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1. Introduction.

Let <M be an orientable g-compact d-dimensional Riemannian manifold of
class C* with Riemannian metric g=(g;;). Suppose a potential function Ue
C=(M) is given and consider a second order differential operator .£¢ on M
defined by

g? 1

(L.1) LE= EA———Z—grad U, >0,

where A is the Laplace-Beltrami operator on # and grad means the Riemannian
gradient. This paper is concerned with metastable behaviors of the diffusion
process (x§, P,) generated by £° on the space #. Namely, we shall show
that, for an appropriate choice of a., the finite-dimensional distributions of the
scaled process {x{,,} converge as ¢ |0 to those of a Markov jump process living
on the bottom N={U=0} of the potential. The results will be stated precisely
in Section 2.

The metastable behaviors of diffusion processes have been studied by several
authors, while all of them concern the diffusions on the Euclidean space with
a double-well patential whose heights of the local minima are different from
each other. For the one-dimensional Euclidean space, Kipnis and Newman
took up this problem and Ogura solved it completely. Galves, Olivieri and
Vares considered the multi-dimensional case and used some smoothing and
breaking procedure to obtain weak convergence on the path space, but the
convergence of finite-dimensional distributions like this paper does not follow
from their results.

There is a problem to be solved before establishing the metastable behaviors:
namely, it should be determined the asymptotic behavior as ¢ | 0 of the first
exit time

(1.2) 5 = iInf{t>0; x{& G}

of x§ from a domain GC .M.
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The asymptotics of probabilities or expectations concerning exit time and
exit position in the form e®/** as ¢ |0 (rough asymptotics, i.e., up to logari-
thmic equivalence) are known via the Wentzell-Freidlin theory [4]. One can
see that, for diffusions of gradient type, the rate C, is expressed by the dif-
ference between two values of the potential U at the critical points and the
boundary points in our previous papers [17], [18]. For instance, if the domain
G contains several components N of the bottom {U=0}, the rate C, of the
mean exit time E.[r5], x&N, coincides with the following quantity:

Vo= min max U(g().

where the minimum is taken over all trajectories ¢ C([0, 1], G) such that ¢(0)
N and ¢(1)e0G. However, the investigation of our model requires sharp
asymptotics, i.e., those of the form C,e#e®/<* up to equivalence. We are parti-
cularly interested in those of the mean exit time E.[z%] and of the distribution
P.(xtecA), ACOG, of the exit position from the boundary in case that the
bounded domain G contains exactly one component of the bottom. The latter
problem has been considered formally by Matkowsky and Schuss [12], and
more rigorously by Kamin [9], although the arguments were restricted to the
globally attractive cases. In this paper, we shall use a different approach.
Namely, we shall consider asymptotics of the principal eigenvalue A° and eigen-
function ¢° for the Dirichlet boundary value problems in a bounded domain Q:

(1.3) Lio+ip=0 in £ with g=0 on 2.

Indeed, Friedman [5] gave a basic relation between the principal eigenvalue
and the first exit time and it was proved in the papers [19], [1], that
A°E.[7%] converges to 1 as ¢ |0 uniformly in x belonging to some subdomain
of 2. Hence, the asymptotics of the mean exit time must follow immediately
from those of the principal eigenvalue. We shall also obtain sharp asymptotics
of the distribution of the exit position from the boundary by using those of
the principal eigenfunction together with the Wentzell-Freidlin {0G}-graph in
Section 4.

In order to calculate the asymptotic behaviors of the principal eigenvalues
and eigenfunctions, we mainly use the Rayleigh-Ritz formula and the Fermi
coordinate. To this end, we need to suppose that all connected components of
the bottom N and the compacta M in {U=V,} are submanifolds of . In Sec-
tion 3, the limit of e”e"0/*"2* as ¢ |0 is obtained for a suitable rate yp deter-
mined by the dimensions of N and M. In fact, it is represented by means of
a variational formula, each term of which is written by the Hessian of the
potential U. For the proof, we shall use the fact that ¢° converges to a con-
stant as ¢ | 0 on each valley, i.e., connected components of {U<V,} and see
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that limits of ¢° on the valleys attain the minimum of the variational formula.
The key is where the fast behaviors of ¢° in a tubular neigh-
borhood of the compactum on M will be estimated from below by the slow ones
in the valleys and the Hessian of the potential U.

It is known that {A°t%}.>, or {rt&/F.[7%]}.> converges in distribution to an
exponential random variable by several authors [15], [19], [1], [6], [11], [18].
One may infer from this that the limit of the scaled diffusion process {xi,,}
might be a Markov jump process. In addition, it is natural that the limit pro-
cess should be living on the bottom N among all the local minima of the
potential U by rough asymptotics of the first exit time. Actually, there are
our main results; precise statements are given in Section 2. Section 5 will be
devoted to the proof of the convergence of the scaled process, where we shall
use the above properties together with the results in Section 4.

2. Description of the model and statement of the main results.

Assume the potential Ue C~(H) satisfies the following conditions:
(C,) the set {xeM; U(x)<a} is compact in ¢ for all a=0 and min e U(x)
=0 ;

(Cy) for each a=0, the set {x=K; U(x)<a} consists of finite number of con-
nected components {K;} (each of which is called compactum) such that,
for any two points x, y=K,, there is an absolutely continuous function

deCiv(K,) satistying S:||¢(t)n2dt<oo.
Here we write K={xe¥; grad U(x)=0},

CsHW(F) = {¢€C([0, T], F); ¢(O)=x, ¢(T)=y}, x, y€F, T>(,
for an open or closed set F and ||-]|=+/g(-, ) denotes the Riemannian norm on
M.

REMARK 2.1. (i) One can show that the condition (C,) implies (A) in [4,

p. 169]. (See [17].)

(il) For arbitrary two points x, y belonging to the same compactum, we
have U(x)=U(y). In particular, the set of critical values of U is discrete.

We take a constant V, and subsets N, -.- N of the bottom {U=0} so
that

Vo> U(x, ) for all x, yeN?P, 1<5<U,
Vo=1U(x,y) for all xeN? and yeNY", 1<j, /<1, j=5/,

Vo < U(x, ) for all xeUl; N9 and ye {U=0}\U}., N9,
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where we write

2.1) U(x, y)= min maxU(g®)).
pecE; Van tEL01]

For the sake of Remark 2.1 (ii), one can find a connected component D of
{xeMm; Ux)<(V,+V_)/2} such that it contains the bottoms N, ... N®,
where V_;=[min.ex,v>v, UX)JA(Vo+1). Here one notices the boundary 0.D
of D is non-empty and smooth. From (C,), the set {xeD; U(x)<V,} consists
of finite number of connected components <V, ---, V. and they are taken in
the manner that <V;DNY, 1<7<[. We call each of them “valley” and write
V'={,, -, ¥V1}. We shall also use the notation Vy={<V,, ---, &/;} in order
to distinguish the deepest valleys in V’. Let M,, ---, Mx. be all compacta in
{xeD;U(x)=V,}, namely, UK, M,={xeDNK; U(x)=V,}. We impose the
following restrictions on the relationship between {&V;} and {M,}:

(C) for each M, 1<a<K’, there exist exactly two valleys <V, V.V’
A, +V;,, such that

(2.2) DM+ @ and T, NM,+D.

Moreover, for every two points x&<V;, y&<V;, in different valleys, if a
trajectory ¢=Cg¥(<M) attains the minimum in one has ¢(t)yeM, for
some t=(0, 1) and 1<a<K".

DEFINITION 2.2. For two valleys <V;, V<=V’ and a subset W of V', a
finite sequence of steps V,—V,;, (V;, V. € WU{Y;, YV}, V,+=D;.) is called
a {V,, &V, }-route through W, if it satisfies the next conditions:

(1) the valleys of each step <V;,—<V;. satisfy (2.2) for some 1<a<K’;

(2) the first step starts from <V; and the last one ends at <V;. ;

(3) the end point of each step becomes the starting point of the next step
except the last one;

(4) there are no closed cycles in each route.

We denote by R, (W) the set of {<V;, V;}-routes through W. One can
find a subset V of V’ defined by
V= U {V.€V’; there exists a route t&Reyjop; (V)
157, j'sl. j#5"

such that (V,—V,)et},

where V/'={V,,,, -, V..}. We note VOV, and write V={V,, ---, V;} by
replacing the indices of <V;’s if necessary. Let us prepare the next lemma.

LEMMA 2.3. (i) mq’jqrj'(V’): mq,j:ujv(f/;) for all vy, CVJ'EVO, W+,
where V=AWV, -, Vi}.



Metastable behaviors of diffusion processes 759
(ii) For each <V, V'\V, there is a unique V. &V such that Raiqi (VNV)
#@.

PROOF. The assertion (i) is obvious from the definition. For the claim (ii),
fix an arbitrary valley <&V, V'~ V. Since R (V)%= @ for all &V,. eV, one
can easily find <V;. €V so that Raiai(VNV)%=@. In order to prove the uni-
queness, suppose there are two valleys 4V «,, V)&V such that Ry, (V\V)
#@ and Ro,0,o(VN\V)#Q, say

1= {(Vi—>WV,), (Vi =V, -, (Vi,mV, )} € Ry, ar(VNY),
te = {(VimVy)), (V= V), -, (Wi, >V} € Ry, 0(VNY),
and find V,u), Ve, Ve, V;wEVe, V;0#F=Vm, Ve #V,w, and routes
ts = {(V,00> Vi), (Vi = Vi) o (Vi =V, ),
(V,—=Vs), (Can."’CVj(z))} € mcvju)cvj(z)(f’),
t= {(Vy—=Vye ), (Vyr =Yy )y ey (Vi = Vw),
(V= Vi0), =y (Ve =V, € Ry w07,
passing &V, and <V, ), respectively. Set
nx = min {p=0; CVjp:Cqu: for some ¢g=—m—1, -+, m’'+1},
ke = max{p=0; CVip———CViq: for some ¢=0, ---, k'+1},

where one puts q]j‘):CVik+1:CVi(1); Can,+1=CVj(2)) CVJ"_m__IZCVj(S): CVj(;:CVi"zr+l
:Cvi(”’ Cvj;n’+1:CVj(4) and CV,;o:CVi(V):CVi Simply Note Oék*ék—’—l and as-
sume nx<oo. We take mycs{—m—1, ---, m’+1} and k{0, ---, k’+1} so that
CVj;n*:Can* and Cvik*:CVi'k;’ reSpectively. If m*:0, i.e., Can*chi(g)(¢CVi(1)),
one can find a {V;u,, V,w}-route 15 passing CVik*e V\V
Ty — {(Cvj(l)'—)CVj_n)a ) (CVj—l——)CVi(l))} (CVi(I)—)CVik)) Tty CVik*_lh—)CVilk*)’
(CVi’;‘,;:_)CV":k;ﬁl)’ ] (CVi;a——)CVi(Z))’ (q]jn*__)q/jn*-(-l)y Ty (C(;jn,__’q)j(z))}.
In case that ms>0, consider a sequence of steps
te = {(V;—=>Vsr ), = (Vi =V,@), (V=Y -, (CVi'k;H'_’CVi’k;)y
(CVik*-’CVik*ﬂ), ) (CVik_’CVi(l)): (qji(l)“’q/jl), ) (Can*_l_’CVj,,*);

e TR G TR T 8

+1

Tp? Iy ’

Since {Cle, Tty Can*—ls CVj:_m; ) CVJ;,L:}CV and {Cvik*+17 ) v, q/i’ y U
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CVi'k;m}(:V"\V, the definitions of 74 and ks« imply that {<V,, ., V; _},
*
{CVji_m, ) CVJ"_]}) {Cvj;n*’ ) CVJ,;TL:}’ {Cvik*+1) ) CVik} and {CVi;en "ty CV‘LI;*:_H}
are mutually disjoint. Hence we know that 1, is a {V 0, YV} -route passing
YV, €V'\V. One can treat the case of mx<0 in the same manner. Finally,

’

if ny=oco, a sequence of steps

1, = {<Cvj(2)_")cvjnr)s ) (CVJAI-}CVI'(I)), (CVi(l)'—)CVik)y ) (CV —ﬁcvik*)’

Th,—1

(qjié,ﬁ—_)cvilk,.ﬁ"'l)’ ceey, (CV-,:’;-')CV,’:(Q)), (CVi(2)_>CVj1), -.-’ (CVJ1;L'—>q]j(4))}

is a {9V, V,w}-route passing CVik*e V’\V. And now we reach the contra-
diction. O

We define

e = cy,\J Y\ U Afa], 1=i<L,

vai,eVr\V:mq;i,q;i(V'\V)#Q[ ar M on Dy #0
and denote by M,, 1<a<K, all compacta on {xeD; U(x)=V,} each of which
satisfies for some V;, V.. &V, V;+V,., (not V') by replacing the indices
of M,’s if necessary.
The Hessian H=H(x) of U is a symmetric tensor field of type (0, 2). Espe-

cially for x<K, it is written by

a 0 o*U .o

A iy A L) RTA g S

(g 550) = oo™ 156 7=d,

in terms of an arbitrary local coordinate x=(x%). A tensor H*=H*(x) of type
(1, 1) is naturally associated with H by means of the metric g:

gH*X,Y)=HX,Y), X YeT.%,

where T . stands for the tangent space to # at x .M.
Now we give the conditions on the bottoms N, --- | N© and the compacta
M, -, Mg:

(Cy) each N9, 1<7<], is a disjoint union of finite number of connected n¢’-
dimensional compact submanifolds N, 1<a<l;, of M, NP=UY, N9,
and if ONY’+#@ there exists a connected n{’-dimensional submanifold
N of S such that the interior of N contains N¢ ;

(Cs) each NY, 1<a<l;, 1<j<I, is non-degenerate in the sense that the Hes-
sian H*(x) has rank d—n§’;

(Cs) each M,, 1<a=<K, is an m,-dimensional compact submanifold of .%, and
if 0M,#@ there exists a connected m,-dimensional submanifold M, of
M such that the interior of A7Ia contains M, ;

(C,) each M,, 1<a<K, is non-degenerate and index 1, namely, for every
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xeM,, rank H¥(x)=d—m, and H*(x) has exactly one negative eigen-
value.

REMARK 24. If M,, 1a<K, and &V, V. eV (V,#V,,) satisfy
the one notices M, C I, NCV;..

Let H.(x) be the product of all the positive eigenvalues of the Hessian
H*(x) for x€\Jly N UUK, M, and — H_(x) the negative eigenvalue of H*(x)
for xe\U&: M,. We set, for 1<7</, n”=maXsq.s; 7§’ and
(2.3) y9 = 2r)drdhrr g H.(y)*dy .

am@=n DIy
For an integer a =0 and <V,, V;. €V (V;#V,;.), we define H&)w,, in the fol-

lowing manner: if maX,.y co;~7;, Ma=a,

H_(y) 1/2 )
oy 4

otherwise H é&i’wi,::—}—oo; where the maximum of the empty set is equal to —oo

and, if there are no a’s satisfying the condition of >, then the summation is

equal to 0. In and dy stands for the volume element of N§’ or M,
induced from g on #; if dim NY’=0 or dim M,=0, then dy should be under-

(2.4) Hggzq,i, — (2,-;)(:1—«1—2)/2 S Sua{

a: M oqCV NV mg=a

stood as the d-mass. We set, for a=0 and 0<¢,, -+, {251,
(2.5) H®(QE,, -, )= lgigsL(Ci—Ci')aH&‘/‘i’q'i, ,

and, for 1=7<,

(2.6a) mY = max max . min max m,,
15j' sl j'#j vefey;cpy, (V) (Vi=»Vp)ET MqCPNTy,
s (&)
(2.6b) H; = min  H™YXE, -+, 1),

[(E3 4 FPPEEN st

where one takes ;=1 and {;=0 for 1<;'</, j/#J, in In order to
formulate the first result, we notice the following lemma.

LEMMA 2.5. We have 0<H;<+ for every 1<;<l.

ProoF. Set {;=1, £;=0, 1<j'<l, j'#/, and choose 0<C,.,, -, {;<1 in
the manner that £;=C;. if two valleys V;, V.V satisfy maxy co,nw, Ma>
m. From [2.6a), it is well-defined and we have H;SH™(E,, ..., {1)<+oco.
On the other hand, one can find 1<;'</, j’#; and reﬁ}iq;jq,j,(V) attaining the
maximum in say t={(V;— V), (Vs —>UVy,), -, (V;,—V;)}.  Since
H é(};;’q’;’jq >0 for all 0=¢<p, it is obvious that

D .
H; = min — ey md) 5
J = ostlr"’ (jp51 EO(CJQ C1q+1) q/jqcv_,q+1 s
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where we write {; =1, Cs,1=0 and V; =y, V1=V simply. O
Let {%.x);t=0, x&H} be the flow determined by —(1/2) grad U, i.e., %,=
Z«(x) is a unique solution of the ordinary differential equation (ODE):

(2.7) dz. = — —;- grad U(X,), To=x.

dt

We denote the w-limit set of a point x&=. % and the domain of the attraction
of a connected open or closed set F in .# with respect to this flow, respec-
tively, by o(x) and 9(F):

o(x) = {yeM; X (x)—y for some sequence t,—oo},
DF)= {xeM; o(x)CF}.

For 1<s<!, let B; be an open neighborhood of N such that I?J is con-
tained by V,NDNY) and that dB; is smooth. We set

D;=D~ \J By

17'sl. 7' #7
and define the first exit time 75, from D; by where G should be replaced
with Dj.
Now we formulate our first result.

THEOREM 1. For 1<7<!, we have

(2.8) lim e=m P+ P Vol E [78) ] = 200/ H,
£l0

uniformly in x belonging to any compact subset in D;N\D(VH).
We shall also have the following theorem.
THEOREM 2. For 1<j,, /1<, jo#7J:, we have
(2.9) lim Pu(xt; & 9B;) = Qi1 »
uniformly in x belonging to any compact subset of DN\D(U;,), where the constant
43, 5, and the domain U;, will be defined precisely below in Section 4.

In order to state our main result concerning metastable behaviors, we need

some more preparations. Let us denote B={N®, ---, N®} and set, for 1<;</,

H;/2uP if mP—nN=y,

(2.10) c;= .
0, otherwise,

where p=max,s;s; {m¥’—n?}. Then, introduce a bounded operator ¢ on B(B)
by
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(2.11) GFND) = c‘fjéqi,r{f(N‘j'))—f(N"")}, feB(B),

for N9eB, where g¢; ;=0 for 1<j<! and B(B) stands for the space of all
bounded functions on B. We write (X;, Py¢») for the Markov jump process
realized on some probability space (2, &, P) generated by ¢ satisfying Py»
(Xo=N9)=1 for N9=B.

Now we formulate our main result.

THEOREM 3. Set a.=e#e"v'* and yi=xi,, for t=0. Then for all 0<t,<t;
< e <ty, N9, NU2 ... NYUNB and sufficiently small 6>0, we have

(2.12) lim P(ys, eN3'v, y5,€N$?, -, yiy€N§W)
= Pyuyo(X;=N90, X;;=NU92, ..., X, =N9n)

for all xed(U;,), where N§ stands for the d-neighborhood of NY. In parti-
cular, if x&NY®, then (2.12) also holds in case that 0=t,<t,< .- <ty.

COROLLARY (Metastable behavior). Let us assume N9 consists of one point
b; and the Hessian H*(b;) has rank d for every 1<j<l. Then we have

lim E;Lfu(3)f:(08) -+ fa(0i)] = Eolf1(Xe)fo(Xey) - fu(Xey)]

for all x=D(U;), 0<t,<t,< -+ <ty and bounded continuous functions fi, fa, -+, fn
on M, where E,, stands for the expectation with respect to Py,

3. Singularly perturbed Dirichlet problems.

Let 2 be a connected open domain in < with a C>=-boundary and a com-
pact closure. Recall the elliptic operator .£¢ defined by [1.I) In this section,
we shall mainly study asymptotics of the principal eigenvalue A° and the asso-
ciated eigenfunction ¢° for the Dirichlet boundary value problem [I.3).

We denote by H}2) the completion of a metric space (C3(), |- lui@),
where ||- || g0, is a Hilbertian norm defined by

ol = | lo1dx+{ lgrad gldx,

dx=4+/gdx'A -+ Adx* stands for the Riemannian volume element on % and
g=det (g;;). Since .M is orientable, one can apply the Stokes’ formula
and get
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2

(31) SQSDIBEsgoze'-U/e‘de _ %Sgg(grad SDI; grad (Pz)e—U/Ede

62

+ Egag%e—msz‘ grad 0 X

for ¢1, .= C=(Q), where ¢y denotes the interior product for a vector field X,
i.e., tgraa ,dx is a (d—1)-form defined by

tgrad ,dX = é (—l)i‘lg“—ag VGAXIA - NdXTIADXTUNA - d
¢ 05=1 0x;

and (g%¥) is the inverse matrix of (g;;). Since the second term of the right
hand side (RHS) of vanishes for ¢,€C%(8), (L2, CF(2)) is a semi-bounded
symmetric operator on L%, e V/¢*dx). Hence, there exists the Friedrichs ex-
tension (¢, HYR)) of (L%, C3(2)), (see [14, Volume II, p. 177]) and one
knows —.7¢ is self-adjoint and non-negative. Then, we arrive at the Rayleigh-
Ritz formula [14, Volume IV, p. 82]

R € . Jp)
3.2 Je=2_ J P
(3.2 2 emian 19

where 4° is the minimum eigenvalue of —_£¢ and

J@ = | lgrad plrevdx,

1/2
ol = Il vrstan = {{_Ipl%erdx}".

On the other hand, 1° is simple and one can find a non-trivial positive function
¢ HYQ) such that .L:¢*+1*¢*=0 in the weak sense. (See Gilbarg and Trud-
inger [7, pp. 212-214] for details.) But Theorem 8.13 in verifies g?feC“(!?)
and ¢°=0 on 042 ; namely, ¢ becomes the unique solution of in the classical
sense and A°=1°. Here we also notice the formula [3.2)] is rewritten into

e J(¢*)
3.3 A= LN
63 2 gl
In order to observe the asymptotic behavior of ¢°, we normalize ¢° as
(3.4) sup ¢*(x) = sup |p*(x)| =1.
ref zef

Here, we notice that ¢° is continuous and positive.

We shall assume the potential U satisfies the conditions (C,)-(C,) and em-
ploy the same notations as those in Section 2. Moreover we shall suppose an
open domain (£2) satisfies the following conditions:

(2,) Qc D and 02 is smooth;
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(2,) £ contains exactly one V;,eV, and 2 does not contain an open
neighborhood of N for 1<7<I, j#7,;
(2,) if v,c, then ViR for 1<i<L;
(2, there are no critical points of U on 9£.
We consider the following three families of indices of <V,’s:

9? = (1<i<L; D V)NR+ D},
¢ = {{+1<i< L; 75,
N = NNV {0}
Define a function Ho() on {=(l:)ien2< [0, 177 by
(3.5) Ho©) = H™ @Gy, -+, Go)lggp=1.tym0. 01, i @oisgs

where we set

mo = max max min max m,
]Em!g IEmCVjOCVj(Vg) (W,;-»C(/i. )er MaCCViﬂWi,

and Vo={V;}.en9. Let Ho be the minimum of Ho(Q) in {&[0, 177%. Then, one
has 0<Hp<-+co in a similar manner to Lemma 2.5
In this section, we shall show the following theorem.

THEOREM 3.1. We have

(36) Iim em,g-n(jo)evolszlE — HQ/Z)JUO) .
€40

If the minimum of Ho() is attained by a unique value {=((:)ien2<[0, 117, then
we have

(3.7 lim sup |@%(x)—;| =0, ieqn?,

el0 reF;
for every compact subset F; in QND(VE), where C,-ozl and &;=0, je74.

The proof of the theorem will be divided into three parts.

3-1. Fermi coordinates based on the function UU. Recall the condition (Cs)
for the manifolds M, and M, 1<a<K, where we set M,=M, if OM,=g.
In this subsection, we shall introduce a convenient coordinate system on a
tubular neighborhood of M,.

Let M be a submanifold of #. For yeM, T ,M* denotes the orthogonal
complement of 7'yM in T, 1 with respect to the metric g. We write by (M)
the normal bundle of M in & : namely,

NM) = {(y,v); yeM and veT M*}.

The map exp: 9(M)— K is defined by exp (y, v)=exp,v for (y, v)eTU(M), where
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exp, denotes the exponential map of H at x M. It is known that exp: JI(H)
— M maps a neighborhood of MCJ(#) diffeomorphically onto a neighborhood
of Min H; see [8, p. 17]. Denote J1s(M)={(v, v)eI(M); |lvl|<o} and M(6)=
{xeM; there exists a geodesic less that 0 from x meeting M orthogonally}
for 6>0. The set M(d) is called a d-tubular neighborhood of M.

The condition (Ce) guarantees us to find §,>0 and an open subset M, of
M., 1=a<K, satisfying M/DM, and the map exp: 9, (M)—Mi(@3,) is a diffeo-
morphism.

In order to define a convenient coordinate system on Mg(d;), we take an
arbitrary coordinate £=(£!, ---, £™a) defined on an open set V of M, together
with orthonormal C=-sections En ., ---, Eq of the restriction of J(M,) to V.
We set

V(0) = {exp(Df=m,+1 PPE,(I)NEML(0,); yEV, |91 <0},
77 — (nmaH, e 77d) = Rd—ma R

where 9PE,(y)=(y, nPv,(¥)) and v,(y) is determined from E, by E,=(y, v,(y))-
For each point x=exp(Zn?E,(y)) of V(d,), we assign its coordinate (§', ---, §™e,
phetl, .. 9?) by §7(x)=£"(y), 1=Sr=<m,, and 7%x)=7% m,+1=¢=<d. This is
called the Fermi coordinate on M/(d,) relative to the coordinate system {V, &}

and the orthonormal sections {En .1, -+, Eq}. We shall sometimes write simply
x=(§, n) by identifying x& M,(d,) and its coordinate and denote
oUu oU
VU@ D) = (gmers € 1) 0 52 @ ),
oU
2 —_—
VU@ 1) = (a——nqanq, G D), e

Taking below, into account, we shall also sometimes use the notation
& =&, p/, nH)eR™a X R* ™a"' X R in order to distinguish the d-th coordinate.

Since the coordinate vector fields {d/(dp™=*"), ---, 0/(0p?)} are orthonormal
and orthogonal to M/, we have the following lemma.

LEMMA 3.2. There are an open subset M of M, and 0<0,<0, such that
MiDOM,, that VU, n) is non-singular at every (§, n)=My(d,) and that the
eigenvalues of V:U(&, 0) coincide with non-zero ones of H*(y) for y=E&cM.,.

The next lemma is immediately verified from the implicit function theorem
without difficulty.

LEMMA 3.3. There exists a C* map y—x.(y) from MLCM,; to M} (0,/2)
such that Int M DM, and that, in terms of the Fermi coordinate (§, n) on Ma(dy),
V,UE, 768)=0, where we write xy)=(&, &) for y=(, 0). In particular,
x(¥)=y, i.e., 7o=0 on M,.
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We take M. and 0,>0 satisfying the assertions in Lemmas 3.2 and B.3
without loss of generality and use the notation 7,(£) defined in
Noting that VU(&, 5,(§)) is non-singular and has one negative eigenvalue, say

H4(&), one can also find the orthonormal sections {E, .1, -+, Eq} so that
ViUE no&) 0
3.8 ViUE, n0(8) =
0 Hy()
and that V;.U(§, n.(§)) is positive definite, where

ou*
VZ U(E’ 77) ( vpav (5 n))ma+15p.p'5d—1 )

We call this the Fermi coordinate on M4(d;) based on the function U. Remark
the determinant of VZ.U(&, 9,(&)) is equal to H.(y) and H.(§)=—H_(y) at every
y=&€M,.

One can apply the Taylor formula for U(§, 5) with respect to » and get

3.9) UE, n)—UE, 708) = —21‘<77’—06(E), Vo UE, 7" —n8))>

T3 Ha®) @)+ RE, 7))
for £ M,, where

<" =08, V3 UE, 7N’ — 1))

d-1

= 5 @) T @) a,,a & @),

P p'=my

R(E, 7)(n)

= SV i@} (i — 8 O} {7 — 8 @) avqg;i]an (&, 7))

q.9'.g"=mg+1

7 = c(p—20:)+1n.&), ce(0, 1).
Find h.,>h_>0 and 0,>0,>0 so that
ho <|Hyé)| < h,, h |82 <L N UG, 9oENED < AL L1,
for all £&M, and {'eR* ™! and that

(3.10) Thln—nu®1* = 3 IRE 7))

for all [f—n¢(&) <0, [7|<0, and é=M,. Then, one obtains the following
estimates :

Gila) UG p-UE 7)< (Gha+ph)ly (G MESRH I
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1 1 1 :
B1b) UG n=UE @) = ph-ln' =@ =(Fh.+h-) I —ni@1,
for |p—n¢(&)|=d, and {eM,.

We enclose this subsection with the next remark.

REMARK 3.4. We assume without loss of generality that M, has the fol-
lowing properties.

(1) UE, 758, 9°+9%@)<V, for all EeM; and 3,/2<|7*| <3..

(i) UE, 98)>V, for all E&M\M,.

3-2. Upper bound estimates. In the subsection we shall prove the upper
bound estimate

(3.12) lim sup e™2- 290 gVo/s2js < Hp/2u50)
€40

But with the help of the Rayleigh-Ritz formula it suffices to construct a
sequence of functions {¢*} CC%(f) satisfying that

. 13 13 H
1 H mp-nJod+2,V, /sgijfi(gér)f 2 .-Q, .
(3.13) hrr:&soups e’o I = v
To this end, we consider the tubular neighborhood M,(d,) introduced in the
previous subsection. Assuming M}(0,)CQ if M,cCQ, we fix M,Cf2 and an
open subset W, of M. such that M,DOW, and W,DOM,. From Remark 3.4 (ii),
there is 0<0;<d, such that U(x)>V,+8, for every x&[M;],\[W.],, Where we
put

A

[Mado = {(€ nEM); In—nu8)] <dy, EEMa},
Wado = {(€ neEMa(@); |n—28)] <0, EEW 4}

Remembering thefinequality (3.11a), set d;=+/h_/(4h,+2h_)-8, and find open
subsets O;, k=1, 2, 3,4, of {x, yyeR?; x*+y*’< 0% satisfying the following
conditions:
1) 0;D0L,, for all k=1, 2, 3;
(2) (%, y)e0; if and only if (—x, y)€0;, for all k=1, 2, 3, 4
(3) O:iD[{yzds/4hU{lx]|=ds/4, y=—0s/8}],
OiC[{y>05/8) ULIx| <8s/2, y=—08/4}],
O: D[ {1yl =05/81 U{Ix| £30:/4, |y]<d:/8}],
Oic{ly|>0hU{lx]| £98,/10, y=0} 1.
Then, set

0:() =& n+9:8); (n'l, n9)€0k}t, y=fM,, k=1,2, 3 4,
[Wa]k = UyEW,, Ok(y)) k:]-; 2} 3: 4)

where we remark each O.(y), k=1, 2, 3, 4, does not depend on any particular
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choice of the Fermi coordinate based on the function U.

Now we start to construct ¢=C%(2) (which does not depend on ¢>0). Let
§=(:)ien? attain the minimum of Ho(Z); recall and for the definition
of Ho(g), and put {; =1 and ;=0, je7{. First we define ¢ so that

grad ¢(x) =0 for xe {x; Ux)<V,+0d:}\Ua [Mado,
ox)=28 for xeViU, [(Wole i€

Next, we construct ¢ on [W,],. Assume M,CV,NV;., i,i'e® If <l
set

¢=0 on [WINW,.], 0=¢=<E on [W,]N[W.],
Sb:Zi on [sz]Z\EWa:]:S; Cz§¢§zt’ on [Wa]f)'\[Wa:Ib ¢:ii’ on [Wa:]h

and put ¢ similarly in the other cases.

Let v: (—+/h_0;/4, ~/h_0;/4)—R' denote a smooth function satisfying 7(x)
=x on (—~/h_0;/8, Vh_085/8), /(x)=1 on (—/h_d,/4, v/h_8}/4) and |7(X)|—+ oo,
7/(X)e %™ - 0 as x — ++/h_0;/4 for every a>0. Then, we define ¢%(x) on
(—vh.8, vh.8) by

0, —Vh0i<x< —/h_8s/4,
a¥(x) = ﬁrST(X)e'yz’“zdh . — VR0 /A<x< Vh_8}/4,
n‘.e - 00
1, VRh_0,/4<x< VR, 0,

and 6°¢, n) = a*({n® —nSE} VIH«®), &, 1/, p*)€[Mz],. Note that 6§, 7)
does not depend on any particular choice of the Fermi coordinates based on the
function U and one can be regarded as a smooth function on [M,],.

Finally, we set ¢*=¢ on 2\\U,[M.], and, for x=[M.],,

G(x), if [p/(x)—ne§(x))| 28,/2 or |94 (x)—ni(&(x))] =0;,

o] ,
(D)=L (x)+C;, otherwise,

in case that ;>{,/, and similarly in the other cases. Here one remarks ¢*e
C3(2) and U(x)>V,+(h-03/128)>0d;, for x<{grad ¢+0, 6°+0}. This follows
from the estimate (3.11b) and the property that 6°(x)=0 for x=(§, 5/, %) e
[M;], satisfying —0:<7%—9§()<—d;/4.

Let us start to prove [3.13]. Note

lim sup a“d'mﬂ’”g
€40 NUalWals

where [W.]s ={(& p+1:ENEWale; EEWa, [9'1<ds, [7%<di/4}. From the
Leibniz rule and the triangle inequality,

grad ¢¢ll2e~ U@ Yo/t dy =,
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SW ] ligrad ¢f(x)|2e U™ V0t dx < [{Jo} 2 4ee /"]
Wals

for some a’>0, where

o=, 19— lgrad 6Co)jften VTV

Note that

si=slo 0de| | dn| . dn TG g0,

17d1<By/4

where {p,} is a C* partition of unity on M, and
R a6¢ 06° e ——
U ) = {¢&, ﬁ)-Ci}Zi jz./:lg”@, 7))82’{(5, U)axj (& ple VeVt /& n),
and 0/0X™ =0/0¢7, 1<r<m,, 0/0X?P=0/0n?, m,+1<p=d. By the formulae

g—gﬁ(s, 1) = U~ 78 VT ) g (r* =78 THLE)

1 il THg @ 0? )
X :/"*—:—’“'e“ 262 ) ]-,g_r;::ma s

06° _ .
65—5(5, 7])_‘0; ’na+1§j)£d 1,

ooe & = £y —7H©) VTHAED Y

[H. (&) ¢ ey VTH @12
LI _SAe e‘ —

\2re 2e?

and the property that 7,=0 on M,, Laplace’s methods imply

. —(d=mg)+ 7 alre
(3.14) hm ¢ ( ) 2517]'|<53d1] Smd|<5§/4d7] w (é’ ’7_‘_)70(5))

€0

H_(é, 0) /2
“HT(*&”(S)*} V8, 0),

if £=M,, and otherwise the left hand side (LHS) of vanishes. Now, we
conclude

= (275)“”"‘“‘2”2{61'“&}2{

. o o N N H_(y) 1/2
(d-mg)+2 Je — (d-mg-2)/2fF __F 12
and therefore
(3.15) lim sup e~ (¢~ mD*2pV0/e® [5(h¥) < Hy .

el0
Next, we claim

(3.16) lim e=@-rY0 g2 = U,
€lo



Metastable behaviors of diffusion processes 771

Take 0>0 and an open subset N; of ﬁa, Isaxl;, so that N;ON, and that
the map exp: Ns(N,)—N4(0) is a diffeomorphism, where we write N,=N{o
and N,=N¢o, 1<a<l;, simply and set N,=N, if 0N,=@. We shall also
write x=(¢, n) by identifying x=N4(0) and the Fermi coordinate. One can
prove the following lemmas in the same manner as Lemmas and

LEMMA 3.2’. There are an open subset N3 of N, and 0<0’'<d such that
NiDN,, that VU, n) is non-singular at every (§, p)EN4(0') and that the eigen-
values of V;U(&, 0) coincide with non-zero ones of H*(y) for y=§&N,.

LEMMA 3.3'. There exists a C* map y—x,(y) from NGCN, to Ni(0'/2)
such that Int N;DN, and that, in terms of the Fermi coordinate (§, 1) on Nu(0),
V,UE, 7:1(8)=0, where we write x,(y)=(&, 7:(§) for y=(,0). In particular,
x.(y)=v, i.e., 1=0 on N,.

We shall assume that N/, and &’ >0 satisfy the assertions in Lemmas 3.2
and 3.3’ without loss of generality and use the notation 7,(§) defined in
3.3. Note U(x)>0 at every x&N4(0')\N,.

Now we start to show [3.16). Since {; =1, one notices

1:
(3.17) 1P| = ﬁ’SN, L EUEIRdE O, as € |0,

a=1

for some a”>0. If we fix 1Sa</; and denote by {p,} a C~ partition of unity
on N,, we have

~U(z)/e? — (e p (ENe U ntn (&) /-
[y, et s = S oae 0t dy Vo gFp@e v e,
But, from Lemmas and 3.3/, Laplace’s methods imply

(3.18) lim st~

€0

dn V&, nFni(E)e Ve ntminse

1918’
= (@m) @ "IV (€, ) /G(E, 0)
for £=N, and otherwise the LHS of vanishes. Hence, we have

el0

s ~U(x)/e2 — (d-nlJody/2 -1/2
llmSN;(a')e dx = (2r) SNaH+(y) dy

and, together with we arrive at [3.16).
The estimate is obtained immediately from [3.15) and [(3.16). O

3-3. Proof of
Recall that ¢° is the eigenfunction associated with the principal eigenvalue

A° and is normalized as [3.4). The following proposition was proved in [18,
[Theorem 3.1]], where we also use the Stokes’ formula. See also [2, Lemma 2.2].
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PROPOSITION 3.5. (i) For everyicd? and compact subset F; of D(VHNLR,
there is ¥>0 so that, for all sufficiently small ¢>0,

sup | (x)—p* ()| < e /e,

z,yeF;
and in particular, if i=7,,

inf @i(x) = 1—e 7/,
TEFjO

(ii) For every je39 and compact set F;CD(VS), there is v>0 so that

sup (ps(x) < e—-r/ez
reF;NQ

for all sufficiently small ¢>0.

The next lemma is shown from the above proposition by the same methods

as (3.16).

LEMMA 3.6 lim,,oe™("29 | gf)2=p00,
Let b;=f2 be a fixed point in <V, (not V¢ for each ;=J“.

LEMMA 3.7. Let M, in  and <V;, V., i, i'€N?, satisfy M,CV;N\TV;. and
suppose 1M, . °2(b:)=C; and lim,_. @*(b;:)=C;: for some subsequence {e,} of {e}.
Then, we have

(3.19) lim infsﬁd"’"““e%/eggl[ i )]|grads05n(x)”%’”“’”‘%dx
als

= {zi—fi'}2(27c)<d—ma-2)/zgua{—gl—g%}mdy
Proor. Remembering (3.11a) and Remark 3.4 (i), in terms of the Fermi
coordinate (&, ») based on the function U, set Os={peR* ™«; |9’|<d;/4, |5°|
<308,/4} and [M,]s={(&, 7); é&M,, n=0¢, where d;=~'h_/(2h,+h_)-8,, and
choose compact sets F,CP(VHOINR, Fi C (V&ML such that b,eF;, b, =F;
and that

(3.20a) (¢, ) F; forall §= M, and 9’| £ 0:/4, 0:/2 < 9? < 0,,
(3.20b) (&, ) F;r forall éeM, and |y'| = 0:/4, —0. = 9* < —0,/2,

respectively. From [Proposition 3.5, one can find »>0 so that

(3.21) sup | p*(x)—¢*(b)| = e/, sup |pf(x)—p(be)| < o7,

reEF; xeF;

for all sufficiently small ¢>0. For a C*= partition of unity {p;} on ]\7Ia,
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1= lgradgsnto|re Ve toidx
[Mqals

= 506 0e| a9 3 696 1) G 6 1 oy @ e TEn T VE ).

Since g'?(¢, 0)=0'? for 1<:<d and m,+1<p=d, there is a continuous function
A&, 7)) satisfying A(§, O)-——l and
d

35 g9 2@ 2@ = n)}a 2@l

t,j=1
where we suppose (&, 7)>0 on [M,], without loss of generality. From

Schwarz’s inequality implies

. [1:8)]°
(3.22) I zZSp,(S, 0)—Fem— I8 ¢,

where

150 = || ar

m|exp{— o<, TUE 0,

19) = | dwdnie, n Ve p)

xexp{— oLy (', TUE, 0>~ H@) 9

Noting the estimate
309/4
S 309/4
which follows from (3.20) and (3.21), one applies Laplace’s methods and gets

L N 5 2 )d-mg-1)/2
(3.23) llrﬁinfe“‘d‘"‘a““lin = 18— - (j%/ﬁj(—é):—'

On the other hand, with the help of [3.10), Laplace’s methods also verify

dmpge = QRTON
(3.24) lime=-mo L2 = VEBT (E)Vg(e, 0)-1.

Therefore [(3.19) is obtained from (3.20) by using Fatou’s lemma with [(3.23) and
B24. O

COROLLARY 3.8. If maXy ,cep,new, >ma, then §;={;.

S | dn =2 I bo—gul —2e77,

PrROOF. By virtue of Lemmas and combined with the formula [3.3),
we have
N N 1 s;d+ma+2eVms%15n

1

2 1 3 a my~nldy) Vo/e2
C- P it S hm lnf hm Sups a 4 e o/ 2
Icl Cl t = 2 d n(!o)H s ”2 = 2 10
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for some constant ¢>0, where I;:SM o )]]gradq,e“%g—tf/ezdx. Hence, if m,>my,
atf?
the RHS of the above inequality vanishes from [3.12). O

PrOOF OF THEOREM 3.1. Let {¢,} be an arbitrary subsequence of {e¢}.
Since 0<¢*(b;)<1 for every ¢>0 and i=91?, there exists an subsequence {&,}
of {e,} such that lim, ... ¢*» (b;)=E; for some 0<Z;<1, ie7?. From
3.5, we know ;=1 and {;=0, je92. By using the formula [3.3)] with Lemmas
B.6, B.7 and Corollary 3.8, it holds that

lim infe a0 evo/eh gen’
n'!—so0
—’d+mg+2eVo/s72L
> lim inf_"
n'-o0 —d+nCJo> "2
VIR [

= Ho(Q)/ 2y,

’ JU &n'
Ei,i’eﬂ?Q: maxy . cW,NT;’ maSmQZa: MaCCViﬂCVi'Ian

where I;zgu B )llgradgo*!lze"”“zdx and {=({:)icn9. Comparing with we
MQlog

have Ho({)=H, and is obtained. However, if the minimum of Hp(Q) is
attained by exactly one value {=(;)ien?, we have {;=C;, i€ 7%, which immedia-

tely implies from [Proposition 3.5 O

4. Exit problems.

Let 25 denote the principal eigenvalue of .£¢ in D with the Dirichlet boundary
condition, i.e., for the boundary value problem [1.3) in which D should be
replaced with &, for 1<;7</. One can find the next theorem in [18].

THEOREM 4.1. Let F be a compact subset to DND(VE). There exists a
positive constant r so that

sup| 5E  [th;]—1] < e/
zeF »

for all sufficiently small ¢>0.

By combining with [Theorem 3.1, the above theorem immediately verifies
[Theorem 1. (See also Remark 4.9, below.)

We move to the proof of

For a non-negative integer a, we introduce an equivalence relation ~, on
the set of valleys V={V,, ---, V;} in the following manner :

(1) Vi~oVy;

(2) XVi~gVir, Vi +=Vy, if maXMgccviqncvquma>a, 0=¢=p, for some <V, ,

e, Vi, €V, where <V, =V, and YV, , =V,
We denote the equivalence class of &V, &V by C.(V)={Vy€V; Vi~ V.
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Let us decompose V into {Vi}iay,..z, First, set V;=Cny,(V)), 171,
recall (2.6) for m?. Next, Vi, -+, Vi, denote C(V;)’s satisfying Co(V;)C
V(={Vipy, -, V). Finally, for 1<e<m(=max,s;sm?), define Vi,
oy Vigy, a8 Co(9Vy)’s such that #[C,(V)NV,]=2 and C’a(CVi)Cf;, and put
Ly=L4#,,. Recalling for H{% ., we set,

#kl = maXCVilEVk,CViZ‘EVk maXMaCCT/ilﬂ(—vi2ma7 1 é k _S_ LO’
— ) (Fky)
Kiy kg = ECVilerl’ q'izevszCVhCVig’

= =", 15 ky, ks < Ly, by # by,
Diy by Sher Fhn SRy Re= Loy, R1F Re

and &g, x=pe,+=0, 1ISk<L, Notice that 0<maXs; sk 2 <co for every 1<
k<L, For [+1£k<L, B, denotes a neighborhood with a C*-boundary of
some stable compactum in \Uw,er,V: (Mot in \Ue,er, V) such that B, C
Uaer, V4 and that gradU+0 on 9B, We define

E;:= D\UlSk’SLo.k’;ekBk’, 1=k L,

Uy = N R AVEZAV, \J M, lsk=sL,,
WDy V' EV b Vg2 V3! M (CViNVy!

and claim the next theorem.
THEOREM 4.2. For every 1<k, k:s<L,, ky#k;, we have
(4.1) IEE}PI("g’Ekl € 0By,) = ik,
uniformly in x belonging to any compact subset F of E ND(Uky,).

In order to prove the above theorem, we fix 1<k, <Ljand 1 £, < L so
that V,; &V, and U, NV;,#@. Let Vi=maX.ex: v<v,U(x). Then, one can
find UeC=(H) satisfying the conditions (C,), (C,) given by replacing U with
{7 and the following conditions:

(€ T®)=U(x) for x& U em, M@ xeVi,; U)<Vo+V)/2);
(C) Tx)>U(x) for x€Upew, [Walos

(Cy) {x€K; U(x)>(V0+V1)/2}={er?; Ux)>(Vo+V1)/2};
(Cy) {xeCVigr\i(; U(x)<(V,+2V,)/3} consists of exactly one point b satisfying
that J(b)=—1 and that Hy(b) is positive definite.

Here we use the same notations as those in Sections 2 and 3 and denote the
set of critical points of / and the Hessian of U, respectively, by K and Hpy=
Hp(x). :

We write by D the connected component of {xe.H; U(x)<(V,+V_.)/2}
which contains the bottom b, where V-ls[minxe;ﬁ<,>>yol7(x)]/\V_l. Then,
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from (52), one notices DNVi=g if U \V; =0, V,&V. We also set
Bi={xew,; 0= (Vo+Vy)/2,, 1<i<L,
bkl = ﬁ\Ucvievkl:d?in‘Uklah@gi .

Let (%5, P.) be the diffusion process generated by L°=(e2/2)A—(1/2) gradﬁ and
let 7 be the first exit time of {%i} from the domain ijkl'

LEMMA 4.3. We have

, (Pky)
EqievleCVi‘«Vig

4.2) lim Po(%%, €dB,) =
€ xl

leksLo,k;ekl’ckl,k

uniformly in x belonging to any compact subset F of ﬁf\_@(‘Uh),

ProOF. Consider the principal eigenvalue i° and the associated eigenfunc-
tion @° for the following boundary value problem:

(4.3) Tp+2p=0 in D, with ¢ =0 on aD,,

where we set D():D\Uq/igykl;q72.¢q/12‘cvif\qjkl¢@3i and, as Section 3, normalize
¢° in a similar manner to [3.4] Then, from [Theorem 3.1, if one writes the

RHS of by ¢, one has
lim sup|@*(x)—C| =0
el0 zeF

for every compact subset F in U%eyklg)(CVi)f\ﬁm where one notes U(x)=0(x)
at every point x€9(U,,). By using Itd’s formula, verifies

E.[5(ty); By € 0B,]—¢0) = ——ZEE:,B:"‘:;E(ﬁ)dt].
On the other hand, we know rough asymptotics:

lime? logd® = —(V,+1), hm sups2 log sup E.[#]1<V,,

€40 JEDkl

respectively, from Theorem 2.7 in and [Theorem 1| in [17]. Combining
with Proposition 3.6 (i), one can find »>0 so that

e g N. _ —-r/e2 ~ _
sup| Pa(;, € 9B.)—L| < 207"+ supl (x)—C,

for all ¢>0 sufficiently small and compact subsets F. Therefore [(4.2) is obtained
for every compact subset F in Uwievkl-@(q’ﬂﬂﬁo- Together with the strong
Markov property, one can easily obtain for every compact subset F of
DNo(U,). O

PROOF OF THEOREM 4.2. Let IV be a connected domain satisfying that
DO D' DD\Un v, Mi3,) and that U=U on Dj,=D\Ua,ev, #;n0, »oBir-

For every compact set Fi in D'N\D(U,,), one knows
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(4.4) hm supz-:2 log sup Po(%¢ 2, € oD <0,
k

IEI

from Proposition 2.2 in and, together with Lemma 4.3, has
lim sup | Pa(ify, < 0B,)~¢l =0,

el0 TEF,
where b, stands for the first exit time of #; from Dj and  denotes the RHS
1
of (4.2). Hence, noting that, for x=F,,

P(%5. €0B,)—P.(%5:, €dD’) < P,(%5, €0B,,) < P.(%3 €0B,)
ky Dy Dy, ki
and P,(x%e, eaﬁiz)zP,(fée, eaéiz), we obtain
Dkl Dy

4.5) lim sup IPx(x,s eaB,z) Il =0.

&40 TEF,

Set Bi={xeV,; Ux)S(V,+V,)/2},1<:< L, and G:D\Uq}ieyle;;. Then, by
combining with Px(xii)k e@D’):Px(fém €aD’), (4.5) implies

hmsupIP (xge €0B,)—C| =0.

ed0 T

Hence, one can easily obtain, for 1<k,<L,, k.#k,,

(4.6) lim Po(xte €U, rer,, 0BL) = Py,

€lo0

uniformly in x belonging to any compact subset F' of GN\D(U,,). On the other
hand, suppose B;,C<V;(&V,,) and set G'= D\(B;QUULW@V,, Bi). Then, in a
similar manner to [4.6), one can also prove

4.7) llm PJ(x,e €0B},) =1

uniformly in x belonging to any compact subset of G'\9D(U,,). Furthermore,
from [18, Proposition 2.2, we have

4.8) hm sup ¢?log sup Pz(x,s <£aBkz) <0.

TEBY

Therefore, together with (4.6)-(4.8), the strong Markov property immediately
verifies [Theorem 4.1. O

PROPOSITION 4.4. Set Eo:D\UlsksLoB_,,. Then, for 1<k<L,, we have

Hm P, (xse, eaBk) =1

€l0

uniformly in x belonging to every compact subset F of E,N\D(U,).

The proof is quite similar to and we omit it.
We introduce the Wentzell and Freidlin W-graph. Let J be a finite set and
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W be a subset of /. A graph consisting of arrows a—g (ac /"W, =], a+p)
is called W-graph on J if it satisfies the following conditions:

(1) every point ac J\W is the initial point of exactly one arrow;

(2) there are no closed cycles in the graph.
We denote by &’(W) the set of W-graphs on /. For a=/ W and W,
@2s(W) stands for the set of W-graphson J containing the sequence of arrows
leading from a to B. (See Wentzell and Freidlin [4, pp. 177-182].)

The following lemma is a slight modification of in [4, Chapter
6]. One can prove it in a quite parallel manner.

LEMMA 4.5, Let us consider a Markov chain on a phase space X=\U;cs Xi,
XiNXy =@ @+#1’), the transition probabilities of which satisfy the inequalities

pue < P(x, X;) = Diir xeX,, 1%,

For x&X and BC\Ujew X;, we denote by gw(x, B) the probability that the chain
starting form x hits B at the first exit time from \Ujew X;. Then, we have

Wy Ege@{j(mﬂ'_(g) < awlx, X) < a)" Zges, o T4(8)
aWy? ——————— Zgw(x, X;) = a s
Dees? (@) Y ’ e’ T4 (8)

xeX;, ie[\W, jeW,
if the denominatoir Xgee’ w) ©-(8) is positive. Here we write r=#[ /W],

aW) = 2ge’ ) T.(8)

wewics 2gesd v T-(8)’

and 7r+(g>:H(i—i’)eg ﬁi,i', 7T_(9)—'—H<i-i')eg b, s for gs®/(W).

PROOF OF THEOREM 2. Let 1<j,</ be fixed. We set j={dD, dB,, -,
0By}, W=WU0={3D, dB,, -+, 3B;,1, B;,.1, =+, 0B;} and consider the W-
graph on /. Fix a sufficiently small »>0. Then, from there is
g,>0 so that, for all 0<e<e, and i=j,, [+1, -, Ly, =0, --+, Ly,

Pie = Px(xf'i,,eaBi') < piirs x€0B,,

where p; ¢ =(p:,e—1)VO, pi=(pi,+7)AL and 0B,=0D, p;,=0. We assume
pii+>0 if p; ;>0 without loss of generality. By combining with the strong
Markov property, verifies the estimates:

J T
de@aBjoale awnmI(g)

aT(W)_2L0—1+1

é Pz(xif) Eale)
2ees’ vy ©1(g) Fo

deg‘a’ajoagjl(wﬂfl@) -

< at(W)rlkomt+t xeB;,

Sees’ an) wi(g)
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for 1=5.<(, ji#7J,, provided that 3es’/m» 71(g) is positive, where

ri(g) = I1 Dii, wI(G) = 11 biir ge®’/ W),

(9B;~0B;i")eg (B;~dB;')Eg
Dgew’ v Ti(g)
atWy= I S&= -0
( ) wcewrcd Ege@J(W') n'f(g)
Noticing
limz(g) = limzl(g)=n(g)= ~II _piv, =G'M),
2

740 (0B{~Bd;')Eg
and lim,,, a”"(W)=1, we have uniformly on B;. Here we writc

29€®331033j1<W) ©(g)

(4.9) qu' iy —
Zeee’ ) T(8)

if the denominator in [4.9) is positive, which will be proved in the next lemma.
Hence, by virtue of the strong Markov property combined with we obtain
(2.9) uniformly in x belonging to any compact subset of DN\D(Uy,). O

LEMMA 4.6. The denominator in (4.9) is positive.

PROOF. As the proof of the previous theorem, we consider the Markov
chain whose transition probabilities are given by p; ;.. If the denominator in
vanishes, there is a closed cycle {0B;, ---, 0B, } C{0B;, 0By, -, 0B}

in the chain. For the corresponding v, ---, U;,, one has
min  max max Mg > max max m,.
1spsn 1sp'sn. p#p’ MqCU 50 Uip: lspsn, k#iy iy Macéu,-pmka

Then, when m denotes the LHS of the above inequality, we have C,,_,(V;)D
Ug=1 Vi, and #[Cn (V)NV,]<1. But this contradicts the definition of the
decomposition {V,}. O

REMARK 4.7. For 1<j,, <[, ji#, one can easily know that g; ;>0 if
and only if mY0=m; ;, where
My, j, = max min max mg,.
SRV Wiy VN\Vigjgi, 5oy, 5V 5 Vit Viner MaCTinTy!
REMARK 4.8. Set W,={dD, 0B, -, 0B,} and Dy=D~\\U,s;s; B;, By con-
sidering the W-graph on J with we have, for 1<7</ and [+1
gkgLO’

J
(4.10) 151{1;1 PI(ng)oeaBj) = _E_BEGaBkaBj(Wo)TC'(Q)

s v n(g)

uniformly in x belonging to any compact subset of DN\D(VU,) in the above
manner.
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REMARK 4.9. We have uniformly in x belonging to any compact
subset of DN\D(V,). Indeed, it follows immediately if one uses the strong
Markov property with [Proposition 4.4)

5. Metastable behaviors.

In this section, we shall show To this end, we fix 1),
throughout this section. The first task is to prove the uniform exponential
exit law.

THEOREM 5.1. Let F be a compact subset of DND(U;,). If m90—ndo=g,
we have

(5.1 lsigx stg;o) sggg [Px(a;‘ri,jo > ¢, xi%joe le)-qj0_ se | =0

for 1<7,<U, ji#j, In case that m9o —n90 <y, we have

(5.2) lim inf Py(a7'tp, >1) =1
L0 xeF 0
for t=0.
In order to prove [Theorem 5.1, we need some preparations. One can find

that the following lemma concerning the pointwise exponential exit law holds
from [18, Theorem 3.7] combined with [Theorem 3.1.

LEMMA 5.2. We have lim,,, Px(e‘(""j°’”"‘j°’>e“’°’er§,j0>t):e"‘”J‘o’”””) for all
x€ DND(VS) and t20.

For uniform estimates, we consider the harmonic measures. Set E={x&<
Vs U)<(Vo+V1)/2} 5 recall Vi=maXsek:vwm<v, U(x).

LEMMA 5.3. Let F, be a compact subset of E. There exist r,, ;>0 so that
(5.3) sup |E.[f(xie)]—E,[f(xi)]]| = Cpre7mi/*
z, yeF,;
for all bounded continuous functions f and 0<e<e,, where Cy=supyese | f(¥)|.

REMARK 5.4. By the bounded convergence theorem, holds for all
bounded measurable functions f.

PrROOF. Let us consider the Dirichlet boundary value problem:
(5.4) Lu=0 in E, with u = f on 0F.

It is known that there is a unique solution utcCAE)NC=(E) of [5.4). (See
Theorem 6.13 in [7].) By using It6’s formula, one can write ui(x)=E:[f(xie)].
Hence, for a compact subset F, of E, it suffices to show the existence of 7r,>0
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so that

(5.5) sup |lgrad us(x)|| < C e "2/,

zeF;
In a similar manner to [1, Lemma 7], for a compact subset F, of E, there is
C.>0 so that sup.er, grad u*(x)||=C,C,e7®, 0<e<l. Then, we can use the
same technique as in the proof of Lemma 2.1 of [2] and obtain the estimate

G5 O

We state the following two lemmas without proof since they are shown in a
quite similar manner to Lemmas 3 and 4 in [6], respectively. Here one notices
that they require exponential estimates in [17], and [Proposition 4.4 as
well as the previous lemma.

LEMMA 5.5. Let F be a compact subset of DND(U;,) and let be N>, One
can find r>0 and 6.>0 so that lim.,,0.=0 and that

?,E:I}Py(rﬁfo>t’ xgeijEle) é Pb(fi)jo>t—"7]sy x‘if)joEle)+5sy
;2; Py (Ti)jo>t, x:i’joEBj‘) = Pb(TEDj0>t+77€) xze'i)jOEle)_ae ’

for all €>0 sufficiently small and 1<7, <1, 71# 7., where m:e“’O“””z.

LEMMA 5.6. Let beNY® and set f5(t)=DPya;’ h;, b x,aj eB; D for1=7,
<, J1#7Js, and t=0. For every t,>0, there exist positive numbers 7, € So that

Pb(a;lfi)j0>S+5E)f§1(t+55)*58 é fjl(t+s) é Pb(ae—lrenjo>s)f;](t_as)+5£
for all s>0, t=t, and 0<e<e,, where d.=e "/,

PROOF OF THEOREM 5.1. Since is obvious from Lemmas 5.2 and
it suffices to show the case of m¥® —nYo =y, For an arbitrarily fixed be NV,
we set

f3(0) = Plai'eh, >, x84, €B), 120, 1<jsl, j# o,

and f5#)=0, t=0. From every {f;({t)}e>, 1=7<1, is a uniformly
equicontinuous family on each bounded interval. Hence, combining with
5.2 and the fact that Pb(xii’ d D) vanishes exponentially fast, we have

limsup| 3} fiH)—e4t|=0, limsup| 3 {£50)— f3O} —(1—¢ 5| = 0.

elo tz0

From the above formulae and in case that g¢;,;,>0 the distribution
function g5 (£)=1-f5,t)/f5,(0) satisfies

1irr61¢i0nf g5(T) =z l—e'”foT/qjo,jl, lim¢soup g5,(t) = (1—e™%")/q;,.5,, T>t>0.
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Hence, the family of the corresponding probability measures is tight. If g;(f)
denotes the distribution function of its arbitrary limit point, we have
l_gjl(t+s) = (1——gj1(t>)e_c]08 2 s, tgo’

from Lemma 5.6/and, especially, 1—g; (t)=e4’, t=0. However, since {g} )} >
is uniformly equicontinuous, we have the uniform convergence:

lim sup |(1—g5,)—e %! =0
el t20

and for F={b}. In order to obtain for an arbitrary compact subset

F of DN9(U;,), one has only to combine with O
LEMMA 5.7. There is y>0 so that
(5.6) lim sup P,(th; >t., x5,¢B;) =0,
€10 yeDj, 0

where t,=eVo 1/,

PROOF. Recalling the condition (C,), we denote by K; the set of all stable
compacta with respect to the flow determined by —(1/2)grad U. Define V{V,
Ci, Vi, k=0, 1, .-, inductively, below: Viv=V,, Ci’=D; and

V;gz):maxxeK:UuKV,g“ Ux); - .

CY: the union of all connected components of {x; U(x)<(V{P+Vi»)/2}

containing some N, 1<a<l; ; '

V;Si)lzmaXKieKs (KycofD MAX e N God, yek4: CF; ’J(c,g”)aecaU(x: ¥);
recall for the notation U(x, y). Then, write by n the smallest number
so that NV coincides with the union of all stable compacta in C¥. Choose
O<7<(1/2){mingie,{s;Kic,,jo\p min zex, U(X)A minxeaBjOU(x)} so that every Vv
—7r/2, 0<k=mn, is a regular value of U, where F is a compact subset of Bj,
whose interior contains N¥®, and put

(1)— 2 g2
1= eV P 0k <, &= e/,

1)~ 2 ¢
si= eV WIS 0k<n,  sha =P,

C: the union of all connected components of {x; U(x)<V"—7/2} contain-
ing some N0, 1<a=<l;, 0<k=n,
and C_,=D;, C,.,=Bj, Here one notices

(5.7a) sup  Py(té,_jr>sp) S e, 0<k<n+l.
YEC p \F
(5.7b) lim sup sup P,(z&,<t§) =0, 0Zk<n+1,
€0 yeF

which follow, respectively, from in with Chebyshev’s inequality
and from Theorem 2.5 in [18]. If A; denotes the event that x§ enters in F
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during [0, s§) and spends the rest of time interval (Q, ti] in C,, one has

pi= sup P,([A:] 76, ,>1h)

yECk 1

< sup Pyt \w>st)+ supP (78, <th)

yeCp -y

and lim.,, p;=0, 0<k<n+1, from (5.7). On the other hand, the Markov pro-
perty verifies, for ye Dy,

Py(th;,>1t5, xi€C -y for all tE(E—(th-1—si-0), 15])
< Ey[Pzgo_z;(ﬁ,jow;), oy, > ti—th xis_te ECroi]+ Dk
< Py(z-i,j°>tf,, xieC, for all te@i—s—si), i)+ pi, 0=k<n+41
where 1£,—s%,=0. From the above estimates, we obtain
Py(rh; >15) = Py(fi;jo>1‘8, XfSEBjO)-l- {ps+ - past
for all ye D;,. Therefore, is immediately derived if one sets f.=i;. O

We define a sequence {T%} of stopping times in the following manner:
T,=0 and for n=1

Ts =inf {t>T%_,; xi¢& Dy}, if Thi<+eo and x5 € DND(VUy),

and T§=-oo otherwise.

Let {Y,}n.1,.. be a Markov chain on B={N®, ..., N} starting from
N9o with the transition probabilities ¢; ;. Let 4,, 4, -~ be independent and
exponentially distributed with parameter 1 and independent of {Y,}. Then,
4y

—5==1 S 7N n:O’ 1: Ty
(=t < By

defines a Markov process {X.} in B starting from N¢Y® with the generator ¢
defined by [2.11), where ¢(N9)=c¢;, 1<7=<I, and we take 4/0=+oco and 3}7L,=
(See, e.g., Ethier and Kurtz [3].)

X, =Y, 2

PROPOSITION 5.8. Let F be a compact subset of DND(U;) and let t>0. We
have '

Py(x%i == le) Tty x%s = BjN, T?V—]- é ta’e < T§V>

N

(5.8) lim sup

el0 YEF

=0

_PN(j0)<Y1 — N‘jl), o YN - N’(J‘N)’ %2AL <t< 21 A )

n=0 Cjn n=0 Cfn

for every j, -, jnEJ, and
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lim sup | P, (x5 = Bj, »+, xts, € Byy, Th = ta. < Twv.)
. . N-1 n N A
—PNu'o)(Y1 =N, ... YVy=NUm 3 4 <t< 3 )‘ =0
n=0 Cj_ n=0 Cj

for every jy, -+, jxa€J, and 1< jy<l, where Jo={1<j<l; mP—nP=p},

Proor. For (5.8), we use induction on N. The case of N=1 is already
known in [Theorem 5.1. If one writes, for b=NU0o,

Pb(x%i E.BTI, Tty xTE = B]Ny TN 1 < tae <TN>

P,(xe eB a;'ts >t—s
SBjN IXEOJ) y( TDj JIN? 3 DN—! )

XPb(xET‘; = -le, ) x%iv—ZEBjN-Z’ x?‘ﬁv_led% as_l fv_.16d3),

and the assumption of induction verify that the RHS of the above
formula converges to

—ﬁo——>t——s>

IN-1

S sz(fzv—ﬁ(Yl'—“N(jm,
[0, 1)

XPN(jO) (YI:-N(jl), e YNVZ —_ N(J'N_z)’ YN»'l —_ N'(jN—l)’ NE‘Z An )

n=0

in
) ) N-14,
= Pyan(Yi=N0», o, ¥ y=Now, 50 o 5
n=0 Jn ]n,
Hence, (5.8) holds for F={b}. In particular, we have
(5.9) lifn Pta,—eo /< T:<ta.) =0, >0, 1I<n<N.
g0

On the other hand, it is known that, for each compact set F in DND(U;,),
there are »>0 and d. such that lim.,, 8.=0 and that

sup Py(x4:€ By, -, Ko €B;,, Ty <ta.<T%)

< Py(xe EEBJI, -, "T;vijN, Ty =ta., ta.—n.<T%)+0.,
yl.IEIFf Py(xTECB,l, TE x;s EF]-—N, Ty 1 <ta.<T%)

ZPo(x'}§EBj1, ey X €B;,, Ty 1<ta.—1., ta,.<T¥)+9d.,

where p.=e®"™/* In fact, they can immediately be derived in the same
manner as Lemma 3 in [6]. Therefore, by combining the above estimates with
(5.8) for F={b} and the assertion is obtained.

The second assertion for jy=J, is obtained from (5.8). For jy& J,, one
can get it if one uses the strong Markov property combined with (5.8) and
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in [Theorem 5.1. O

The next lemma immediately follows from [Proposition 5.8

LEMMA 5.9. Let j,&],. We have

lim sup lim sup sup P, (T5<ta.) =0
n—co €40 yeF

for every compact subset F of DND(U;,) and t>0.

LEMMA 5.10. Let F be a compact subset of DND(U; ). Then, for every
17! and >0, we have

(5.10) lim sup | P,(yi€B;)— Py jn(X;=N9)| =0,

cl0 yeF

where we recall yi=xi,,, t=0.
PROOF. If one sets t,.=e¥o"/s* >0, one has

Py(yi#B;) < E\[Pey, , (xi,&By, th; >10), thy >ta.—t.1+ P, (th; Sta).

However, in case that mY® —uY0 <y, each term of the RHS vanishes as ¢ |0
respectively from and Proposition 5.1. Hence, is obtained.
We move to the proof in case that m¥0® —nY0 =y, We write, for N=1,

P (yi€B))
N { — - . -
= 2 Z -1 Py(x;"iEler Tty xETfL__lEBjn_lJ xiasijs sz-1§tas<T°;.)

n=1 jiofn-y
+P,(yi€B;, Tv<ta.),
Py (X :=N©)

N 1 . . vy
=5 py IPN(J'M(Yl:N(]l), i Yya=NGr-2 Y, =N,

n=1 jp.ip-o=

S g

=1 Cjk k=0 Cjk

n-2 A4, n-1 _45)

N
+PN<10>(YN:N“", ol g’igz).

Then, when we fix 1=7,, -+, j..: <[ and set

piy) = Py(x;eleB_jl, o, xhe €Bj Xia,€Bj, Th . <ta.<T3), 1<j<i,

ps(Y) = Py(xej'elEB—]'lr Tty x;ﬁ_leg-j—;jly T%_1<ta€<T%),

it is sufficient from [Proposition 5.8 and Lemma 5.9 to show
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(6.11)  limsup sup | 65, (¥)—p*(¥)| =0, lim sup sup p53) =0, Jj#Jn
er yer

g0 Yy €lo0

for all compact subset F of DN\D(VU;). Note that

p50) = E,[Pe, _, (x3,€By, 15, >t),
x4 €By, -+, x5e €B; -, Th<ta.—t.)
+P(x4:€B;, -, x5 €8, ,, x6a,€B; ta—t.<Th.1<ta),
p) = B[P,  (th;,  >to), 2By, o, xge €85, ThaSad—L.]

+Py(x;~fEBj1y ) x;’fl_IEBjn-l’ Z(a's"_ts<T$7.—1§tae),

for t.=e®o /<> »>(. Then, since Proposition 5.8 verifies

lim sup sup P,(ta.—t. < T3, < ta.) =0,
el0 yeF

one can easily obtain (5.11) from O

By virtue of the Markov property combined with Lemma 5.i(, the follow-
ing proposition is obvious.

PROPOSITION 5.11. We have

lim sup sup | P,(y§,€Bj,, -+, yiyEBiy)
€40 yEF

_’PN(j())(th:N(jl), e XtN:N-(jzv))l =0
for every 0<t,<t,< -+ <ty, 1=7,, -+, jn =l and compact subset F of DND(U;,).

REMARK 5.12. If every af, 1<n<N, satisfies lim,,,a%/a.=1, then we
have

liny $up Sup | Py (51,04 € By -1 g, € By
—Prio(X =N90, - X, ;=NI®)| =0
for every 0<t;<t,< -+ <tw, 1=7), ==+, jy=! and compact subset F of DN\D(U; ).

PROOF OF THEOREM 3. Let us fix 0>0, 157, -+, Jas!, 0<ty, -+, ty< o
and x€9(U;,). One can suppose B,=N§’, 1<7<!, and x& D, since the case
that xe D is already obtained. Note that there exist a compact set F in
DNa(U;) and T, 6,>0 such that, if ¢=C([0, T, M) satisfies supose=r|PQE)—
—ZX(x)| <8, then ¢(T)=F; recall ¥,(x) is the solution of the ODE [2.7). Then,
Theorem 3.2 in [4, Chapter 5] guarantees the existence of »>0 so that
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(5.12) P.(sup |¢p(t)—Zu(x)|=28) < e77/<*
ostsT

for all sufficiently small ¢>0. Hence, when we write
P.(y;, eNGD, -+, yi, @NIM)
N EI[PT';‘(X%I%‘TEN“?I)’ Ty xiNas-TENéfN>)y 02951‘ l¢(ﬂ——ft(x)| <0,]

+P.(y;, eN7V, -, yiyeNZ®, sup |¢(t)—x(x)]| =0,),

ostsT

2.12] is immediately obtained from and Proposition 5.11] with Remark
5.12. O '

REMARK 5.13. Let x€D(U,), [+1<k<L,. Consider a Markov jump pro-
cess X, realized on some probability space (2, ¥, P) generated by ¢ satisfying
P(X,=N9)=gq, ;, 1<j<l, where ¢, ; is defined by the RHS of in Remark
4.8. Then, by the above methods, we can show

lim P,(y5, NP, -+, 5, eNF®) = PX, =N, .-, X, ,=NUm)
gl0

for all 0<t,< -+« <ty, N9, .-, N9V =B and sufficiently small 6>0. And if
N consists of one point b; and H*(b;) has rank d for every 1<7</, then we
also have

lslffol E.[f1(y5) - i)l = E[fi(Xe) - fr(Xey)]

for all xe9(U,;), 0<t;< - <ty and bounded continuous functions f,, -+, fy
on %, where E stands for the expectation with respect to P.
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