Boundary distance functions and q-convexity of pseudoconvex domains of general order in Kähler manifolds

By Kazuko MATSUMOTO

(Received Mar. 18, 1994)

Introduction.

Let M be an *n*-dimensional Kähler manifold with C^{∞} Kähler metric G, let D be an open subset of M, and let $d_{\partial D}$ be the boundary distance function of D induced by the metric G.

When D is pseudoconvex (in the usual sense) in M, the plurisubharmonicity of the function $-\log d_{\partial D}$ is closely related to the holomorphic bisectional curvature of M. Takeuchi [26] first showed that, if D is a pseudoconvex open subset of the complex projective space $P^n(C)$ and if $d_{\partial D}$ is the boundary distance function of D with respect to the Fubini-Study metric on $P^n(C)$, the function $-\log d_{\partial D}$ is strongly plurisubharmonic on D. After the works of Takeuchi [27], Elencwajg [6], Suzuki [24] and others, Greene-Wu [11] differential-geometrically gave an estimate from below for 'the modulus of plurisubharmonicity' of the function $-\log d_{\partial D}$, and showed that a relatively compact, pseudoconvex open subset D of M is 1-complete (and hence Stein) if M has positive holomorphic bisectional curvature.

In this paper, we shall extend the result to the case where D is pseudoconvex of order n-q in M and show that D is q-convex or q-complete (with corners) in several cases.

An open subset D of M is said to be pseudoconvex of order n-q, $1 \le q \le n$, in M if, roughly speaking, the complement $M \setminus D$ has the same continuity as an analytic set of pure dimension n-q. Pseudoconvex open subsets in the usual sense are pseudoconvex of order n-1. If $D \subset M$ is weakly q-convex, then D is pseudoconvex of order n-q in M. However, when $2 \le q \le n-1$, the converse is not valid even if $D \subset C^n$ (see Diederich-Fornaess [4] and Matsumoto [13]). By Fujita [8], an open subset D of C^n is pseudoconvex of order n-q in C^n , if and only if D has an exhaustion function which is pseudoconvex of order n-q on D. Therefore, by the approximation theorem of Bungart [3], an open subset Dof M is pseudoconvex of order n-q in M, if and only if D is locally q-complete with corners in M in the sense of Peternell [16] (for the precise, see §§ 1 and 2). The main results of this paper are as follows.

At first, let M be an n-dimensional Kähler manifold with positive holomorphic bisectional curvature and let D be a relatively compact, pseudoconvex open subset of order n-q in M. Then the function $-\log d_{\partial D}$ is strongly pseudoconvex of order n-q whole on D and particularly q-convex on the open subset of D (if it exists) where $d_{\partial D}$ is of class C^2 (see Corollary 6.5). Therefore, by the approximation theorems of Bungart and Diederich-Fornaess, the set D is q-complete with corners and hence \tilde{q} -complete, where $\tilde{q}=n-\lfloor n/q \rfloor+1$ and $\lfloor \rceil$ denotes the Gauss symbol (see Theorem 6.6). Moreover, if the boundary ∂D is also a real submanifold of class C^2 in M, then D is q-convex (see Theorem 6.2).

Secondly, let M be an n-dimensional Stein manifold and let D be a pseudoconvex open subset of order n-q in M. Let $d_{\partial D}$ be a boundary distance function of D induced by a complete Kähler metric on M. Then there exists a 1-convex function h on M such that the function $-\log d_{\partial D}+h$ is strongly pseudoconvex of order n-q on D (see Proposition 7.2). Therefore, the set D is q-complete with corners and hence \tilde{q} -complete (see Theorem 7.3). Moreover, if the boundary ∂D is also a real submanifold of class C^2 in M, then D is q-complete (see Theorem 7.6).

The above results are extensions (and different proofs) of that of Barth [2] and that of Suria [23] (or Eastwood-Suria [5]), respectively.

ACKNOWLEDGEMENT. The author would like to express her sincere thanks to Prof. O. Fujita and Prof. A. Takeuchi for their valuable advice, guidance and encouragement.

1. Pseudoconvex functions of general order and q-convex functions with corners.

Throughout this paper, let D be a paracompact complex manifold of pure dimension n and q an integer with $1 \leq q \leq n$. After §4 we consider only the case where D is an open subset of another connected Kähler manifold M, but we do not require D to be Kählerian in the first three sections.

A function $\varphi: D \to \mathbf{R}$ is said to be *q*-convex (resp. weakly *q*-convex), if φ is of class C^2 on D and if its Levi form $\partial \bar{\partial} \varphi$ has at least n-q+1 positive (resp. nonnegative) eigenvalues on the holomorphic tangent space $T_P(D)$ for each $P \in D$ (see Andreotti-Grauert [1]). As extensions of the notion of weakly *q*-convex functions or (upper semi-continuous) plurisubharmonic functions, Hunt-Murray [12] and Fujita [8] introduced that of (q-1)-plurisubharmonic functions and that of pseudoconvex functions of order n-q, respectively. Further, Fujita [9] proved that they are equivalent. For the original definitions and fundamental properties of them, see Fujita [8], Hunt-Murray [12] and Slodkowski [21], [22].

In this paper we shall give the definition as follows.

DEFINITION 1.1. An upper semi-continuous function $\varphi: D \to \mathbb{R} \cup \{-\infty\}$ is said to be *pseudoconvex of order* n-q at $P \in D$ if, for each weakly (n-q+1)-convex function f defined near P, one can find a neighborhood U(f) of P, so that

$$(\varphi + f)(P) \leq \max\{(\varphi + f)(Q) : Q \in \partial A\}$$

for every domain Δ with $P \in \Delta$ and $\Delta \in U(f)$. A function $\varphi: D \to \mathbb{R} \cup \{-\infty\}$ is said to be *pseudoconvex of order* n-q on D, if φ is upper semi-continuous on D and if φ is pseudoconvex of order n-q at each $P \in D$.

Using the criterion of (q-1)-plurisubharmonicity due to Slodkowski ([21], Proposition 1.1, (iii)), we can immediately prove that φ is pseudoconvex of order n-q on D in the sense of Definition 1.1, if and only if φ is (q-1)-plurisubharmonic on D in the sense of Hunt-Murray [12]. Therefore, φ is pseudoconvex of order n-q on D in the sense of Definition 1.1, if and only if so is φ in the sense of Fujita [8].

Plurisubharmonic functions in the usual sense are pseudoconvex functions of order n-1.

If f is weakly (n-q+1)-convex and if h is weakly 1-convex, then f+h is weakly (n-q+1)-convex. Using this fact, we can easily verify that if φ is pseudoconvex of order n-q at P and if h is weakly 1-convex near P, then $\varphi+h$ is pseudoconvex of order n-q at P.

LEMMA 1.2. An upper semi-continuous function $\varphi: D \rightarrow \mathbb{R} \cup \{-\infty\}$ is pseudoconvex of order n-q at $P \in D$, if there exists an (n-q+1)-dimensional complex submanifold L defined near P and containing P such that the restriction $\varphi|_L$ is pseudoconvex of order n-q at $P \in L$ (and particularly plurisubharmonic near $P \in L$).

PROOF. Let f be a weakly (n-q+1)-convex function defined near $P \in D$. Then $f|_L$ is also weakly (n-q+1)-convex near $P \in L$. If $\varphi|_L$ is pseudoconvex of order n-q at $P \in L$, we can by definition find a neighborhood $U'=U'(f|_L)$ $(\subset L)$ of $P \in L$, so that

$$(\varphi|_{L}+f|_{L})(P) \leq \max\{(\varphi|_{L}+f|_{L})(Q): Q \in \partial \Delta'\}$$

for every domain Δ' with $P \in \Delta'$ and $\Delta' \Subset U'$. Choose a neighborhood U = U(f) $(\subset D)$ of $P \in D$ so that $U \cap L \subset U'$. Let Δ be a domain with $P \in \Delta$ and $\Delta \Subset U$, and denote by Δ' the connected component of $\Delta \cap L$ containing P. Then $P \in \Delta'$ and $\Delta' \Subset U'$. Moreover, we have

$$\begin{aligned} (\varphi + f)(P) &\leq \max \left\{ (\varphi \mid_{L} + f \mid_{L})(Q) \colon Q \in \partial \Delta' \right\} \\ &\leq \max \left\{ (\varphi + f)(Q) \colon Q \in \partial \Delta \right\}. \end{aligned}$$

K. MATSUMOTO

This implies that φ is pseudoconvex of order n-q at $P \in D$.

A C^2 function φ is pseudoconvex of order n-q on D, if and only if φ is weakly q-convex on D (see Fujita [8], Proposition 8). It is well-known that every (upper semi-continuous) plurisubharmonic function defined on an open subset of C^n can be approximated by 1-convex functions. However, pseudoconvex functions of order n-q cannot be approximated by q-convex functions in general. We shall next recall the approximation theorems of Diederich-Fornaess and Bungart.

DEFINITION 1.3 (Diederich-Fornaess [4]). A function $\varphi: D \to \mathbb{R}$ is said to be *q*-convex with corners on D if, for each $P \in D$, there exist a neighborhood U of P and (strongly) *q*-convex functions $\varphi_1, \varphi_2, \cdots, \varphi_{t(P)}$ on U such that $\varphi|_U = \max{\{\varphi_1, \varphi_2, \cdots, \varphi_{t(P)}\}}$.

DEFINITION 1.4 (cf. Bungart [3]). A function $\varphi: D \to \mathbb{R} \cup \{-\infty\}$ is said to be strongly pseudoconvex of order n-q on D (or strictly (q-1)-plurisubharmonic on D in the sense of Bungart [3]) if, for each $P \in D$, there exist a neighborhood U of P and a (strongly) 1-convex function h on U such that $\varphi-h$ is pseudoconvex of order n-q on U.

It is clear that every q-convex function with corners is strongly pseudoconvex of order n-q. Conversely, if φ is strongly pseudoconvex of order n-q and if φ is piecewise C^2 , that is, φ is locally a maximum of a finite number of C^2 functions, then φ is q-convex with corners (see Matsumoto [13], p. 73).

Diederich-Fornaess showed the following approximation theorem.

THEOREM 1.5 ([4], Theorem 1). Let D be an n-dimensional paracompact complex manifold and φ a q-convex function with corners on D. Then, for any continuous function $\varepsilon > 0$ on D, there exists a \tilde{q} -convex function ψ on D such that $|\varphi - \psi| < \varepsilon$ on D, where $\tilde{q} = n - \lfloor n/q \rfloor + 1$ and $\lfloor \rfloor$ denotes the Gauss symbol.

Diederich-Fornaess ([4], Theorem 2) further showed that the number \tilde{q} in Theorem 1.5 is best possible for any pair (n, q). Note that $\tilde{q} > q$ when $2 \le q \le n-1$. On the other hand, Bungart showed the following approximation theorem.

THEOREM 1.6 ([3], Theorem 5.3). Let D be an n-dimensional paracompact

complex manifold and φ a continuous strongly pseudoconvex function of order n-q on D. Then, for any continuous function $\varepsilon > 0$ on D, there exists a q-convex function ψ with corners on D such that $|\varphi - \psi| < \varepsilon$ on D.

REMARK 1.7. Bungart [3] asserted Theorem 1.6 only when $D \subset \mathbb{C}^n$. In view of his proof, the theorem remains valid when D is a paracompact complex manifold.

REMARK 1.8. By the definition in this paper, a q-convex function with corners is piecewise C^2 . Since every C^2 function can be locally approximated by C^{∞} functions with respect to (Whitney) C^2 topology, every q-convex function with corners defined on a paracompact complex manifold can be globally approximated by such piecewise C^{∞} functions. Therefore, we can choose the q-convex function ϕ with corners in Theorem 1.6 so that it is also piecewise C^{∞} .

2. Pseudoconvex domains of general order and q-convex domains with corners.

Let *D* be a complex manifold and $\varphi: D \to \mathbb{R} \cup \{-\infty\}$ an upper semi-continuous function. Then φ is said to be an *exhaustion function* of *D* if $\{P \in D: \varphi(P) < A\} \Subset D$ for every $A \in \mathbb{R}$.

A complex manifold D is said to be *q*-convex (resp. *q*-convex with corners) if D has a continuous exhaustion function which is *q*-convex (resp. *q*-convex with corners) outside some compact subset of D. Further, D is said to be *q*-complete (resp. *q*-complete with corners) if D has an exhaustion function which is *q*-convex (resp. *q*-convex with corners) whole on D (see Andreotti-Grauert [1] and Diederich-Fornaess [4]).

It is clear that D is q-convex (resp. q-complete) with corners if D is q-convex (resp. q-complete). When $2 \leq q \leq n-1$, the converse is not valid even if $D \subset C^n$ (see Diederich-Fornaess [4] and Matsumoto [13]). By the Diederich-Fornaess approximation theorem (Theorem 1.5), an n-dimensional complex manifold D is \tilde{q} -convex (resp. \tilde{q} -complete) if D is q-convex (resp. q-complete) with corners, where $\tilde{q}=n-\lfloor n/q \rfloor+1$. Moreover, by the Bungart approximation theorem (Theorem 1.6), D is q-complete with corners, if and only if D has an exhaustion function which is strongly pseudoconvex of order n-q on D.

In what follows, let M be a connected, paracompact complex manifold of dimension n.

An open subset D of M is said to be *pseudoconvex of order* n-q in M, if the complement $M \setminus D$ satisfies 'the Hartogs continuity principle of dimension n-q' (see Tadokoro [25] for the precise definition; and see also Riemenschneider [18] and Fujita [8]).

The pseudoconvexity of order n-q of an open subset D in M is a local property of the boundary $\partial D (\subset M)$ of D. More precisely, D is pseudoconvex of order n-q in M if, for each $Q \in \partial D$, there exists a neighborhood $V (\subset M)$ of Q such that $D \cap V$ is pseudoconvex of order n-q in V.

When $M = C^n$, Fujita showed the following.

THEOREM 2.1 ([8], Théorème 2). For an open subset D of C^n , the following conditions are equivalent:

K. Matsumoto

(a) D is pseudoconvex of order n-q in C^n .

(b) D has an exhaustion function which is pseudoconvex of order n-q on D.

(c) $-\log d_{\partial D}(z)$ is pseudoconvex of order n-q on D, where $d_{\partial D}(z) = \inf \{ \|z-w\| : w \in \partial D \}$ is the Euclidean boundary distance of D at $z \in D$.

Using Theorem 2.1 and the Bungart approximation theorem (Theorem 1.6), we can easily prove the following.

PROPOSITION 2.2. An open subset D of C^n is pseudoconvex of order n-q in C^n , if and only if D is q-complete with corners. Therefore, an open subset D of an n-dimensional complex manifold M is pseudoconvex of order n-q in M, if and only if D is locally q-complete with corners in M in the sense of Peternell [16].

Now we shall give some examples of pseudoconvex open subsets of order n-q.

EXAMPLE 2.3. Let D be an open subset of an n-dimensional complex manifold M and suppose that the boundary ∂D is a real hypersurface of class C^2 in M, that is, there exist, for each $Q \in \partial D$, a neighborhood V of Q and a C^2 function $\rho: V \to \mathbb{R}$ such that $d\rho(Q) \neq 0$ and $D \cap V = \{P \in V: \rho(P) < 0\}$. Then D is pseudoconvex of order n-q in M, if and only if the Levi form $\partial \bar{\partial} \rho$ has at least n-q non-negative eigenvalues on $T'_Q(\partial D)$ for each $Q \in \partial D$ and for each defining function ρ of D near Q, where $T'_Q(\partial D)$ ($\subset T_Q(\partial D)$) is the holomorphic tangent space of the real hypersurface ∂D at Q. (Eastwood-Suria [5] and Suria [23] called such a subset D a (q-1)-pseudoconvex open subset with C^2 boundary.)

EXAMPLE 2.4. Let S be an analytic subset of an n-dimensional complex manifold M and denote by k the minimum of dimensions of irreducible components of S. Then the complement $M \setminus S$ is pseudoconvex of order n-q in Mif and only if $k \ge n-q$. Moreover, an open subset D of M is pseudoconvex of order n-q in M if, for each $Q \in \partial D$, there exists a purely (n-q)-dimensional analytic subset S defined near Q such that $Q \in S$ and $S \subset M \setminus D$.

In this paper, we introduce the following condition (C_q) .

DEFINITION 2.5. We say that an open subset D of an *n*-dimensional complex manifold M satisfies the condition (C_q) in M, if

 (C_q) For each $Q \in \partial D$, there exists an (n-q)-dimensional complex submanifold defined near Q such that $Q \in S$ and $S \subset M \setminus D$.

For the sake of simplicity, we agree that M itself and the empty set satisfy the condition (C_q) in M.

Every open subset with the condition (C_q) in M is pseudoconvex of order n-q in M. If S is a complex submanifold of M and if each connected component of S has at least dimension n-q, the complement $M \setminus S$ obviously satisfies the

condition (C_q) in M.

LEMMA 2.6. Let φ be a q-convex function with corners defined on a complex manifold D and suppose that φ is also piecewise C^{∞} . Then there exists a subset Λ of Lebesgue measure zero in **R** such that the set $\{P \in D : \varphi(P) < A\}$ satisfies the condition (C_q) in D for every $A \in \mathbf{R} \setminus \Lambda$.

PROOF. Let U be an open subset of D and $\psi: U \to \mathbb{R}$ a q-convex function of class C^{∞} . For each $A \in \mathbb{R}$, define the set U_A by $U_A = \{P \in U: \psi(P) < A\}$. If the value A of ψ is not critical and if the boundary ∂U_A ($\subset U$) of U_A is not empty, then ∂U_A is a real hypersurface of class C^{∞} in U and so U_A satisfies the condition (C_q) in U. On the other hand, the Sard theorem asserts that the set of the critical values of ψ is of Lebesgue measure zero in \mathbb{R} , if $\psi: U \to \mathbb{R}$ is of class C^{∞} (at least of class C^{2n}). The lemma follows from the two facts. \Box

Using Lemma 2.6 we can easily prove the following.

LEMMA 2.7. If a complex manifold D is q-convex with corners, there exists a sequence $\{D_{\nu}\}_{\nu \in \mathbb{N}}$ of open subsets with the condition (C_q) in D such that $D_{\nu} \Subset D_{\nu+1} \Subset D$ for each $\nu \in \mathbb{N}$ and $\bigcup_{\nu=1}^{\infty} D_{\nu} = D$.

3. The definition and some properties of the operator W_q .

Throughout §3, let M be a connected, paracompact complex manifold of dimension n and G a (fixed) Hermitian metric on M. Let D be an open subset of M and q an integer with $1 \le q \le n$.

Given a continuous function $\varphi: D \rightarrow \mathbb{R}$ and a point $P \in D$, the quantity $W[\varphi](P)$ introduced by Takeuchi [26], [27] is very useful to study plurisubharmonic functions defined on Kähler manifolds (see also Elencwajg [6], Suzuki [24] and Greene-Wu [11]). Roughly speaking, the quantity $W[\varphi](P)$ means 'the modulus of plurisubharmonicity' of φ at P. In this section, we shall introduce the quantity $W_q[\varphi](P)$ meaning 'the modulus of pseudoconvexity of order n-q' of φ at P and give some properties of the operator W_q (see Remark 3.5 below for the relation between the operators W and W_q).

DEFINITION 3.1. A local coordinate system (z_1, \dots, z_n) around $P \in M$ is said to be normal at P (with respect to G), if

$$z_i(P) = 0$$
, $G\left(\frac{\partial}{\partial z_i}, \frac{\partial}{\partial z_j}\right)(P) = \delta_{ij}$ for $1 \leq i, j \leq n$.

Every point P of M has a normal coordinate system at P. If local coordinate systems (z_1, \dots, z_n) and (w_1, \dots, w_n) are both normal at P, the transformation matrix $(\partial z_i/\partial w_j)$ is unitary at P. Therefore, if a function φ defined

near P is of class C^2 , all the eigenvalues of the Hermitian matrix $(\partial^2 \varphi / \partial z_i \partial \bar{z}_j)(P)$ coincide those of $(\partial^2 \varphi / \partial w_i \partial \bar{w}_j)(P)$. We shall only call them eigenvalues of the Levi form $\partial \bar{\partial} \varphi$ at P.

DEFINITION 3.2. Let $\varphi: D \to \mathbb{R} \cup \{-\infty\}$ be upper semi-continuous and $P \in D$. Let $z = (z_1, \dots, z_n)$ be a normal coordinate system at P. We define the quantity $W_q[\varphi](P)$ as the supremum of $\alpha \in \mathbb{R}$ such that $\varphi - \alpha ||z||^2$ is pseudoconvex of order n-q at P, where $||z||^2 = \sum_{i=1}^n |z_i|^2$. If no such $\alpha \in \mathbb{R}$ exists, we put $W_q[\varphi](P) = -\infty$.

The following lemma implies that the quantity $W_q[\varphi](P)$ is well-defined, that is, it is independent of the choice of a normal coordinate system at P.

LEMMA 3.3. Let $\varphi: D \to \mathbb{R} \cup \{-\infty\}$ be upper semi-continuous and $P \in D$. Suppose that $z = (z_1, \dots, z_n)$ and $w = (w_1, \dots, w_n)$ are both normal coordinate systems at P. If $\varphi - \alpha \|z\|^2$ is pseudoconvex of order n - q at P, so is $\varphi - \beta \|w\|^2$ for every $\beta < \alpha$.

PROOF. We put $h = \alpha ||z||^2 - \beta ||w||^2$. Then *h* is 1-convex near *P* because all the eigenvalues of $\partial \bar{\partial} h$ are equal to $\alpha - \beta$ (>0) at *P*. Therefore, $\varphi - \beta ||w||^2 = \varphi - \alpha ||z||^2 + h$ is pseudoconvex of order n - q at *P* if so is $\varphi - \alpha ||z||^2$.

In particular, Lemma 3.3 implies that φ is pseudoconvex of order n-q at P if $W_q[\varphi](P) > 0$.

Using Lemma 3.3, we can immediately prove the following.

LEMMA 3.4. Let $\varphi: D \to \mathbb{R} \cup \{-\infty\}$ be upper semi-continuous, $P \in D$, and $\alpha \in \mathbb{R}$. Then the following conditions are equivalent:

(a) $W_q[\varphi](P) \ge \alpha$.

(b) There exists a normal coordinate system $z=(z_1, \dots, z_n)$ at P such that $\varphi -\beta ||z||^2$ is pseudoconvex of order n-q at P for every $\beta < \alpha$.

(c) $\varphi - \beta ||z||^2$ is pseudoconvex of order n-q at P for every normal coordinate system $z=(z_1, \dots, z_n)$ at P and for every $\beta < \alpha$.

Let $\varphi: D \to \mathbf{R}$ be of class C^2 and $P \in D$. Denote all the eigenvalues of $\partial \bar{\partial} \varphi$ at P by $\alpha_1, \alpha_2, \dots, \alpha_n$, where $\alpha_1 \ge \alpha_2 \ge \dots \ge \alpha_n$. Then we have $W_q[\varphi](P) = \alpha_{n-q+1}$. Moreover, $W_q[\varphi]: D \to \mathbf{R}$ is continuous if φ is of class C^2 . When φ is not of class C^2 , the function $W_q[\varphi]$ is not continuous in general.

REMARK 3.5. If W denotes the operator introduced by Takeuchi, then $W[\varphi] = 4W_1[\varphi]$ for every C^2 function φ (see Takeuchi [27], p. 335). The author does not know whether the operators W and $4W_1$ exactly coincide or not.

A C^2 function $\varphi: D \to \mathbf{R}$ is q-convex (resp. weakly q-convex) on D if and only if $W_q[\varphi] > 0$ (resp. $W_q[\varphi] \ge 0$) on D. Moreover, we obtain the following.

PROPOSITION 3.6. Let $\varphi: D \rightarrow \mathbb{R} \cup \{-\infty\}$ be an upper semi-continuous function. Then

(a) φ is pseudoconvex of order n-q on D if and only if $W_q[\varphi] \ge 0$ on D.

(b) φ is strongly pseudoconvex of order n-q on D if and only if, for each $P \in D$, there exist a neighborhood U of P and a constant $\varepsilon > 0$ such that $W_q[\varphi] \ge \varepsilon$ on U.

PROOF. The proof of (b) is easy. The necessity of (a) is obvious. To prove the sufficiency of (a), suppose that $W_q[\varphi] \ge 0$ on D and (U, z), $z=(z_1, \dots, z_n)$, is any coordinate neighborhood of D. For each $\nu \in \mathbf{N}$, define the function φ_{ν} on U by $\varphi_{\nu} = \varphi + (1/\nu) ||z||^2$. Then $W_q[\varphi_{\nu}] > 0$ on U. This implies that each φ_{ν} is pseudoconvex of order n-q at each point of U and hence on U. Therefore, by Fujita ([8], Proposition 7), the limit φ of the decreasing sequence $\{\varphi_{\nu}\}_{\nu \in \mathbf{N}}$ is pseudoconvex of order n-q on U, which proves the sufficiency of (a). \Box

PROPOSITION 3.7. Let $\varphi_{\nu}: D \to \mathbb{R} \cup \{-\infty\}$, $\nu \in \mathbb{N}$, be upper semi-continuous and let $\alpha: D \to \mathbb{R}$ be continuous. Suppose that $W_q[\varphi_{\nu}] \ge \alpha$ on D for all $\nu \in \mathbb{N}$. If the sequence $\{\varphi_{\nu}\}_{\nu \in \mathbb{N}}$ is decreasing or uniformly convergent on D, then $W_q[\varphi] \ge \alpha$ on D, where $\varphi = \lim_{\nu \to \infty} \varphi_{\nu}$.

PROOF. Let P be a point of D and β a real number with $\beta < \alpha(P)$. Let $(U, z), z=(z_1, \dots, z_n)$, be a normal coordinate neighborhood at P. Choose a neighborhood $V (\subset U)$ of P so that $W_1[\beta \|z\|^2] < \alpha$ on V. Then, for each $\nu \in N$, we have $W_q[\varphi_{\nu} - \beta \|z\|^2] > 0$ on V and so $\varphi_{\nu} - \beta \|z\|^2$ is pseudoconvex of order n-q on V. Since the sequence $\{\varphi_{\nu} - \beta \|z\|^2\}_{\nu \in N}$ is decreasing or uniformly convergent on V, it follows by Fujita ([8], Proposition 7) that the limit $\varphi - \beta \|z\|^2$ is also pseudoconvex of order n-q on V. Therefore, we have $W_q[\varphi](P) \ge \alpha(P)$ for every $P \in D$.

The following criterion will be used frequently in this paper.

LEMMA 3.8. Let φ and ψ be upper semi-continuous functions from D to $\mathbf{R} \cup \{-\infty\}$ and P a point of D. If $\varphi(P) = \psi(P)$ and $\varphi \ge \psi$ on D, then $W_q[\varphi](P) \ge W_q[\psi](P)$.

PROOF. Let $z=(z_1, \dots, z_n)$ be a normal coordinate system at P and α a real number with $\alpha < W_q[\phi](P)$. Then $\phi - \alpha ||z||^2$ is pseudoconvex of order n-q at P. Hence, for each weakly (n-q+1)-convex function f defined near P, one can find a neighborhood U(f) of P, so that

$$(\psi - \alpha \|z\|^2 + f)(P) \leq \max\{(\psi - \alpha \|z\|^2 + f)(Q) \colon Q \in \partial A\}$$

for every domain Δ with $P \in \Delta$ and $\Delta \Subset U(f)$. If $\varphi(P) = \psi(P)$ and $\varphi \ge \psi$ on D, the above inequality replaced ψ with φ remains valid. Therefore, $\varphi - \alpha \|z\|^2$ is also

Κ. ΜΑΤSUMOTO

pseudoconvex of order n-q at P for every $\alpha < W_q[\phi](P)$ and hence we obtain $W_q[\phi](P) \ge W_q[\phi](P)$.

Next, let L be a *t*-dimensional complex submanifold of $D (\subset M)$, $1 \leq t \leq n$. Then L has the C^{∞} Hermitian metric $G|_L$ induced by the metric G on M. In exactly the same way as the definition of the operators W_q , $1 \leq q \leq n$, on M with respect to the metric G on M, we can define the operators on L with respect to the metric $G|_L$ on L. We shall denote them by $W_q^{(L)}$, $1 \leq q \leq t$. The results about $W_q = W_q^{(M)}$ are naturally valid for $W_q^{(L)}$.

LEMMA 3.9. Let L be a t-dimensional complex submanifold of D. Let $\varphi: L \rightarrow \mathbf{R} \cup \{-\infty\}$ be upper semi-continuous, $P \in L$, and $\alpha \in \mathbf{R}$. Then the following conditions are equivalent:

(a) $W_q^{(L)}[\varphi](P) \ge \alpha$.

(b) There exists a normal coordinate system $z=(z_1, \dots, z_n)$ at $P \in D$ such that $\varphi - \beta(||z||^2)|_L$ is pseudoconvex of order t-q at $P \in L$ for every $\beta < \alpha$.

(c) $\varphi - \beta(||z||^2)|_L$ is pseudoconvex of order t-q at $P \in L$ for every normal coordinate system $z=(z_1, \dots, z_n)$ at $P \in D$ and for every $\beta < \alpha$.

PROOF. If $w=(w_1, \dots, w_n)$ is a normal coordinate system of D at $P \in D$ with respect to the metric G on D and if L is written by $w_{t+1}=w_{t+2}=\dots=w_n$ =0 near P, then $w'=(w_1, \dots, w_t)$ is a normal coordinate system of L at $P \in L$ with respect to the metric $G|_L$ on L. Hence it follows from Lemma 3.4 that $W_q^{(L)}[\varphi](P) \ge \alpha$ if and only if $\varphi - \beta(||w||^2)|_L = \varphi - \beta ||w'||^2$ is pseudoconvex of order t-q at $P \in L$ for every $\beta < \alpha$. This implies that $(c) \Rightarrow (a) \Rightarrow (b)$.

To prove (b) \Rightarrow (c), suppose that $z=(z_1, \dots, z_n)$ and $w=(w_1, \dots, w_n)$ are both normal coordinate systems of D at $P \in D$. Let β and γ be real numbers with $\beta < \gamma < \alpha$. Then the function $h:=\gamma ||w||^2 - \beta ||z||^2$ is 1-convex near $P \in D$ and so the restriction $h|_L$ is also 1-convex near $P \in L$. Therefore, if $\varphi - \gamma (||w||^2)|_L$ is pseudoconvex of order t-q at $P \in L$, so is $\varphi - \beta (||z||^2)|_L = \varphi - \gamma (||w||^2)|_L + h|_L$. This implies that (b) \Rightarrow (c).

LEMMA 3.10. Let $\varphi: D \to \mathbb{R} \cup \{-\infty\}$ be upper semi-continuous and $P \in D$. Then $W_q[\varphi](P) \ge \alpha$, if there exists an (n-q+1)-dimensional complex submanifold L defined near P such that $P \in L$ and $W_1^{(L)}[\varphi|_L](P) \ge \alpha$.

PROOF. Let $z=(z_1, \dots, z_n)$ be a normal coordinate system of D at $P \in D$ and β a real number with $\beta < \alpha$. Since $W_1^{(L)}[\varphi|_L](P) \ge \alpha$, it follows from Lemma 3.9 that $(\varphi - \beta ||z||^2)|_L = \varphi|_L - \beta (||z||^2)|_L$ is pseudoconvex of order n-q(=(n-q+1)-1) at $P \in L$. Hence, by Lemma 1.2, $\varphi - \beta ||z||^2$ is pseudoconvex of order n-q at $P \in D$ for every $\beta < \alpha$. This means that $W_q[\varphi](P) \ge \alpha$. \Box

LEMMA 3.11. Let $\varphi: D \to \mathbb{R} \cup \{-\infty\}$ be upper semi-continuous and $P \in D$. Then $W_1[\varphi](P) \ge \alpha$ if, for every 1-dimensional C-linear subspace E_P of $T_P(D)$, there

exists a 1-dimensional complex submanifold E of D defined near P such that $P \in E$, $T_P(E) = E_P$ and $W_1^{(E)}[\varphi|_E](P) \ge \alpha$.

PROOF. Let $z=(z_1, \dots, z_n)$ be a normal coordinate system of D at $P \in D$ and β a real number with $\beta < \alpha$. To prove the pseudoconvexity of order n-1of $\varphi - \beta \|z\|^2$ at $P \in D$, let f be a weakly n-convex function defined near $P \in D$ and γ a real number with $\beta < \gamma < \alpha$. Since the function $h := f + (\gamma - \beta) \|z\|^2$ is strongly n-convex near $P \in D$, there exists a 1-dimensional C-linear subspace E_P of $T_P(D)$ such that $\partial \bar{\partial} h$ has a positive eigenvalue on E_P . By the assumption of the lemma, choose a 1-dimensional complex submanifold E of D defined near P such that $P \in E$, $T_P(E) = E_P$ and $W_1^{(E)}[\varphi|_E](P) \ge \alpha$. Then $h|_E$ is 1-convex near $P \in E$ and $\varphi|_E - \gamma(\|z\|^2)|_E$ is pseudoconvex of order 0 (=1-1) at $P \in E$. Hence we can find a neighborhood $U' = U'(h|_E)$ ($\subset E$) of $P \in E$, so that

$$(\varphi - \gamma \|z\|^2 + h)(P) \leq \max\{(\varphi - \gamma \|z\|^2 + h)|_{\mathcal{E}}(Q) \colon Q \in \partial \mathcal{A}'\}$$

for every domain Δ' with $P \in \Delta'$ and $\Delta' \in U'$. Choose a neighborhood U = U(f) $(\subset D)$ of $P \in D$ so that $U \cap E \subset U'$. Let Δ be a domain with $P \in \Delta$ and $\Delta \in U$, and denote by Δ' the connected component of $\Delta \cap E$ containing P. Then $P \in \Delta'$ and $\Delta' \in U'$. Moreover, we have

$$\begin{aligned} (\varphi - \beta \|z\|^2 + f)(P) &\leq \max \left\{ (\varphi - \beta \|z\|^2 + f) |_E(Q) \colon Q \in \partial \mathcal{L}' \right\} \\ &\leq \max \left\{ (\varphi - \beta \|z\|^2 + f)(Q) \colon Q \in \partial \mathcal{L} \right\}. \end{aligned}$$

Therefore, $\varphi - \beta \|z\|^2$ is pseudoconvex of order n-1 at $P \in D$ for every $\beta < \alpha$ and hence $W_1[\varphi](P) \ge \alpha$.

4. Distance functions to complex submanifolds.

After §4, let M be an *n*-dimensional connected Kähler manifold with C^{∞} Kähler metric G. Then M can be also regarded as a 2*n*-dimensional Riemannian manifold with the C^{∞} Hermitian metric g = Re G. We denote by J the complex structure tensor field of M, and denote by ∇ and R the covariant derivation and the curvature tensor field (of covariant degree 4) with respect to the Riemannian connection of M, respectively.

If σ and τ are holomorphic planes, i.e., *J*-invariant planes in the (real) tangent space $T_P(M)$ at $P \in M$, the holomorphic bisectional curvature $H(\sigma, \tau)$ of them is defined by

$$H(\sigma, \tau) := R(X, JX, Y, JY)$$

= $R(X, Y, X, Y) + R(JX, Y, JX, Y),$

where X and Y are unit vectors in σ and τ , respectively (see Goldberg-Kobayashi [10]).

For two points P and Q of M, denote by d(P, Q) the distance between P and Q induced by the metric $g (= \operatorname{Re} G)$. Given a subset E of M, we define the distance function $d_E: M \to \mathbb{R}$ to E by

$$d_{E}(P) = d(P, E) = \inf \{ d(P, Q) : Q \in E \} \quad \text{for } P \in M.$$

When D is a pseudoconvex open subset (in the usual sense) in M, the plurisubharmonicity of the function $-\log d_{M\setminus D}$ was differential-geometrically studied by Takeuchi [27], Elencwajg [6], Suzuki [24] and Greene-Wu [11]. In this section we shall prove the following fundamental lemma. The proof is based on that of Greene-Wu ([11], Theorem 1).

LEMMA 4.1. Let M be an n-dimensional Kähler manifold, D an open subset of M, and P a point of D. Suppose that there exists (at least one) $Q \in \partial D$ such that

(i) $d_{\partial D}(P) = d(P, Q),$

(ii) The points P and Q can be joined by a geodesic ξ in M,

(iii) There exists an (n-q)-dimensional complex submanifold defined near Q such that $Q \in S$ and $S \subset M \setminus D$.

Then we have the estimate

$$W_q[-\log d_{\partial D}](P) \geq \frac{1}{4} \min\{\frac{\Theta}{3}, \Theta\},$$

where Θ is the minimum of the holomorphic bisectional curvatures of M on the geodesic ξ in (ii).

PROOF. If S is an (n-q)-dimensional complex submanifold defined near $Q \in \partial D$, and if $Q \in S$ and $S \subset M \setminus D$, we have $d_S \ge d_{M \setminus D} = d_{\partial D}$ on D and hence $-\log d_{\partial D} \ge -\log d_S$ on D. Moreover, since $d_S(P) = d(P, Q) = d_{\partial D}(P)$, we have $-\log d_{\partial D}(P) = -\log d_S(P)$. Hence, by Lemma 3.8, we first see

 $W_q[-\log d_{\partial D}](P) \ge W_q[-\log d_S](P).$

Let $\xi = \xi(t)$, $t \in [0, l]$, be a geodesic in M from $P \in D$ to $Q \in \partial D$, where $\xi(0) = P$, $\xi(l) = Q$, $l = d_{\partial D}(P) = d(P, Q)$, and the parameter t is canonical. Let N_t , $t \in [0, l]$, be the unit tangent vector field of $\xi = \xi(t)$. Then the vector N_l is orthogonal to the (real) tangent space $T_Q(S)$ at $Q = \xi(l) \in S$. Let F_P be the parallel translate of $T_Q(S)$ along ξ back to $P = \xi(0)$. Since $T_Q(S)$ is J-invariant and of real dimension 2(n-q), so is F_P . Moreover, F_P is orthogonal to both N_0 and JN_0 . We denote by L_P the J-invariant \mathbf{R} -linear subspace of real dimension 2(n-q+1) in $T_P(M)$ which is generated by N_0 , JN_0 and the elements of F_P .

Since the metric G on the complex manifold M is now Kählerian, we can

choose a local coordinate system (z_1, \dots, z_n) around P, so that (z_1, \dots, z_n) is normal at P (in the sense of Definition 3.1) and moreover satisfies $(\partial G_{ij}/\partial z_k)(P)$ =0 for $1 \leq i, j, k \leq n$, where $G_{ij} = G(\partial/\partial z_i, \partial/\partial z_j)$. Let L be the (n-q+1)dimensional complex submanifold defined near P such that $P \in L$, $T_P(L) = L_P$ and L is linear with respect to (z_1, \dots, z_n) . Making a unitary transformation of (z_1, \dots, z_n) if necessary, we may assume that L is given by $z_{n-q+2} = z_{n-q+3}$ $= \dots = z_n = 0$ near P.

We put $\alpha = \min \{\Theta/3, \Theta\}/4$. To prove $W_q[-\log d_s](P) \ge \alpha$, it is sufficient by Lemma 3.10 to show that $W_1^{(L)}[(-\log d_s)|_L](P) \ge \alpha$ for the *L* chosen above. Moreover, it is sufficient by Lemma 3.11 to show that $W_1^{(E)}[(-\log d_s)|_E](P) \ge \alpha$ for every 1-dimensional complex submanifold *E* of *L* defined near *P* such that $P \in E$ and *E* is linear with respect to (z_1, \dots, z_n) .

Making a unitary transformation of (z_1, \dots, z_{n-q+1}) if necessary, we may without loss of generality assume that E is given by $z_2=z_3=\dots=z_n=0$ near P. For the sake of simplicity, we write z instead of z_1 , and put $z=x+\sqrt{-1}y$, $x, y \in \mathbf{R}$. Since the vector $(\partial/\partial z)_P$ is unit with respect to the metric G, the vectors $V_0=(\partial/\partial x)_P$ and $JV_0=(\partial/\partial y)_P$ are unit with respect to the metric g $(=\operatorname{Re} G)$. Since $T_P(E)$ is a J-invariant \mathbf{R} -linear subspace of $L_P=T_P(L)$, we can, by making a rotation of z_1 -plane if necessary, write $V_0=\alpha N_0+\beta X_0$ for some α , β and X_0 , where $X_0 \in F_P$ is unit and $\alpha^2+\beta^2=1$.

Let X_t , $t \in [0, l]$, be the parallel translate of X_0 along ξ to $\xi(t)$. Then the unit vectors X_t , JX_t , N_t and JN_t are mutually orthogonal at $\xi(t)$ for each $t \in [0, l]$. We now define the vector field V along ξ by

$$V_t = \left(\frac{l-t}{l}\right) \alpha N_t + \beta X_t$$
 for $t \in [0, l]$,

and put $U_{\varepsilon} = \{(x, y) \in E : |x| < \varepsilon, |y| < \varepsilon\}$ for $\varepsilon > 0$. Then, for sufficiently small $\varepsilon > 0$, we can take a C^{∞} mapping $k : [0, l] \times U_{\varepsilon} \rightarrow M$ such that

(i) $k(t; 0, 0) = \hat{\xi}(t)$, (ii) $k_* \left(\frac{\partial}{\partial x}\right)_{(t; 0, 0)} = V(t)$, $k_* \left(\frac{\partial}{\partial y}\right)_{(t; 0, 0)} = JV(t)$, (iii) $k(0; x, y) = x + \sqrt{-1} y \in E$, $k(l; x, y) \in S'$,

for $t \in [0, l]$ and $(x, y) \in U_{\varepsilon}$, where S' is some 1-dimensional complex submanifold of S defined near Q and containing Q, and k_* denotes the differential of the mapping k.

For $(x, y) \in U_{\varepsilon}$, we define the function $h: U_{\varepsilon} \to \mathbf{R}$ by

$$h(x, y) = \int_0^t \sqrt{g\left(k_*\left(\frac{\partial}{\partial t}\right), k_*\left(\frac{\partial}{\partial t}\right)\right)_{(t; x, y)}} dt,$$

i.e., the length of the curve $k_{(x,y)} = k_{(x,y)}(t) := k(t; x, y) \in M, t \in [0, l]$. Since

K. Matsumoto

 $h(P) = h(0, 0) = l = d_s(P)$, we have $(-\log h)(P) = (-\log d_s)|_E(P)$. Moreover, it follows from the condition (iii) of the mapping k that $h \ge d_s|_E$ on U_{ε} and hence $-\log h \le (-\log d_s)|_E$ on U_{ε} . Therefore, by Lemma 3.8, we have

$$W_{1}^{(E)}[(-\log d_{s})|_{E}](P) \ge W_{1}^{(E)}[-\log h](P).$$

Since the function $-\log h$ is of class C^{∞} on U_{ε} ($\subset E$) and the local coordinate $z=x+\sqrt{-1}y$ of E is normal at $P \in E$, we have

$$(1) \qquad W_1^{(E)}[-\log h](P) = \frac{\partial^2}{\partial z \partial \bar{z}}(-\log h)(P) \\ = \frac{1}{l^2} \left| \frac{\partial h}{\partial z}(P) \right|^2 - \frac{1}{l} \left(\frac{\partial^2 h}{\partial z \partial \bar{z}} \right)(P) \\ = \frac{1}{4l^2} \left\{ \left(\frac{\partial h}{\partial x}(P) \right)^2 + \left(\frac{\partial h}{\partial y}(P) \right)^2 \right\} - \frac{1}{4l} \left\{ \frac{\partial^2 h}{\partial x^2}(P) + \frac{\partial^2 h}{\partial y^2}(P) \right\}.$$

We shall now apply to (1) the variation formulas in Riemannian geometry. The first variation formula gives

$$\frac{\partial h}{\partial x}(P) = g(V_t, N_t)\Big|_{t=0}^{t=1} = -\alpha, \quad \frac{\partial h}{\partial y}(P) = g(JV_t, N_t)\Big|_{t=0}^{t=1} = 0,$$

and hence we first obtain

(2)
$$\left(\frac{\partial h}{\partial x}(P)\right)^2 + \left(\frac{\partial h}{\partial y}(P)\right)^2 = \alpha^2.$$

Next, the second variation formula gives

$$\begin{aligned} \frac{\partial^2 h}{\partial x^2}(P) &= g((\nabla_V V)_{(t;\,0,\,0)},\,N_t) \Big|_{t=0}^{t=t} \\ &+ \int_0^t \Big[-R(V_t,\,N_t,\,V_t,\,N_t) + g((\nabla_N V)_t,\,(\nabla_N V)_t) - \Big\{ \frac{d}{dt} g(V_t,\,N_t) \Big\}^2 \Big] dt \,, \\ \frac{\partial^2 h}{\partial y^2}(P) &= g((\nabla_{JV} JV)_{(t;\,0,\,0)},\,N_t) \Big|_{t=0}^{t=t} \\ &+ \int_0^t \Big[-R(JV_t,\,N_t,\,JV_t,\,N_t) + g((\nabla_N JV)_t,\,(\nabla_N JV)_t) - \Big\{ \frac{d}{dt} g(JV_t,\,N_t) \Big\}^2 \Big] dt \,. \end{aligned}$$

,

where we have put

$$V_{(t;x,y)} = k_* \left(\frac{\partial}{\partial x}\right)_{(t;x,y)}, \quad J V_{(t;x,y)} = k_* \left(\frac{\partial}{\partial y}\right)_{(t;x,y)}$$

Now, by the condition (iii) of the mapping k, the vector fields

$$V_{(0; x, y)} \equiv \left(\frac{\partial}{\partial x}\right)_{(x, y)}, \quad JV_{(0; x, y)} \equiv \left(\frac{\partial}{\partial y}\right)_{(x, y)}$$

are restrictions to U_{ε} ($\subset E$) of the coordinate vector fields with respect to the normal coordinate system (z_1, \dots, z_n) of M at $P \in M$. Hence we have

Boundary distance functions and q-convexity

$$(\nabla_{V}V)_{(0;0,0)} = (\nabla_{JV}JV)_{(0;0,0)} = 0.$$

Moreover, since $V_{(l; x, y)}$ and $JV_{(l; x, y)}$ are vector fields on the complex submanifold S', and since the vector N_l is orthogonal to S' ($\subset S$) at Q, we have

$$g((\nabla_V V)_{(l; 0, 0)}, N_l) + g((\nabla_{JV} JV)_{(l; 0, 0)}, N_l) = g(J[JV, V]_{(l; 0, 0)}, N_l) = 0$$

(see Frankel [7], p. 171). Therefore, we have

(3)
$$\frac{\partial^2 h}{\partial x^2}(P) + \frac{\partial^2 h}{\partial y^2}(P) = \frac{\alpha^2}{l} - \int_0^l R(V_t, JV_t, N_t, JN_t) dt,$$

exactly as in the proof of Greene-Wu ([11], pp. 177-178). Substituting (2) and (3) for (1), we obtain

(4)
$$W_1^{(E)}[-\log h](P) = \frac{1}{4l} \int_0^l R(V_t, JV_t, N_t, JN_t) dt.$$

If Θ is the minimum of the holomorphic bisectional curvatures of M on the geodesic $\xi = \xi(t), t \in [0, l]$, then

$$R(V_t, JV_t, N_t, JN_t) \ge \Theta\left\{\left(\frac{l-t}{l}\right)^2 \alpha^2 + \beta^2\right\} \quad \text{for } t \in [0, l].$$

Hence, by (4), we have

$$W_{1}^{(E)}[-\log h](P) \ge \frac{\Theta}{4l} \int_{0}^{l} \left\{ \left(\frac{l-t}{l}\right)^{2} \alpha^{2} + \beta^{2} \right\} dt$$
$$= \frac{\Theta}{4} \left(\frac{\alpha^{2}}{3} + \beta^{2}\right).$$

Noting that $\alpha^2 + \beta^2 = 1$ and hence $1/3 \leq (\alpha^2/3) + \beta^2 \leq 1$, we finally obtain

$$W_{q}[-\log d_{\partial D}](P) \ge W_{1}^{(E)}[-\log h](P) \ge \frac{1}{4}\min\left\{\frac{\Theta}{3}, \Theta\right\},$$

which completes the proof of the lemma.

5. Boundary distance functions of pseudoconvex domains of general order.

Let M be a Kähler manifold and D an open subset of M. For $P \in M$ and r > 0, we use the notation

$$B(P, r) = \{Q \in M : d(P, Q) < r\}.$$

Then $B(P, d_{\partial D}(P)) \subset D$ for every $P \in D$. We further denote by $\Theta(P)$, $P \in D$, the infimum of the holomorphic bisectional curvatures on $B(P, d_{\partial D}(P))$. It is easy to see that the function $\Theta: D \to \mathbf{R}$ is continuous, if $D \cap B(P, r) \Subset M$ for every $P \in D$ and for every r > 0. Note that the condition is satisfied, either if M is complete or if $D \Subset M$.

K. Matsumoto

As an application of Lemma 4.1, we shall first prove the following local result on boundary distance functions of pseudoconvex open subsets of general order.

PROPOSITION 5.1. Let M be an n-dimensional Kähler manifold and let D be a pseudoconvex open subset of order n-q in M. Then there exists an open subset Δ of M such that $\partial D \subset \Delta$ and

$$W_q[-\log d_{\partial D}] \geq rac{1}{4} \min\left\{rac{\Theta}{3}, \Theta
ight\} \quad on \ D \cap \Delta,$$

where $\Theta = \Theta(P)$, $P \in D$, is the infimum of the holomorphic bisectional curvatures on $B(P, d_{\partial D}(P))$.

PROOF. We put $\alpha = \min \{\Theta/3, \Theta\}/4$. To prove the proposition, it is sufficient to show that each $Q \in \partial D$ has a neighborhood V such that $W_q[-\log d_{\partial D}] \ge \alpha$ on $D \cap V$.

Let V^* be a Stein neighborhood of $Q \in \partial D$ which is relatively compact in some coordinate neighborhood of M. Then the set $D^* := D \cap V^*$ is biholomorphic to a pseudoconvex open subset of order n-q in \mathbb{C}^n . Hence, by Proposition 2.2 and Lemma 2.7, we can take a sequence $\{D^*_{\nu}\}_{\nu \in N}$ of open subsets with the condition (\mathbb{C}_q) in D^* such that $D^*_{\nu} \Subset D^*_{\nu+1} \circledast D^*$ for each $\nu \Subset N$ and $\bigcup_{\nu=1}^{\infty} D^*_{\nu} = D^*$. Then, for each $P \Subset D^*_{\nu}$, there exists (at least one) $Q \Subset \partial D^*_{\nu}$ which satisfies the conditions (i), (ii) and (iii) of Lemma 4.1. Hence, by Lemma 4.1, we have

$$W_q[-\log d_{\partial D_{\nu}^*}] \ge rac{1}{4} \min \left\{ rac{\Theta^*}{3}, \; \Theta^*
ight\} \quad ext{ on } D_{
u}^*$$

for each $\nu \in N$, where $\Theta^* = \Theta^*(P)$, $P \in D^*$, is the infimum of the holomorphic bisectional curvatures on $B(P, d_{\partial D^*}(P))$. Note here that, because $D^* \Subset M$, Θ^* and hence $\alpha^* := \min \{\Theta^*/3, \Theta^*\}/4$ are continuous functions from D^* to \mathbf{R} . On the other hand, for each $\nu \in \mathbf{N}$, the sequence $\{-\log d_{\partial D^*_{\mu}}\}_{\mu \geq \nu}$ decreases on D^*_{ν} and converges to $-\log d_{\partial D^*}$. Therefore, it follows from Proposition 3.7 that $W_q[-\log d_{\partial D^*}] \geq \alpha^*$ on D^*_{ν} for each $\nu \in \mathbf{N}$ and hence $W_q[-\log d_{\partial D^*}] \geq \alpha^* \geq \alpha$ on D^* .

Now choose r>0 so that $B(Q, 2r) \Subset V^*$, and put V = B(Q, r). Then we have $d_{\partial D} = d_{\partial D^*}$ on $D \cap V$ ($\subset D^*$), which implies that $W_q[-\log d_{\partial D}] \ge \alpha$ on $D \cap V$ for this V.

We shall later show that the estimate in Proposition 5.1 holds not only near ∂D but also whole on D in some cases (see Proposition 6.4 and Proposition 7.1). In this section we give the following global estimate for $W_q[-\log d_{\partial D}]$ under the assumption stated below.

LEMMA 5.2. Let M be an n-dimensional Kähler manifold and let D be a pseudoconvex open subset of order n-q in M such that $D \cap B(P, r) \Subset M$ for every

 $P \in D$ and for every r > 0. Suppose that there exists an open subset Δ of M with $\partial D \subset \Delta$, and that one can for each r > 0 find a positive number $C^{(r)}$ and a q-convex function $\psi^{(r)}$ with corners on $D^{(r)} \cap \Delta$ satisfying $|-\log d_{\partial D} - \psi^{(r)}| < C^{(r)}$ on $D^{(r)} \cap \Delta$, where $D^{(r)} = D \cap B(O, r)$ and $O \in \partial D$ is fixed. Then we have the estimate

$$W_q[-\log d_{\partial D}] \geq \frac{1}{4} \min\left\{\frac{\Theta}{3}, \Theta\right\}$$
 whole on D,

where $\Theta = \Theta(P)$, $P \in D$, is the infimum of the holomorphic bisectional curvatures on $B(P, d_{\partial D}(P))$.

PROOF. We may assume that each $\psi^{(r)}$ is piecewise C^{∞} . Then, by Lemma 2.6, there exists a subset $\Lambda^{(r)}$ of Lebesgue measure zero in \mathbf{R} such that the set $\{P \in D^{(r)} \cap \Delta : \psi^{(r)}(P) < A\}$ satisfies the condition (C_q) in $D^{(r)} \cap \Delta$ for every $A \in \mathbf{R} \setminus \Lambda^{(r)}$. On the other hand, by assumption, $D^{(r)} \Subset M$ and hence $D^{(r)} \setminus \Delta \Subset D$ for each r > 0. We can thus choose $A_0^{(r)} > 0$, so that

$$D^{(r)} \setminus \mathcal{A} \subset \{P \in D^{(r)} : -\log d_{\partial D}(P) + C^{(r)} < A_0^{(r)}\}.$$

For A>0 and r>0, we define the set $D_A^{(r)}$ by

$$D_{A}^{(r)} = (D^{(r)} \setminus \mathcal{A}) \cup \{P \in D^{(r)} \cap \mathcal{A} : \psi^{(r)}(P) < A\}.$$

Since $\psi^{(r)} > -\log d_{\partial D} - C^{(r)}$ on $D^{(r)} \cap \Delta$, we have $D_A^{(r)} \equiv D$ for every A > 0. Moreover, since $\psi^{(r)} < -\log d_{\partial D} + C^{(r)}$ on $D^{(r)} \cap \Delta$, the set $D_A^{(r)}$ satisfies the condition (C_q) in $D^{(r)}$ if $A > A_b^{(r)}$ and $A \in \mathbf{R} \setminus \Lambda^{(r)}$.

For each $P \in D_A^{(r)}$, let $Q \in \partial D_A^{(2r)}$ be a point such that $d_{\partial D_A^{(2r)}}(P) = d(P, Q)$. Then the point Q is necessarily an interior point of $D^{(2r)}$ because $d_{\partial D_A^{(2r)}}(P) < d(O, P) < r$. Hence, if $A > A_0^{(2r)}$ and $A \in \mathbb{R} \setminus A^{(2r)}$, the point Q belongs to $D^{(2r)} \cap \Delta$ and satisfies $\psi^{(2r)}(Q) = A$, and fulfills the conditions (i), (ii) and (iii) of Lemma 4.1 with respect to the set $D_A^{(2r)}$. Therefore, it follows from Lemma 4.1 that

$$W_q[-\log d_{\partial D_A^{(2r)}}] \ge \frac{1}{4} \min\left\{\frac{\Theta^{(2r)}}{3}, \Theta^{(2r)}\right\} \quad \text{on } D_A^{(r)}$$

for every A with $A > A_0^{(2r)}$ and $A \in \mathbb{R} \setminus A^{(2r)}$, where $\Theta^{(r)} = \Theta^{(r)}(P)$, $P \in D^{(r)}$, is the infimum of the holomorphic bisectional curvatures on $B(P, d_{\partial D}^{(r)}(P))$. Note here that $\Theta^{(r)} : D^{(r)} \to \mathbb{R}$ is continuous because $D^{(r)} \in \mathbb{M}$. Furthermore, $-\log d_{\partial D_B^{(2r)}}$, where B > A, decreases on $D_A^{(r)}$ and converges to $-\log d_{\partial D}$ as $B \to \infty$. Therefore, using Proposition 3.7, we can conclude that

$$W_{q}\left[-\log d_{\partial D}\right] \geq \frac{1}{4} \min\left\{\frac{\Theta^{(2r)}}{3}, \Theta^{(2r)}\right\} \geq \frac{1}{4} \min\left\{\frac{\Theta}{3}, \Theta\right\}$$

on $D^{(r)}$ for every r > 0, which proves the lemma.

K. Matsumoto

6. Pseudoconvex domains of general order in Kähler manifolds of positive holomorphic bisectional curvature.

In §6, we consider the case where a Kähler manifold M has positive or non-negative holomorphic bisectional curvature.

The following is the direct result of Proposition 5.1 and Proposition 3.6.

COROLLARY 6.1. Let M be an n-dimensional Kähler manifold with nonnegative (resp. positive) holomorphic bisectional curvature and let D be a pseudoconvex open subset of order n-q in M. Then there exists an open subset Δ of M such that $\partial D \subset \Delta$ and the function $-\log d_{\partial D}$ is pseudoconvex (resp. strongly pseudoconvex) of order n-q on $D \cap \Delta$.

If the boundary ∂D of an open subset D of M is a real submanifold of class C^2 in M (whose irreducible components may have different dimensions from each other), there exists an open subset Γ of M such that $\partial D \subset \Gamma$ and the boundary distance function $d_{\partial D}$ is of class C^2 on $D \cap \Gamma$ (see Matsumoto [14]). Using this fact and Proposition 6.1, we first obtain the following result on the q-convexity of domains.

THEOREM 6.2. Let M be an n-dimensional Kähler manifold with non-negative (resp. positive) holomorphic bisectional curvature and let D be a pseudoconvex open subset of order n-q in M. Moreover, suppose that $D \Subset M$ and the boundary ∂D is a real submanifold of class C^2 in M. Then D is weakly (resp. strongly) q-convex.

REMARK 6.3. The *n*-dimensional complex projective space $P^n(C)$ has positive holomorphic bisectional curvature with respect to the Fubini-Study metric on $P^n(C)$. Theorem 6.2 is an extension of the Barth theorem ([2], Satz 3) asserting that the complement $P^n(C) \setminus S$ is strongly *q*-convex, if S is a complex submanifold (and hence an algebraic submanifold) of $P^n(C)$ and if each connected component of S has at least dimension n-q (cf. Example 2.4). When $M=P^n(C)$, Theorem 6.2 is the result of Schwarz ([20], Theorem 6.4) and Matsumoto ([15], Corollary of Theorem 2). As another extension of the Barth theorem, Schneider [19] has also showed the *q*-convexity of $M \setminus S$ under the assumption that M and S are compact and S has positive normal bundle in M.

In what follows, we consider only the case where M has positive holomorphic bisectional curvature. Then we can extend Proposition 5.1 to the following global result.

PROPOSITION 6.4. Let M be an n-dimensional Kähler manifold with positive holomorphic bisectional curvature and let D be a pseudoconvex open subset of order n-q in M. Moreover, suppose either that M is complete or that $D \Subset M$.

Then we have the estimate

 $W_q[-\log d_{\partial D}] \ge \frac{\Theta}{12}$ whole on D,

where $\Theta = \Theta(P)$, $P \in D$, is the infimum of the holomorphic bisectional curvatures on $B(P, d_{\partial D}(P))$.

PROOF. By Corollary 6.1, there exists an open subset Δ of M such that $\partial D \subset \Delta$ and $-\log d_{\partial D}$ is strongly pseudoconvex of order n-q on $D \cap \Delta$. Hence, by the Bungart approximation theorem (Theorem 1.6), we can find a *q*-convex function ψ with corners on $D \cap \Delta$ such that $|-\log d_{\partial D} - \psi| < 1$ on $D \cap \Delta$. The proposition thus follows from Lemma 5.2.

COROLLARY 6.5. Under the same assumption as in Proposition 6.4, the function $-\log d_{\partial D}$ is strongly pseudoconvex of order n-q whole on D.

Using the approximation theorems of Bungart and Diederich-Fornaess, we obtain from Corollary 6.5 the following theorem and its corollary on the q-completeness (with corners) of domains.

THEOREM 6.6. Let M be an n-dimensional Kähler manifold with positive holomorphic bisectional curvature and let D be a relatively compact, pseudoconvex open subset of order n-q in M. Then D is q-complete with corners.

COROLLARY 6.7. Under the same assumption as in Theorem 6.6, D is \tilde{q} -complete, where $\tilde{q}=n-\lfloor n/q \rfloor+1$.

When $M = P^n(C)$, Theorem 6.6 is particularly stated as follows (see Proposition 2.2).

COROLLARY 6.8. Let D be an open subset of $P^n(C)$. If D is locally q-complete with corners in $P^n(C)$ (in the sense of Peternell [16]), then D is globally q-complete with corners and hence globally \tilde{q} -complete, where $\tilde{q} =$ n-[n/q]+1. In particular, if S is an algebraic subset of $P^n(C)$ and if each irreducible component of S has at least dimension n-q, then $P^n(C) \setminus S$ is globally q-complete with corners and hence globally \tilde{q} -complete.

REMARK 6.9. In Corollary 6.8, the case where S is non-singular has been showed by Schwarz ([20], Theorem 6.5). When S is non-singular, the set $P^{n}(C)\setminus S$ is further min $\{2q-1, \tilde{q}\}$ -complete (see Peternell [17]).

7. Pseudoconvex domains of general order in Stein manifolds.

Finally in §7, we consider the case where a Kähler manifold M admits a (strongly) 1-convex function. Then we can extend Proposition 5.1 to the following global result.

Κ. ΜΑΤSUMOTO

PROPOSITION 7.1. Let M be an n-dimensional Kähler manifold and let D be a pseudoconvex open subset of order n-q in M. Suppose that there exists an open subset Δ of M such that $\partial D \subset \Delta$ and Δ admits a 1-convex function. Moreover, suppose either that M is complete or that $D \subseteq M$. Then we have the estimate

$$W_q[-\log d_{\partial D}] \ge \frac{1}{4} \min\left\{\frac{\Theta}{3}, \Theta\right\}$$
 whole on D,

where $\Theta = \Theta(P)$, $P \in D$, is the infimum of the holomorphic bisectional curvatures on $B(P, d_{\partial D}(P))$.

PROOF. Shrinking Δ if necessary, we may assume that there exists a 1-convex function h which is defined on an open subset including $\overline{\Delta}$. Moreover, we may by Proposition 5.1 assume that the estimate in Proposition 7.1 holds on $D \cap \Delta$.

Let O be a fixed point of ∂D and put $D^{(r)} = D \cap B(O, r)$ for r > 0. Then, by the assumption of the proposition, $D^{(r)} \Subset M$ for each r > 0. We put

$$\alpha^{(r)} = \frac{1}{4} \inf \left\{ \frac{\Theta}{3}(P), \ \Theta(P) \colon P \in D^{(r)} \cap \Delta \right\},$$
$$\beta^{(r)} = \inf \left\{ W_1[h](P) \colon P \in D^{(r)} \cap \Delta \right\}.$$

Then $\alpha^{(r)} \in \mathbb{R}$ and $\beta^{(r)} > 0$. If we choose $A^{(r)} > 0$ so that $\alpha^{(r)} + A^{(r)}\beta^{(r)} > 1$, we have $W_q[-\log d_{\partial D} + A^{(r)}h] > 1$ on $D^{(r)} \cap \Delta$. By Proposition 3.6, the function $-\log d_{\partial D} + A^{(r)}h$ is strongly pseudoconvex of order n-q on $D^{(r)} \cap \Delta$. Hence, by the Bungart approximation theorem (Theorem 1.6), we can find a *q*-convex function $\phi^{(r)}$ with corners on $D^{(r)} \cap \Delta$ such that

$$|-\log d_{\partial D} + A^{(r)}h - \psi^{(r)}| < 1$$
 on $D^{(r)} \cap \mathcal{A}$.

If we choose $C^{(r)}>0$ so that $C^{(r)}>1+A^{(r)}|h|$ on $D^{(r)}\cap \mathcal{A}$, then $|-\log d_{\partial D}-\psi^{(r)}| < C^{(r)}$ on $D^{(r)}\cap \mathcal{A}$. The proposition thus follows from Lemma 5.2.

In what follows, let M be a Stein manifold. Then M admits a complete Kähler metric.

PROPOSITION 7.2. Let M be an n-dimensional Stein manifold and let D be a pseudoconvex open subset of order n-q in M. Let $d_{\partial D}$ be a boundary distance function of D induced by a complete Kähler metric on M. Then there exists a 1-convex function h on M such that the function $-\log d_{\partial D} + h$ is strongly pseudoconvex of order n-q on D.

PROOF. Let f be a 1-convex exhaustion function of M. For each $\nu \in N$, define the set D_{ν} by $D_{\nu} = \{P \in D : f(P) < \nu\}$ and denote by α_{ν} the infimum of the function $\{\Theta/3, \Theta\}/4$ on D_{ν} , where $\Theta = \Theta(P)$, $P \in D$, is the infimum of the holomorphic bisectional curvatures on $B(P, d_{\partial D}(P))$. Then, by Proposition 7.1,

we have $W_q[-\log d_{\partial D}] \ge \alpha_{\nu}$ on D_{ν} . Let β_{ν} be the infimum of the function $W_1[f]$ on D_{ν} . Then $\beta_{\nu} > 0$ because $D_{\nu} \Subset M$.

Take a sequence $\{C_{\nu}\}_{\nu \in N}$ such that $0 < C_{\nu} < C_{\nu+1}$ and $\alpha_{\nu} + C_{\nu}\beta_{\nu} > 1$ for $\nu \in N$. Choose a C^2 function $u: \mathbb{R} \to (1, +\infty)$ such that $u' > C_1 > 0$, u'' > 0 and $u'(\nu) \ge C_{\nu+1}$ for $\nu \in N$, and put $h = u \circ f$. Then h is 1-convex on M. On the other hand, since $W_1[h] \ge C_{\nu}\beta_{\nu}$ on $D_{\nu} \setminus D_{\nu-1}$, we have $W_q[-\log d_{\partial D} + h] > 1$ on $D_{\nu} \setminus D_{\nu-1}$ for each $\nu \in \mathbb{N}$ and hence on D. Therefore, $-\log d_{\partial D} + h$ is strongly pseudoconvex of order n - q on D.

Using the approximation theorems of Bungart and Diederich-Fornaess, we obtain from Proposition 7.2 the following theorem and its corollary.

THEOREM 7.3. Let M be an n-dimensional Stein manifold and let D be a pseudoconvex open subset of order n-q in M. Then D is q-complete with corners.

COROLLARY 7.4. Under the same assumption as in Theorem 7.3, D is \tilde{q} complete, where $\tilde{q}=n-\lfloor n/q \rfloor+1$.

REMARK 7.5. Using the Bungart approximation theorem, we can also obtain Theorem 7.3 directly from the result of Peternell ([16], Theorem 2) or that of Matsumoto ([13], Theorem 1).

If the boundary ∂D of an open subset D of M is a real submanifold of class C^2 in M (whose irreducible components may have different dimensions from each other), we further obtain the following.

THEOREM 7.6. Let M be an n-dimensional Stein manifold and let D be a pseudoconvex open subset of order n-q in M. Moreover, suppose that the boundary ∂D is a real submanifold of class C^2 in M. Then D is q-complete.

PROOF. By Proposition 7.2, we can find a 1-convex function h on M such that $\varphi = -\log d_{\partial D} + h$ is strongly pseudoconvex of order n-q on D, where $d_{\partial D}$ is a boundary distance function of D induced by a complete Kähler metric on M. Let Δ be an open subset of M such that $\partial D \subset \Delta$ and $d_{\partial D}$ is of class C^2 on $D \cap \Delta$. Then φ is (strongly) q-convex on $D \cap \Delta$.

Choose a 1-convex exhaustion function f of M so that $f > \varphi$ on $D \setminus \Delta$ and put $\Phi = \max\{\varphi, f\}$ on D. Since $\Phi = f$ on $D \setminus \Delta$ and since φ is q-convex on $D \cap \Delta$, we can, by the Diederich-Fornaess approximation theorem (cf. [4], §5), find a q-convex function Ψ (without corners) on D such that $|\Phi - \Psi| < 1$ on D. Then the function Ψ is further an exhaustion function of D, which proves the theorem.

REMARK 7.7. When ∂D is a real hypersurface of class C^2 in M, Theorem 7.6 has been showed by Suria [23] and Eastwood-Suria [5] (cf. Example 2.3).

Theorem 7.6 is an extension of the result. Schwarz ([20], Corollary 6.3) has also proved Theorem 7.6 in another way.

References

- [1] A. Andreotti and H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, **90** (1962), 193-259.
- [2] W. Barth, Der Abstand von einer algebraischen Mannigfaltigkeit im komplexprojectiven Raum, Math. Ann., 187 (1970), 150-162.
- [3] L. Bungart, Piecewise smooth approximations to q-plurisubharmonic functions, Pacific J. Math., 142 (1990), 227-244.
- [4] K. Diederich and J.E. Fornaess, Smoothing q-convex functions and vanishing theorems, Invent. Math., 82 (1985), 291-305.
- [5] M.G. Eastwood and G.V. Suria, Cohomologically complete and pseudoconvex domains, Comment. Math. Helv., 55 (1980), 413-426.
- [6] G. Elencwajg, Pseudo-convexité locale dans les variétés kählériennes, Ann. Inst. Fourier (Grenoble), 25 (1975), 295-314.
- [7] T. Frankel, Manifolds with positive curvature, Pacific J. Math., 11 (1961), 165-174.
- [8] O. Fujita, Domaines pseudoconvexes d'ordre général et fonctions pseudoconvexes d'ordre général, J. Math. Kyoto Univ., 30 (1990), 637-649.
- [9] O. Fujita, On the equivalence of the q-plurisubharmonic functions and the pseudoconvex functions of general order, preprint.
- [10] S.I. Goldberg and S. Kobayashi, Holomorphic bisectional curvature, J. Differential Geom., 1 (1967), 225-233.
- [11] R.E. Greene and H. Wu, On Kähler manifolds of positive bisectional curvature and a theorem of Hartogs, Abh. Math. Sem. Univ. Hamburg, 47 (1978), 171-185.
- [12] L. R. Hunt and J. J. Murray, q-plurisubharmonic functions and a generalized Dirichlet problem, Michigan Math. J., 25 (1978), 299-316.
- K. Matsumoto, Pseudoconvex domains of general order in Stein manifolds, Mem.
 Fac. Sci. Kyushu Univ. Ser. A, 43 (1989), 67-76.
- [14] K. Matsumoto, A note on the differentiability of the distance function to regular submanifolds of Riemannian manifolds, Nihonkai Math. J., 3 (1992), 81-85.
- [15] K. Matsumoto, Pseudoconvex domains of general order and q-convex domains in the complex projective space, J. Math. Kyoto Univ., 33 (1993), 685-695.
- [16] M. Peternell, Continuous q-convex exhaustion functions, Invent. Math., 85 (1986), 249-262.
- [17] M. Peternell, q-completeness of subsets in complex projective space, Math. Z., 195 (1987), 443-450.
- [18] O. Riemenschneider, Über den Flächeninhalt analytischer Mengen und die Erzeugung k-pseudokonvexer Gebiete, Invent. Math., 2 (1967), 307-331.
- [19] M. Schneider, Uber eine Vermutung von Hartshorne, Math. Ann., 201 (1973), 221-229.
- [20] W. Schwarz, Local q-completeness of complements of smooth CR-submanifolds, Math. Z., 210 (1992), 529-553.
- [21] Z. Slodkowski, The Bremermann-Dirichlet problem for q-plurisubharmonic functions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 11 (1984), 303-326.
- [22] Z. Slodkowski, Local maximum property and q-plurisubharmonic functions in uniform algebras, J. Math. Anal. Appl., 115 (1986), 105-130.

- [23] G.V. Suria, q-pseudoconvex and q-complete domains, Compositio Math., 53 (1984), 105-111.
- [24] O. Suzuki, Pseudoconvex domains on a Kähler manifold with positive holomorphic bisectional curvature, Publ. Res. Inst. Math. Sci., 12 (1976), 191-214.
- [25] M. Tadokoro, Sur les ensembles pseudoconcaves généraux, J. Math. Soc. Japan, 17 (1965), 281-290.
- [26] A. Takeuchi, Domaines pseudoconvexes infinis et la métrique riemannienne dans un espace projectif, J. Math. Soc. Japan, 16 (1964), 159-181.
- [27] A. Takeuchi, Domaines pseudoconvexes sur les variétés kählériennes, J. Math. Kyoto Univ., 6 (1967), 323-357.

Kazuko MATSUMOTO

Department of Mathematical Science Graduate School of Science and Technology Niigata University Niigata 950-21 Japan