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1. Introduction.

Let $f$ . $(R^{n},\vec{O})arrow(R,\vec{0})$ be a germ of an analytic function at $\vec{0}$ in $R^{n}$ and
$g:(R^{n},\vec{0})arrow(R,\vec{0})$ be a germ of an analytic function at the origin. We consider
an oscillating integral of a phase function $f(x)$ with the constraint equation
$g(x)=0$ such that

$I( \tau, \varphi)=\int_{R^{n}}e^{i\tau f(x)}\delta(g(x))\varphi(x)dx$ (1)

where $\tau$ is a real parameter and $\varphi\in C_{0}^{\infty}(R^{n})$ . $\delta(g(x))$ is the “delta-function”
$[3, 17]$ expressing the constraint $g(x)=0$ . This type of the oscillating integral
sometimes appears in a kind of the path integral in physics as the Faddeev-
Popov method for gauge theory ([15]), and also appeared in a mathematical
physics (for example, see [16]). It is meaningful to obtain the asymptotic ex-
pansion of the integral for a large $\tau$ .

The existence of the asymptotic expansion for the oscillating integral (1) is
easily proved by a technique of Jeanquatier [11] (see also Arnold, Guzein-Zade
and Varchenko [7] $)$ or Malgrange [13]. The purpose of this paper is to cal-
culate the principal term of the asymptotic expansion of the oscillating integral
(1) in a neighborhood of a singularity of the phase in terms of Newton’s dia-
gram of the phase function and the constraint equation. The asymptotic expan-
sion of an oscillating integral without the constraint $\delta(g(x))$ is already studied
by Varchenko [6] by means of the toroidal embedding. Our considerations are
not included in their works. It is shown by seeing the next example. Let $f_{a}$

be the principal term such that $f_{d}=x^{2}y^{2}z^{2}$ in $R^{3}$ . We consider the hyperplane
$g=x+y+z=0$ . Substituting the equation into $f_{d}$ , this term has the form $f_{d}=$

$x^{2}y^{2}(x+y)^{2}$ . This $f_{a}(x, y)$ is degenerate type in the meaning of Varchenko.
Generally, the non-degeneracy depends on the choice of the coordinate. How-
ever in the above case we can prove easily that any coordinate transformation
does not change its degeneracy. Hence if one should estimate the integral (1)

with substituting directly the constraint equation $g(x)=0$ , then the substituted
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function $f$ is not necessarily non-degenerate. Thus in the case $n>2$ it is dif-
ficult to calculate generally the power index of the asymptotic expansion for
our integrals by means of Varchenko [6].

Using a toroidal resolution with a canonical simplicial subdivision of the
dual Newton diagram (Oka [1]), we obtain our main result Theorem 14 and
Theorem 27 which give a method to estimate the highest weight of the asymp-
totic expansion

$\int_{R^{n}}e^{i\tau f(x)}\delta(g(x))\varphi(x)dx\sim\sum_{p}\sum_{k=0}^{n-2}a_{p}k(\varphi)\tau^{p}(\log\tau)^{k}$

for $|\tau|arrow\infty$ through the Newton boundary.
In section 2, we will recall the toroidal resolution and non-degenerate com-

plete intersection variety. In section 3, we will prove our main theorem for
smooth $g(x)$ function, and in section 4 we extend it to the case of singular
function. In Section 5, we will show some examples of the asymptotic expan-
sion.

ACKNOWLEDGEMENT. The Author would like to thank Professors M. Oka
and M. Nagase for valuable suggestions and discussions during the preparation
of this paper.

2. Non-degenerate complete intersection variety and
its toroidal resolution.

In this section, we recall briefly the definition and the fundamental facts
for a toroidal resolution of a complete intersection variety (see the detail in
Khovansky $[4, 5]$ and Oka [2] $)$ .

Let $f(x)=\Sigma_{\nu}a_{\nu}x^{\nu}$ and $g(x)=\Sigma_{\nu}b_{\nu}x^{\nu}$ be analytic functions of n-variables.
We consider the function $f(x)$ and $g(x)$ on $R^{n}$ as the restriction of the complex
analytic function $f(z)$ and $g(z)$ which is defined in a neighborhood $U$ of the
origin in $C^{n}$ . So, we initially states the some definitions and facts for the
complex case. Let $h(z)=\Sigma_{\nu}c_{\nu}z^{\nu}$ be an analytic function of $n$ -variables which
is defined in a neighborhood of the origin. The Newton polyhedron $\Gamma_{+}(h)$ is
the convex hull of the union of $\{\nu+R_{+}^{n}\}$ for $\nu$ such that $c_{\nu}\neq 0$ . The Newton
boundary $\Gamma(h)$ is the union of the compact faces of the Newton polyhedron
$\Gamma_{+}(h)$ . The dual space of $R^{n}$ can be canonically identified with $R^{n}$ itself by
the Euclidean inner product. Let $N$ be the set of integral dual vectors under
this identification and let $N^{+}$ be the set of positive integral dual vectors. Let
$P={}^{t}(p_{1}, \cdots , p_{n})$ . For each $x\in R^{n},$ $P(x)$ is defined by $P(x):=\Sigma_{i=1}^{n}p_{i}x_{i}$ . $P$ is
called a positive (respectively a strictly positive) dual vector if $p_{i}\geqq 0$ (respec-
tively $p_{i}>0$) for $i=1,$ $\cdots$ , $n$ . For a positive integral dual vector $P\in N^{+}$ , we
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define $d(P;h)$ as the minimal value of the restriction $P|_{\Gamma_{+}(h)}$ , $i$ . $e.$ , $d(P;h)=$

$\min\{P(x);x\in\Gamma_{+}(h)\}$ and let $\Delta(P;h)=\{x\in\Gamma_{+}(h);P(x)=d(P;h)\}$ . We define
$h_{P}(z)=h_{\Delta(P_{i}h)}(z)$ where $h_{\Delta}(z)=\Sigma_{\nu\in\Delta^{C_{\nu}Z^{v}}}$ . We call $h_{P}(z)$ the face function of $h$

with respect to $P$.
Let $(f(z), g(z))$ be an analytic mapping from a neighborhood $U$ of the origin

of $C^{n}$ to $C^{2}$ such that $f(\vec{O})=g(\vec{O})=0$ . We say that the variety $V=\{z\in U;f(z)$

$=g(z)=0\}$ is a non-degenerate complete intersection variety at 6 (with respect
to the Newton boundary) if for any strictly positive dual vector $P={}^{t}(p_{1}, \cdots, p_{n})$ ,

the 2-form $df_{P}\wedge dg_{P}$ does not vanish on $V^{*}(P)=\{z\in C^{*n} ; f_{P}(z)=g_{P}(z)=0\}$

(Khovansky [4, 5], Oka [2]). Here $f_{P}$ and $g_{P}$ is the face functions of $f$ and
$g$ , respectively, with respect to $P$. Hereafter in this section, we assume that
$V$ is a non-degenerate complete intersection variety and that each $f$ and $g$ is
convenient. Convenient means that $f^{ti\}}$ and $g^{\{\iota\}}$ is not identically zero for any
$i=1$ , $\cdot$ . , $n$ . We define an equivalence relation $\sim$ on the space of the positive
integral dual vectors $N^{+}$ by $P\sim Q$ if and only if $\Delta(P;f)=\Delta(Q ; f)$ and $\Delta(P;g)$

$=\Delta(Q ; g)$ . This defines a polyhedral subdivision $\Gamma^{*}(f, g)$ of $N^{+}$ . $\Gamma^{*}(f, g)$ is
called the dual Newton diagram of $(f, g)$ . If we define $h=f\cdot g$ , the dual
Newton diagram $\Gamma^{*}(h)$ is equal to $\Gamma^{*}(f, g)$ (see Oka [1, 2]). Let $\Sigma*$ be a
fixed unimodular simplicial subdivision of $\Gamma^{*}(f, g)$ and let it: $Xarrow C^{n}$ be the
associated toroidal modification map (see Ehler [8], Varchenko [6], Oka [1, 2]).

Let $V$ be the proper transform of $V$ and let $\pi$ : $\nuarrow V$ be the restriction of $\hat{\pi}$

to $\nu$ . It is well-known that $\pi:\tilde{V}arrow V$ is a good resolution of $V$ . We assume
that the set of the vertices of $\Sigma*$ which are not strictly positive is equal to
$\{R_{1}, \cdots , R_{n}\}$ where $R_{i}=$ ( $0,$ $\cdots$ , il, $\cdots$ , $0$). This implies that $\pi:X-\pi^{-1}(\vec{0})arrow C^{n}$

$-\{\vec{0}\}$ is biholomorphic.
Next, the construction of $X$ is simply described. $X$ is covered by affine

space $C_{\sigma}^{n}$ with coordinate $y_{\sigma}=(y_{\sigma,1}, \cdots , y_{\sigma,n})$ where $\sigma$ moves in $n$ -simplicial cone
of $\Sigma*$ An $n$ -simplicial cone is always identified with a unimodular $n\chi n$

matrix, the corresponding cone in $\Sigma*$ is defined by $\{\Sigma_{i=1}^{n}t_{i}P_{i} ; t_{1}, \cdots , t_{n}\geqq 0\}$ .
$P_{1}$ , , $P_{n}$ are called vertices of the simplicial cone $\sigma$ . Let $\sigma=(p_{ij})$ be an n-
simplicial cone. Then ft $|_{c_{\sigma}^{n}}$ is defined by

$\hat{\pi}(y_{\sigma})=z=(z_{1}, \cdots z_{n})$

where $z_{i}=\Pi_{j=1}^{n}y_{\sigma j^{ij}}^{p}$ . Let $P$ be a vertex of $\Sigma*$ Then $P$ defines a divisor $\hat{E}(P)$

of $X$ as follows. Let $\sigma=(P_{1}, , P_{n})$ be an $n$ -simplicial cone of $\Sigma*$ such that
$P=P_{1}$ . Then $\hat{E}(P)\cap C_{\sigma}^{n}$ is defined by the divisor $y_{\sigma 1}=0$ . For an n-simplicial
cone $\tau,\hat{E}(P)\cap C_{\tau}^{n}\neq\emptyset$ if and only if $P$ is a vertex of $\tau$ . If $P$ is strictly posi-
tive, the union of $\{\hat{E}(P)\cap C_{\sigma}^{n} ; P\in\sigma\}$ for $\sigma$ is a compact toric variety of dimen-
sion $n-1$ . For the general properties of the toric varieties, see K-K-M-S [10]

and Oda [14]. If $P$ is strictly positive, then $\hat{E}(P)$ is an exceptional divisor,
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i. e., it $(\text{\^{E}}(P))=\{\vec{0}\}$ . On the other hand, $E(R_{i})$ is isomorphic to the hyperplane
$\{z_{\iota}-O\}$ in the base space $C^{n}$ by the projection $\hat{\pi}$ . In our practical calculation
to be continued on the next section, we use the method of the unimodular sim-
plicial subdivision of $\Sigma*$ which is developed by Oka [1].

3. Asymptotic expansion for smooth $g(x)$ .
In this section, we shall prove Theorem 16 and Corollary 17. Following

the definition of the complex case, we can also define a non-degenerate com-
plete intersection variety in the real case. Let $(f(x), g(x))$ be an analytic map-
ping from a neighborhood $U$ of the origin of $R^{n}$ to $R^{2}$ such that $f(\vec{O})=g(\vec{0})=0$

where we hereafter assume $n\geqq 3$ . We say that the variety $W=\{x\in U;f(x)=$

$g(x)=0\}$ is a non-degenerate complete intersection variety at $\vec{0}$ with respect to
the Newton boundary if for any strictly positive dual vector $P={}^{t}(p_{1}, \cdots , p_{n})$ ,

the 2-form $df_{P}\wedge dg_{P}$ does not vanish on $W^{*}(P)=\{x\in R^{*n} ; f_{P}(x)=g_{P}(x)=0\}$ .
At first we assume that $f(x)$ and $g(x)$ are analytic functions with a singularity
at $\vec{0}$ , and below Proposition 5 we suppose that $g(x)$ is a smooth analytic func-
tion in this section. Moreover $W=\{x\in U;f(x)=g(x)=0\}$ is assumed as a non-
degenerate complete intersection variety in a neighborhood $U$ of the origin, and
also each $f(x)$ and $g(x)$ is convenient. Under the above assumptions for $f(x)$

and $g(x)$ , we rewrite the oscillating integral $I(\tau, \varphi)$ of equation (1) using the
property of the delta function (see detail for $Gel’ fand-\check{S}ilov[3]$ ) as follows:

$I( \tau, \varphi)=\int_{R^{n}}e^{i\tau f(x)}\delta(g(x))\varphi(x)dx$

(2)
$= \int_{g(x)=0}e^{i\sim_{f(x)}}\varphi\omega_{1}$

where $\tau$ is a real parameter, $\varphi\in C_{0}^{\infty}(R^{n})$ , and the $(n-1)$-form $\omega_{1}$ is defined as
$\omega_{1}\wedge dg(x)=dx_{1}\wedge\cdots\wedge dx_{n}$ . (3)

The existence and the uniqueness of the form $\omega_{1}$ on $g(x)=0$ in $R^{n}$ is well-
known, $i$ . $e.$ , we can take the Leray-form for $\omega_{1}([3])$ . Our strategy is based
on the following formal analytic calculations. At first, the equation (2) is
transformed to

$I( \tau, \varphi)=\int die^{i\tau t}\int_{f(x)=t}\delta(g(x))\varphi(x)\omega_{0}$

$= \int dte^{i\tau t}\int_{f(x)=t}\varphi(x)\omega_{2}$

where the forms $\omega_{2}$ and $\omega_{0}$ are defined, respectively, as
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$\omega_{0}\wedge df=dx_{1}\wedge\cdots\Lambda dx_{n}$

$\omega_{2}\Lambda df\wedge dg=dx_{1}\wedge\cdots\wedge dx_{n}$ .

Remark that we can see that for a sufficiently small $t,$ $f(x)$ is smooth on $\{f(x)$

$=t(\neq 0)\}$ . Also, by the assumption of the complete intersection for $f(x)$ and
$g(x)$ , we see that the 2-form $df\wedge dg$ does not vanish on $\{f(x)=t, g(x)=0(t\neq 0)\}$ .

We define the kernel function $K(f, g, \varphi, c)$ for $c\in R$ as

$K(f, g, \varphi, c)=\int_{f(x)=c}\varphi(x)\omega_{2}$ .

The initial oscillating integral now reads to

$I( \tau, \varphi)=\int e^{i\tau t}K(f, g, \varphi, t)dt$ .

Thus we expand asymptotically the kernel $K(f, g, \varphi, t)$ for $tarrow 0$ .
For our purpose, let us consider the integrals:

$I_{+}( \tau, \varphi)=\int_{R^{n}}(f_{+}(x))^{\tau}\delta(g(x))\varphi(x)dx_{1}\cdots dx_{n}$

$I_{-}( \tau, \varphi)=\int_{R^{\mathcal{R}}}(f_{-}(x))^{\tau}\delta(g(x))\varphi(x)dx_{1}\cdots dx_{n}$

where

$f_{+}(x)=\{$

$f(x)$ , for $f(x)\geqq 0$ ,

$0$ , for $f(x)<0$ ,

$f_{-}(x)=\{$

$0$ , for $f(x)\geqq 0$ ,

$-f(x)$ , for $f(x)<0$ ,

and $\tau\in C$ , ${\rm Re}\tau>0$ . The integrals $I_{+}$ and $I_{-}$ are analytic functions of the
parameter $\tau$ (for simplicity, we denote together the both integrals such as $I_{\pm}$ ).

On the other hand, the integral $I_{\pm}$ is written as

$I_{\pm}( \tau, \varphi)=\int_{\{\pm c>01}dc(\pm c)^{\tau}K(f, g, \varphi, c)$ .

Then the kernel $K(f, g, \varphi, c)$ can be described by $I_{\pm}(\tau, \varphi)$ with the inverse
Mellin transformation, and we will obtain the our final results.

Let $(f, g):R^{n}arrow R^{2}$ be an analytic mapping at 6 in $R^{n}$ with $f(\vec{0})=g(\vec{0})=0$

and 2-form $df\wedge dg$ vanish at $\vec{0}$ . Let $Y$ be a non-singular real analytic n-dimen-
sional manifold, $U$ be a neigbborhood of $\overline{0}\in R^{n}$ and $\pi:Yarrow U\subset R^{n}$ a proper
analytic mapping such that at each point of the set $S=\pi^{-1}(\vec{0})$ , there exist local
coordinates $(y_{1}, \cdots , y_{n})$ in the neighborhood of the each point of $S$ , at which
(see Atiyah [9])
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$(D-1)$ $\{$

$(fo\pi)(y_{1}, \cdots y_{n})=\epsilon_{f}y_{1}^{l_{1}}\cdots y_{n}^{\iota_{n}}$ ,

$(g\circ\pi)(y_{1}, \cdots y_{n})=\epsilon_{g}y_{1}^{n_{1}}\cdots y_{n^{n}}^{n}$ ,

where $\epsilon_{f}$ and $\epsilon_{g}$ are invertible analytic functions.

$(D-2)$ The Jacobian J. of the mapping $\pi$ has the form
$J_{n}(y_{1}, \cdots y_{n})=y_{1}^{m_{1}}\cdots y_{n}^{m_{n}}\overline{J}_{\pi}(y_{1}, \cdots y_{n})$

where $\overline{J}_{\pi}(0, \cdots , 0)\neq 0$ .
$(D-3)$ In a neighborhood $U$ of $\vec{0}$ in $R^{n},$ $\pi$ is an analytic

isomorphism outside a proper analytic subset in $R^{n}$ .
By means of the method described in the previous section (K-K-M-S [10]), for
a given Newton boundary $\Gamma$, we can construct a complex manifold $X(\Gamma)$ and
its projection $\pi:X(\Gamma)arrow C^{n}$ . The transition functions between the local maps
of the manifold $X(\Gamma)$ are real on real parts of the manifold $X(\Gamma)$ . We denote
it by $Y(\Gamma)$ . The restriction of the projection $\pi$ to $Y(\Gamma)$ is also denoted by $\pi$ .
Then we have that (i) $Y(\Gamma)$ is a non-singular $n$ -dimensional real (algebraic)

manifold and (ii) $\pi:Y(\Gamma)arrow R^{n}$ is a proper mapping onto $R^{n}$ that satisfies the
condition $(D-1)\sim(D-3)$ , for almost all the function $(f, g)$ with a given Newton
boundary $\Gamma(f, g)=\Gamma$ . We shall show the following Lemma.

LEMMA 1. Let $f(x_{1}$ , $\cdot$ . , $x_{n})$ and $g(x_{1}$ , $\cdot$ .. , $x_{n})$ be germs of real valued real
analytic functims at $\vec{0}\in R^{n}$ . Let $\Sigma*$ be a unimodular $simpli\alpha al$ subdiviston of
$\Gamma^{*}(f, g)$ , and $\sigma\in\Sigma*$ be an n-simplicial cone. For a coordinate neighborhood
$R^{n}(\sigma)$ , the maPPing $\pi(\sigma):R^{n}(\sigma)arrow R^{n}$ has the following properties:

(1)

$\{$

$(f\circ\pi(\sigma))[y_{1}, \cdots y_{n}]=y_{1}^{\iota_{1}}\cdots y_{n}^{\iota_{n}}f_{\sigma}(y_{1}, \cdots y_{n})$

$(g\circ\pi(\sigma))[y_{1}, \cdots y_{n}]=y_{1}^{n_{1}}\cdots y_{n^{n}}^{n}g_{\sigma}(y_{1}, \cdots y_{n})$

where $y_{1},$
$\cdots$ , $y_{n}$ is the coordinate in $R^{n}(\sigma)$ and $f_{\sigma}(0, \cdots , 0)\neq 0,$ $g_{\sigma}(0, \cdots , 0)\neq 0$ .

(2) The Jacobian of the mapping $\pi(\sigma)$ is equal to $y_{1}^{m_{1}}\cdots y_{n}^{m_{n}}\cdot C$ where $m_{i}$ $:=$

$|P_{i}(\sigma)|-1,$ $|P_{i}( \sigma)|:=\sum_{j=1}^{n}p_{ji}(\sigma)$ for $P_{i}={}^{t}(p_{1i}, \cdots , p_{ni})$ and $C$ is a non-zero
constant.

(3) A set of Points in $R^{n}$ in which $\pi$ is not an isomorphism is a union of
coordinate Planes.

PROOF. (1) It is easily verified by the same manner as the Varchenko [6]
$\langle$Lemma 2.13).

(2) We calculate directly the Jacobian of the mapping $\pi(\sigma)$ :
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$J_{\pi(\sigma)}= \frac{\partial(x_{1},\cdots,x_{n})}{\partial(y_{1},\cdots,y_{n})}$

$=\det|\begin{array}{l}p_{11}(\sigma)y_{1}^{p_{11^{(\sigma)- 1}}}\cdot\vdots p_{n1}(\sigma)y_{1}^{p_{n1^{(\sigma)- 1}}}\end{array}||\begin{array}{lllll}y_{n^{1n^{(\sigma)}}}^{p}, \cdots ,p_{1n}(\sigma)y_{1}^{p_{11^{(\sigma)}}} \cdots y_{n^{1n^{(\sigma)- 1}}}^{p} \vdots y_{n}^{p_{nn^{(\sigma)}}} \cdots ,p_{nn}(\sigma)y_{1}^{p_{n1^{(\sigma)}}} \cdots y_{n^{nn^{(\sigma)- 1}}}^{p}\end{array}|$

$=y_{1}^{1P_{1}(\sigma)\rceil-1}\cdots y_{n^{P_{n}(\sigma)|-1}}^{1}\cdot\det(P(\sigma))$ ,

where $\det(P(\sigma))=\pm 1$ .
(3) The assertion follows directly from the formula for $\pi$ . That is, the

set in which $\pi(\sigma)$ is not one-to-one mapping is the union of hyperplanes $\{y_{i}=0\}$

corresponding to the index $i$ of $m_{i}=|P_{i}(\sigma)|-1\neq 0$ . This completes the proof
of Lemma 1.

We have the next fundamental results.

PROPOSITION 2. Let $(f(x), g(x))$ be an analytic mapping from a neighborhood
$U$ of the origin of $R^{n}$ to $R^{2}$ such that $f(\vec{0})=g(\vec{0})=0$ . If $W=\{x\in U;f(x)=g(x)$

$=0\}$ is a non-degenerate complete intersection variety at $\vec{0}$ , then the manifold $Y(\Gamma)$

and the Projection $\pi:Y(\Gamma)arrow R^{n}$ , together, with the analytic functions defined by
$f(x)$ and $g(x)$ , will satisfy the condition $(D-1),$ $(D-2)$ and $(D-3)$ .

PROOF. By Lemma 1, the assertion is clear for a neighborhood of $y=\vec{O}$ in
$R^{n}$ . According to Lemma 1, $\pi(\sigma)$ gives an isomorphism between $\{y_{1}\cdots y_{n}\neq 0\}$

in $R^{n}(\sigma)$ and $\{x_{1} .. x_{n}\neq 0\}$ in $R^{n}$ . Therefore, in the neighborhood of $\pi^{-1}(\vec{0})$ ,

we may consider the assertion only on the neighborhood of coordinate planes
$\{y_{j}=0\}$ $(j^{=1}$ , $\cdot$ .. , $n)$ since it is possible that the branch points $f_{\sigma}(y_{1}, \cdots , y_{n})=0$

or $g_{\sigma}(y_{1}, \cdots , y_{n})=0$ appear away from the origin. This. follows from the next
Lemma which is essentially the same one as in the complex case proved by

Oka [2], and here we give an elementary proof.

LEMMA 3. Let $\sigma\in\Sigma*$ be an n-simplicial cone, $I\subset\{1, \cdots , n\}$ , and $T_{I}=$

$\{y\in R^{n}(\sigma);y_{j}=0, j\in I\}$ . Then:
(1) For germs of any real valued real analytic functions $f(x)$ and $g(x)$ with

a given Newton boundaries $\Gamma(f)=\Gamma_{1}$ and $\Gamma(g)=\Gamma_{2}$ respectively, if $\pi_{\sigma}(T_{I})=0$ ,

then $f_{\sigma.I}:=f_{\sigma}|_{\tau_{I}}$ and $g_{\sigma,I}$ $:=g_{\sigma}|_{\tau_{I}}$ will be polynomials.
(2) If $\{x\in U|f(x)=g(x)=0\}$ is a non-degenerate compleie intersection variety

and $\pi(\sigma)(T_{I})=0$ , then the set $\{y\in T_{I}|f_{\sigma}(y)=g_{\sigma}(y)=0\}$ will be a non-srngular
complete intersection variety, i.e., 2-form $d(f_{\sigma}|_{\tau_{I}})\wedge d(g_{\sigma}|_{T_{I}})$ (or $df_{\sigma}\wedge dg_{\sigma}|_{\tau_{I}}$ )

will be non-vanishing on them.

PROOF OF LEMMA 3 (See alSO [6, 12]).

(1) The condition $\pi.(T_{l})=0$ means that for any $i(i=1, , n),$ $\Sigma_{j\in I}p_{ij}(\sigma)$
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$>0$ . Then we show that this condition is equivalent to the next condition:
Indefinite equations for $a$ and $\beta$

$\langle\sum_{j\in I}P_{j}(\sigma), \alpha\rangle=\sum_{j\in I}d(P_{J}(\sigma), f)$

(4)
$\langle\sum_{j\in I}P_{j}(\sigma), \beta\rangle=j$

I
$d(P_{j}(\sigma), g)$

have at most finitely many solutions $\alpha\in\Gamma_{+}(f)$ and $\beta\in\Gamma_{+}(g)$ .
The sufficiency is obvious, i. e., under the condition $\Sigma_{j\in I}p_{ij}(\sigma)>0$ , each

component of $\alpha$ and $\beta$ in equation (4) is bounded. We show the converse.
From the definition of $p_{ij}(\sigma)$ , we always hold $\Sigma_{j\in I}p_{ij}(\sigma)\geqq 0$ . Hence, suppose
that there exists $i_{0}$ such that $\Sigma_{j\in I}p_{t_{0}j}(\sigma)=0$ . Then, the corresponding com-
ponents of $\alpha$ and $\beta$ have the infinite freedom.

For $\alpha\in\Gamma_{+}(f)$ and $\beta\in\Gamma_{+}(g)$ , by the definition of $d(P_{j}(\sigma), f)$ and $d(P_{j}(\sigma), g)$ ,

the equation of (4) is, respectively, equivalent to

$\langle P_{j}(\sigma), \alpha\rangle=d(P_{j}(\sigma), f)$

for $j\in I$ (5)
$\langle P_{j}(\sigma), \beta\rangle=d(P_{j}(\sigma), g)$ .

The assertion easily follows from the fact that the inequalities $\langle P_{j}(\sigma), \alpha\rangle\geqq$

$d(P_{j}(a), f)$ and $\langle P_{j}(\sigma), \beta\rangle\geqq d(P_{j}(\sigma), g)$ always hold.
The solutions of equation (5) consist from the points $\alpha$ and $\beta$ in faces $\gamma$

and $\gamma’$ of $\Gamma_{+}(f)$ and $\Gamma_{+}(g)$ , respectively, which correspond to #I-dimensional
faces determined by $\{P_{j}(\sigma);j\in I\}$ . Since we have

$\{$

$(f\circ\pi(\sigma))[y_{1}, \cdots y_{n}]=y_{1}^{d(P_{1}.f)}$ $y_{n^{L(P_{n},f)}}^{(}f_{\sigma}(y_{1}, \cdots y_{n})$

$(g\circ\pi(\sigma))[y_{1}, \cdots , y_{n}]=y_{1}^{d(P_{1}}g)$ $\ldots y_{n}^{d(P_{n}.g)}g_{\sigma}(y_{1}, \cdots , y_{n})$ ,

the non-vanishing terms in $f_{\sigma}(y)$ and $g_{\sigma}(y)$ whenever one puts $yj$ for $j\in I$ to
zero are those only which satisfy the equation (5) in terms $y^{\alpha}$ and $y^{\beta}$ of
$(f\circ\pi(\sigma))(y)$ and $(g\circ\pi(\sigma))(y)$ , respectively. Therefore $f_{\sigma.I}$ and $g_{\sigma,I}$ have a finitely
many terms satisfying equation (5), respectively. This proves the first assertion.

(2) The faces $\gamma$ and $\gamma’$ which are determined by the equation (5) are com-
pact since the integral points are finite on them. Hence the faces are also
included in the Newton boundary $\Gamma(f)$ and $\Gamma(g)$ , respectively. So, we have

$\{$

$(f_{\gamma}\circ\pi(\sigma))[y_{1}, \cdots , y_{n}]=y_{1}^{a(P_{1}}f)$ $..y_{n}^{tJ(P_{n}}f)(f_{\sigma}(y_{1}, \cdots, y_{n})|_{T_{I}})$

$(g_{\gamma’}\circ\pi(\sigma))[y_{1}, \cdots , y_{n}]=y_{1}^{a(P_{1}.)}g$ $y_{n}^{a(P_{n}.g)}(g_{\sigma}(y_{1}, \cdots , y_{n})|_{T_{I}})$ .
(6)

The functions $f_{\gamma}$ and $g_{\gamma’}$ are quasi-homogeneous polynomials. Let the hyper-
plane containing the faces $\gamma$ and $\gamma’$ be $\langle m, \alpha\rangle=q$ and $\langle m’, \beta\rangle=q’$ , respectively.
Then one has the equalities
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$f_{\gamma}(t^{m_{1}}x_{1}, \cdots t^{m_{n}}x_{n})=t^{q}f_{\gamma}(x_{1}, \cdots x_{n})$

$g_{\gamma’}(t^{m_{1}’}x_{1}, t^{m_{n}’}x_{n})=t^{q’}g_{\gamma’}(x_{1}, \cdots x_{n})$ .
Differentiating the both side of the above equalities with respect to $t$ , and
putting $t=1$ , one can obtain the so-called “Euler’s identities” :

$m_{1}x_{1} \frac{\partial f_{\gamma}}{\partial x_{1}}+m_{2}x_{2}\frac{\partial f_{\gamma}}{\partial x_{2}}+\cdots+m_{n}x_{n}\frac{\partial f_{\gamma}}{\partial x_{n}}=qf_{\gamma}$

$m_{1}’x_{1} \frac{\partial g_{\gamma’}}{\partial x_{1}}+m_{2}’x_{2}\frac{\partial g_{\gamma’}}{\partial x_{2}}+\cdots+m_{n}’x_{n}\frac{\partial g_{\gamma’}}{\partial x_{n}}=q’g_{\gamma’}$ .

NOW, we can take the hyperplanes containing 7 and 7’ as $m_{i}=p_{ij}(\sigma),$ $q=d(P_{j}, f)$

and $m_{i}’=p_{ij}(a),$ $q’=d(P_{j}, g)$ for each $j\in I$ . Then, on each $f_{\gamma}(x)=0$ and $g_{\gamma’}(x)$

$=0$ we have, respectively,

$p_{1j}( \sigma)x_{1}\frac{\partial f_{\gamma}}{\partial x_{1}}+\cdots+p_{nj}(a)x_{n}\frac{\partial f_{\gamma}}{\partial x_{n}}=0$

for $j\in I$ (7)
$p_{1j}( \sigma)x_{1^{\frac{\partial g_{\gamma’}}{\partial x_{1}}+}}\ldots+p_{nj}(a)x_{n}\frac{\partial g_{\gamma’}}{\partial x_{n}}=0$ .

Let $\tilde{y}={}^{t}(\tilde{y}_{1}, \cdots , \tilde{y}_{n})$ and

$\tilde{y}_{J}\neq\{$

$y_{J}$ $(j\not\in I)$

1 $(j\in l)$ .

For brevity’s sake, let us $\tilde{y}^{P(\sigma)}=(\tilde{y}_{1}^{p_{11}(\sigma)} \tilde{y}_{n^{1n^{(\sigma)}}}^{p}, , \tilde{y}_{1}^{p_{n1^{(\sigma)}}} \tilde{y}_{n^{nn^{(\sigma)}}}^{p})$ . Using
the homogeneity of $f_{\gamma}$ and $g_{\gamma’}$ , we obtain

$(f_{\gamma}\circ\pi(a))[y_{1}, \cdots y_{n}]=f_{\gamma}(y_{1}^{\mathcal{D}_{11^{(\sigma)}}}\cdots y_{n^{1n^{(\sigma)}}}^{p}, \cdots y_{1}^{P_{n1^{(\sigma)}}}\cdots y_{n^{nn^{(\sigma)}}}^{p})$

$= \prod_{j\in I}y_{j}^{a(P_{j}(\sigma),f)}f_{\gamma}(^{\sim P(\sigma)})$

$(g_{\gamma’}\circ\pi(\sigma))[y_{1}, \cdots y_{n}]=g_{\gamma’}(y_{1}^{p_{11^{(\sigma)}}}\cdots y_{n^{1n^{(\sigma)}}}^{p}, \cdots y_{1}^{p_{n1^{(\sigma)}}}\cdots y_{n^{nn^{(\sigma)}}}^{p})$

$= \sum_{j\in I}y_{j}^{d(P_{j^{(\sigma),g)}}}g_{\gamma’}(\tilde{y}^{P(\sigma)})$ .

Comparing the equation with (6), we have

$f_{0}|_{T_{I}}= \frac{f_{\gamma}(\tilde{y}^{P(\sigma)})}{\Pi_{j\not\in Iy_{j}^{d(P_{j^{(\sigma}}}}}$

on $T_{I}$ (8)
$g_{\sigma}|_{\tau_{I}}= \frac{g_{\gamma^{l}}(\tilde{y}^{P(\sigma)})}{\Pi_{j\not\in I}y_{j}^{a(P_{j^{(\sigma),g)}}}}$ .

The denominators do not vanish for $\{y_{J}\neq 0;j\not\in l\}$ on $T_{I}$ . Hence, for study-

ing $f_{\sigma}(y)|_{T_{I}}=0$ and $g_{0}(y)|_{T_{I}}=0$ , it is sufficient to consider the equations, re-
spectively,

$f_{\gamma}(\tilde{y}^{P(\sigma)})=g_{\gamma’}(\tilde{y}^{P(\sigma)})=0$ .
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Differentiating $f_{\gamma}(\tilde{y}^{P(\sigma)})$ and $g_{\gamma}(\tilde{y}^{P(\sigma)})$ with respect to $y_{j}(]\not\in I)$ , one obtains
that (noting $x_{k}=\tilde{y}_{1}^{p_{k1^{(\sigma)}}}\cdots\tilde{y}_{n^{kn^{(\sigma)}}}^{p}\neq 0$);

$\frac{\partial}{\partial y_{J}}f_{\gamma}(\tilde{y}^{P(\sigma)})=\sum_{k=1}^{n}\frac{\partial f_{\gamma}(x)}{\partial x_{k}}\frac{\partial}{\partial y_{J}}(\tilde{y}_{1}^{P_{k1^{(\sigma)}}} \tilde{y}_{n^{kn^{(\sigma)}}}^{p})$

$= \frac{1}{y_{J}}\sum_{k=1}^{n}p_{kj}(\sigma)x_{k}\frac{\partial f_{\gamma}(x)}{\partial x_{k}}$ $j\not\in I$ , (9)

$\frac{\partial}{\partial y_{J}}g_{\gamma’}(\tilde{y}^{P(\sigma)})=\frac{1}{y_{J}}\sum_{k=1}^{n}p_{kj}(\sigma)x_{k}\frac{\partial g_{\gamma^{r}}(x)}{\partial x_{k}}$ $j\not\in I$ .

TO show the assertion, we suppose that 2-form $d(f_{\sigma}|_{\tau_{I}})\Lambda d(g_{\sigma}|_{\tau_{I}})=0$ . Then
we show the our assertion with the following two steps:

(i) $grad(f_{\sigma}|_{\tau_{I}})=0$ or $grad(g_{\sigma}|_{T_{I}})=0$ ,

(ii) $grad(f_{\sigma}|_{T_{I}})\neq 0,$ $grad(g_{\sigma}|_{\tau_{I}})\neq 0$ and 2-form $d(f_{\sigma}|_{T_{I}})\wedge d(g_{\sigma}|_{\tau_{I}})=0$ .
Firstly, we assume the case (i). Then adding the equation (7) to $\partial f_{\gamma}/\partial y_{j}|_{T_{I}}=0$

$(j\not\in I)$ or $\partial g_{\gamma’}/\partial y_{j}|_{\tau_{I}}=0(j\not\in I)$ of the equation (9), we have a simultaneous
linear equation with the coefficient $(p_{ij}(\sigma))(i, j=1, \cdots , n)$ . The equation has a
solution $(x_{1}\partial f_{\gamma}/\partial x_{1}, , x_{n}\partial f_{\gamma}/\partial x_{n})$ or $(x_{1}\partial g_{\gamma’}/\partial x_{1}, , x_{n}\partial g_{\gamma’}/\partial x_{n})$ according to
whether $grad(f_{\sigma}|_{\tau_{I}})=0$ or $grad(g_{\sigma}|_{T_{I}})=0$ , respectively. Note that the point
$x_{k}=\tilde{y}_{1}^{P_{k1^{(\sigma)}}}$ ... $y^{P_{kn^{(\sigma)}}}$ satisfies $f_{\gamma}(\tilde{y}^{P(\sigma)})=0$ and $g_{\gamma}’(\tilde{y}^{P(\sigma)})=0$ . Since $\det(P(\sigma))$

$=\pm 1$ , one obtains $x_{k}\partial f_{\gamma}/\partial x_{k}=0$ or $x_{k}\partial g_{\gamma’}/\partial x_{k}=0$ . Hence, by $x_{k}\neq 0$ , we have
$\partial f_{\gamma}/\partial x_{k}=0$ or $\partial g_{\gamma’}/\partial x_{k}=0$ for $k=1,$ $\cdots$ , $n$ . This contradicts to the assumption
of the non-degenerate complete intersection variety of $\{y\in T_{I}|f_{\sigma}(y)=g_{\sigma}(y)=0\}$ .

Next we assume the case (ii). By the assumption, we have the 2-form

$\sum_{j,j},$

$\frac{\partial(f_{\sigma}|_{T_{I}})\partial(g_{\sigma}|_{T_{I}})}{\partial y_{J}\partial y_{J’}}dy_{j}\wedge dy_{J’}=0$ for $j,$ $j’\not\in I(J\neq j’)$ .

Then using equation (8) and (9), one obtains that for each $j,$ $j’\in I(]<j’)$ ,

$\frac{\partial f_{\gamma}(\tilde{y}^{P(\sigma)})}{\partial y_{J}}\frac{\partial g_{\gamma^{l}}(\tilde{y}^{P(\sigma)})}{\partial y_{J’}}-\frac{\partial f_{\gamma}(\tilde{y}^{P(\sigma)})}{\partial y_{J’}}\frac{\partial g_{\gamma’}(\tilde{y}^{P(\sigma)})}{\partial y_{J}}=0$ .

Since $y_{J}$ and $yj’$ do not vanish for $j,$ $j’\not\in I$, we have

$\sum_{k<k}^{n},$
$p_{kj}(a)p_{k’j’}(a)x_{k}x_{k’\{\frac{\partial f_{\gamma}}{\partial_{X_{k}}}\frac{\partial g_{\gamma’}}{\partial x_{k’}}-\frac{\partial f_{\gamma}}{\partial x_{k’}}\frac{\partial g_{\gamma^{r}}}{\partial x_{k}}\}}=0$ for $j,$ $j’\not\in I$ . (10)

On the other hand, the identities (7) mean that

$\sum_{k<k’}^{n}p_{kj}(\sigma)p_{k’f’}(\sigma)x_{k}x_{k’}\{\frac{\partial f_{\gamma}}{\partial x_{k}}\frac{\partial g_{\gamma’}}{\partial x_{k’}}-\frac{\partial f_{\gamma}}{\partial x_{k’}}\frac{\partial g_{\gamma^{i}}}{\partial x_{k}}\}=0$ (11)

where at least one of $j$ and $j’$ is contained in $I$ . Combining the equation (11)

with (10), one has the simultaneous linear equation for $A_{kk’}:=\{x_{k}(\partial f_{\gamma}/\partial x_{k})$

. $x_{k’}(\partial g_{\gamma’}/\partial x_{k’})-x_{k’}(\partial f_{\gamma}/\partial x_{k’})x_{k}(\partial g_{\gamma’}/\partial x_{k})\}$ ;
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$< \sum_{kk’}^{n}p_{ki_{1}}(\sigma)p_{k’i_{2}}(\sigma)A_{kk’}=0$ , (12)

where $i_{1}$ and $i_{2}(i_{1}<i_{2})$ run in $\{1, , n\}$ . We use the next elementary fact from
linear algebra.

LEMMA 4 (Sylvester-Spottiswood). Let $D=|a_{\ell k}|$ be a determinant of an

$nXn$ matrix $A=(a_{tk})$ . Let $\Delta_{ik}:=\Delta(\begin{array}{llll}i_{1} i_{2} \cdots i_{r}k_{1} k_{2} \cdots k_{r}\end{array})$ be an $r\cross r$ minor determinant

which is constructed by taking the columns $i_{1},$ $i_{2},$ $\cdots$ , $i_{\gamma}$ and the rows $k_{1},$ $k_{2},$ $\cdots$ , $k_{r}$

in D. Then $N\cross N$ determinant with components which are $r\cross r$ minor deter-

minant $\Delta_{ik}$ of $D$ equals to $D^{\iota}$ where $N=(\begin{array}{l}nr\end{array})$ and $l=(\begin{array}{l}n-1r-1\end{array})$ .

Taking $r=2$ , we apply Lemma 4 to the equation (12). Then, $N=(\begin{array}{l}n2\end{array})$ is

the number of unknown quantities $A_{kk’}$ in (12), and the determinant of the
coefficient equals to $|\det(p_{ij})|^{(n-1)}=(\pm 1)^{(n-1)}\neq 0$ . This shows that the linear
equation (12) has only a trivial solution $A_{kk’}=0(k<k’)$ in which we already
assume that $\partial f_{\gamma}/\partial x_{k}$ or $\partial g_{\gamma’}/\partial x_{k’}$ does not vanish. Hence, the 2-form $df_{\gamma}(x)\wedge$

$dg_{\gamma’}(x)=\Sigma_{k<k’}A_{kk’}dx_{k}\wedge dx_{k’}$ vanishes. This contradicts to our first assump-
tion of non-degenerate complete intersection. This completes the proof of
Lemma 3.

We return to the proof of Proposition 2. Note that $\pi(\sigma)^{-1}(0)\subset\{y_{1}=0\}\cup\cdots$

$\cup\{y_{n}=0\}$ . Hence in the neighborhood of any point except the origin, this set
is included in $T_{I}\cap\{y_{J}\neq 0, j\not\in I\}$ for suitable $I\subset\{1,2, \cdot.. , n\}$ . Then by Lemma
3, our assertion is proved. This completes the proof of Proposition 2.

NOW we obtain the pole of $I_{\pm}(\tau, \varphi)$ and its order. Here we recall the de-
finition of $I_{\pm}(\tau, \varphi)$ as

$I_{\pm}( \tau, \varphi)=\int_{R^{n}}(f_{\pm})^{\tau}\delta(g(x))\varphi(x)dx$ ,

$= \int_{g=0}(f_{\pm})^{\tau}\varphi(x)\omega_{1}$ ,

where $\varphi(x)\in C_{0}^{\infty}(R^{n})$ . Hereafter we assume that the support of $\varphi(x)$ is suffici-
ently small so that the support of $\varphi(x)$ lies in an neighborhood $U$ of the origin
in $R^{n}$ , and $g(x)$ is a smooth analytic function. Then we have the following
results.

PROPOSITION 5. The Poles of $I_{\pm}(\tau, \varphi)$ belong to the set of next arithmetic
progressions



452 N. HASHIMOTO

$\{$

$-1,$ $-2,$ $\cdots$ for $(l, m-d(P, g))=(1,0)$

$- \frac{m-d(P,g)+1}{l},$ $- \frac{m-d(P,g)+2}{l},$ $\cdots$ for $(1, m-d(P, g))\neq(1,0)$

where $l=d(P, f)$ , and $m=|P|-1$ for any $P$.

PROOF. If necessary, by shrinking the neighborhood $U$ of the origin in
$R^{n}$ , it is possible to assume that the critical value of $f(x)$ with $g(x)=0(i$ . $e.$ ,
the value of $t$ such that $\{f(x)=t, g(x)=0\}$ includes a singularity) is only the
origin in $U$ . Let $\pi:Yarrow U\subset R^{n}$ be the projection map described in Lemma 1
and $V=\pi^{-1}(U)$ . We can choose the partition of unity $\dagger\varphi_{\alpha}(y)\}$ on $Y$ satisfying
$\Sigma_{\alpha}\varphi_{\alpha}|_{V}\equiv 1$ , where the conditions of Lemma 1(1) and (2) for the local coordinate
hold on each $supp\varphi.$ . For any $\varphi_{\alpha}$ , there exists an open set $V’$ containing the
support of $\varphi_{\alpha}$ , and local coordinates on $V’$ such that (D-1) and (D-2) are satisfied
on $V’$ . For ${\rm Re}\tau>-1$ we have

$l_{\underline{+}}( \tau, \varphi)=\int_{Y}(f\circ\pi)_{\pm}^{\tau}(\varphi\circ\pi)(\omega_{1}\circ\pi)$

$= \sum_{a}\int_{Y}(f\circ\pi)_{\pm}^{\tau}\varphi_{\alpha}(\omega_{1^{o}}\pi)$ .

In each $\sigma$ , the coordinate neighborhood $R^{n}(a)$ is contained in $V$ ‘, and we have

$\{$

$(f\circ\pi(a))[y_{1}, \cdots y_{n}]=y_{1}^{(}i(P_{1},f)\ldots y_{n}^{a(P_{n},J)}f_{\sigma}(y_{1}, \cdots y_{n})$

$(go\pi(\sigma))[y_{1}, \cdots y_{n}]=y_{1}^{d(P_{1},g)}\cdots y_{n}^{d(P_{n},g)}g_{\sigma}(y_{1}, y_{n})$ ,

where we take an $n$ -simplicial cone $\sigma=\langle P_{1}, P_{2}, , P_{n}\rangle$ of $\Sigma*$ and let $P_{i}=$

${}^{t}(p_{1i}, p_{zt}, \cdots , p_{nt})$ . So we consider the integral on each local chart $a$ :

$\int_{Y}(f\circ\pi)_{\pm}^{\tau}(\varphi\circ\pi)\varphi_{\alpha.\sigma}(\omega_{1^{o}}\pi)$

$= \int_{\Pi_{i=1^{y}i}^{na(P_{i,g)_{g_{\sigma}(\mu)=0I\cap V’}}}}.(\epsilon(y_{1})_{\epsilon_{1}}^{d(P_{1},f)}\ldots(y_{n})_{\epsilon_{\mathcal{R}}}^{a(P_{n},f)}f_{\sigma}(y)_{\pm})^{\tau}(\varphi\circ\pi)\varphi_{\alpha.\sigma}\pi^{*}(\omega_{1})$

where $\epsilon=\pm 1$ and $\epsilon_{j}=\pm$ for $j=1,$ $\cdots$ , $n$ . Then we calculate the integral (13)
by dividing finitely to each component. In order to estimate (13), we now
describe the form $\pi^{*}(\omega_{1})$ . We denote the $(n-1)$-form $\omega_{1}$ by $dx_{1}\wedge$ $\cdot$ $\wedge dx_{n}/dg$ .
We ask for the local expression of the meromorphic $(n-1)$-form $\pi^{*}(\omega_{1})$ on
$g_{\sigma}(y)=0$ . By the condition of Lemma 1(1),

$\pi^{*}(dg)=d(\pi^{*}g)=d[\prod_{i=1}^{n}y_{\sigma.i}^{a(P_{ig)}}g_{\sigma}(y_{\sigma})]$

$=d[ \prod_{i=1}^{n}y_{\sigma i}^{a,(P}i,$ $g)]g_{\sigma}(y_{0})+ \prod_{i=1}^{n}y_{\sigma.i}^{a(P_{ig)}}dg_{\sigma}$ .
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Here $g_{\sigma}=0$ is the defining equation of $\pi_{1}$ in $R_{\sigma}^{n}$ which is a proper transform
of $W_{1}:=$ {$g(x)=0$ in $R^{n}$ }, since the proper transform $\pi_{1}$ is defined by the
closure in $Y$ of $\pi^{-1}(W_{1}-\{0\})$ . On the one hand, by Lemma 1(2), one has

$\pi^{*}(dx_{1}\wedge\cdots\wedge dx_{n})=\det(P(\sigma))\prod_{i=1}^{n}y_{\sigma.i}^{\beta_{i}}dy_{0,1}\wedge\cdots\wedge dy_{\sigma,n}$

where $\beta_{i}=|P_{i}|-1$ and $|P_{i}|=\Sigma_{j=1}^{n}p_{ji}$ . We get a meromorphic $(n-1)$-form $\tilde{\omega}_{10}$

on $R_{\sigma}^{n}$ :
$\tilde{\omega}_{1\sigma}=\pi_{\sigma}^{*}(dx_{1}\wedge\cdots\wedge dx_{n})/\pi_{\sigma}^{*}(dg_{\sigma})$

$= \prod_{i=1}^{n}y_{\sigma.i}^{\alpha(P_{i})}(dy_{\sigma.1}\wedge\cdots\wedge dy_{\sigma,n}/dg_{\sigma})$ on $\tilde{W}_{1}$

where $a(P_{i})=|P_{i}|-d(P_{i}, g)-1$ . Then it is easy to see that the restriction of
$\tilde{\omega}_{1}$ to $\tilde{W}_{1}$ is equal to $\pi^{*}(\omega_{1})$ . Note that $dy_{\sigma.1}\wedge$ $\wedge dy_{\sigma.n}/dg_{\sigma}$ is a nowhere
vanishing $(n-1)$-form on $W_{1}\cap R_{\sigma}^{n}$ . We have the following lemma.

LEMMA 6. For Positive vertex $P_{i}$ , we have $a(P_{i})\geqq 0$ .

PROOF OF LEMMA 6. Let $P_{i}={}^{t}(p_{1}, \cdots p_{n})$ . We prove it by dividing two
parts.

(i) The case of strictly positive $P_{i}$ .
Since $g$ is smooth, the Newton boundary $\Gamma(g)$ has a vertex such that $x_{i_{0}}=$

${}^{t}(0$ , $\cdot$ .. , $1^{0}i$ ... , $0)$ for some $i_{0}$ . By definition, we have

$d(P_{i}, g)= \min\{\prod_{j=1}^{n}p_{j}x_{j}|x\in\Gamma(g)\}$

$\leqq P_{i}(x_{i_{0}})=p_{i_{0}}$ .
On the other hand,

$|P_{i}|=p_{1}+\cdots+p_{t_{0}}+\cdots+p_{n}\geqq p_{\iota_{0}}+(n-1)\geqq d(P_{i}, g)+(n-1)$ .
Hence, we have

$|P_{i}|-d(P_{i}, g)-1\geqq(n-1)\geqq 0$ .
(ii) The case of the not strictly positive $P_{i}$ .
Using the same notations as the above (i) for $x_{i_{0}}$ , if $p_{t_{0}}$ equals to zero,

then $d(P_{i}, g)=0$ . Since $|P_{i}|\neq 0$ , we have

$|P_{i}|\geqq d(P_{i}, g)$ .
Next, we consider the case $p_{\iota_{0}}\neq 0$ . As the same as (i), we have $p_{\iota_{0}}\geqq d(P_{i}, g)$ .
On the other hand,

$|P_{i}|\geqq p_{\iota_{0}}$ .
Hence $|P_{i}|\geqq d(P_{i}, g)$ . Here we assume the equality, i. e., $|P_{i}|=p_{i_{0}}=d(P_{i}, g)$
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Since $p_{1}+\cdots+p_{t_{0}}+\cdots+p_{n}=p_{i_{0}}$ , one gets $P_{i}={}^{t}(0, \cdots p_{i_{0}}, \cdots, 0)$ . Since $P_{i}$ is
primitive vector, $p_{i_{0}}=1$ and $|P_{i}|=1$ . By the assumption that $g$ is convenient,
there exists a vertex $x\in\Gamma(g)$ such that $i_{0}$-th component is zero. Hence $d(P_{i}, g)$

$=0$ . So, we complete the proof of Lemma 6.

Then, the $(n-1)$ -form $\pi^{*}(\omega_{1})$ on $\pi_{1}$ is extended to the total transform
$\pi^{-1}(W_{1})$ without the pole at the origin. Hence we consider the next integral
$I(\sigma)$ for a fixed $\sigma$ such that

$I( \sigma):=\int_{\{\Pi y^{dP_{i}}’=0\}\cup tg_{\sigma}(y)=0I}(\epsilon y_{1}^{d(P_{1}}f)$
$y_{n}^{a(P_{n}}f))_{\pm}^{\tau}(f_{\sigma})_{\pm}^{\tau}(\varphi\circ\pi)\varphi_{\alpha.\sigma}\pi^{*}(\omega_{1})$

$= \int_{\{\Pi iy^{d(P_{ig)}}i=01\cup tg_{\sigma}(y)=0\}}(\epsilon y_{1}^{a(P_{1}.f)} y_{n^{1(P_{n}.f)}}^{(})_{\pm}^{\tau}(f_{\sigma})_{\pm}^{\tau}(\varphi^{Q}\pi)\varphi_{\alpha,\sigma}$

. $\prod_{i=1}^{n}y_{\sigma.i}^{\alpha(P_{i,g)}}(\frac{dy_{\sigma.1}\wedge\cdots\wedge dy_{\sigma,n}}{dg_{\sigma}})$ .

Since ${\rm Re}\tau>-1$ and $a(P_{i}, g)\geqq 0$ , the integral over $\{\Pi_{i}y_{i}^{a(P_{i}}g)=0\}$ vanishes.
Note that $g_{\sigma}$ and $f_{\sigma}$ are smooth on the neighborhood of the origin in $Y$ from
Lemma 1 and Lemma 3. Therefore we have an integral

$I(a)= \int_{tg\sigma^{(y)=0\}\cap V’}}\prod_{i=1}^{n}\epsilon(y_{\sigma.i})_{\pm}^{a(P_{i},f)\tau+\alpha(P\ell,g)}(f_{\sigma})_{\pm}^{\tau}(\varphi\circ\pi)\varphi_{a,\sigma}(\frac{dy_{\sigma,1}\Lambda\cdots\Lambda dy_{\sigma,n}}{dg_{\sigma}}).(14)$

NOW, our assertion follows directly from the next Lemma.

LEMMA 7 (Gel’fand and \v{S}ilov [3]). Let $\psi(y_{1}, \cdots y_{n}, \mu)$ be a $C_{0}^{\infty}$-class func-
tion on $y$ and a meromorphic function of the Parameter $\mu\in C$ . Then the integral

$I( \nu_{1}, \cdots , \nu_{n}, \mu)=\int_{R^{n}}\prod_{i=1}^{n}(\pm y_{\sigma,i})_{\pm}^{\nu}{}^{t}\psi(y_{1}, \cdots y_{n}, \mu)dy_{1}\cdots dy_{n}$ ,

can be analytically continued at all the values of $\nu_{1},$
$\cdots$ , $\nu_{n}$ and $\mu$ as meromorphic

function, and all its poles other than those already possessed by $\psi$ can be lie only
on $\nu_{i}=-1,$ $-2,$ $\cdots(i=1,2, \cdots n)$ .

For the later discussion we give the proof of the lemma.

PROOF OF LEMMA 7. We use the integration by parts. For simplicity, we
take only the $+sign$ in the integral. Then we have

$\int_{0}^{\infty}\cdots\int_{0}^{\infty}y_{1}^{v_{1}}\cdots y_{n^{n}}^{\nu}\psi(y_{1}, \cdots y_{n}, \mu)dy_{1}\cdots dy_{n}$

$= \frac{(-.1)^{s_{1}+\cdot\cdot+s_{n}}}{(v_{1}+1)\cdots(v_{1}+s_{1})\cdot(\nu_{2}+1)\cdot\cdot(\nu_{2}+s_{2})\cdots(\nu_{n}+1)\cdots(\nu_{n}+s_{n})}$ (15)

$\cross\int_{0}^{\infty}\cdots\int_{0}^{\infty}y_{1^{1}}^{\nu+s_{1}}\cdots y_{n^{n}}^{\nu+s_{n(\frac{\partial}{\partial y})^{s}\psi(y}},$ $\mu)dy_{1}\cdots dy_{n}$
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for ${\rm Re}\nu_{i}>-1$ . The right hand side of the integral is analytically continued
to ${\rm Re}\nu_{i}>-s_{i}-1$ . Hence the original integral is analytically continued to
${\rm Re}\nu_{i}>-s_{i}-1$ as an analytic function with simple poles of $\nu_{i}=-1,$ $-2,$ $\cdots$ , $-s_{i}$ .
This completes the proof of the Lemma 7.

We consider again the integral (14). Then, in the neighborhood of the
origin and $\{y_{i}=0;i\in\{1,2, \cdot.. , n\}\}$ (or $T_{I}$ ), $\{f_{\sigma}(y)=g_{\sigma}(y)=0\}$ is a smooth com-
plete intersection variety. Hence the substituted term of $g_{\sigma}(y)=0$ to $f_{\sigma}(y)=0$

is smooth. Therefore, if the branch points of $f_{\sigma}(y)=0$ exist, then they are
contained in the non-singular normal crossing component. Therefore the poles
corresponding to $f_{\sigma}$ belong to the arithmetic progressions $\{-1, -2, \}$ .

Here we remark tbat (Oka [1], p. 412) if $P_{j}$ is strictly positive, then we
have

$\{g_{\sigma}=0\}\cap\{y_{\sigma,j}=0\}\neq\emptyset$ (16)

if and only if $\dim\Delta_{j}(g)>0$ , where $\Delta_{j}(g):=\Delta(P_{j}, g)=\{x\in\Gamma_{+}(g);P_{j}(x)=d(P_{j}, g)\}$ .
Thus, applying Lemma 7 to integral (14), the position of the poles in $I(\sigma)$ be-
longs to

$d(P_{i}, f)\tau+a(P_{i}, g)=-1,$ $-2,$ $\cdots$ , (for $\dim\Delta_{i}(g)>0,$ $i=1,$ $\cdots$ , $n$ ),

and hence

$\tau=-\frac{a(P_{i},g)+1}{d(P_{i},f)},$ $- \frac{a(P_{i},g)+2}{d(P_{i},f)},$ $\cdots$ (for $\dim\Delta_{i}(g)>0,$ $i=1,$ $\cdots,$
$n$ ). (17)

We notice that one variable of $y_{\sigma.1},$ $\cdots,$ $y_{\sigma.n}$ in $I(\sigma)$ is redundant by the defini-
tion of the integral, $i$ . $e.$ , the redundancy in the variables arises from the substitu-
tion of $g_{\sigma}(y)=0$ to $\Pi_{i=1}^{n}(y_{\sigma.i})_{\pm}^{a(P_{i},f)\tau+a(P_{i,g)}}(\varphi\circ\pi)\varphi_{a.\sigma}(f_{\sigma})_{\pm}^{\tau}(dg_{\sigma,1}\Lambda\ldots\wedge dg_{\sigma.n}/dg_{\sigma})$ .
We can consider the any substitution of them. However, by the smoothness
of $g_{\sigma}(y)=0$ in the neighborhood of the origin and $g_{\sigma}(0, \cdots , 0)\neq 0$ , the variable
which is eliminated by the substitution of $g_{\sigma}(y)=0$ does not vanish at the origin.
Hence one may consider the position of the poles for the $(n-1)$ variables ex-
cluding the eliminated variable by $g_{\sigma}=0$ . This does not depend on the sub-
stitution because of the uniqueness of the form $\pi^{*}(\omega_{1})$ on $g_{\sigma}(y)=0$ . However
the vertex corresponding the eliminated variable in a simplicial cone $\sigma$ exists
also in the coordinate of another simplicial cone $\tau$ . Therefore, to obtain the
position of the pole in $I(\sigma)$ , we may consider the arithmetic progressions for
all $i(i=1,2, \cdots n)$ forgetting the eliminated variable. Noting that $m_{i}=|P_{i}|-1$

and $\alpha(P_{i}, g)=m_{i}-d(P_{i}, g)$ , we complete the proof of Proposition 5.

DEFINITION 8. For the resolution $\pi:Yarrow U\subset R^{n}$ , we denote by $M_{Y}$ a set of
pairs $(d(P_{i}, f),$ $a(P_{i}, g))$ such that $d(P_{i}, f)>0$ and $(d(P_{i}, f),$ $a(P_{i}, g))\neq(1,0)$ for
$i=1,$ $\cdots,$

$n$ and in any local coordinate system. The $M_{Y}$ will be called a set



456 N. HASHIMOTO

of multiPlicitives of the resolution $(Y, \pi)$ . We define the weight $\beta_{Y}$ of the
resolution $(Y, \pi)$ by

$\beta_{Y}=\{$

$\max\{-\frac{\alpha(P_{i},g)+1}{d(P_{i},f)}$ ; $(d(P_{i}, f),$ $\alpha(P_{i}, g))\in M_{Y},$ $\dim\Delta_{i}(g)>0\}$ (for $M_{Y}\neq\emptyset$ ),

$-\infty$ (for $M=\emptyset$ ).

Next we prove the following Proposition.

PROPOSITION 9. Let $\beta_{Y}>-1$ , and $\overline{j}=\max\{J|j$ numbers $among-(\alpha(P_{i}, g)+1)$

$./d(P_{i}, f)(i=1, \cdots , n-1)$ are equal to $\beta_{Y}$ such that $\dim\Delta_{i}(g)>0\}$ where the maxi-
mum is taken over all local coordinate systems with a vertex such that $\dim\Delta_{k}(g)$

$>0$ $(k=1, \cdots , n)$ . If $\varphi$ has a suPPort that is concentrated in a sufficiently small
neighborhood of the origin in $R^{n},$ $\varphi(6)\neq 0$ and $\varphi(x)\geqq 0$ , then the order of a pole

of $I_{\pm}(\tau, \varphi)$ at $\tau=\beta_{Y}$ is not higher than $\overline{j}$ , and the sum of coefficients of $1/(\tau-\beta_{Y})^{f}$

in the Laurent exPansion of the $I_{\pm}(\tau, \varphi)$ at $\tau=\beta_{Y}$ is non-zero. (Each $I_{\pm}(\tau, \varphi)$ is
non-negative (resp. $non- po\alpha tive$), and at least one of them is positive (resp. nega-
tive).)

PROOF OF PROPOSITION 9. Let us consider the integral (14) with any fixed $\sigma$ .
If the number of subscripts $i$ of the variables in (14) such $that-(a(P_{i}, g)+1)/d(P_{i}, f)$

$=\beta_{Y}$, is smaller than the number $\overline{j}$ , then it is easy to see that the integral
(14) has a pole of order strictly smaller than $\overline{j}$ at the point $\tau=\beta_{Y}$ for the
simplicial cone $\sigma$ . Hence we can suppose that by changing suitably the indexes

$- \frac{\alpha(P_{1},g)+1}{d(P_{1},f)}=\cdots=-\frac{a(P_{\overline{j}},g)+1}{d(P_{\overline{j}},f)}=\beta_{Y}$ .

We rewrite the integral (14) by a change of the variables according to the
above change of indexes as

$I( \sigma)=\int_{g_{\sigma^{(y)=0}}}\prod_{k=1}^{n-1}(y_{\sigma,k})_{\pm}^{l(P_{k},f)\tau+\alpha(P_{k,g)}}((y_{\sigma.n})_{\pm}^{d(P_{n},f)\tau+\alpha(P_{n},g)}$

(18)
$\cross(f_{\sigma})_{\pm}^{\tau}(\varphi\circ\pi)\varphi_{\alpha.\sigma}h_{\sigma}dy_{\sigma.1}\cdots dy_{\sigma.n-1}$

where the meromorphic function $h_{\sigma}$ is formally defined by $dy_{\sigma.1}\wedge\cdots\wedge dy_{0.n}/dg_{\sigma}$

$=h_{\sigma}dy_{\sigma.1}\cdots dy_{\sigma.n-1}$ and then, it does not vanish on $g_{\sigma}(y)=0$ . Now we suppose
that the variable $y_{0,n}$ is eliminated by the substitution of $g_{\sigma}(y)=0$ . According
to Lemma 7 and (17), the integral (18) has poles at $\nu_{i}=-1,$ $-2,$ $\cdots(i=1, \cdots , n-1)$

where we set $\nu_{j}=d(P_{j}, f)\tau+a(P_{j}, g)(j=1, , n)$ . By the integral (15) and the
assumption, we have

$\frac{1}{(\nu_{1}+1)\cdots(\nu_{\overline{f}}+1)}=\frac{1}{d(P_{1},f)\cdots d(P_{f},f)}\cross\frac{1}{(\tau-\beta_{Y})^{f}}$ .

Hence the coefficients of $1/(\tau-\beta_{Y})^{\overline{j}}$ in the Laurent expansion of the $I(\sigma)$ is ob-
tained by calculating the residue of the $I(\sigma)$ at $\nu_{1}=-1,$ $\cdots$ , $\nu_{\overline{j}}=-1$ . By itera-
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tively using the residue formula of $\int_{R}x_{\pm}^{\tau}\psi(x)dx$ for a smooth function $\psi(x)$

(Gel’fand-Silov [3]), the residue of the $I(\sigma)$ is equal to

$\frac{1}{d(P_{1},f)\cdots d(P_{f},f)}\int_{V’f+1}(y_{\sigma,f_{+1}})_{\epsilon}^{\beta_{Y^{d(P}f+1}.f)+\alpha(P_{f+1}}g)$ ... $(y_{\sigma.n-1})_{\epsilon_{n-1}}^{\beta_{Y^{(}}l(P_{n-I}}f)+\alpha(P_{n-1}, g)$

(19)

$\cross\{(y_{\sigma,n})_{\epsilon_{n}}^{\beta_{Y^{d(P_{n}}}}f)+\alpha(P_{n}g)(f_{\sigma})_{f}^{\beta_{Y}}(\varphi\circ\pi)\varphi_{\alpha,\sigma}h_{\sigma}\}|_{y_{1}=\cdots=y_{f}=0}dy_{\sigma f+1}\cdots dy_{\sigma.n-1}$ .

Since the sign of the $h_{\sigma}$ ( $i$ . $e.$ , the orientation) is definite, hereafter we may
assume the orientation to be the positive definite. By assumption, $\varphi(0)>0$ and
$\varphi(x)\geqq 0$ . Hence the residue of (19) is positive, and the integral of this type
appears necessarily in either $I_{+}(\tau, \varphi)$ or $I_{-}(\tau, \varphi)$ . Therefore summing over each
quadrant and coordinate, the same situation holds with respect to the coefficients
of $1/(\tau-\beta_{Y})^{\overline{j}}$ in the Laurent expansion of $I_{\pm}(\tau, \varphi)$ . We complete the proof of
Proposition 9.

For the relation between $I_{\pm}(\tau, \varphi)$ and $K(f, g, \varphi, c)$ , we have the following
result.

LEMMA 10 (Gel’fand-\v{S}ilov [3], p. 407). If $I_{\pm}(\tau, \varphi)$ has the poles $\tau=-\tau_{1}$ ,

$-\tau_{2}$ , $(\tau_{1}<\tau_{2}< )$ of the order $k_{1},$ $k_{2},$ $\cdots$ , respectively, then

$K(f, g, \varphi, c)\sim\Sigma\infty\Sigma a_{j,k}^{\pm}(\varphi)c^{\tau_{f^{-1}}}(\log c)^{k-1}k_{j}$

$j=1k=1$

for $carrow\pm O$ , where

$a_{j.k}^{\pm}( \varphi)=\frac{(-1)^{k-1}}{(k-1)!}\cross(coefficients$ of $\frac{1}{(\tau+\tau_{j})^{k}}$ in $I_{\pm}(\tau, \varphi))$ .

We shall use the following two well-known Lemmas (Gel’fand-\v{S}ilov [3],

Varchenko [6], Kaneko [12] $)$ .

LEMMA 11. Let $\theta(c)$ be a function in $C_{0}^{\infty}(R)$ such that $\theta(c)$ identically equals
to 1 in a neighborhood of zero. Then, for $|\tau|arrow+\infty$ , we have the following
asymptotic expansions:

$\int_{0}^{\infty}e^{i\tau c}c^{p}(\log c)^{m}\theta(c)dc\sim(\frac{d}{dp})^{m}\{\frac{\Gamma(p+1)}{(-i\tau)^{p+1}}\}$

$\int_{-\infty}^{0}e^{i\tau c}|c|^{p}(\log|c|)^{m}\theta(c)dc\sim(\frac{d}{dp})^{m}\{\frac{\Gamma(p+1)}{(i\tau)^{p+1}}\}$

where $m\geqq 0$ is an integer and $p>-1$ is a real value.

LEMMA 12. For $|\tau|arrow\infty$ , and $P\neq-1,$ $-2,$ $\cdots$
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$( \frac{d}{dp})^{m}\{\frac{\Gamma(p+1)}{(\mp i\tau)^{p+1}}\}\sim\frac{\Gamma(p+1)}{\tau^{p+1}}e^{\pm(\pi/2)i(p+1)}(\log\tau)^{m}$

Here we define the oscillation index.

DEFINITION 13. The oscillation index of the function $f$ and $g$ at zero in
$R^{n}$ is defined by $\beta(f, g)$ which is the maximum of the numbers $p$ having the
following property: For any neighborbood of the origin in $R^{n}$ , there exists a
$\varphi\in C_{0}^{\infty}(R^{n})$ for the asymptotic expansion of $I(\tau, \varphi)$ and a $k$ such that $a_{p,k}(\varphi)\neq 0$ .

NOW, we show the main theorem.

THEOREM 14. Let $(f(x), g(x))$ be an analytic mapffing from a neighborhood
$U$ of the origin of $R^{n}$ to $R^{2}$ such that $f(\vec{0})=g(6)=0$ , and $\{x\in R^{n} ; f(x)=g(x)=0\}$

is a complete intersection variety with a singularity at 6 in $R^{n}$ . We assume that
$g(x)$ is a smooth analytic function. Further suppose that $\{x\in U;f(x)=g(x)=0\}$

is a non-degenerate complete intersection variety at 6 in $R^{n}$ and, $f(x)$ and $g(x)$

are convenient. Then we have an asymptotic expansion

$\int_{R^{n}}e^{i\tau f(x)}\delta(g(x))\varphi(x)dx\sim\sum_{p}\sum_{k=0}^{n-2}$ a $p,$
$k(\varphi)\tau^{p}(\log\tau)^{k}$ (20)

for $|\tau|arrow\infty$ , where $\varphi(x)\in C_{0}^{\infty}(R^{n})$ with a support concentrating in a sufficiently
small neighborhood of the origin in $R^{n}$ , such that:

1. There exists a method of calculation of the power $p$ , on the basis of
toroidal resolution, in which the powers belong to finitely many arithmetic pro-
gressions constructed from negative rational numbers.

2. If $\beta_{Y}>-1$ , the oscillation index $\beta(f, g)$ is not exceeding $\beta_{Y}$ . Further if
$\varphi(0)>0$ and $\varphi(x)\geqq 0$ , we have $\beta(f, g)=\beta_{Y}$ .

3. If $\beta_{Y}>-1$ and $\varphi(0)>0,$ $\varphi(x)\geqq 0$ , then the power index of $(\log\tau)$ corre-
sponding to the highest power $p=\beta(f, g)=\beta_{Y}$ is also calculated as $j-l$ by the
toroidal resolution.

PROOF. 1. By (17) and Proposition 9, we apply Lemma 10 to $I_{\pm}(\tau, \varphi)$ and
$K(f, g, \varphi, c)$ . We consider

$I( \tau, \varphi)=\int_{-\infty}^{\infty}dce^{i\tau c}K(f, g, \varphi, c)$

(21)
$= \int_{-\infty}^{0}dce^{i\tau c}K(f, g, \varphi, c)+\int_{0}^{\infty}dce^{i\tau c}K(f, g, \varphi, c)$ ,

where $K(f, g, \varphi, c)$ have a compact support as the function of $c$ , and $C^{\infty}$ except

the origin such that
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$K(f, g, \varphi, c)\approx\Sigma\Sigma a_{j,k}^{+}c^{\tau_{j^{-1}}}(\log c)^{k-1}k_{j}$ for $carrow+0$

$j=1k=1$

(22)
$\infty$

$k_{j}$

$K(f, g, \varphi, c)=\sum_{j=1}\sum_{k=1}a_{j.k}^{-}(-c)^{\tau_{j^{-1}}}(\log(-c))^{k-1}$ for $carrow-0$ .

Then we apply Lemma 11 and Lemma 12 to the equations. Inserting (22) to
(21) we obtain the following equation

$I( \tau, \varphi)=\sum_{f=1}^{\infty}\sum_{=1}^{k_{j}}\int_{-\infty}^{0}e^{i\tau c}a_{j.k}^{-}(-c)^{\tau_{f^{-1}}}(\log(-c))^{k-1}\theta(c)dc$

$+ \sum_{j=1}^{\infty}\sum_{k=1}^{j}\int_{0}^{\infty}e^{i\tau c}a_{j,k}^{+}c^{\tau_{j^{-1}}}(\log c)^{k-1}\theta(c)dck$

(23)
$= \sum_{j=1}^{\infty}\sum_{k=1}^{k_{j}}a_{j,k}^{-}\frac{\Gamma(\tau_{j})}{\tau^{\tau_{j}}}(\log\tau)^{k-1}e^{-(\pi/2)i\tau_{j}}$

$+ \sum_{j=1}^{\infty}\sum_{k=1}^{k_{j}}a_{j.k}^{+}\frac{\Gamma(\tau_{j})}{\tau^{\tau_{j}}}(\log\tau)^{k-1}e^{+(\pi/2)i\tau_{j}}$ .

After all, we have the asymptotic expansion of (20). From Proposition 5 and
(17), the indexes of the powers belong to finitely many arithmetic progression:

.
$\{$

$-1,$ $-2,$ $\cdots$

$- \frac{\alpha(P,g)+1}{d(P,f)},$ $- \frac{a(P,g)+2}{d(P,f)},$ $\cdots$

for $(d(P, f),$ $a(P, g))=(1,0)$ ,

for $(d(P, f),$ $a(P, g))\in M_{Y}$ .

2. and 3. By definition, the oscillation index $\beta(f, g)$ is not exceeding $\beta_{Y}$ .
If $\varphi(0)>0$ and $\varphi(x)\geqq 0$ , then by Proposition 9, we will obtain more precise results.
In equation (23), setting $\tau_{1}=-\beta_{Y}$ and $k_{1}=\overline{j}$ , we evaluate the coefficient of the
highest power term $\tau^{\beta_{Y}}(\log\tau)^{\overline{J}}-1$ for $\tau$ . By Lemma 10, we have

$a_{j,k}^{\pm}= \frac{(-1)^{k}}{(k-1}b_{j.k}^{\pm}$

where $b_{k}^{\frac{+}{j}}$ is the coefficients of $1/(\tau+\tau_{j})^{k}$ in $I_{\pm}(\tau, \varphi)$ . Hence the term in $I(\tau, \varphi)$

corresponding to $\tau^{\beta_{Y}}(\log\tau)^{J^{-1}}-$ is written as

$\frac{(-1)^{f-1}}{(\overline{j}-1)1}\Gamma(-\beta_{Y})(e^{-(\pi/2)i\beta_{Y}}b_{1.f}^{+}+e^{+(\pi/2)i\beta_{Y}}b_{1.f}^{-})$ .

On the one hand, by Proposition 9 we have $b_{1.J^{-}}^{\pm}\geqq 0$ where either $b_{1.\overline{j}}^{+}$ or $b_{1,J^{-}}^{-}$ does
not vanish. Then, for $\beta_{Y}>-1$ , we obtain

${\rm Re}(e^{-(\pi/2)t\beta_{Y}}b_{1,f}^{+}+e^{+(\pi/2)i\beta_{Y}}b_{1,f}^{-})=(b_{1.f}^{+}+b_{1,\overline{j}}^{-})2 \omega s(\frac{\pi}{2}|\beta_{Y}|)>0$ .

Therefore the coefficient of the highest power term $\tau^{\beta_{Y}}(\log\tau)^{J^{-1}}-$ does not
vanish. This completes the proof of the theorem.
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The weight $\beta_{Y}$ is more easily calculated with the help of the Newton
boundary.

COROLLARY 15. Under the same assumption as Theorem 14, we have the next
method of calculations through the Newton boundary.

(1) Let $d_{f}(P_{i})$ or $d_{g}(P_{i})$ be the rational number which is the intersection points
between the diagonal line $x_{1}=x_{2}=...=x_{n}=t,$ $r\in R$ and $P_{i}(x)=d(P_{i}, f)$ or $P_{i}(x)$

$=d(P_{i}, g)$ , respectively. Then we have that

$\beta_{Y}=\max_{i}\{-\frac{1-d_{g}(P_{i})}{d_{f}(P_{i})}\}$ ,

where the maximum is taken over all $i$ such that $\dim\Delta(P_{i}, g)>0$ .
(2) In the same notations as (1), let

$j_{0}$ $:= \max_{\sigma}\{\overline{j}|-\frac{1-d_{g}(P_{1})}{d_{f}(P_{1})}=\ldots=-\frac{1-d_{g}(P_{\overline{j}})}{d_{f}(P_{\overline{j}})}=\beta_{Y}$ ,

for $\dim\Delta(P_{i}, g)>0(i=1, \cdots , n)\}$ ,

for each a, and define the index $\acute{j}_{0}=\min\{j_{0}, n-1\}$ . Then the power of $\log\tau$

corresPonding to the $\beta_{Y}$ is at most $\overline{j}_{0}-1$ (more Precrsely saying, $\overline{j}_{0}-1$ for $j_{0}=l$ ,
$\overline{j}_{0}-2$ for $J_{0}=n$ and $\overline{j}_{0}-1$ or $\overline{j}_{0}-2$ for the other case).

REMARK 16. (a) The precise power of $\log\tau$ at $\beta_{Y}$ is determined by looking
over concretely the variables in $g_{\sigma}(y)$ for each $a$ which are eliminated by the
substitution of $g_{\sigma}(y)=0$ . Hence this process could not be obtained by only the
word of Newton boundary. It needs to calculate concretely the integral $I_{\pm}(\tau, \varphi)$

by the toroidal embedding. (b) Here each simplicial cone $a$ corresponds to the
$n$ faces (proto-vertices) which are $(n-1)$ -dimensional ones intersecting each
other in the Newton polyhedron $\Gamma_{+}(f, g)$ . This situation is also allowed for
the case existing of the simplicial unimodular subdivisions among the each
proto-vertices (see also Remark 22) where by the proto-vertex we mean the
vertex before the canonical simplicial subdivision.

PROOF OF COROLLARY 15. Let us consider two hyperplanes $P_{i}(x)=d(P_{\iota}, f)$

and $P_{i}(x)=d(P_{i}, g)$ in $\Gamma_{+}(f)$ and $\Gamma_{+}(g)$ , respectively, for each vertex $P_{i}$ . Then,
by definition, $d_{f}$ and $d_{g}$ satisfy the equations

$|P_{i}|\cdot d_{f}(P_{i})=d(P_{i}, f)$ ,

$|P_{i}|\cdot d_{g}(P_{i})=d(P_{i}, g)$ .
Then,
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$- \frac{a(P_{i},g)+1}{d(P_{i},f)}=-\frac{|P_{i}|-d(P_{i},g)}{d(P_{i},f)}$

$=-( \frac{1}{d_{f}(P_{i})}-\frac{d_{g}(P_{i})}{d_{f}(P_{i})})$ .

Hence we obtain

$\beta_{Y}=\max_{i}\{-\frac{1-d_{g}(P_{i})}{d_{f}(P_{i})}$ ; ( $|P_{i}|\cdot d_{f}(P_{i})$ , $P_{t}|(1-d_{g}(P_{i}))-1)\in M_{Y}\}$

where the maximum is taken over all $i$ such that $\dim\Delta(P_{i}, g)>0$ . Clearly, this
quantity is obtained geometrically if one knows the explicit form of each $P_{i}$ .
Using the above equality, we also obtain $\overline{j}_{0}$ . But it is possible in $\overline{j}_{0}$ to contain
the contribution of the eliminated variable with $g_{\sigma}(y)=0$ , which is redundant
in $\overline{j}_{0}$ . So, the highest power of $\log\tau$ corresponding to $\beta_{Y}$ is at most $\overline{j}_{0}-1$ .
This completes the proof of Corollary 15.

REMARK 17. The condition $\beta_{Y}>-1$ is equivalent to $\max_{i}\{d_{f}(P_{i})+d_{g}(P_{i})\}>1$ .
Next we supplement the case $\beta_{Y}\leqq-1(i. e., \max_{i}\{d_{f}(P_{i})+d_{g}(P_{i})\}\leqq 1)$ . In

this case, the oscillation index generally can not be obtained. Now, we state
the next Proposition corresponding to Proposition 5. The next Proposition 18
is essentially the same type with Varchenko [6] (Proposition $1.4(2)$ ) (see also
[12] $)$ .

PROPOSITION 18. Suppose that for any $p\alpha nty\in S=\pi^{-1}(6)$ and any local
coordinate system $(y_{1}, \cdots , y_{n})$ centered at $y$ satisfying (D-1) and (D-2), there exists
at most one Pairs equal to $(1, 0)$ among the Pair $(l_{i}, m_{i}-d(P_{t}, g))(i=1, , n)$ in
(D-1) and (D-2). Suppose $\beta_{Y}\leqq-1$ . Let 1, $\cdots$ , $\overline{j}$ be all the natural numbers
strictly smaller than $-\beta_{Y}$ . Then $I_{\pm}(\tau, \varphi)$ have at the $p\alpha nts\tau=-1,$ $-2$ , , , $-\overline{j}$

poles of multiplicity not higher than 1. If $a_{j}^{+}$ (resp. $a_{j}^{-}$) is the reszdue of $I_{+}(\tau, \varphi)$

(resp. of $I_{-}(\tau,$ $\varphi)$ ) at $\tau=-j$ , where $j=1,$ $\cdots$ , $\overline{j}$ , then $a_{j}^{+}=(-1)^{j-1}a_{j}^{-}$ . For ${\rm Re}\tau>$

$\beta_{Y},$ $I_{\pm}(\tau, \varphi)$ does not have other poles.

PROOF. We investigate the equations (13) and (14) for a fixed coordinate
system. By definition of $\beta_{Y}$ , the numbers which are greater than $\beta_{Y}$ in the
arithmetic progressions of Proposition 5 are only $-1,$ $-2,$ $\cdots$ , $-\overline{j}$ . These num-
bers correspond directly to the poles of $I_{\pm}(\tau, \varphi)$ if and only if there exist pairs
$(l_{i}, m_{i}-d(P_{i}, g))=(1,0)$ by the proof of Proposition 5. By our assumption, there
exists at most such one pair. If the pair is nothing, the assertion is trivial.
Hence we may assume that there exists a pair $(l_{1}, m_{1}-d(P_{1}, g))=(d(P_{1}, f),$ $a(P_{1}))$

$=(1,0)$ . By the proof of Proposition 5, the contribution to the pole from the
other pairs does not exist. Therefore the order of the pole of the pair is at
most one ( $i$ . $e.$ , simple pole). We calculated the residue of the pole. The con-
tributions to $I_{\underline{+}}(\tau, \varphi)$ from the pair are expressed as
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$\int_{V_{\cap}’\{g_{\sigma}=0\}}(y_{1})_{\pm}^{\tau}(y_{2})_{\epsilon_{2}}^{a(P_{2},f)\tau+\alpha(P_{2})}$

$\cross$ $(y_{n})_{\epsilon_{n}}^{a(P_{n},f)\tau+\alpha(P_{n})}(f_{\sigma})_{\pm}^{r}(\varphi\circ\pi)\varphi_{\alpha.\sigma}(dy_{1}\wedge\cdots\Lambda dy_{n}/dg_{\sigma})$

where $\epsilon_{j}=\pm$ . Then applying the integration (15) to $y_{1}$ , the residue at $\tau=-s$

$>\beta_{Y}$ is obtained as follows:

$\frac{(\pm 1)^{s-1}}{(s-1)1}\int_{V’}\cap^{\iota g_{\sigma}=0)}(y_{2})_{\epsilon_{2}}^{-a(P_{2},f)\theta+\alpha(P_{2})}$ $(y_{n-1})_{\epsilon_{n-1}}^{-(}l(P_{n-1},f)S+\alpha(P_{n-1})$

$\cross(\frac{\partial}{\partial y_{1}})^{s-1}\{(y_{n})_{\epsilon_{n}}^{a(P_{n}.f)\tau+\alpha(P_{n})}(\varphi\circ\pi)(f_{\sigma})_{\pm}^{\tau}\varphi_{\alpha,\sigma}(dy_{1}\wedge\cdots\wedge dy_{n}/dg_{\sigma})\}|_{\tau=-s}$ .

Hence we obtain $a_{s}^{+}=(-1)^{s-1}a_{\overline{s}}$ . This completes the proof of Proposition 18.

With this Proposition 18, we have the next Proposition.

PROPOSITION 19. Under the same assumption as $Propo\alpha tion18$ , suppose $t\overline{hat}$

$\beta_{Y}\leqq-1$ . If 1, $\cdots$ , $\overline{j}$ are the natural numbers strictly smaller than $\beta_{Y}$ , the index
of the asymPtotic exPansion of $1(\tau, \varphi)$ is contained in those excepting $-1,$ $\cdots$ , $-$ ]

$s$

in the arithmetic progression of $Propo\alpha tim5$ . The highest power of the asymp-
totic expansion is less than or equal to $\beta_{Y}$ .

PROOF. We investigate the asymptotic expansion (23).

$I( \tau, \varphi)=\sum_{j=1}^{\infty}\sum_{k\Leftarrow 1}^{k_{j}}\frac{(\log\tau_{j})^{k-1}}{\tau^{\tau_{f}}}\Gamma(\tau_{j})(\epsilon^{(\pi/2)i\tau_{j}}a_{j,k}^{+}+e^{-(\pi/2)i\tau_{j}}a_{j,k}^{-})$ .

The coefficient corresponding to the pole $j=-1$ , – , $-\overline{j}$ which is simple by
Proposition 18 is written as

$\Gamma(T_{j})(e^{(\pi/2)i\tau_{Ja_{j.k}^{+}+e^{-(\pi/2)i\tau_{Ja_{j,k}^{-})}}}}$

$=\Gamma(T_{j})e^{(\pi/2)\ell\tau_{j((-1)^{j-1}+e^{-\pi i\tau_{j)a_{j}^{-}}}}}$ .
Since $\tau_{j}=-j$ , the coefficient vanishes. Therefore, the term corresponding to
the pole $j=-1$ , – , $-\overline{j}$ does not appear in the asymptotic expansion of $I(\tau, \varphi)$ ,

completing the proof of Proposition 19.

Finally we obtain the next theorem.

THEOREM 20. Under the same assumPtion as Theorem 14, if $\max_{i}\{d_{f}(P_{i})+$

$d_{g}(P_{i})\}\leqq 1$ , then the maximum of the Power index of the asymptotic expansion is
less than or equal to $\max_{i}\dagger-(1-d_{g}(P_{i}))/d_{f}(P_{i})$ in $M_{Y}$ }.

PROOF. Applying Proposition 18 and Proposition 19 to the asymptotic ex-
pansion (23), our assertion is easily obtained. This completes the proof of
Theorem 20.
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Note that the statement of Theorem 14 (1) for $\beta_{Y}\leqq-1$ is also held.

REMARK 21. For $\beta_{Y}\leqq-1$ case, the oscillation index is not necessarily ob-
tained. Since, in the residue formula (19), one must differentiate the term
$y_{\sigma n}^{\beta_{Y}a_{(P_{n},f)}}(f_{\sigma})_{\pm}^{\beta_{Y}}(\varphi\circ\pi)\varphi_{\sigma}h_{\sigma}$ by the number of times corresponding to the poles
$-1,$ $\cdots$ , $-\overline{j}$ , the integral has not necessarily the positive (or negative) definite
value even if $\varphi(0)>0$ and $\varphi(x)\geqq 0$ .

REMARK 22. The canonical unimodular subdivision of $\Sigma*$ is not unique.
However we can see that the weight $\beta_{Y}$ does not depend on the ambiguity of
the subdivision. That is, we first subdivide the $S_{2}\Gamma^{*}(f, g)(=the$ two-skeleton
of $\Gamma^{*}(f, g)$ which is considered as a graph by a plane section, for example,
for the case $n=3$). In this stage, there does not exist the ambiguity of the
canonical unimodular subdivision. Next, we obtain inductively the subdivision
of $S_{k}\Gamma^{*}(f, g)(k=2,3, \cdots , n)$ . But, in general, the subdivision depends on the
geometrical triangulation. Since we construct the unimodular subdivision of
$S_{k}\Gamma^{*}(f, g)(k>2)$ after the geometrical triangulation, the obtained subdivision
is not unique. However we can easily prove that $\tau(P_{i})<\tau(T)<\tau(P_{j})$ (or $\tau(P_{i})>$

$\tau(T)>\tau(P_{j}))$ if the vertex $T$ is a canonical primitive sequence of the segment
$\overline{P_{i}P_{j}}$ (Oka [1]). The same inequality holds for the canonical primitive sequence
of $S_{k}\Gamma^{*}(f, g)(k>2)$ . Moreover, it is easily seen that if $\dim\Delta(P_{i}, g)>0$ and
$\dim\Delta(P_{j}, g)=0$ , then we have $\dim\Delta(T, g)=0$ for the vertex $T$ . Therefore if
we consider the simplicial cone $\sigma$ containing the proto-vertices such that
$\dim\Delta_{i}(g)>0$ , then by definition the weight $\beta_{Y}$ is evaluated by their only proto-
vertices, and hence it shows that the weight $\beta_{Y}$ is independent of the sub-
division.

4. The singular $g(x)$ case.

The purpose of this section is to prove Theorem 27 and Corollary 28 for
the singular $g(x)$ case. In the singular case, the asymptotic expansion of the
equation (1) is held with a weak sense. We use the same notation as in section
3, and put the same assumption for $f(x)$ and $g(x)$ except the smoothness of
$g(x)$ . Then we have the following Proposition.

PROPOSITION 23. The poles of $I_{\pm}(\tau, \varphi)$ belong to the set of next arithmetic
progressions

$\{$

$-1,$ $-2,$ $\cdots$

$- \frac{|P|-d(P,g)}{d(P,f)},$ $- \frac{|P|-d(P,g)+1}{d(P,f)},$ $\cdots$

for $(d(P, f),$ $|P|-d(P, g)-1)=(1,0)$ ,

for $(d(P, f),$ $|P|-d(P, g)-1)\neq(1,0)$ .

PROOF. With the same notations and situation as the proof of Proposition
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5, we consider the integral

$I_{\pm}( \tau, \varphi)=\sum_{\alpha}\int_{Y}(f\circ\pi)_{\pm}^{\tau}\varphi_{\alpha}(\omega_{1}\circ\pi)$ .

For ${\rm Re}\tau>-1$ we have the integral on each local chart $a$ :

$\int_{Y}(f\circ\pi)_{\pm}^{\tau}(\varphi\circ\pi)\varphi_{\alpha,\sigma}(\omega_{1}\circ\pi)$

(24)

$= \int_{\{\Pi_{i=1}y_{\ell}\prime}nd(P_{tg)_{g_{\sigma}(y)\Rightarrow 0I\cap V’}}(\epsilon(y_{1})_{\epsilon_{1}}^{d(P_{1}}f) (y_{n})_{\epsilon_{n}}^{a(P_{n}}f)f_{\sigma}(y)_{\pm})^{\tau}(\varphi^{o\pi)\varphi_{\alpha.\sigma}\pi^{*}(\omega_{1})}$ ,

where $\epsilon=\pm 1$ and $\epsilon_{j}=\pm$ for $j=1,$ $\cdots$ , $n$ . Then we calculate the integral (24)

by dividing finitely to each component. We need the following definition.

DEFINITION 24. We call the function $g$ a-class for $f$ if the function $g$

satisfies that $a(P, g)\geqq 0$ for any $P$ in $\Gamma(f, g)$ .

Then we classify the our asymptotic integral for two cases, that is, (i) the
function $g$ belongs to the $a$-class for $f$ , and (ii) does not belong to it.

For the case (i), one can easily see that the same results as the smooth
case of section 3 hold. That is, for any positive vertex $P_{\iota}$ , we have that
$a(P_{i}, g)\geqq 0$ from the definition. Hence, from the same argument as the proof
of Proposition 5 we have

$\tau=-\frac{\alpha(P_{i},g)+1}{d(P_{i},f)},$ $- \frac{\alpha(P_{i},g)+2}{d(P_{i},f)},$ $\cdots$ (for $\dim\Delta_{i}(g)>0,$ $i=1,$ $\cdots$ . $n$ ). (25)

Next we consider the case (ii). In this case, there exist the $vertices_{\wedge}^{7}P_{t}$

such that $\alpha(P_{i}, g)<0$ . We consider the next integral $I(a)$ for a fixed $\sigma$ such
that

$I( \sigma)=\int_{\{fIy^{dP_{i}}’=0I\cup\{g_{\sigma}(y)=0\}}(\epsilon y_{1}^{d(P_{1},f)}\iota\iota^{(g)} y_{n}^{cl(P_{n}.f)})_{\pm}^{\tau}(f_{\sigma})_{\pm}^{\tau}(\varphi\circ\pi)\varphi_{\alpha\sigma}\pi^{*}(\omega_{1})$ .

Then taking the sufficiently large ${\rm Re}\tau\gg 0$ , we have an integral

$I( \sigma)=\int_{\{g_{\sigma}(y)=0\}}\cap^{V’}\prod_{i=1}^{n}\epsilon(y_{\sigma,i})_{\pm}^{a(P_{i}}f)^{-}+\alpha(P_{i\cdot g)}(f_{\sigma})_{\pm}^{\tau}(\varphi\circ\pi)\varphi_{\alpha,\sigma}(\frac{dy_{\sigma 1}\Lambda\cdots\Lambda dy_{\sigma n}}{dg_{0}}),$(26)

where $V’$ represents an open set which contains the support of $\varphi_{\alpha}$ such that
(D-1) and (D-2) are satisfied on it. Then, again applying Lemma 7 to the
integral (26), we have the position of the pole as the same as (25). We com-
plete the proof of Proposition 23.

Next we prove the following Proposition.

PROPOSITION 25. Let $\beta_{Y}>-1$ . If $\varphi$ has a support that is concentrated in a



Asymptotic expansion of an oscillating integral 465

sufficiently small neighborhood of the origin in $R^{n},$ $g(6)\neq 0$ and $\varphi(x)\geqq 0$ , then the
order of a pole of $I_{\pm}(\tau, \varphi)$ at $\tau=\beta_{Y}$ is not higher than $\overline{j}$ which is defined in Pro-
posztion 9, and the sum of coefficients of $1/(\tau-\beta_{Y})^{\overline{j}}$ in the Laurent expansion of
the $I_{\pm}(\tau, \varphi)$ at $\tau=\beta_{Y}$ is non-zero. (Each $I_{\pm}(\tau, \varphi)$ is non-negative (resp. non-posit-
ive), and at least one of them is positive (resp. negative).)

PROOF OF PROPOSITION 25. With the same procedure as Proposition 9, the
statement is easily verified.

The relation between $I_{\pm}(\tau, \varphi)$ and $K(f, g, \varphi, c)$ , is easily obtained by

Lemma 10. We shall use the following Lemma (Gel’fand-\v{S}ilov [3]) which also
contains the case for $p\leqq-1$ .

LEMMA 26. Let $\theta(c)$ be a function in $C_{0}^{\infty}(R)$ such that $\theta(c)$ identically equals
to 1 in a neighborhood of zero. Then, for $|\tau|arrow+\infty$ , we have the following
asymptotic expansions:

$\int_{0}^{\infty}e^{t\tau c}c^{p}(\log c)^{m}\theta(c)dc\sim(\frac{d}{dp})^{m}\{\frac{\Gamma(p+1)}{(-i\tau)^{p+1}}\}$ ,

$\int_{-\infty}^{0}e^{i\tau c}|c|^{p}(\log|c|)^{m}\theta(c)dc\sim(\frac{d}{dp})^{m}\{\frac{\Gamma(p+1)}{(i\tau)^{p+1}}\}$ ,

where $m\geqq 0$ is a $nm$-negative integer and $p$ is a real value such that $p\neq-1$ ,
$-2,$ $\cdots$ For $p=-n(n=1,2, 3, )$ case, in the meaning of an improper integral
of the generalized function, we have the asymptotic expansion

$\int_{0}^{\infty}e^{i\tau c}c^{-n}(\log c)^{m}\theta(c)dc\sim\tau^{n-1}\sum_{l=-1}^{m}\{A|^{n)}\frac{(-1)^{m-l}m1}{(m-l)1}(\log(\tau+i0))^{m-l}\}$ ,

$\int_{-\infty}^{0}e^{i\tau c}|c]^{p}(\log|c|)^{m}\theta(c)dc\sim\tau^{n-1}\sum_{l=-1}^{m}\{B_{l}^{tn)}\frac{(-1)^{m-l}m1}{(m-l)1}(\log(\tau-i0))^{m-l\}}$ .
The coefficient $A_{l}^{(n)}$ and $B_{\iota^{n)}}^{(}$ are given by

$A_{\iota^{n)}}^{(}= \lim_{\lambdaarrow-\infty}\frac{d^{l+1}}{d\lambda^{\iota+\iota}}\{i(\lambda+n)e^{i\lambda(\pi/2)}\Gamma(\lambda+1)\}$ ,

$B_{\iota^{n)}}^{(}=\overline{A_{t^{n)}}^{(}}$ .
where the overline represents the complex conjugation.

NOW, we show the main theorem.

THEOREM 27. Let $(f(x), g(x))$ be an analytic mapping from a neighborhood
$U$ of the origin of $R^{n}$ to $R^{2}$ such that $f(\vec{0})=g(\vec{0})=0$, and $\{x\in R^{n} ; f(x)=g(x)=0\}$

is a complete infersection variety with a singularity at 6 in $R^{n}$ . We assume that
$\{x\in U;f(x)=g(x)=0\}$ is a non-degenerate complete intersection variety at 6 in

$R^{n}$ and, $f(x)$ and $g(x)$ are convenient. Then we have an asymptotic expansion,
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in the sense of improper integral of generalized function,

$\int_{R^{n}}e^{i\tau f(x)}\delta(g(x))\varphi(x)dx\sim\sum_{p}\sum_{k=0}^{n-2}a_{p,k}(\varphi)\tau^{p}(\log\tau)^{k}$ (27)

for $|\tau|arrow\infty$ , where $\varphi(x)\in C_{0}^{\infty}(R^{n})$ with a support concentrating in a sufficiently
small neighborhood of the origin in $R^{n}$ , such that:

1. There exists a method of calculation of the power $p$ , on the basis of
toroidal resolution, in which the powers belong to finitely many arithmetic pro-
gres$\alpha ms$ constructed from rational numbers.

2. If $\beta_{Y}>-1$ , the oscillation index $\beta(f, g)is_{-}^{-}not$ exceeding $\beta_{Y}$ . Further if
$\varphi(0)>0$ and $\varphi(x)\geqq 0$ , we have $\beta(f, g)=\beta_{Y}$ .

3. If $\beta_{Y}>-1$ and $\varphi(0)>0,$ $\varphi(x)\geqq 0$ , then the power index of $log\tau$ corre-
sponding to the highest power $p=\beta(f, g)=\beta_{Y}$ is also calculated as 7 or $\overline{j}-1$ by
the toroidal resolution.

PROOF. 1. By (25) and Proposition 25, we apply Lemma 10 to $I_{\pm}(\tau, \varphi)$ and
$K(f, g, \varphi, c)$ . Next applying Lemma 26, Lemma 11 and Lemma 12 to (21) and
(22), we obtain the following equation.

$I( \tau, \varphi)=\sum_{j=1}^{\infty}\sum_{k\Rightarrow 1}^{k_{j}}\int_{-\infty}^{0}e^{i\tau c}a_{j.k}^{-}(-c)^{\tau_{f^{-1}}}(\log(-c))^{k-1}\theta(c)dc$

$+ \sum_{f=1}^{\infty}\sum_{k=1}^{k_{j}}\int^{\infty}e^{i\tau c}a1{}_{k}C^{\tau_{j^{-1}(\log c)^{k-1}\theta(c)dc}}$ .

Hence,

for $\tau_{j}\neq-1,$ $-2,$ $\cdots$

for $\tau_{j}=-1,$ $-2,$ $\cdots$

Then, we have our asymptotic expansion of (27). From Proposition 23 and (25),

the indexes of the powers of $\tau$ belong to finitely many arithmetic progressions:

$\{$

$-1,$ $-2,$ $\cdots$

$- \frac{a(P)+1}{d(P,f)},$ $- \frac{\alpha(P)+2}{d(P,f)}$ ,

for $(d(P, f),$ $a(P))=(1,0)$

for $(d(P, f),$ $a(P))\in M_{Y}$ .

2. and 3. The first assertion of 2 is clear. In (28), setting $\tau_{1}=-\beta_{Y}$ and
$k_{1}=\overline{j}$ , we evaluate the coefficient of the highest power term $\tau^{\beta_{Y}}$ for $\tau$ . By
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Lemma 10, we have

$a_{j,k}^{\pm}= \frac{(-1)^{k}}{(k-1)1}b_{j.k}^{\pm}$

where $b_{j.k}^{\pm}$ is the coefficients of $1/(\tau+\tau_{j})^{k}$ in $I_{\pm}(\tau, \varphi)$ . For $\beta_{Y}\neq 1,2,3$ , $\cdot$ .. , the
term in $I(\tau, \varphi)$ of (28) corresponding to $\tau^{\beta_{Y}}(\log\tau)^{\overline{j}-1}$ is written as

$\frac{(-1)^{\overline{j}-1}}{(\overline{j}-1)1}\Gamma(-\beta_{Y})(e^{-(\pi/2)i\beta_{Y}}b_{1.f}^{+}+e^{+(\pi/2)t\beta_{Y}}b_{\iota.f}^{-})$ .

By Proposition 25, we have $b_{1,\overline{j}}^{\pm}\geqq 0$ where either $b_{1_{\overline{J}}}^{+}$ or $b_{1,\overline{j}}^{-}$ does not vanish.
Then, for $\beta_{Y}>-1$ , we obtain

${\rm Re}(e^{-(\pi/2)i\beta_{Y}}b_{1.f}^{+}+e^{+(\pi/2)i\beta_{Y}}b_{1,f}^{-})=(b_{1.f}^{+}+b_{1.f}^{-})2 \cos(\frac{\pi}{2}|\beta_{Y}|)>0$ .

Hence the coefficient of the highest power term $\tau^{\beta_{Y}}(\log\tau)^{\overline{j}-1}$ does not vanish
for $\beta_{Y}\neq 1,2,3,$ $\cdots$ Next, we consider the case for $\beta_{Y}=1,2,3,$ $\cdots$ Using (28),

the highest power term and the next leading term of $\log\tau$ corresponding to
$\tau^{\beta_{Y}}$ are $\tau^{\beta_{Y}}(\log\tau)^{\overline{j}}$ and $\tau^{\beta_{Y}}(\log\tau)^{\overline{j}-1}$ , respectively. Their terms are written by

$\tau^{\beta_{Y}}(\log\tau)^{\overline{j}}\frac{1}{\overline{j}!}(b_{1_{J}^{\neg}}^{-}B_{-1}^{(\beta_{Y)}}+b_{1_{\grave{J}}}^{+}A_{-1}^{(\beta_{Y})})$

(29)
$+ \tau^{\beta_{Y}}(\log\tau)^{f-1}\frac{1}{\overline{j}1}(b_{1.f}^{-}Bi^{\beta_{Y)}}+b_{1.f}^{+}Ai^{\beta_{Y)}})$ ,

where we have (Gel’fand-\v{S}ilov [3])

$A_{-1}^{(\beta_{Y})}= \frac{i^{\beta_{Y^{-1}}}}{(\beta_{Y}-1)!}$ ,

$B_{-1}^{(\beta Y)}= \frac{(-i)^{\beta_{Y^{-1}}}}{(\beta_{Y}-1)!}=(-1)^{\beta_{Y^{-1}}}A_{-1}^{(\beta_{Y)}}$ ,
(30)

$A_{0}^{(\beta_{Y})}= \frac{i^{\beta_{Y^{-1}}}}{(\beta_{Y}-1)!}(1+\frac{1}{2}+\cdots+\frac{1}{\beta_{Y}-1}+\Gamma’(1)+i\frac{\pi}{2})$ ,

$B_{0}^{(\beta_{Y)}}=\overline{A_{0}^{(\beta Y)}}$ .

Then, the first term in (29) is written as
$(b_{1.f}^{-}B_{-1}^{(\beta_{Y)}}+b_{1,f}^{+}A_{-1}^{(\beta Y)})=A_{-1}^{(\beta_{Y)}}(b_{1,f}^{+}+(-1)^{\beta_{Y^{-1}}}b_{1.f}^{-})$ .

Using $b_{1.\overline{j}}^{\pm}\geqq 0$ where either $b_{1.\overline{j}}^{+}$ or $b_{1}^{-}$ , does not vanish, the term $(b_{1.\overline{j}}^{+}+(-1)^{\beta_{Y^{-1}}}b_{1.\overline{j}}^{-})$

is not equal to zero if $\beta_{Y}$ is positive odd integer. But when $\beta_{Y}$ is positive
even integer, there is a possibility that their terms cancel out. Next, we see
that the second term in (29) does not vanish. That is,
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${\rm Re}(b_{1,f}^{-}B_{0}^{(\beta_{Y)}}+b_{1,f}^{+}A_{0}^{(\beta_{Y)}})={\rm Re}(b_{1,f}^{-}\overline{A_{0}^{(\beta_{Y)}}}+b_{1,f}^{+}Ai^{\beta_{Y)}})$

$=(b_{1.f}^{-}+b_{1,f}^{+}){\rm Re} A_{0}^{(\beta_{Y)}}\neq 0$ ,

in which ${\rm Re} A_{0}^{(\beta Y)}$ is not equal to zero by (30). Hence we obtain the result
that the highest power term in $I(\tau, \varphi)$ corresponding to $\tau^{\beta_{Y}}$ is

$\{$

$\tau^{\beta_{Y}}(\log\tau)^{\overline{j}}$ for $\beta_{Y}=1,3,5,$ $\cdots$

$\tau^{\beta_{Y}}(\log r)^{J}$ or $\tau^{\beta_{Y}}(\log\tau)^{j-1}$ for $\beta_{Y}=2,4,$ $\cdots$

This completes the proof of the theorem.

The next Corollary shows that the weight $\beta_{Y}$ is evaluated by the Newton
boundary.

COROLLARY 28. Under the same assumption as Theorem 27, we have the
method of calculatims through the Newton boundary which is described below.

(1) Let $d_{f}(P_{4})$ or $d_{g}(P_{i})$ be the rational number which is the intersection
points between the diagonal line $x_{1}=x_{2}=\cdots=x_{n}=t,$ $t\in R$ and $P_{t}(x)=d(Pi, f)$ or
$P_{i}(x)=d(P_{i}, g)$ , respectively. Then we have that

$\beta_{Y}=\max_{i}\{-\frac{1-d_{g}(P_{i})}{d_{f}(P_{i})}\}$ ,

where the maximum is taken over all $i$ such that $\dim\Delta(P_{i}, g)>0$ .
(2) In the same notations as (1), let

$j_{0}$ $:= \max_{\sigma}\{\overline{j}|-\frac{1-d_{g}(P_{1})}{d_{j}(P_{1})}=\cdots=-\frac{1-d_{g}(P_{f})}{d_{f}(P_{f})}=\beta_{Y}$ ,

for $\dim\Delta(P_{i}, g)>0(i=1, \cdots , n)\}$ ,

for each $\sigma$ , and define the index $j_{0}= \min\{j_{0}, n-1\}$ . Then, for $\beta_{Y}\neq 1,2,3,$ $\cdots$ ,
the power of $\log\tau$ corresponding to the $\beta_{Y}$ is at most $\overline{j}_{0}-1$ (preczsely saying,
$\overline{j}_{0}-1$ or $\overline{j}_{0}-2$). For $\beta_{Y}=1,3,5,$ $\cdots$ , the Power is $\overline{j}_{Q}$ or $\overline{j}_{0}-1$ , and for $\beta_{Y}=2,4,$ $\cdots$ ,
it is $\overline{j}_{0}$ or $\overline{j}_{0}-1$ or $\overline{j}_{0}-2$ .

PROOF OF COROLLARY 28. With the same procedure as the proof of Corol-
lary 15, we obtain

$\beta_{Y}=\max_{i}\{-\frac{1-d_{g}(P_{i})}{d_{f}(P_{i})}$ ; $(|P_{i}|\cdot d_{f}(P_{i}), |P_{i}|(1-d_{g}(P_{i}))-1)\in M_{Y}\}$ ,

where the maximum is taken over all $i$ such that $\dim\Delta(P_{i}, g)>0$ . Clearly, this
quantity is obtained from the geometry of the Newton boundary if one knows
the explicit form of each $P_{i}$ . So, the first part is proved. Next we show the
second assertions. Using the above equality, we also obtain $\overline{j}_{0}$ . Considering
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the redundant contribution of $\overline{j}_{0}$ as the eliminated variable in $g_{\sigma}(y)=0$ , the
highest power of $\log\tau$ corresponding to the power $\beta_{Y}\neq 1,2,3,$ $\cdots$ is at most
$\overline{j}_{0}-1$ . The other cases for $\beta_{Y}$ is easily obtained by Theorem 27. This com-
pletes the proof of Corollary 28.

It is also held that the condition $\beta_{Y}>-1$ is equivalent to $\max_{i}\{d_{f}(P_{i})+$

$d_{g}(P_{i})\}>1$ . Finally we remark the case $\beta_{Y}\leqq-1$ ( $i$ . $e.,$ $\max_{i}\{d_{f}(P_{i})+d_{g}(P_{i})\}$ Sl).
Then, we can easily obtain the statements which are the quite same forms as
Proposition 18, Proposition 19 and Theorem 20. Note that for $\beta_{Y}\leqq-1$ the
statement of Theorem 27 (1) is also held. However the oscillation index is not
necessarily obtained.

5. Examples.

First we show some examples of the smooth case which is described in the
previous section 3. Let $f(x, y, z)=x^{4}+y^{4}+z^{4}+xyz$ and $g(x, y, z)=x+y+z$

where we can choose suitably the coefficient of the each terms to have the
meaning as the real case, so we omit to specify them. Then it is easy to see
that $\{(x, y, z)\in R^{3} ; f(x, y, z)=g(x, y, z)=0\}$ is a complete intersection variety
with a singularity at the origin. By the toric embedding, the dual Newton
diagram $\Gamma^{*}(f, g)$ is as follows.

$S$

where $S={}^{t}(1,0,0),$ $T={}^{t}(0,1,0)$ and $U={}^{t}(0,0,1)$ . The other vertices $P$ and $P_{i}$

$(i=1,2,3)$ are strictly positive vertices such that $P={}^{t}(1,1,1),$ $P_{1}={}^{t}(2,1,1)$ ,
$P_{2}={}^{t}(1,2,1)$ and $P_{3}={}^{t}(1,1,2)$ . Then we can easily prove that { $(x, y, z)\in R^{3}$ ;
$f(x, y, z)=g(x, y, z)=0\}$ is a non-degenerate complete intersection variety at
6 in $R^{3}$ . By the unimodular subdivision, we get nine 3-simplicial cones as
shown in the figure. However since the contribution of the vertices $S,$ $T$ and
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$U$ to the weight $\beta_{Y}$ is vanishing, we may consider only the strictly positive
vertices $P$ and $P_{i}(i=1,2,3)$ . By the symmetry, it is enough to consider the
3-simplicial cone $a_{1}=\langle P_{1}, P_{2}, P_{3}\rangle$ . By definition, we obtain

$\{$

$d(P, f)=3$ and $d(P_{i}, f)=4$

$d(P, g)=1$ and $d(P_{i}, g)=1$ .
for $i=1,2,3$

Similarly the power $a(P_{k}, g)=|P_{k}|-d(P_{k}, g)-1$ ($k=index$ of all vertices) is
calculated such that $\alpha(P)=1$ and $\alpha(P_{i})=2(i=1,2,3)$ . For $R_{\sigma_{1}}^{3}$ , we take the
local coordinate $y_{\sigma_{1}}=(y_{1}, y_{2}, y_{3})$ . Then we have

$\{$

$(\pi(a_{1})\circ f)(y)=y_{1}^{3}y_{2}^{4}y_{3}^{4}(y_{1}+y_{1}y_{2}^{4}+y_{1}y_{3}^{4}+1)$

$(\pi(a_{1})\circ g)(y)=y_{1}y_{2}y_{3}(1+y_{2}+y_{3})$

where $g_{\sigma_{1}}=1+y_{2}+y_{3}$ . Then by the symmetry the position of poles $\tau(P_{k})=$

$-(\alpha(P_{k})+1)/d(P_{k}, f)$ are calculated as follows:

$\{$

$\tau(P)--\frac{2}{3}$

$\tau(P_{i})=-\frac{3}{4}$ $(i=1,2,3)$ .
(31)

Hence, by definition, we have $\beta_{Y}=-2/3(>-1)$ and $\overline{j}=1$ . So, the oscillation
index is $\beta(f, g)=-2/3$ . Next we show how to calculate it by the Newton
boundary. We consider the hyperplanes $P_{k}(x)=d(P_{k}, f)$ and $P_{k}(x)=d(P_{k}, g)$ in
$\Gamma_{+}(f)$ and $\Gamma_{+}(g)$ , respectively, where $k$ runs over all strictly positive vertices.
For each Newton boundary, let $d_{f}$ and $d_{g}$ be the intersection point of the dia-
gonal line $x=y=z=t(t\in R)$ with their hyperplanes, respectively, as stated in
Corollary 15. In this case, we obtain $d_{f}=1$ for any $P_{k}$ and

$d_{g}=\{$

$\frac{1}{3}$ for $P$

$\frac{1}{4}$ for $P_{1},$ $P_{2}$ and $P_{3}$ .

Therefore the value of $\tau(P_{k})=-(1-d_{g})/d_{f}$ is the same as (31).

The second example is given by

$\{$

$f(x, y, z)=x^{8}+y^{8}+z^{8}+x^{2}y^{2}z^{2}$ ,

$g(x, y, z)=x+y+z$ .

The variety $\{(x, y, z)\in R^{3} ; f(x)=g(x)=0\}$ is also a non-degenerate complete
intersection variety at 6 in $R^{3}$ . The dual Newton diagram and each vertices
$S,$ $T,$ $U,$ $P$ and $P_{i}(i=1,2,3)$ are the same as the above case. Then we have
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$\{$

$d(P, f)=6$ and $d(P_{t}, f)=8$

$d(P, g)=1$ and $d(P_{t}, g)=1$

for $i=1,2,3$ . Thus we have

$\{$

$\tau(P)=-\frac{1}{3}$

$\tau(P_{i})=-\frac{3}{8}$ $(i=1,2,3)$ .

Hence, we obtaln the weight $\beta_{Y}=-1/3$ and the oscillation index $\beta(f, g)=-1/3$ .
Note that this example is not calculated by the method of Varchenko with the
reason mentioned in Introduction.

REMARK 29. Generally, we can consider $f(x, y, z)=x^{p}+y^{p}+z^{p}+x^{s_{1}}y^{s_{2}}z^{s_{3}}$

and $g(x, y, z)=x+y+z$ which include the above examples as a special case.
We assume that $P>s_{1}+s_{2}+s_{3}$ . Then there exist four original vertices, $P,$ $P_{i}$

$(i=1, , 3)$ . Let $r_{1}$ be the greatest common divisor of $P-s_{2}-s_{3}$ and $s_{1}$ . The
natural numbers $r_{2}$ and $r_{3}$ are also defined as the same manner. By an easy
calculation, we obtain $P={}^{t}(1,1,1),$ $P_{1}={}^{t}(a_{1}, b_{1}, b_{1}),$ $P_{2}={}^{t}(b_{2}, a_{2}, b_{2})$ and $P_{3}=$

${}^{t}(b_{3}, b_{3}, a_{3})$ where $a_{1}=(p-s_{2}-s_{3})/r_{1},$ $a_{2}=(p-s_{1}-s_{3})/r_{2},$ $a_{3}=(p-s_{1}-s_{2})/r_{3}$ and
$b_{i}=s_{i}/r_{i}(i=1,2,3)$ . TO obtain the weight $\beta_{Y}$ , we may take into account only
the contribution of the original four vertices by Remark 22. By definition, we
calculate the quantities:

$\{$

$d(P, f)=s_{1}+s_{2}+s_{3}$ ,

$d(P, g)=1$ ,

and

$\{$

$d(P_{i}, f)=b_{i}p$ ,

$d(P_{i}, g)=b_{i}$ .
$(i=1,2,3)$

Hence, $\tau(P)=-2/(s_{1}+s_{2}+s_{3})$ and $\tau(P_{i})=-(a_{i}+b_{i})/b_{i}p$ for $i=1$ , , 3. Finally

we obtain

$\beta_{Y}=\max$ $(- \frac{2}{s_{1}+s_{2}+s_{3}},$ $- \frac{a_{i}+b_{i}}{b_{i}p}$ $(i=1,2,3)$).
Next, we give two examples of the singular case that the function $g(x)$ be-

longs to the $\alpha$-class for $f$ , and not is included into it. Let $f(x, y, z)=x^{n}+y^{n}+z^{n}$

$(n\geqq 2)$ and $g(x, y, z)=x^{2}+y^{3}+z^{3}$ . Then it is easy to see that { $(x, y, z)\in R^{3}$ ;
$f(x, y, z)=g(x, y, z)=0\}$ is a non-degenerate complete intersection variety with
a singularity at the origin. By the torus embedding, the dual Newton diagram
$\Gamma^{*}(f, g)$ is as follows.
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$S$

where $S={}^{t}(1,0,0),$ $T={}^{t}(0,1,0)$ and $U={}^{t}(0,0,1)$ . The vertices $P_{1}$ and $P_{2}$ are
strictly positive vertices such that $P_{1}={}^{t}(1,1,1),$ $P_{2}={}^{t}(3,2,2)$ . By the uni-
modular subdivision, we get a vertex $T_{1}=(S+P_{2})/2={}^{t}(2,1,1)$ . Since the con-
tribution of the vertices $S,$ $T$ and $U$ to the weight $\beta_{Y}$ is vanishing, we may
consider mainly the strictly positive vertices $P_{1},$ $P_{2}$ and $T_{1}$ . Thus by the de-
finition $\tau(P_{i})=-(1-d_{g})/d_{f}$ , we get the quantities such that

$\tau(P_{1})=-\frac{1}{n}$

$\tau(P_{2})=-\frac{1}{2n}$

$\tau(T_{1})=-\frac{1}{n}$ .

Hence, we have $\beta_{Y}=-1/2n(>-1)$ and $\overline{j}=1$ . So, the oscillation index is $\beta(f, g)$

$=-1/2n$ . Note that each $\alpha(P_{i}, g)$ is given by

$\alpha(P_{1}, g)=\alpha(P_{2}, g)=\alpha(T_{1}, g)=0$ .
This shows that the function $g$ belongs to the $\alpha$-class for $f$.

Finally, let $f(x, y, z)=x^{4}+y^{4}+z^{4}+xyz$ and $g(x, y, z)=x^{n}+y^{n}+z^{n}(n>3)$ .
We can easily verify that the variety $\{(x, y, z)\in R^{3} ; f(x)=g(x)=0\}$ is also a
non-degenerate complete intersection variety at $\vec{0}$ in $R^{3}$ . The dual Newton
diagram $\Gamma^{*}(f, g)$ and each vertices $S,$ $T,$ $U,$ $P$ and $P_{i}(i=1,2,3)$ are the same
as the first smooth case. Then we obtain

$\tau(P)=\frac{n-3}{3}$ , $\tau(P_{i})=\frac{n-4}{4}$ $(i=1,2,3)$ .

Hence we obtain $\beta_{y}=(n 3)/3$ , and the oscillation index $\beta(f, g)=(n-3)/3$ .
Since $\alpha(P)=2-n$ and $\alpha(P_{i})=3-n(i=1,2,3)$ , the function $g$ does not belong
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to the $\alpha$-class for $f$ . Moreover, if $n\neq 3m(\geqq 2, m\in Z)$ , then $\log\tau$ term does not
appear in $\tau^{\beta_{Y}}$ term. For $n=3m(m\geqq 2, m\in Z)$ , the $\log\tau$ term appears at most
as $\log\tau$ in $\tau^{\beta_{Y}}$ term.
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