly $(n-q+1)$-convex and if h is weakly 1 -convex, then $f+h$ is weakly ($n-q+1$)-convex. Using this fact, we can easily verify that if φ is pseudoconvex of order $n-q$ at P and if h is weakly 1 -convex near P, then $\varphi+h$ is pseudoconvex of order $n-q$ at P.

Lemma 1.2. An upper semi-continuous function $\varphi: D \rightarrow \boldsymbol{R} \cup\{-\infty\}$ is pseudoconvex of order $n-q$ at $P \in D$, if there exists an $(n-q+1)$-dimensional complex submanifold L defined near P and containing P such that the restriction $\left.\varphi\right|_{L}$ is pseudoconvex of order $n-q$ at $P \in L$ (and particularly plurisubharmonic near $P \in L$).

Proof. Let f be a weakly $(n-q+1)$-convex function defined near $P \in D$. Then $\left.f\right|_{L}$ is also weakly $(n-q+1)$-convex near $P \in L$. If $\left.\varphi\right|_{L}$ is pseudoconvex of order $n-q$ at $P \in L$, we can by definition find a neighborhood $U^{\prime}=U^{\prime}\left(\left.f\right|_{L}\right)$ $(\subset L)$ of $P \in L$, so that

$$
\left(\left.\varphi\right|_{L}+\left.f\right|_{L}\right)(P) \leqq \max \left\{\left(\left.\varphi\right|_{L}+\left.f\right|_{L}\right)(Q): Q \in \partial \Delta^{\prime}\right\}
$$

for every domain Δ^{\prime} with $P \in \Delta^{\prime}$ and $\Delta^{\prime} \Subset U^{\prime}$. Choose a neighborhood $U=U(f)$ $(\subset D)$ of $P \in D$ so that $U \cap L \subset U^{\prime}$. Let Δ be a domain with $P \in \Delta$ and $\Delta \Subset U$, and denote by Δ^{\prime} the connected component of $\Delta \cap L$ containing P. Then $P \in \Delta^{\prime}$ and $\Delta^{\prime} \Subset U^{\prime}$. Moreover, we have

$$
\begin{aligned}
(\varphi+f)(P) & \leqq \max \left\{\left(\left.\varphi\right|_{L}+\left.f\right|_{L}\right)(Q): Q \in \partial \Delta^{\prime}\right\} \\
& \leqq \max \{(\varphi+f)(Q): Q \in \partial \Delta\} .
\end{aligned}
$$

This implies that φ is pseudoconvex of order $n-q$ at $P \in D$.
A C^{2} function φ is pseudoconvex of order $n-q$ on D, if and only if φ is weakly q-convex on D (see Fujita [8], Proposition 8). It is well-known that every (upper semi-continuous) plurisubharmonic function defined on an open subset of \boldsymbol{C}^{n} can be approximated by 1-convex functions. However, pseudoconvex functions of order $n-q$ cannot be approximated by q-convex functions in general. We shall next recall the approximation theorems of DiederichFornaess and Bungart.

Definition 1.3 (Diederich-Fornaess [4]). A function $\varphi: D \rightarrow \boldsymbol{R}$ is said to be q-convex with corners on D if, for each $P \in D$, there exist a neighborhood U of P and (strongly) q-convex functions $\varphi_{1}, \varphi_{2}, \cdots, \varphi_{t(P)}$ on U such that $\left.\varphi\right|_{U}=$ $\max \left\{\varphi_{1}, \varphi_{2}, \cdots, \varphi_{t(P)}\right\}$.

Definition 1.4 (cf. Bungart [3]). A function $\varphi: D \rightarrow \boldsymbol{R} \cup\{-\infty\}$ is said to be strongly pseudoconvex of order $n-q$ on D (or strictly ($q-1$)-plurisubharmonic on D in the sense of Bungart [3]) if, for each $P \in D$, there exist a neighborhood U of P and a (strongly) 1-convex function h on U such that $\varphi-h$ is pseudoconvex of order $n-q$ on U.

It is clear that every q-convex function with corners is strongly pseudoconvex of order $n-q$. Conversely, if φ is strongly pseudoconvex of order $n-q$ and if φ is piecewise C^{2}, that is, φ is locally a maximum of a finite number of C^{2} functions, then φ is q-convex with corners (see Matsumoto [13], p. 73).

Diederich-Fornaess showed the following approximation theorem.
Theorem 1.5 ([4], Theorem 1). Let D be an n-dimensional paracompact complex manifold and φ a q-convex function with corners on D. Then, for any continuous function $\varepsilon>0$ on D, there exists $a \tilde{q}$-convex function ψ on D such that $|\varphi-\psi|<\varepsilon$ on D, where $\tilde{q}=n-[n / q]+1$ and [] denotes the Gauss symbol.

Diederich-Fornaess ([4], Theorem 2) further showed that the number \tilde{q} in Theorem 1.5 is best possible for any pair (n, q). Note that $\tilde{q}>q$ when $2 \leqq q \leqq n-1$.

On the other hand, Bungart showed the following approximation theorem.
Theorem 1.6 ([3], Theorem 5.3). Let D be an n-dimensional paracompact complex manifold and φ a continuous strongly pseudoconvex function of order $n-q$ on D. Then, for any continuous function $\varepsilon>0$ on D, there exists a q-convex function ψ with corners on D such that $|\varphi-\psi|<\varepsilon$ on D.

Remark 1.7. Bungart [3] asserted Theorem 1.6 only when $D \subset \boldsymbol{C}^{n}$. In view of his proof, the theorem remains valid when D is a paracompact complex manifold.

Remark 1.8. By the definition in this paper, a q-convex function with corners is piecewise C^{2}. Since every C^{2} function can be locally approximated by C^{∞} functions with respect to (Whitney) C^{2} topology, every q-convex function with corners defined on a paracompact complex manifold can be globally approximated by such piecewise C^{∞} functions. Therefore, we can choose the q-convex function ψ with corners in Theorem 1.6 so that it is also piecewise C^{∞}.

2. Pseudoconvex domains of general order and q-convex domains with corners.

Let D be a complex manifold and $\varphi: D \rightarrow \boldsymbol{R} \cup\{-\infty\}$ an upper semi-continuous function. Then φ is said to be an exhaustion function of D if $\{P \in D: \varphi(P)<A\} \Subset D$ for every $A \in \boldsymbol{R}$.

A complex manifold D is said to be q-convex (resp. q-convex with corners) if D has a continuous exhaustion function which is q-convex (resp. q-convex with corners) outside some compact subset of D. Further, D is said to be q-complete (resp. q-complete with corners) if D has an exhaustion function which is q-convex (resp. q-convex with corners) whole on D (see Andreotti-Grauert [1] and Diederich-Fornaess [4]).

It is clear that D is q-convex (resp. q-complete) with corners if D is q-convex (resp. q-complete). When $2 \leqq q \leqq n-1$, the converse is not valid even if $D \subset \boldsymbol{C}^{n}$ (see Diederich-Fornaess [4] and Matsumoto [13]). By the Diederich-Fornaess approximation theorem (Theorem 1.5), an n-dimensional complex manifold D is \tilde{q}-convex (resp. \tilde{q}-complete) if D is q-convex (resp. q-complete) with corners, where $\tilde{q}=n-[n / q]+1$. Moreover, by the Bungart approximation theorem (Theorem 1.6), D is q-complete with corners, if and only if D has an exhaustion function which is strongly pseudoconvex of order $n-q$ on D.

In what follows, let M be a connected, paracompact complex manifold of dimension n.

An open subset D of M is said to be pseudoconvex of order $n-q$ in M, if the complement $M \backslash D$ satisfies 'the Hartogs continuity principle of dimension $n-q$ ' (see Tadokoro [25] for the precise definition; and see also Riemenschneider [18] and Fujita [8]).

The pseudoconvexity of order $n-q$ of an open subset D in M is a local property of the boundary $\partial D(\subset M)$ of D. More precisely, D is pseudoconvex of order $n-q$ in M if, for each $Q \in \partial D$, there exists a neighborhood $V(\subset M)$ of Q such that $D \cap V$ is pseudoconvex of order $n-q$ in V.

When $M=\boldsymbol{C}^{n}$, Fujita showed the following.
Theorem 2.1 ([8], Théorème 2). For an open subset D of \boldsymbol{C}^{n}, the following conditions are equivalent:
(a) D is pseudoconvex of order $n-q$ in \boldsymbol{C}^{n}.
(b) D has an exhaustion function which is pseudoconvex of order $n-q$ on D.
(c) $-\log d_{\partial D}(z)$ is p seudoconvex of order $n-q$ on D, where $d_{\partial D}(z)=\inf \{\|z-w\|$: $w \in \partial D\}$ is the Euclidean boundary distance of D at $z \in D$.

Using Theorem 2.1 and the Bungart approximation theorem Theorem 1.6, we can easily prove the following.

Proposition 2.2. An open subset D of \boldsymbol{C}^{n} is pseudoconvex of order $n-q$ in \boldsymbol{C}^{n}, if and only if D is q-complete with corners. Therefore, an open subset D of an n-dimensional complex manifold M is pseudoconvex of order $n-q$ in M, if and only if D is locally q-complete with corners in M in the sense of Peternell [16].

Now we shall give some examples of pseudoconvex open subsets of order $n-q$.

Example 2.3. Let D be an open subset of an n-dimensional complex manifold M and suppose that the boundary ∂D is a real hypersurface of class C^{2} in M, that is, there exist, for each $Q \in \partial D$, a neighborhood V of Q and a C^{2} function $\rho: V \rightarrow \boldsymbol{R}$ such that $d \rho(Q) \neq 0$ and $D \cap V=\{P \in V: \rho(P)<0\}$. Then D is pseudoconvex of order $n-q$ in M, if and only if the Levi form $\partial \bar{\partial} \rho$ has at least $n-q$ non-negative eigenvalues on $T_{Q}^{\prime}(\partial D)$ for each $Q \in \partial D$ and for each defining function ρ of D near Q, where $T_{Q}^{\prime}(\partial D)\left(\subset T_{Q}(\partial D)\right)$ is the holomorphic tangent space of the real hypersurface ∂D at Q. (Eastwood-Suria [5] and Suria [23] called such a subset D a ($q-1$)-pseudoconvex open subset with C^{2} boundary.)

Example 2.4. Let S be an analytic subset of an n-dimensional complex manifold M and denote by k the minimum of dimensions of irreducible components of S. Then the complement $M \backslash S$ is pseudoconvex of order $n-q$ in M if and only if $k \geqq n-q$. Moreover, an open subset D of M is pseudoconvex of order $n-q$ in M if, for each $Q \in \partial D$, there exists a purely ($n-q$)-dimensional analytic subset S defined near Q such that $Q \in S$ and $S \subset M \backslash D$.

In this paper, we introduce the following condition $\left(\mathrm{C}_{q}\right)$.
Definition 2.5. We say that an open subset D of an n-dimensional complex manifold M satisfies the condition $\left(\mathrm{C}_{q}\right)$ in M, if
$\left(\mathrm{C}_{q}\right)$ For each $Q \in \partial D$, there exists an $(n-q)$-dimensional complex submanifold defined near Q such that $Q \in S$ and $S \subset M \backslash D$.
For the sake of simplicity, we agree that M itself and the empty set satisfy the condition $\left(\mathrm{C}_{q}\right)$ in M.

Every open subset with the condition $\left(\mathrm{C}_{q}\right)$ in M is pseudoconvex of order $n-q$ in M. If S is a complex submanifold of M and if each connected component of S has at least dimension $n-q$, the complement $M \backslash S$ obviously satisfies the
condition $\left(\mathrm{C}_{q}\right)$ in M.
Lemma 2.6. Let φ be a q-convex function with corners defined on a complex manifold D and suppose that φ is also piecewise C^{∞}. Then there exists a subset A of Lebesgue measure zero in \boldsymbol{R} such that the set $\{P \in D: \varphi(P)<A\}$ satisfies the condition $\left(\mathrm{C}_{q}\right)$ in D for every $A \in \boldsymbol{R} \backslash \Lambda$.

Proof. Let U be an open subset of D and $\psi: U \rightarrow \boldsymbol{R}$ a q-convex function of class C^{∞}. For each $A \in \boldsymbol{R}$, define the set U_{A} by $U_{A}=\{P \in U: \psi(P)<A\}$. If the value A of ψ is not critical and if the boundary $\partial U_{A}(\subset U)$ of U_{A} is not empty, then ∂U_{A} is a real hypersurface of class C^{∞} in U and so U_{A} satisfies the condition $\left(\mathrm{C}_{q}\right)$ in U. On the other hand, the Sard theorem asserts that the set of the critical values of ψ is of Lebesgue measure zero in \boldsymbol{R}, if $\psi: U \rightarrow \boldsymbol{R}$ is of class C^{∞} (at least of class $C^{2 n}$). The lemma follows from the two facts.

Using Lemma 2.6 we can easily prove the following.
Lemma 2.7. If a complex manifold D is q-convex with corners, there exists a sequence $\left\{D_{\nu}\right\}_{\nu \in N}$ of open subsets with the condition $\left(\mathrm{C}_{q}\right)$ in D such that $D_{\nu} \Subset D_{\nu+1} \Subset D$ for each $\nu \in \boldsymbol{N}$ and $\bigvee_{\nu=1}^{\infty} D_{\nu}=D$.

3. The definition and some properties of the operator W_{q}.

Throughout $\S 3$, let M be a connected, paracompact complex manifold of dimension n and G a (fixed) Hermitian metric on M. Let D be an open subset of M and q an integer with $1 \leqq q \leqq n$.

Given a continuous function $\varphi: D \rightarrow \boldsymbol{R}$ and a point $P \in D$, the quantity $W[\varphi](P)$ introduced by Takeuchi [26], [27] is very useful to study plurisubharmonic functions defined on Kähler manifolds (see also Elencwaig [6], Suzuki [24] and Greene-Wu [11]). Roughly speaking, the quantity $W[\varphi](P)$ means 'the modulus of plurisubharmonicity' of φ at P. In this section, we shall introduce the quantity $W_{q}[\varphi](P)$ meaning 'the modulus of pseudoconvexity of order $n-q$, of φ at P and give some properties of the operator W_{q} (see Remark 3.5 below for the relation between the operators W and W_{q}).

Definition 3.1. A local coordinate system $\left(z_{1}, \cdots, z_{n}\right)$ around $P \in M$ is said to be normal at P (with respect to G), if

$$
z_{i}(P)=0, \quad G\left(\frac{\partial}{\partial z_{i}}, \frac{\partial}{\partial z_{j}}\right)(P)=\delta_{i j} \quad \text { for } 1 \leqq i, j \leqq n
$$

Every point P of M has a normal coordinate system at P. If local coordinate systems $\left(z_{1}, \cdots, z_{n}\right)$ and $\left(w_{1}, \cdots, w_{n}\right)$ are both normal at P, the transformation matrix $\left(\partial z_{i} / \partial w_{j}\right)$ is unitary at P. Therefore, if a function φ defined
near P is of class C^{2}, all the eigenvalues of the Hermitian matrix $\left(\partial^{2} \varphi / \partial z_{i} \partial \bar{z}_{j}\right)(P)$ coincide those of $\left(\partial^{2} \varphi / \partial w_{i} \partial \bar{w}_{j}\right)(P)$. We shall only call them eigenvalues of the Levi form $\partial \bar{\partial} \varphi$ at P.

Definition 3.2. Let $\varphi: D \rightarrow \boldsymbol{R} \cup\{-\infty\}$ be upper semi-continuous and $P \in D$. Let $z=\left(z_{1}, \cdots, z_{n}\right)$ be a normal coordinate system at P. We define the quantity $W_{q}[\varphi](P)$ as the supremum of $\alpha \in \boldsymbol{R}$ such that $\varphi-\alpha\|z\|^{2}$ is pseudoconvex of order $n-q$ at P, where $\|z\|^{2}=\sum_{i=1}^{n}\left|z_{i}\right|^{2}$. If no such $\alpha \in \boldsymbol{R}$ exists, we put $W_{q}[\varphi](P)=-\infty$.

The following lemma implies that the quantity $W_{q}[\varphi](P)$ is well-defined, that is, it is independent of the choice of a normal coordinate system at P.

Lemma 3.3. Let $\varphi: D \rightarrow \boldsymbol{R} \cup\{-\infty\}$ be upper semi-continuous and $P \in D$. Suppose that $z=\left(z_{1}, \cdots, z_{n}\right)$ and $w=\left(w_{1}, \cdots, w_{n}\right)$ are both normal coordinate systems at P. If $\varphi-\alpha\|z\|^{2}$ is pseudoconvex of order $n-q$ at P, so is $\varphi-\beta\|w\|^{2}$ for every $\beta<\alpha$.

Proof. We put $h=\alpha\|z\|^{2}-\beta\|w\|^{2}$. Then h is 1 -convex near P because all the eigenvalues of $\partial \bar{\partial} h$ are equal to $\alpha-\beta(>0)$ at P. Therefore, $\varphi-\beta\|w\|^{2}=$ $\varphi-\alpha\|z\|^{2}+h$ is pseudoconvex of order $n-q$ at P if so is $\varphi-\alpha\|z\|^{2}$.

In particular, Lemma 3.3 implies that φ is pseudoconvex of order $n-q$ at P if $W_{q}[\varphi](P)>0$.

Using Lemma 3.3, we can immediately prove the following.
Lemma 3.4. Let $\varphi: D \rightarrow \boldsymbol{R} \cup\{-\infty\}$ be upper semi-continuous, $P \in D$, and $\alpha \in \boldsymbol{R}$. Then the following conditions are equivalent:
(a) $W_{q}[\varphi](P) \geqq \alpha$.
(b) There exists a normal coordinate system $z=\left(z_{1}, \cdots, z_{n}\right)$ at P such that $\varphi-\beta\|z\|^{2}$ is pseudoconvex of order $n-q$ at P for every $\beta<\alpha$.
(c) $\varphi-\beta\|z\|^{2}$ is pseudoconvex of order $n-q$ at P for every normal coordinate system $z=\left(z_{1}, \cdots, z_{n}\right)$ at P and for every $\beta<\alpha$.

Let $\varphi: D \rightarrow \boldsymbol{R}$ be of class C^{2} and $P \in D$. Denote all the eigenvalues of $\partial \bar{\partial} \varphi$ at P by $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$, where $\alpha_{1} \geqq \alpha_{2} \geqq \cdots \geqq \alpha_{n}$. Then we have $W_{q}[\varphi](P)=\alpha_{n-q+1}$. Moreover, $W_{q}[\varphi]: D \rightarrow \boldsymbol{R}$ is continuous if φ is of class C^{2}. When φ is not of class C^{2}, the function $W_{q}[\varphi]$ is not continuous in general.

REMARK 3.5. If W denotes the operator introduced by Takeuchi, then $W[\varphi] \equiv 4 W_{1}[\varphi]$ for every C^{2} function φ (see Takeuchi [27], p. 335). The author does not know whether the operators W and $4 W_{1}$ exactly coincide or not.

A C^{2} function $\varphi: D \rightarrow \boldsymbol{R}$ is q-convex (resp. weakly q-convex) on D if and only if $W_{q}[\varphi]>0$ (resp. $W_{q}[\varphi] \geqq 0$) on D. Moreover, we obtain the following.

Proposition 3.6. Let $\varphi: D \rightarrow \boldsymbol{R} \cup\{-\infty\}$ be an upper semi-continuous function. Then
(a) φ is pseudoconvex of order $n-q$ on D if and only if $W_{q}[\varphi] \geqq 0$ on D.
(b) φ is strongly pseudoconvex of order $n-q$ on D if and only if, for each $P \in D$, there exist a neighborhood U of P and a constant $\varepsilon>0$ such that $W_{q}[\varphi] \geqq \varepsilon$ on U.

Proof. The proof of (b) is easy. The necessity of (a) is obvious. To prove the sufficiency of (a), suppose that $W_{q}[\varphi] \geqq 0$ on D and $(U, z), z=\left(z_{1}, \cdots, z_{n}\right)$, is any coordinate neighborhood of D. For each $\nu \in N$, define the function φ_{ν} on U by $\varphi_{\nu}=\varphi+(1 / \nu)\|z\|^{2}$. Then $W_{q}\left[\varphi_{\nu}\right]>0$ on U. This implies that each φ_{ν} is pseudoconvex of order $n-q$ at each point of U and hence on U. Therefore, by Fujita ([8], Proposition 7), the limit φ of the decreasing sequence $\left\{\varphi_{\nu}\right\}_{\nu \in N}$ is pseudoconvex of order $n-q$ on U, which proves the sufficiency of (a).

Proposition 3.7. Let $\varphi_{\nu}: D \rightarrow \boldsymbol{R} \cup\{-\infty\}, \nu \in \boldsymbol{N}$, be upper semi-continuous and let $\alpha: D \rightarrow \boldsymbol{R}$ be continuous. Suppose that $W_{q}\left[\varphi_{\nu}\right] \geqq \alpha$ on D for all $\nu \in \boldsymbol{N}$. If the sequence $\left\{\varphi_{\nu}\right\}_{\nu \in N}$ is decreasing or uniformly convergent on D, then $W_{q}[\varphi] \geqq \alpha$ on D, where $\varphi=\lim _{\nu \rightarrow \infty} \varphi_{\nu}$.

Proof. Let P be a point of D and β a real number with $\beta<\alpha(P)$. Let $(U, z), z=\left(z_{1}, \cdots, z_{n}\right)$, be a normal coordinate neighborhood at P. Choose a neighborhood $V(\subset U)$ of P so that $W_{1}\left[\beta\|z\|^{2}\right]<\alpha$ on V. Then, for each $\nu \in N$, we have $W_{q}\left[\varphi_{\nu}-\beta\|z\|^{2}\right]>0$ on V and so $\varphi_{\nu}-\beta\|z\|^{2}$ is pseudoconvex of order $n-q$ on V. Since the sequence $\left\{\varphi_{\nu}-\beta\|z\|^{2}\right\}_{\nu \in N}$ is decreasing or uniformly convergent on V, it follows by Fujita ([8], Proposition 7) that the limit $\varphi-\beta\|z\|^{2}$ is also pseudoconvex of order $n-q$ on V. Therefore, we have $W_{q}[\varphi](P) \geqq \alpha(P)$ for every $P \in D$.

The following criterion will be used frequently in this paper.
Lemma 3.8. Let φ and ψ be upper semi-continuous functions from D to $\boldsymbol{R} \cup\{-\infty\}$ and P a point of D. If $\varphi(P)=\psi(P)$ and $\varphi \geqq \psi$ on D, then $W_{q}[\varphi](P)$ $\geqq W_{q}[\psi](P)$.

Proof. Let $z=\left(z_{1}, \cdots, z_{n}\right)$ be a normal coordinate system at P and α a real number with $\alpha<W_{q}[\psi](P)$. Then $\psi-\alpha\|z\|^{2}$ is pseudoconvex of order $n-q$ at P. Hence, for each weakly $(n-q+1)$-convex function f defined near P, one can find a neighborhood $U(f)$ of P, so that

$$
\left(\psi-\alpha\|z\|^{2}+f\right)(P) \leqq \max \left\{\left(\psi-\alpha\|z\|^{2}+f\right)(Q): Q \in \partial \Delta\right\}
$$

for every domain Δ with $P \in \Delta$ and $\Delta \Subset U(f)$. If $\varphi(P)=\psi(P)$ and $\varphi \geqq \psi$ on D, the above inequality replaced ψ with φ remains valid. Therefore, $\varphi-\alpha\|z\|^{2}$ is also
pseudoconvex of order $n-q$ at P for every $\alpha<W_{q}[\psi](P)$ and hence we obtain $W_{q}[\varphi](P) \geqq W_{q}[\psi](P)$.

Next, let L be a t-dimensional complex submanifold of $D(\subset M), 1 \leqq t \leqq n$. Then L has the C^{∞} Hermitian metric $\left.G\right|_{L}$ induced by the metric G on M. In exactly the same way as the definition of the operators $W_{q}, 1 \leqq q \leqq n$, on M with respect to the metric G on M, we can define the operators on L with respect to the metric $\left.G\right|_{L}$ on L. We shall denote them by $W_{q}^{(L)}, 1 \leqq q \leqq t$. The results about $W_{q}=W_{q}^{(M)}$ are naturally valid for $W_{q}^{(L)}$.

Lemma 3.9. Let L be a t-dimensional complex submanifold of D. Let $\varphi: L \rightarrow \boldsymbol{R} \cup\{-\infty\}$ be upper semi-continuous, $P \in L$, and $\alpha \in \boldsymbol{R}$. Then the following conditions are equivalent:
(a) $W_{q}^{(L)}[\varphi](P) \geqq \alpha$.
(b) There exists a normal coordinate system $z=\left(z_{1}, \cdots, z_{n}\right)$ at $P \in D$ such that $\varphi-\left.\beta\left(\|z\|^{2}\right)\right|_{L}$ is pseudoconvex of order $t-q$ at $P \in L$ for every $\beta<\alpha$.
(c) $\varphi-\left.\beta\left(\|z\|^{2}\right)\right|_{L}$ is pseudoconvex of order $t-q$ at $P \in L$ for every normal coordinate system $z=\left(z_{1}, \cdots, z_{n}\right)$ at $P \in D$ and for every $\beta<\alpha$.

Proof. If $w=\left(w_{1}, \cdots, w_{n}\right)$ is a normal coordinate system of D at $P \in D$ with respect to the metric G on D and if L is written by $w_{t+1}=w_{t+2}=\cdots=w_{n}$ $=0$ near P, then $w^{\prime}=\left(w_{1}, \cdots, w_{t}\right)$ is a normal coordinate system of L at $P \in L$ with respect to the metric $\left.G\right|_{L}$ on L. Hence it follows from Lemma 3.4 that $W_{q}^{(L)}[\varphi](P) \geqq \alpha$ if and only if $\varphi-\left.\beta\left(\|w\|^{2}\right)\right|_{L}=\varphi-\beta\left\|w^{\prime}\right\|^{2}$ is pseudoconvex of order $t-q$ at $P \in L$ for every $\beta<\alpha$. This implies that $(\mathrm{c}) \Rightarrow(\mathrm{a}) \Rightarrow(\mathrm{b})$.

To prove (b) $\Rightarrow(\mathbf{c})$, suppose that $z=\left(z_{1}, \cdots, z_{n}\right)$ and $w=\left(w_{1}, \cdots, w_{n}\right)$ are both normal coordinate systems of D at $P \in D$. Let β and γ be real numbers with $\beta<\gamma<\alpha$. Then the function $h:=\gamma\|w\|^{2}-\beta\|z\|^{2}$ is 1 -convex near $P \in D$ and so the restriction $\left.h\right|_{L}$ is also 1-convex near $P \in L$. Therefore, if $\varphi-\left.\gamma\left(\|w\|^{2}\right)\right|_{L}$ is pseudoconvex of order $t-q$ at $P \in L$, so is $\varphi-\left.\beta\left(\|z\|^{2}\right)\right|_{L}=\varphi-\left.\gamma\left(\|w\|^{2}\right)\right|_{L}+\left.h\right|_{L}$. This implies that (b) $\Rightarrow(\mathrm{c})$.

Lemma 3.10. Let $\varphi: D \rightarrow \boldsymbol{R} \cup\{-\infty\}$ be upper semi-continuous and $P \in D$. Then $W_{q}[\varphi](P) \geqq \alpha$, if there exists an $(n-q+1)$-dimensional complex submanifold L defined near P such that $P \in L$ and $W_{1}^{(L)}\left[\left.\varphi\right|_{L}\right](P) \geqq \alpha$.

Proof. Let $z=\left(z_{1}, \cdots, z_{n}\right)$ be a normal coordinate system of D at $P \in D$ and β a real number with $\beta<\alpha$. Since $W_{1}^{(L)}\left[\left.\varphi\right|_{L}\right](P) \geqq \alpha$, it follows from Lemma 3.9 that $\left.\left(\varphi-\beta\|z\|^{2}\right)\right|_{L}=\left.\varphi\right|_{L}-\left.\beta\left(\|z\|^{2}\right)\right|_{L}$ is pseudoconvex of order $n-q$ $(=(n-q+1)-1)$ at $P \in L$. Hence, by Lemma 1.2, $\varphi-\beta\|z\|^{2}$ is pseudoconvex of order $n-q$ at $P \in D$ for every $\beta<\alpha$. This means that $W_{q}[\varphi](P) \geqq \alpha$.

Lemma 3.11. Let $\varphi: D \rightarrow \boldsymbol{R} \cup\{-\infty\}$ be upper semi-continuous and $P \in D$. Then $W_{1}[\varphi](P) \geqq \alpha$ if, for every 1-dimensional C-linear subspace E_{P} of $T_{P}(D)$, there
exists a 1-dimensional complex submanifold E of D defined near P such that $P \in E, T_{P}(E)=E_{P}$ and $W_{1}^{(E)}\left[\left.\varphi\right|_{E}\right](P) \geqq \alpha$.

Proof. Let $z=\left(z_{1}, \cdots, z_{n}\right)$ be a normal coordinate system of D at $P \in D$ and β a real number with $\beta<\alpha$. To prove the pseudoconvexity of order $n-1$ of $\varphi-\beta\|z\|^{2}$ at $P \in D$, let f be a weakly n-convex function defined near $P \in D$ and γ a real number with $\beta<\gamma<\alpha$. Since the function $h:=f+(\gamma-\beta)\|z\|^{2}$ is strongly n-convex near $P \in D$, there exists a 1 -dimensional C-linear subspace E_{P} of $T_{P}(D)$ such that $\partial \bar{\partial} h$ has a positive eigenvalue on E_{P}. By the assumption of the lemma, choose a 1 -dimensional complex submanifold E of D defined near P such that $P \in E, \quad T_{P}(E)=E_{P}$ and $W_{1}^{(E)}\left[\left.\varphi\right|_{E}\right](P) \geqq \alpha$. Then $\left.h\right|_{E}$ is 1-convex near $P \in E$ and $\left.\varphi\right|_{E}-\left.\gamma\left(\|z\|^{2}\right)\right|_{E}$ is pseudoconvex of order $0(=1-1)$ at $P \in E$. Hence we can find a neighborhood $U^{\prime}=U^{\prime}\left(\left.h\right|_{E}\right)(\subset E)$ of $P \in E$, so that

$$
\left(\varphi-\gamma\|z\|^{2}+h\right)(P) \leqq \max \left\{\left.\left(\varphi-\gamma\|z\|^{2}+h\right)\right|_{E}(Q): Q \in \partial \Delta^{\prime}\right\}
$$

for every domain Δ^{\prime} with $P \in \Delta^{\prime}$ and $\Delta^{\prime} \Subset U^{\prime}$. Choose a neighborhood $U=U(f)$ $(\subset D)$ of $P \in D$ so that $U \cap E \subset U^{\prime}$. Let Δ be a domain with $P \in \Delta$ and $\Delta \Subset U$, and denote by Δ^{\prime} the connected component of $\Delta \cap E$ containing P. Then $P \in \Delta^{\prime}$ and $\Delta^{\prime} \Subset U^{\prime}$. Moreover, we have

$$
\begin{aligned}
\left(\varphi-\beta\|z\|^{2}+f\right)(P) & \leqq \max \left\{\left.\left(\varphi-\beta\|z\|^{2}+f\right)\right|_{E}(Q): Q \in \partial \Delta^{\prime}\right\} \\
& \leqq \max \left\{\left(\varphi-\beta\|z\|^{2}+f\right)(Q): Q \in \partial \Delta\right\}
\end{aligned}
$$

Therefore, $\varphi-\beta\|z\|^{2}$ is pseudoconvex of order $n-1$ at $P \in D$ for every $\beta<\alpha$ and hence $W_{1}[\varphi](P) \geqq \alpha$.

4. Distance functions to complex submanifolds.

After $\S 4$, let M be an n-dimensional connected Kähler manifold with C^{∞} Kähler metric G. Then M can be also regarded as a $2 n$-dimensional Riemannian manifold with the C^{∞} Hermitian metric $g \equiv \operatorname{Re} G$. We denote by J the complex structure tensor field of M, and denote by ∇ and R the covariant derivation and the curvature tensor field (of covariant degree 4) with respect to the Riemannian connection of M, respectively.

If σ and τ are holomorphic planes, i.e., J-invariant planes in the (real) tangent space $T_{P}(M)$ at $P \in M$, the holomorphic bisectional curvature $H(\sigma, \tau)$ of them is defined by

$$
\begin{aligned}
H(\sigma, \tau) & :=R(X, J X, Y, J Y) \\
& =R(X, Y, X, Y)+R(J X, Y, J X, Y),
\end{aligned}
$$

where X and Y are unit vectors in σ and τ, respectively (see Goldberg-Kobayashi [10]).

For two points P and Q of M, denote by $d(P, Q)$ the distance between P and Q induced by the metric $g(\equiv \operatorname{Re} G)$. Given a subset E of M, we define the distance function $d_{E}: M \rightarrow \boldsymbol{R}$ to E by

$$
d_{E}(P)=d(P, E)=\inf \{d(P, Q): Q \in E\} \quad \text { for } P \in M
$$

When D is a pseudoconvex open subset (in the usual sense) in M, the plurisubharmonicity of the function $-\log d_{M \backslash D}$ was differential-geometrically studied by Takeuchi [27], Elencwajg [6], Suzuki [24] and Greene-Wu [11]. In this section we shall prove the following fundamental lemma. The proof is based on that of Greene-Wu ([11], Theorem 1).

Lemma 4.1. Let M be an n-dimensional Kähler manifold, D an open subset of M, and P a point of D. Suppose that there exists (at least one) $Q \in \partial D$ such that
(i) $\quad d_{\partial D}(P)=d(P, Q)$,
(ii) The points P and Q can be joined by a geodesic ξ in M,
(iii) There exists an ($n-q$-dimensional complex submanifold defined near Q such that $Q \in S$ and $S \subset M \backslash D$.
Then we have the estimate

$$
W_{q}\left[-\log d_{\partial D}\right](P) \geqq \frac{1}{4} \min \left\{\frac{\Theta}{3}, \Theta\right\},
$$

where Θ is the minimum of the holomorphic bisectional curvatures of M on the geodesic $\boldsymbol{\xi}$ in (ii).

Proof. If S is an ($n-q$)-dimensional complex submanifold defined near $Q \in \partial D$, and if $Q \in S$ and $S \subset M \backslash D$, we have $d_{S} \geqq d_{M \backslash D}=d_{\partial D}$ on D and hence $-\log d_{\partial D} \geqq-\log d_{S}$ on D. Moreover, since $d_{S}(P)=d(P, Q)=d_{\partial D}(P)$, we have $-\log d_{\partial D}(P)=-\log d_{S}(P)$. Hence, by Lemma 3.8, we first see

$$
W_{q}\left[-\log d_{\partial D}\right](P) \geqq W_{q}\left[-\log d_{S}\right](P)
$$

Let $\xi=\xi(t), t \in[0, l]$, be a geodesic in M from $P \in D$ to $Q \in \partial D$, where $\xi(0)=P, \xi(l)=Q, l=d_{\partial D}(P)=d(P, Q)$, and the parameter t is canonical. Let N_{t}, $t \in[0, l]$, be the unit tangent vector field of $\xi=\xi(t)$. Then the vector N_{l} is orthogonal to the (real) tangent space $T_{Q}(S)$ at $Q=\xi(l) \in S$. Let F_{P} be the parallel translate of $T_{Q}(S)$ along ξ back to $P=\xi(0)$. Since $T_{Q}(S)$ is J-invariant and of real dimension $2(n-q)$, so is F_{P}. Moreover, F_{P} is orthogonal to both N_{0} and $J N_{0}$. We denote by L_{P} the J-invariant \boldsymbol{R}-linear subspace of real dimension $2(n-q+1)$ in $T_{P}(M)$ which is generated by $N_{0}, J N_{0}$ and the elements of F_{P}.

Since the metric G on the complex manifold M is now Kählerian, we can
choose a local coordinate system $\left(z_{1}, \cdots, z_{n}\right)$ around P, so that $\left(z_{1}, \cdots, z_{n}\right)$ is normal at P (in the sense of Definition 3.1) and moreover satisfies $\left(\partial G_{i j} / \partial z_{k}\right)(P)$ $=0$ for $1 \leqq i, j, k \leqq n$, where $G_{i j}=G\left(\partial / \partial z_{i}, \partial / \partial z_{j}\right)$. Let L be the $(n-q+1)$ dimensional complex submanifold defined near P such that $P \in L, T_{P}(L)=L_{P}$ and L is linear with respect to $\left(z_{1}, \cdots, z_{n}\right)$. Making a unitary transformation of $\left(z_{1}, \cdots, z_{n}\right)$ if necessary, we may assume that L is given by $z_{n-q+2}=z_{n-q+3}$ $=\cdots=z_{n}=0$ near P.

We put $\alpha=\min \{\Theta / 3, \Theta\} / 4$. To prove $W_{q}\left[-\log d_{S}\right](P) \geqq \alpha$, it is sufficient by Lemma 3.10 to show that $W_{1}^{(L)}\left[\left.\left(-\log d_{S}\right)\right|_{L}\right](P) \geqq \alpha$ for the L chosen above. Moreover, it is sufficient by Lemma 3.11 to show that $W_{1}^{(E)}\left[\left.\left(-\log d_{S}\right)\right|_{E}\right](P) \geqq \alpha$ for every 1-dimensional complex submanifold E of L defined near P such that $P \in E$ and E is linear with respect to (z_{1}, \cdots, z_{n}).

Making a unitary transformation of (z_{1}, \cdots, z_{n-q+1}) if necessary, we may without loss of generality assume that E is given by $z_{2}=z_{3}=\cdots=z_{n}=0$ near P. For the sake of simplicity, we write z instead of z_{1}, and put $z=x+\sqrt{-1} y$, $x, y \in \boldsymbol{R}$. Since the vector $(\partial / \partial z)_{P}$ is unit with respect to the metric G, the vectors $V_{0}=(\partial / \partial x)_{P}$ and $J V_{0}=(\partial / \partial y)_{P}$ are unit with respect to the metric g $(\equiv \operatorname{Re} G)$. Since $T_{P}(E)$ is a J-invariant \boldsymbol{R}-linear subspace of $L_{P}=T_{P}(L)$, we can, by making a rotation of z_{1}-plane if necessary, write $V_{0}=\alpha N_{0}+\beta X_{0}$ for some α, β and X_{0}, where $X_{0} \in F_{P}$ is unit and $\alpha^{2}+\beta^{2}=1$.

Let $X_{t}, t \in[0, l]$, be the parallel translate of X_{0} along ξ to $\xi(t)$. Then the unit vectors $X_{t}, J X_{t}, N_{t}$ and $J N_{t}$ are mutually orthogonal at $\xi(t)$ for each $t \in[0, l]$. We now define the vector field V along ξ by

$$
V_{t}=\left(\frac{l-t}{l}\right) \alpha N_{t}+\beta X_{t} \quad \text { for } t \in[0, l],
$$

and put $U_{\varepsilon}=\{(x, y) \in E:|x|<\varepsilon,|y|<\varepsilon\}$ for $\varepsilon>0$. Then, for sufficiently small $\varepsilon>0$, we can take a C^{∞} mapping $k:[0, l] \times U_{s} \rightarrow M$ such that
(i) $k(t ; 0,0) \equiv \hat{\xi}(t)$,
(ii) $\quad k_{*}\left(\frac{\partial}{\partial x}\right)_{(t ; 0,0)} \equiv V(t), \quad k_{*}\left(\frac{\partial}{\partial y}\right)_{(t ; 0,0)} \equiv J V(t)$,
(iii) $k(0 ; x, y) \equiv x+\sqrt{-1} y \in E, \quad k(l ; x, y) \in S^{\prime}$,
for $t \in[0, l]$ and $(x, y) \in U_{\varepsilon}$, where S^{\prime} is some 1 -dimensional complex submanifold of S defined near Q and containing Q, and k_{*} denotes the differential of the mapping k.

For $(x, y) \in U_{\varepsilon}$, we define the function $h: U_{s} \rightarrow \boldsymbol{R}$ by

$$
h(x, y)=\int_{0}^{t} \sqrt{g\left(k_{*}\left(\frac{\partial}{\partial t}\right), k_{*}\left(\frac{\partial}{\partial t}\right)\right)_{(t ; x, y)}} d t
$$

i. e., the length of the curve $k_{(x, y)}=k_{(x, y)}(t):=k(t ; x, y) \in M, t \in[0, l]$. Since
$h(P)=h(0,0)=l=d_{S}(P)$, we have $(-\log h)(P)=\left.\left(-\log d_{S}\right)\right|_{E}(P)$. Moreover, it follows from the condition (iii) of the mapping k that $h \geqq\left. d_{S}\right|_{E}$ on U_{ε} and hence $-\log h \leqq\left.\left(-\log d_{S}\right)\right|_{E}$ on U_{ε}. Therefore, by Lemma 3.8, we have

$$
W_{1}^{(E)}\left[\left.\left(-\log d_{S}\right)\right|_{E}\right](P) \geqq W_{1}^{(E)}[-\log h](P) .
$$

Since the function $-\log h$ is of class C^{∞} on $U_{\varepsilon}(\subset E)$ and the local coordinate $z=x+\sqrt{-1} y$ of E is normal at $P \in E$, we have

$$
\begin{align*}
W_{1}^{(E)}[-\log h](P) & =\frac{\partial^{2}}{\partial z \partial \bar{z}}(-\log h)(P) \tag{1}\\
& =\frac{1}{l^{2}}\left|\frac{\partial h}{\partial z}(P)\right|^{2}-\frac{1}{l}\left(\frac{\partial^{2} h}{\partial z \bar{\partial} \bar{z}}\right)(P) \\
& =\frac{1}{4 l^{2}}\left\{\left(\frac{\partial h}{\partial x}(P)\right)^{2}+\left(\frac{\partial h}{\partial y}(P)\right)^{2}\right\}-\frac{1}{4 l}\left\{\frac{\partial^{2} h}{\partial x^{2}}(P)+\frac{\partial^{2} h}{\partial y^{2}}(P)\right\} .
\end{align*}
$$

We shall now apply to (1) the variation formulas in Riemannian geometry. The first variation formula gives

$$
\frac{\partial h}{\partial x}(P)=\left.g\left(V_{t}, N_{t}\right)\right|_{t=0} ^{t=l}=-\alpha, \quad \frac{\partial h}{\partial y}(P)=\left.g\left(J V_{t}, N_{t}\right)\right|_{t=0} ^{t=t}=0
$$

and hence we first obtain

$$
\begin{equation*}
\left(\frac{\partial h}{\partial x}(P)\right)^{2}+\left(\frac{\partial h}{\partial y}(P)\right)^{2}=\alpha^{2} . \tag{2}
\end{equation*}
$$

Next, the second variation formula gives

$$
\begin{aligned}
& \frac{\partial^{2} h}{\partial x^{2}}(P)=\left.g\left(\left(\nabla_{V} V\right)_{(t ; 0,0)}, N_{t}\right)\right|_{t=0} ^{t=l} \\
& \quad+\int_{0}^{l}\left[-R\left(V_{t}, N_{t}, V_{t}, N_{t}\right)+g\left(\left(\nabla_{N} V\right)_{t},\left(\nabla_{N} V\right)_{t}\right)-\left\{\frac{d}{d t} g\left(V_{t}, N_{t}\right)\right\}^{2}\right] d t \\
& \frac{\partial^{2} h}{\partial y^{2}}(P)=\left.g\left(\left(\nabla_{J V} J V\right)_{(t ; 0,0)}, N_{t}\right)\right|_{t=0} ^{t=l} \\
& \quad+\int_{0}^{l}\left[-R\left(J V_{t}, N_{t}, J V_{t}, N_{t}\right)+g\left(\left(\nabla_{N} J V\right)_{t},\left(\nabla_{N} J V\right)_{t}\right)-\left\{\frac{d}{d t} g\left(J V_{t}, N_{t}\right)\right\}^{2}\right] d t,
\end{aligned}
$$

where we have put

$$
V_{(t ; x, y)}=k_{*}\left(\frac{\partial}{\partial x}\right)_{(t ; x, y)}, \quad J V_{(t ; x, y)}=k_{*}\left(\frac{\partial}{\partial y}\right)_{(t ; x, y)}
$$

Now, by the condition (iii) of the mapping k, the vector fields

$$
V_{(0 ; x, y)} \equiv\left(\frac{\partial}{\partial x}\right)_{(x, y)}, \quad J V_{(0 ; x, y)} \equiv\left(\frac{\partial}{\partial y}\right)_{(x, y)}
$$

are restrictions to $U_{\varepsilon}(\subset E)$ of the coordinate vector fields with respect to the normal coordinate system $\left(z_{1}, \cdots, z_{n}\right)$ of M at $P \in M$. Hence we have

$$
\left(\nabla_{V} V\right)_{(0 ; 0,0)}=\left(\nabla_{J V} J V\right)_{(0 ; 0,0)}=0 .
$$

Moreover, since $V_{(l ; x, y)}$ and $J V_{(l ; x, y)}$ are vector fields on the complex submanifold S^{\prime}, and since the vector N_{l} is orthogonal to $S^{\prime}(\subset S)$ at Q, we have

$$
g\left(\left(\nabla_{V} V\right)_{(l ; 0,0)}, N_{l}\right)+g\left(\left(\nabla_{J V} J V\right)_{(l ; 0,0)}, N_{l}\right)=g\left(J[J V, V]_{(l ; 0,0)}, N_{l}\right)=0
$$

(see Frankel [7], p. 171). Therefore, we have

$$
\begin{equation*}
\frac{\partial^{2} h}{\partial x^{2}}(P)+\frac{\partial^{2} h}{\partial y^{2}}(P)=\frac{\alpha^{2}}{l}-\int_{0}^{l} R\left(V_{t}, J V_{t}, N_{t}, J N_{t}\right) d t \tag{3}
\end{equation*}
$$

exactly as in the proof of Greene-Wu ([11], pp. 177-178). Substituting (2) and (3) for (1), we obtain

$$
\begin{equation*}
W_{1}^{(E)}[-\log h](P)=\frac{1}{4 l} \int_{0}^{l} R\left(V_{t}, J V_{t}, N_{t}, J N_{t}\right) d t \tag{4}
\end{equation*}
$$

If Θ is the minimum of the holomorphic bisectional curvatures of M on the geodesic $\xi=\xi(t), t \in[0, l]$, then

$$
R\left(V_{t}, J V_{t}, N_{t}, J N_{t}\right) \geqq \Theta\left\{\left(\frac{l-t}{l}\right)^{2} \alpha^{2}+\beta^{2}\right\} \quad \text { for } t \in[0, l]
$$

Hence, by (4), we have

$$
\begin{aligned}
W_{1}^{(E)}[-\log h](P) & \geqq \frac{\Theta}{4 l} \int_{0}^{l}\left\{\left(\frac{l-t}{l}\right)^{2} \alpha^{2}+\beta^{2}\right\} d t \\
& =\frac{\Theta}{4}\left(\frac{\alpha^{2}}{3}+\beta^{2}\right) .
\end{aligned}
$$

Noting that $\alpha^{2}+\beta^{2}=1$ and hence $1 / 3 \leqq\left(\alpha^{2} / 3\right)+\beta^{2} \leqq 1$, we finally obtain

$$
W_{q}\left[-\log d_{\partial D}\right](P) \geqq W_{1}^{(E)}[-\log h](P) \geqq \frac{1}{4} \min \left\{\frac{\Theta}{3}, \Theta\right\}
$$

which completes the proof of the lemma.

5. Boundary distance functions of pseudoconvex domains of general order.

Let M be a Kähler manifold and D an open subset of M. For $P \in M$ and $r>0$, we use the notation

$$
B(P, r)=\{Q \in M: d(P, Q)<r\}
$$

Then $B\left(P, d_{\partial D}(P)\right) \subset D$ for every $P \in D$. We further denote by $\Theta(P), P \in D$, the infimum of the holomorphic bisectional curvatures on $B\left(P, d_{\partial D}(P)\right)$. It is easy to see that the function $\Theta: D \rightarrow \boldsymbol{R}$ is continuous, if $D \cap B(P, r) \Subset M$ for every $P \in D$ and for every $r>0$. Note that the condition is satisfied, either if M is complete or if $D \Subset M$.

As an application of Lemma 4.1, we shall first prove the following local result on boundary distance functions of pseudoconvex open subsets of general order.

Proposition 5.1. Let M be an n-dimensional Kähler manifold and let D be a pseudoconvex open subset of order $n-q$ in M. Then there exists an open subset Δ of M such that $\partial D \subset \Delta$ and

$$
W_{q}\left[-\log d_{\partial D}\right] \geqq \frac{1}{4} \min \left\{\frac{\Theta}{3}, \Theta\right\} \quad \text { on } D \cap \Delta \text {, }
$$

where $\Theta=\Theta(P), P \in D$, is the infimum of the holomorphic bisectional curvatures on $B\left(P, d_{\partial D}(P)\right)$.

Proof. We put $\alpha=\min \{\Theta / 3, \Theta\} / 4$. To prove the proposition, it is sufficient to show that each $Q \in \partial D$ has a neighborhood V such that $W_{q}\left[-\log d_{\partial D}\right]$ $\geqq \alpha$ on $D \cap V$.

Let V^{*} be a Stein neighborhood of $Q \in \partial D$ which is relatively compact in some coordinate neighborhood of M. Then the set $D^{*}:=D \cap V^{*}$ is biholomorphic to a pseudoconvex open subset of order $n-q$ in \boldsymbol{C}^{n}. Hence, by Proposition 2.2 and Lemma 2.7, we can take a sequence $\left\{D_{\nu}^{*}\right\}_{\nu \in N}$ of open subsets with the condition $\left(\mathrm{C}_{q}\right)$ in D^{*} such that $D_{\nu}^{*} \Subset D_{\nu+1}^{*} \Subset D^{*}$ for each $\nu \in \boldsymbol{N}$ and $\cup_{\nu=1}^{\infty} D_{\nu}^{*}=D^{*}$. Then, for each $P \in D_{\nu}^{*}$, there exists (at least one) $Q \in \partial D_{\nu}^{*}$ which satisfies the conditions (i), (ii) and (iii) of Lemma 4.1. Hence, by Lemma 4.1, we have

$$
W_{q}\left[-\log d_{\left.\partial D_{\nu}^{*}\right]} \geqq \frac{1}{4} \min \left\{\frac{\Theta^{*}}{3}, \Theta^{*}\right\} \quad \text { on } D_{\nu}^{*}\right.
$$

for each $\nu \in \boldsymbol{N}$, where $\Theta^{*}=\Theta^{*}(P), P \in D^{*}$, is the infimum of the holomorphic bisectional curvatures on $B\left(P, d_{\partial D *}(P)\right)$. Note here that, because $D^{*} \Subset M, \Theta^{*}$ and hence $\alpha^{*}:=\min \left\{\Theta^{*} / 3, \Theta^{*}\right\} / 4$ are continuous functions from D^{*} to \boldsymbol{R}. On the other hand, for each $\nu \in \boldsymbol{N}$, the sequence $\left\{-\log d_{\partial D_{\mu}^{*}}\right\}_{\mu \geq \nu}$ decreases on D_{ν}^{*} and converges to $-\log d_{\partial D *}$. Therefore, it follows from Proposition 3.7 that $W_{q}\left[-\log d_{\partial D^{*}}\right] \geqq \alpha^{*}$ on D_{ν}^{*} for each $\nu \in \boldsymbol{N}$ and hence $W_{q}\left[-\log d_{\partial D^{*}}\right] \geqq \alpha^{*} \geqq \alpha$ on D^{*}.

Now choose $r>0$ so that $B(Q, 2 r) \Subset V^{*}$, and put $V=B(Q, r)$. Then we have $d_{\partial D}=d_{\partial D *}$ on $D \cap V\left(\subset D^{*}\right)$, which implies that $W_{q}\left[-\log d_{\partial D}\right] \geqq \alpha$ on $D \cap V$ for this V.

We shall later show that the estimate in Proposition 5.1 holds not only near ∂D but also whole on D in some cases (see Proposition 6.4 and Proposition 7.1). In this section we give the following global estimate for $W_{q}\left[-\log d_{\partial D}\right]$ under the assumption stated below.

Lemma 5.2. Let M be an n-dimensional Kähler manifold and let D be a pseudoconvex open subset of order $n-q$ in M such that $D \cap B(P, r) \Subset M$ for every
$P \in D$ and for every $r>0$. Suppose that there exists an open subset Δ of M with $\partial D \subset \Delta$, and that one can for each $r>0$ find a positive number $C^{(r)}$ and a q-convex function $\psi^{(r)}$ with corners on $D^{(r)} \cap \Delta$ satisfying $\left|-\log d_{\partial D}-\psi^{(r)}\right|<C^{(r)}$ on $D^{(r)} \cap \Delta$, where $D^{(r)}=D \cap B(O, r)$ and $O \in \partial D$ is fixed. Then we have the estimate

$$
W_{q}\left[-\log d_{\partial D}\right] \geqq \frac{1}{4} \min \left\{\frac{\Theta}{3}, \Theta\right\} \quad \text { whole on } D \text {, }
$$

where $\Theta=\Theta(P), P \in D$, is the infimum of the holomorphic bisectional curvatures on $B\left(P, d_{\partial D}(P)\right)$.

Proof. We may assume that each $\psi^{(r)}$ is piecewise C^{∞}. Then, by Lemma 2.6, there exists a subset $\Lambda^{(r)}$ of Lebesgue measure zero in \boldsymbol{R} such that the set $\left\{P \in D^{(r)} \cap \Delta: \psi^{(r)}(P)<A\right\}$ satisfies the condition $\left(\mathrm{C}_{q}\right)$ in $D^{(r)} \cap \Delta$ for every $A \in \boldsymbol{R} \backslash \Lambda^{(r)}$. On the other hand, by assumption, $D^{(r)} \Subset M$ and hence $D^{(r)} \backslash \Delta \subseteq D$ for each $r>0$. We can thus choose $A_{0}^{(r)}>0$, so that

$$
D^{(r)} \backslash \Delta \subset\left\{P \in D^{(r)}:-\log d_{\partial D}(P)+C^{(r)}<A_{0}^{(r)}\right\} .
$$

For $A>0$ and $r>0$, we define the set $D_{A}^{(r)}$ by

$$
D_{A}^{(r)}=\left(D^{(r)} \backslash \Delta\right) \cup\left\{P \in D^{(r)} \cap \Delta: \psi^{(r)}(P)<A\right\} .
$$

Since $\psi^{(r)}>-\log d_{\partial D}-C^{(r)}$ on $D^{(r)} \cap \Delta$, we have $D_{A}^{(r)} \Subset D$ for every $A>0$. Moreover, since $\psi^{(r)}<-\log d_{\partial D}+C^{(r)}$ on $D^{(r)} \cap \Delta$, the set $D_{A}^{(r)}$ satisfies the condition $\left(\mathrm{C}_{q}\right)$ in $D^{(r)}$ if $A>A_{0}^{(r)}$ and $A \in \boldsymbol{R} \backslash \Lambda^{(r)}$.

For each $P \in D_{A}^{(r)}$, let $Q \in \partial D_{A}^{(2 r)}$ be a point such that $d_{\partial D_{A}^{(2 r)}}(P)=d(P, Q)$. Then the point Q is necessarily an interior point of $D^{(2 r)}$ because $d_{\partial D_{A}^{(2 r)}}(P)<$ $d(O, P)<r$. Hence, if $A>A_{0}^{(2 r)}$ and $A \in \boldsymbol{R} \backslash \Lambda^{(2 r)}$, the point Q belongs to $D^{(2 r)} \cap \Delta$ and satisfies $\psi^{(2 r)}(Q)=A$, and fulfills the conditions (i), (ii) and (iii) of Lemma 4.1 with respect to the set $D_{A}^{(2 r)}$. Therefore, it follows from Lemma 4.1 that

$$
W_{q}\left[-\log d_{\partial D_{A}^{(2 r)}}\right] \geqq \frac{1}{4} \min \left\{\frac{\Theta^{(2 r)}}{3}, \Theta^{(2 r)}\right\} \quad \text { on } D_{A}^{(r)}
$$

for every A with $A>A_{0}^{(2 r)}$ and $A \in \boldsymbol{R} \backslash \Lambda^{(2 r)}$, where $\Theta^{(r)}=\Theta^{(r)}(P), P \in D^{(r)}$, is the infimum of the holomorphic bisectional curvatures on $B\left(P, d_{\partial D^{(r)}}(P)\right)$. Note here that $\Theta^{(r)}: D^{(r)} \rightarrow \boldsymbol{R}$ is continuous because $D^{(r)} \subseteq M$. Furthermore, $-\log d_{\partial D_{B}^{(2 r)}}$, where $B>A$, decreases on $D_{A}^{(r)}$ and converges to $-\log d_{\partial D}$ as $B \rightarrow \infty$. Therefore, using Proposition 3.7, we can conclude that

$$
W_{q}\left[-\log d_{\partial D}\right] \geqq \frac{1}{4} \min \left\{\frac{\Theta^{(2 r)}}{3}, \Theta^{(2 r)}\right\} \geqq \frac{1}{4} \min \left\{\frac{\Theta}{3}, \Theta\right\}
$$

on $D^{(r)}$ for every $r>0$, which proves the lemma.

6. Pseudoconvex domains of general order in Kähler manifolds of positive holomorphic bisectional curvature.

In §6, we consider the case where a Kähler manifold M has positive or non-negative holomorphic bisectional curvature.

The following is the direct result of Proposition 5.1 and Proposition 3.6.
Corollary 6.1. Let M be an n-dimensional Kähler manifold with nonnegative (resp. positive) holomorphic bisectional curvature and let D be a pseudoconvex open subset of order $n-q$ in M. Then there exists an open subset Δ of M such that $\partial D \subset \Delta$ and the function $-\log d_{\partial D}$ is pseudoconvex (resp. strongly pseudoconvex) of order $n-q$ on $D \cap \Delta$.

If the boundary ∂D of an open subset D of M is a real submanifold of class C^{2} in M (whose irreducible components may have different dimensions from each other), there exists an open subset Γ of M such that $\partial D \subset \Gamma$ and the boundary distance function $d_{\partial D}$ is of class C^{2} on $D \cap \Gamma$ (see Matsumoto [14]). Using this fact and Proposition 6.1, we first obtain the following result on the q-convexity of domains.

Theorem 6.2. Let M be an n-dimensional Kähler manifold with non-negative (resp. positive) holomorphic bisectional curvature and let D be a pseudoconvex open subset of order $n-q$ in M. Moreover, suppose that $D \Subset M$ and the boundary ∂D is a real submanifold of class C^{2} in M. Then D is weakly (resp. strongly) q-convex.

Remark 6.3. The n-dimensional complex projective space $P^{n}(\boldsymbol{C})$ has positive holomorphic bisectional curvature with respect to the Fubini-Study metric on $P^{n}(\boldsymbol{C})$. Theorem 6.2 is an extension of the Barth theorem ([2], Satz 3) asserting that the complement $P^{n}(\boldsymbol{C}) \backslash S$ is strongly q-convex, if S is a complex submanifold (and hence an algebraic submanifold) of $P^{n}(\boldsymbol{C})$ and if each connected component of S has at least dimension $n-q$ (cf. Example 2.4). When $M=P^{n}(\boldsymbol{C})$, Theorem 6.2 is the result of Schwarz ([20], Theorem 6.4) and Matsumoto ([15], Corollary of Theorem 2). As another extension of the Barth theorem, Schneider [19] has also showed the q-convexity of $M \backslash S$ under the assumption that M and S are compact and S has positive normal bundle in M.

In what follows, we consider only the case where M has positive holomorphic bisectional curvature. Then we can extend Proposition 5.1 to the following global result.

Proposition 6.4. Let M be an n-dimensional Kähler manifold with positive holomorphic bisectional curvature and let D be a pseudoconvex open subset of order $n-q$ in M. Moreover, suppose either that M is complete or that $D \Subset M$.

Then we have the estimate

$$
W_{q}\left[-\log d_{\partial D}\right] \geqq \frac{\Theta}{12} \quad \text { whole on } D \text {, }
$$

where $\Theta=\Theta(P), P \in D$, is the infimum of the holomorphic bisectional curvatures on $B\left(P, d_{\partial D}(P)\right)$.

Proof. By Corollary 6.1, there exists an open subset Δ of M such that $\partial D \subset \Delta$ and $-\log d_{\partial D}$ is strongly pseudoconvex of order $n-q$ on $D \cap \Delta$. Hence, by the Bungart approximation theorem Theorem 1.6), we can find a q-convex function ψ with corners on $D \cap \Delta$ such that $\left|-\log d_{\partial D}-\psi\right|<1$ on $D \cap \Delta$. The proposition thus follows from Lemma 5.2 .

COROLLARY 6.5. Uuder the same assumption as in Proposition 6.4, the function $-\log d_{\partial D}$ is strongly pseudoconvex of order $n-q$ whole on D.

Using the approximation theorems of Bungart and Diederich-Fornaess, we obtain from Corollary 6.5 the following theorem and its corollary on the q-completeness (with corners) of domains.

Theorem 6.6. Let M be an n-dimensional Kähler manifold with positive holomorphic bisectional curvature and let D be a relatively compact, pseudoconvex open subset of order $n-q$ in M. Then D is q-complete with corners.

Corollary 6.7. Under the same assumption as in Theorem 6.6, D is \tilde{q}-complete, where $\tilde{q}=n-[n / q]+1$.

When $M=P^{n}(\boldsymbol{C})$, Theorem 6.6 is particularly stated as follows (see Proposition 2.2).

Corollary 6.8. Let D be an open subset of $P^{n}(\boldsymbol{C})$. If D is locally q-complete with corners in $P^{n}(\boldsymbol{C})$ (in the sense of Peternell [16]), then D is globally q-complete with corners and hence globally \tilde{q}-complete, where $\tilde{q}=$ $n-[n / q]+1$. In particular, if S is an algebraic subset of $P^{n}(\boldsymbol{C})$ and if each irreducible component of S has at least dimension $n-q$, then $P^{n}(\boldsymbol{C}) \backslash S$ is globally q-complete with corners and hence globally \tilde{q}-complete.

Remark 6.9. In Corollary 6.8, the case where S is non-singular has been showed by Schwarz ([20], Theorem 6.5). When S is non-singular, the set $P^{n}(\boldsymbol{C}) \backslash S$ is further $\min \{2 q-1, \tilde{q}\}$-complete (see Peternell [17]).

7. Pseudoconvex domains of general order in Stein manifolds.

Finally in §7, we consider the case where a Kähler manifold M admits a (strongly) 1-convex function. Then we can extend Proposition 5.1 to the following global result.

Proposition 7.1. Let M be an n-dimensional Kähler manifold and let D be a pseudoconvex open subset of order $n-q$ in M. Suppose that there exists an open subset Δ of M such that $\partial D \subset \Delta$ and Δ admits a 1-convex function. Moreover, suppose either that M is complete or that $D \Subset M$. Then we have the estimate

$$
W_{q}\left[-\log d_{\partial D}\right] \geqq \frac{1}{4} \min \left\{\frac{\Theta}{3}, \Theta\right\} \quad \text { whole on } D \text {, }
$$

where $\Theta=\Theta(P), P \in D$, is the infimum of the holomorphic bisectional curvatures on $B\left(P, d_{\partial D}(P)\right.$).

Proof. Shrinking Δ if necessary, we may assume that there exists a 1 -convex function h which is defined on an open subset including $\bar{\Delta}$. Moreover, we may by Proposition 5.1 assume that the estimate in Proposition 7.1 holds on $D \cap \Delta$.

Let O be a fixed point of ∂D and put $D^{(r)}=D \cap B(O, r)$ for $r>0$. Then, by the assumption of the proposition, $D^{(r)} \Subset M$ for each $r>0$. We put

$$
\begin{aligned}
& \alpha^{(r)}=\frac{1}{4} \inf \left\{\frac{\Theta}{3}(P), \Theta(P): P \in D^{(r)} \cap \Delta\right\}, \\
& \beta^{(r)}=\inf \left\{W_{1}[h](P): P \in D^{(r)} \cap \Delta\right\} .
\end{aligned}
$$

Then $\alpha^{(r)} \in \boldsymbol{R}$ and $\beta^{(r)}>0$. If we choose $A^{(r)}>0$ so that $\alpha^{(r)}+A^{(r)} \beta^{(r)}>1$, we have $W_{q}\left[-\log d_{\partial D}+A^{(r)} h\right]>1$ on $D^{(r)} \cap \Delta$. By Proposition 3.6, the function $-\log d_{\partial D}+A^{(r)} h$ is strongly pseudoconvex of order $n-q$ on $D^{(r)} \cap \Delta$. Hence, by the Bungart approximation theorem (Theorem 1.6), we can find a q-convex function $\psi^{(r)}$ with corners on $D^{(r)} \cap \Delta$ such that

$$
\left|-\log d_{\partial D}+A^{(r)} h-\psi^{(r)}\right|<1 \quad \text { on } D^{(r)} \cap \Delta .
$$

If we choose $C^{(r)}>0$ so that $C^{(r)}>1+A^{(r)}|h|$ on $D^{(r)} \cap \Delta$, then $\left|-\log d_{\partial D}-\psi^{(r)}\right|$ $<C^{(r)}$ on $D^{(r)} \cap \Delta$. The proposition thus follows from Lemma 5.2.

In what follows, let M be a Stein manifold. Then M admits a complete Kähler metric.

Proposition 7.2. Let M be an n-dimensional Stein manifold and let D be a pseudoconvex open subset of order $n-q$ in M. Let $d_{\partial D}$ be a boundary distance function of D induced by a complete Kähler metric on M. Then there exists a 1-convex function h on M such that the function $-\log d_{\partial D}+h$ is strongly pseudoconvex of order $n-q$ on D.

Proof. Let f be a 1 -convex exhaustion function of M. For each $\nu \in \boldsymbol{N}$, define the set D_{ν} by $D_{\nu}=\{P \in D: f(P)<\nu\}$ and denote by α_{ν} the infimum of the function $\{\Theta / 3, \Theta\} / 4$ on D_{ν}, where $\Theta=\Theta(P), P \in D$, is the infimum of the holomorphic bisectional curvatures on $B\left(P, d_{\partial D}(P)\right)$. Then, by Proposition 7.1,
we have $W_{q}\left[-\log d_{\partial D}\right] \geqq \alpha_{\nu}$ on D_{ν}. Let β_{ν} be the infimum of the function $W_{1}[f]$ on D_{ν}. Then $\beta_{\nu}>0$ because $D_{\nu} \Subset M$.

Take a sequence $\left\{C_{\nu}\right\}_{\nu \in N}$ such that $0<C_{\nu}<C_{\nu+1}$ and $\alpha_{\nu}+C_{\nu} \beta_{\nu}>1$ for $\nu \in N$. Choose a C^{2} function $u: \boldsymbol{R} \rightarrow(1,+\infty)$ such that $u^{\prime}>C_{1}>0, u^{\prime \prime}>0$ and $u^{\prime}(\nu) \geqq C_{\nu+1}$ for $\nu \in \boldsymbol{N}$, and put $h=u \circ f$. Then h is 1 -convex on M. On the other hand, since $W_{1}[h] \geqq C_{\nu} \beta_{\nu}$ on $D_{\nu} \backslash D_{\nu-1}$, we have $W_{q}\left[-\log d_{\partial D}+h\right]>1$ on $D_{\nu} \backslash D_{\nu-1}$ for each $\nu \in \boldsymbol{N}$ and hence on D. Therefore, $-\log d_{\partial D}+h$ is strongly pseudoconvex of order $n-q$ on D.

Using the approximation theorems of Bungart and Diederich-Fornaess, we obtain from Proposition 7.2 the following theorem and its corollary.

Theorem 7.3. Let M be an n-dimensional Stein manifold and let D be a pseudoconvex open subset of order $n-q$ in M. Then D is q-complete with corners.

Corollary 7.4. Under the same assumption as in Theorem 7.3, D is \tilde{q} complete, where $\tilde{q}=n-[n / q]+1$.

Remark 7.5. Using the Bungart approximation theorem, we can also obtain Theorem 7.3 directly from the result of Peternell ([16], Theorem 2) or that of Matsumoto ([13], Theorem 1).

If the boundary ∂D of an open subset D of M is a real submanifold of class C^{2} in M (whose irreducible components may have different dimensions from each other), we further obtain the following.

Theorem 7.6. Let M be an n-dimensional Stein manifold and let D be a pseudoconvex open subset of order $n-q$ in M. Moreover, suppose that the boundary ∂D is a real submanifold of class C^{2} in M. Then D is q-complete.

Proof. By Proposition 7.2, we can find a 1-convex function h on M such that $\varphi=-\log d_{\partial D}+h$ is strongly pseudoconvex of order $n-q$ on D, where $d_{\partial D}$ is a boundary distance function of D induced by a complete Kähler metric on M. Let Δ be an open subset of M such that $\partial D \subset \Delta$ and $d_{\partial D}$ is of class C^{2} on $D \cap \Delta$. Then φ is (strongly) q-convex on $D \cap \Delta$.

Choose a 1-convex exhaustion function f of M so that $f>\varphi$ on $D \backslash \Delta$ and put $\Phi=\max \{\varphi, f\}$ on D. Since $\Phi \equiv f$ on $D \backslash \Delta$ and since φ is q-convex on $D \cap \Delta$, we can, by the Diederich-Fornaess approximation theorem (cf. [4], §5), find a q-convex function Ψ (without corners) on D such that $|\Phi-\Psi|<1$ on D. Then the function Ψ is further an exhaustion function of D, which proves the theorem.

Remark 7.7. When ∂D is a real hypersurface of class C^{2} in M, Theorem 7.6 has been showed by Suria [23] and Eastwood-Suria [5] (cf. Example 2.3).

Theorem 7.6 is an extension of the result. Schwarz ([20], Corollary 6.3) has also proved Theorem 7.6 in another way.

References

[1] A. Andreotti and H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), 193-259.
[2] W. Barth, Der Abstand von einer algebraischen Mannigfaltigkeit im komplexprojectiven Raum, Math. Ann., 187 (1970), 150-162.
[3] L. Bungart, Piecewise smooth approximations to q-plurisubharmonic functions, Pacific J. Math., 142 (1990), 227-244.
[4] K. Diederich and J.E. Fornaess, Smoothing q-convex functions and vanishing theorems, Invent. Math., 82 (1985), 291-305.
[5] M.G. Eastwood and G.V.Suria, Cohomologically complete and pseudoconvex domains, Comment. Math. Helv., 55 (1980), 413-426.
[6] G. Elencwajg, Pseudo-convexité locale dans les variétés kählériennes, Ann. Inst. Fourier (Grenoble), 25 (1975), 295-314.
[7] T. Frankel, Manifolds with positive curvature, Pacific J. Math., 11 (1961), 165-174.
[8] O. Fujita, Domaines pseudoconvexes d'ordre général et fonctions pseudoconvexes d’ordre général, J. Math. Kyoto Univ., 30 (1990), 637-649.
[9] O. Fujita, On the equivalence of the q-plurisubharmonic functions and the pseudoconvex functions of general order, preprint.
[10] S.I. Goldberg and S. Kobayashi, Holomorphic bisectional curvature, J. Differential Geom., 1 (1967), 225-233.
[11] R.E. Greene and $\mathrm{H} . \mathrm{Wu}$, On Kähler manifolds of positive bisectional curvature and a theorem of Hartogs, Abh. Math. Sem. Univ. Hamburg, 47 (1978), 171-185.
[12] L.R. Hunt and J. J. Murray, q-plurisubharmonic functions and a generalized Dirichlet problem, Michigan Math. J., 25 (1978), 299-316.
[13] K. Matsumoto, Pseudoconvex domains of general order in Stein manifolds, Mem. Fac. Sci. Kyushu Univ. Ser. A, 43 (1989), 67-76.
[14] K. Matsumoto, A note on the differentiability of the distance function to regular submanifolds of Riemannian manifolds, Nihonkai Math. J., 3 (1992), 81-85.
[15] K. Matsumoto, Pseudoconvex domains of general order and q-convex domains in the complex projective space, J. Math. Kyoto Univ., 33 (1993), 685-695.
[16] M. Peternell, Continuous q-convex exhaustion functions, Invent. Math., 85 (1986), 249-262.
[17] M. Peternell, q-completeness of subsets in complex projective space, Math. Z., 195 (1987), 443-450.
[18] O. Riemenschneider, Über den Flächeninhalt analytischer Mengen und die Erzeugung k-pseudokonvexer Gebiete, Invent. Math., 2 (1967), 307-331.
[19] M. Schneider, Über eine Vermutung von Hartshorne, Math. Ann., 201 (1973), 221229.
[20] W. Schwarz, Local q-completeness of complements of smooth CR-submanifolds, Math. Z., 210 (1992), 529-553.
[21] Z. Slodkowski, The Bremermann-Dirichlet problem for q-plurisubharmonic functions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 11 (1984), 303-326.
[22] Z. Slodkowski, Local maximum property and q-plurisubharmonic functions in uniform algebras, J. Math. Anal. Appl., 115 (1986), 105-130.
[23] G.V.Suria, q-pseudoconvex and q-complete domains, Compositio Math., 53 (1984), 105-111.
[24] O. Suzuki, Pseudoconvex domains on a Kähler manifold with positive holomorphic bisectional curvature, Publ. Res. Inst. Math. Sci., 12 (1976), 191-214.
[25] M. Tadokoro, Sur les ensembles pseudoconcaves généraux, J. Math. Soc. Japan, 17 (1965), 281-290.
[26] A. Takeuchi, Domaines pseudoconvexes infinis et la métrique riemannienne dans un espace projectif, J. Math. Soc. Japan, 16 (1964), 159-181.
[27] A. Takeuchi, Domaines pseudoconvexes sur les variétés kählériennes, J. Math. Kyoto Univ., 6 (1967), 323-357.

Kazuko Matsumoto

Department of Mathematical Science Graduate School of Science and Technology Niigata University
Niigata 950-21
Japan

