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Introduction.

A generalization of the notion of regular singularity for linear ordinary
differential equations to (single) partial differential equations was introduced by

Baouendi and Goulaouic [1]. They called such equations Fuchsian partial dif-
ferential equations with respect to a hypersurface. In [12], [21], Kashiwara
and Oshima called the same equations ones with regular singularities in a weak
sense along a hypersurface and studied the boundary value problem for such
equations.

Recently, the notion of Fuchsian partial differential equation of [1] has
been generalized to that of Fuchsian system of linear partial differential equa-
tions along a submanifold $Y$ of arbitrary codimension by Laurent and Monteiro
Fernandes [13]. EsPecially, it has been proved in [13] for Fuchsian systems
that any power series solution which converges with respect to the variables
tangent to $Y$ and formal with respect to the variable(s) normal to $Y$ converges
with respect to all the variables. It is also known that the holonomic system
with regular singularities in the sense of Kashiwara and Kawai is Fuchsian
along any submanifold (cf. [11], [13]). Thus Fuchsian systems constitute a
nice and substantially wide class of systems containing many interesting ex-
amples.

Suppose that a system of linear partial differential equations

$\mathscr{M}:P_{1}u=\ldots=P_{s}u=0$

for an unknown function $u$ in an open subset of $C^{n+1}$ and a non-singular com-
plex analytic hypersurface $Y$ are given. (For example, if $\mathscr{M}$ is holonomic, then
we take as $Y$ an irreducible component of the “singular locus” of .St.) Then,
from the computational point of view, we have the following basic problems
about .St:

A. IS .St Fuchsian along $Y$ ?
B. If so, find the structure of the space of multi-valued analytic (or hyper-
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function, etc.) solutions of $\mathscr{M}$ around $Y$ .
If the system $\mathscr{M}$ is Fuchsian, we can define its characteristic exponents as

in the case of ordinary differential equations, and the “boundary values” of
(multi-valued) analytic solutions of .St, which are analytic functions on Y.
(Boundary values can be also defined for hyperfunction solutions (cf. [12], [21],
[18], [15] $)$ . However, in the present paper, we restrict ourselves to analytic
solutions for the sake of simplicity.) Then a somewhat vague problem $B$ is
reduced substantially to the more concrete one:

C. If $\mathscr{M}$ is Fuchsian along $Y$ , compute its characteristic exponents and the
system of equations which their boundary values satisfy ( $i$ . $e.$ , the in-
duced, or the tangential system of $\mathscr{M}$ along $Y$ ).

The purpose of this paper is to present effective algorithmic methods which
solve the problem $C$ completely and partially solve the problem A. For this
purpose, we introduce a new notion of Gr\"obner basis for the ring of differential
operators with respect to a filtration of Kashiwara [10] attached to the hyper-
surface $Y$ .

The method of Gr\"obner basis was first introduced by Buchberger [4] (cf.

[7] $)$ for the polynomial ring, and has been extended to various rings of differ-
ential operators by several authors $(e.g., [8], [6], [17], [23])$ . In particular,
the singular locus and the rank ($i.e.$ , the dimension of the solution space) of a
holonomic system are effectively computed by using the Gr\"obner basis algorithm
for the ring of differential operators of polynomial or rational function coeffici-
ents (cf. [23], [25], [19]). The Gr\"obner basis for the ring of differential opera-
tors with analytic coefficients, which is more directly related to the analytic
theory of systems of differential equations, was studied in [6], [20].

In this paper, we introduce variants of Gr\"obner bases for rings of differ-
ential operators with analytic or rational function coefficients. The analytic
version, which we calI the FD-Gr6bner basis ( $F$ for filtration, and $D$ for the ring
of differential operators with analytic coefficients), solves the problem $C$ com-
pletely and the problem A partially, but it would be difficult to carry out actual
computation in case of more than two variables. On the other hand, the rational
version, which we call the FR-Gr\"obner basis ( $R$ for the ring of differential
operators with rational coefficients), has an algebraic and global nature and is
more suited to actual computation by computers. Furthermore, it is shown that
an FR-Gr6bner basis is also an FD-Gr\"obner basis at a generic point of $Y$ . These
Gr\"obner bases are defined by a new total order among (exponents of) monomials
of differential operators, and the fact that this order is not a well-order makes
the situation slightly more complicated than in the usual theory of Gr\"obner basis.

In Section 1, we recall the definition of the Fuchsian system with one un-
known function along a hypersurface and define their characteristic exponents.
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In Section 2, we give the notion and fundamental properties of the FD-Gr\"obner
basis for left ideals of the ring of partial differential operators with power
series coefficients. This constitutes the theoretical foundation for the rest of
the paper. In Section 3, we introduce a more practical notion of FR-Gr6bner
basis for the ring of differential operators with rational function coefficients and
give an algorithm of finding FR-Gr\"obner bases. It is proved that an FR-Gr6bner
basis is also an FD-Gr\"obner basis at a generic point of the hypersurface $Y$ . In
Sections 4 and 5, we describe algorithmic methods for computing the charac-
teristic exponents and the induced systems by using FD- or FR-Gr\"obner bases.
Finally in Section 6, we give some examples of actual computation.

After the main part of the present work had been completed the author
was informed that Takayama [26] proposed a different method (a kind of Hensel
construction) for solving the problem $C$ with the purpose of finding connection
formulas of special functions of several variables.

1. Fuchsian system of partial differential equations
along a hypersurface.

Let $(t, x)=(t, x_{1}, \cdots , x_{n})$ be a coordinate system of the $(n+1)$-dimensional
complex Euclidean space $X=C^{n+1}$ (with $n\geqq 1$ ) and we use the notation $\partial_{t}=\partial/\partial t$

and $\partial_{x}=(\partial_{1}, \cdots , \partial_{n})$ with $\partial_{i}=\partial/\partial x_{i}$ . We write $x^{\alpha}=x_{1}^{\alpha_{1}}\cdots x_{n^{n}}^{\alpha},$ $\partial_{x}^{\beta}=\partial_{1}^{\beta_{1}}\cdots\partial_{n}^{\beta_{n}}$ ,
$|\alpha|=\alpha_{1}+\cdot$ .. $+\alpha_{n}$ for multi-indices $\alpha=$ $(\alpha_{1}$ , $\cdot$ . , $\alpha_{n}),$ $\beta=(\beta_{1}, , \beta_{n})\in N^{n}$ with
$N=\{0,1,2, \}$ .

1.1. A filtration of $9_{0}$ and Fuchsian operators. Let 9 be the sheaf on
$X$ of rings of linear partial differential operators with holomorphic coefficients.
We denote by $9_{0}$ the stalk of the sheaf 9 at the origin $O\in X$ . Put $Y=\{(t, x)$

$\in X|t=0\}$ . The following arguments apply likewise to the stalk $9_{p}$ of 9 at
$p\in Y$ . An element $P$ of $9_{0}$ is a linear partial differential operator whose co-
efficients are holomorphic at $0;i$ . $e.$ , convergent power series of $(t, x)$ . Thus $P$

is written in the form

(1.1) $P= \sum_{\nu\geqq 0.\beta\in N^{n}}a_{\nu,\beta}(t, x)\partial_{c^{\nu}}\partial_{x}^{\beta}=\sum_{\nu.\mu\geq 0.\beta.\alpha\in N^{n}}a_{\mu,v.\alpha.\beta}t^{\mu}x^{\alpha}\partial_{\iota^{\nu}}\partial_{x}^{\beta}$ ,

where the sum is finite with respect to $\nu$ and $\beta$ . The order $ord(P)$ of $P$ is
defined as the maximum of $\nu+|\beta|$ such that $a_{\nu,\beta}(t, x)$ is non-zero as a power
series.

We introduce a filtration $\{\mathscr{F}_{m}\}_{m\in Z}$ of $9_{0}$ as follows: For each integer $m$ ,

put

$\mathscr{F}_{m}=\{P=\sum_{\mu.\nu.\alpha}.a_{\mu.\nu.a.\beta}t^{\mu}x^{\alpha}\partial_{\iota^{v}}\partial_{x}^{\beta}\in 9_{0}\beta|a_{\mu,\nu,a,\beta}=0$ if $\nu-\mu>m\}$ .
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Then $\mathscr{F}_{m}$ is a $C$-subspace of $9_{0}$ and satisfies

$\ldots \mathscr{F}_{-2}\subset \mathscr{F}_{-1}\subset \mathscr{F}_{0}\subset \mathscr{F}_{1}\subset \mathscr{F}_{2}\cdots,$

$m\in ZU\mathscr{F}_{m}=9_{0}$ .

For a nonzero $P\in 9_{0}$ , its $F$-order $ord_{F}(P)$ is defined as the minimum integer $m$

satisfying $P\in \mathscr{F}_{m}$ . If the $F$-order of the operator $P$ written as (1.1) is $m$ , then
we put

$\partial(P)=\partial_{m}(P)=\sum_{\nu-\mu=m}a_{\mu.\nu,a,\beta}t^{\mu}x^{\alpha}\partial_{t^{\mathcal{V}}}\partial_{x}^{\beta}\in 9_{0}$

and call it the formal symbol of $P$ after [14]. (We put $\hat{\sigma}(0)=0.$ ) It is easy to
see that $\hat{\sigma}(PQ)=\hat{\sigma}(P)\hat{\sigma}(Q)$ holds for $P,$ $Q\in 9_{0}$ although $\hat{\sigma}(Q)\hat{\sigma}(P)\neq\hat{\sigma}(P)\hat{\sigma}(Q)$ in
general.

The filtration defined above was introduced by Kashiwara [10] and was
used systematically with the formal symbol for the study of induced systems
by Laurent and Schapira [14].

The following definition is a slight generalization of that of [1].

DEFINITION 1.1 ([1]). $P\in 9_{0}$ is called a Fuchsian oPerator along $Y=\{t=0\}$

at $0$ if and only if $P$ satisfies the following two conditions (FC1) and (FC2):

(FC1) There exist non-negative integers $k,$ $m$ and holomorphic functions $a_{j}(x)$

with $a_{0}(0)\neq 0$ such that

$\partial(P)=\sum_{j=}^{\min t,m1}a_{j}(x)t^{k-j}\partial_{c^{m-j}}$ .

(FC2) The order of $\hat{\sigma}(P)$ is equal to the order of $P$.

DEFINITION 1.2. $P\in 9_{0}$ is said to be formally Fuchsian along $Y$ at $0$ if it
satisfies the condition (FC1).

We remark that the notion of formally Fuchsian operator (or system) was
introduced in [14] under the name of ellipticity along $Y$ .

Let $Y$ be a non-singular complex hypersurface of $X$ . Then Definitions 1.1
and 1.2 also apply to such $Y$ with a local coordinate $(t, x)$ such that $Y=\{t=0\}$ .
Then these definitions are independent of the choice of such a local coordinate
system.

1.2. Fuchsian systems of partial differential equations. We consider the
system of linear partial differential equations

$\mathscr{M}:P_{1}u=\ldots=P_{s}u=0$

for an unknown function $u$ , where $P_{1},$ $\cdots$ , $P_{s}$ are linear partial differential
operators whose coefficients are holomorphic functions on an open subset $\Omega$ of
$X=C^{n+1}$ . (In the sequel, we assume $0\in\Omega.$ )
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In order to study the system $\mathscr{M}$ , it is natural to consider the sheaf of ideals
3 of 9 generated by $P_{1},$ $\cdots$ , $P_{s}$ ; $i$ . $e.,$ $\mathscr{I}=9P_{1}+\cdots+9P_{s}$ and regard the system
$\mathscr{M}$ as a coherent sheaf of 9-modules $9/i$ (cf. [9]). Let $Y$ be a non-singular
complex analytic hypersurface in $\Omega$ and $P$ be a point of $Y$ .

DEFINITION 1.3. In the notation above, the system $\mathscr{M}$ is called a Fuchsian
system along $Y$ at $P$ after [13] if there exists an element (section) $P$ of $\mathscr{I}$ which
is a Fuchsian operator along $Y$ at $p$ . Moreover, $\mathscr{M}$ is said to be formally
Fuchsian along $Y$ at $P$ if there exists $P\in \mathscr{I}$ which is formally Fuchsian along
$Y$ at $p$ .

1.3. Characteristic exponents of a Fuchsian system. Let $\Phi_{0}$ be the
graded ring associated with the filtration $\{\mathscr{F}_{m}\}$ ; $i.e.,$ $\Phi_{0}=\oplus_{m\in Z}\mathscr{F}_{m}/\mathscr{F}_{m-1}$ . Note
that $\Phi_{0}$ is a non-commutative ring. For each $m\in Z$ , the formal symbol induces
a homomorphism

$\partial=\partial_{m}$ : $\mathscr{F}_{m}arrow \mathscr{F}_{m}/\mathscr{F}_{m-1}\subset\Phi_{0}$ .
We shall define an injective ring homomorphism $\psi$ of $\Phi_{0}$ into the ring

$9_{0}’[\theta, \tau, \tau^{-1}]:=\bigoplus_{m\in Z}9_{0}’[\theta]\tau^{m}$

where $\tau$ and $\theta$ are indeterminates and $9_{0}’[\theta]$ denotes the polynomial ring in $\theta$

with coefficients in the ring $9_{0}’=C\{x\}\langle\partial_{x}\rangle$ of differential operators in $x$ with
convergent power series coefficients. We give a ring structure to $9_{0}’[\theta, \tau, \tau^{-1}]$

by

$(P(\theta, x, \partial_{x})P)\cdot(Q(\theta, x, \partial_{x})\tau^{k})$ $:=P(\theta-k, x, \partial_{x})Q(\theta, x, \partial_{x})\tau^{f+k}$

For any element $P$ of $\mathscr{F}_{m}\backslash \mathscr{F}_{m-1},$ $\partial(P)$ can be written uniquely in the form

$\partial(P)=t^{-m}\hat{P}(t\partial_{t}, x, \partial_{x})$ .

Then we put $\psi(P)=\hat{P}(\theta, x, \partial_{x})\tau^{m}$ . This defines a map $\psi:\mathscr{F}_{m}/\mathscr{F}_{m-1}arrow 9_{0}’[\theta]\tau^{m}$

for each $m$ . Moreover, it is easy to see that $\psi$ is injective for all $m$ and bijec-
tive for m$O. Thus we easily get

LEMMA 1.4. $\psi:\Phi_{0}arrow 9_{0}’[\theta, \tau, \tau^{-1}]$ is an injective ring homomorPhism.
NOW assume the system $\mathscr{M}$ above is Fuchsian along $Y=\{t=0\}$ at $0$ . (In fact,

it suffices to assume $\mathscr{M}$ is formally Fuchsian along $Y$ for the following defini-
tions.) Let $\mathscr{I}_{0}$ be the stalk at $0$ of the sheaf of left ideals $\mathscr{I}=9P_{1}\perp$ $+9P_{s}$ .
Let us define a left ideal $J_{0}$ of $9_{0}’[\theta, \tau, \tau^{-1}]$ by $5_{0}:=\oplus_{m\in Z}\partial_{m}(\mathscr{I}_{0}\cap \mathscr{F}_{m})$ . Put

$\mathcal{O}_{0}’[\theta, \tau, \tau^{-1}]=\bigoplus_{m\in Z}\mathcal{O}6[\theta]\tau^{m}\subset 9_{0}’[\theta, \tau, \tau^{-1}]$

with $\mathcal{O}_{0}’=C\{x\}$ (the ring of convergent power series in $x$ ). Let $\ovalbox{\tt\small REJECT}$ be the smal-
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lest left ideal of $0_{0}’[\theta, \tau, \tau^{-1}]$ that contains $\psi(\overline{J}_{0})\cap \mathcal{O}_{0}’[\theta, \tau, \tau^{-1}]$ and put $\ovalbox{\tt\small REJECT}_{Y}(\mathscr{M}, 0)$

$=\ovalbox{\tt\small REJECT}\cap 0_{0}’[\theta]$ , which is an ideal of the commutative ring $0_{0}’[\theta]$ . Then it is easy
to see that ,4 is generated by $\ovalbox{\tt\small REJECT}_{Y}(\mathscr{M}, 0)$ over $0_{0}’[\theta, \tau, \tau^{-1}]$ . Moreover we can
easily verify

LEMMA 1.5.
$\ovalbox{\tt\small REJECT}_{Y}(\mathscr{M}, 0)=$ { $f(\theta,$ $x)\in O_{0}’[\theta]|f(\theta,$ $x)\tau^{-m}\in\psi(J_{0})\cap O_{0}’[\theta]\tau^{-m}$ for some $m\geqq 0$ }.

The ideal $\ovalbox{\tt\small REJECT}_{Y}(\mathscr{M}, p)$ of $O_{p}’[\theta]$ is defined likewise with $0$ replaced by a point
$P$ of $Y$ , where $\mathcal{O}_{p}’$ denotes the ring of germs of holomorphic functions in $x$ at $p$ .

DEFINITION 1.6. For a polnt $P$ of $Y$ we call the set

$e_{Y}(\mathscr{M}, p):=$ { $\theta\in C|f(\theta,$ $p)=0$ for any $f\in\ovalbox{\tt\small REJECT}_{Y}(\mathscr{M},$ $p)$ }

the set of the characteristic exponents of $\mathscr{M}$ along $Y$ at $p$ .

DEFINITION 1.7. We define another ideal $\ovalbox{\tt\small REJECT}_{Y}(\mathscr{M}, p)$ of $O_{p}[\theta]$ by

$\ovalbox{\tt\small REJECT}_{Y}(\mathscr{M}, p)=$ { $f\in O_{p}’[\theta]|af\in\ovalbox{\tt\small REJECT}_{Y}(\mathscr{M},$ $p)$ for some $a\in O_{p}’$ },

and the set of the strong characteristic exponents of $\mathscr{M}$ along $Y$ at $p\in Y$ by

$\delta_{Y}(\mathscr{M}, p)=$ { $\theta\in C|f(\theta,$ $p)=0$ for any $f\in\ovalbox{\tt\small REJECT}_{Y}(\mathscr{M},$ $p)$ }.

LEMMA 1.8. Suppose that the system $\mathscr{M}$ is formally Fuchsian along $Y$ at $0$ .
Then the ideal $\ovalbox{\tt\small REJECT}_{Y}(\mathscr{M}, 0)$ is generated by a polynomial $f\in\ovalbox{\tt\small REJECT}_{Y}(\mathscr{M}, 0)$ monic in $\theta$ .

PROOF. We denote by $\mathscr{K}_{0}’$ the quotient field of the ring $O_{0}’$ . Note that $\mathcal{O}_{0}’$

is a unique factorization domain. Let $X$ be the ideal of $\mathscr{K}_{0}’[\theta]$ generated by
$\ovalbox{\tt\small REJECT}_{Y}(\mathscr{M}, 0)$ . Then we have

$\mathcal{L}=\{cf|f\in\ovalbox{\tt\small REJECT}_{Y}(\mathscr{M}, 0), c\in \mathscr{K}_{0}’\}$ .
Let $f$ be an element of $\ovalbox{\tt\small REJECT}_{Y}(\mathscr{M}, 0)$ with least degree with respect to $\theta$ . (We may
assume that $f$ is primitive.) Then $\mathcal{L}$ is generated by $f$ . Since $\mathscr{M}$ is formally
Fuchsian along $Y$ , there exists a monic polynomial $g\in\ovalbox{\tt\small REJECT}_{Y}(\mathscr{M}, 0)$ . Then $f$

divides $g$ in $\mathscr{K}_{0}’[\theta]$ . The Gauss lemma implies that $f$ divides $g$ in $O_{0}’[\theta]$ and
$f$ is a monic polynomial in $\theta$ . Now let $h$ be an element of $\ovalbox{\tt\small REJECT}_{Y}(\mathscr{M}, 0)$ . Then
$f$ divides $h$ in $\mathscr{K}_{0}’[\theta]$ , hence in $\mathcal{O}_{0}’[\theta]$ . This completes the proof.

EXAMPLE 1.9. Put $n=1,$ $x=x_{1}$ and let us consider the system

$\mathscr{M}:(t\partial_{t}-a)(t\partial_{t}-b)u=x(t\partial_{t}-a)u=0$

with distinct constants $a,$ $b\in C$ . Then we have
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$\ovalbox{\tt\small REJECT}_{Y}(\mathscr{M}, 0)=0_{0}’[\theta](\theta-a)(\theta-b)+O_{0}’[\theta]x(\theta-a)$ ,

$\ovalbox{\tt\small REJECT}_{Y}(\mathscr{M}, 0)=\mathcal{O}_{0}’[\theta](\theta-a)$

and hence
$e_{Y}(\mathscr{M}, 0)=\{a, b\}$ , $\tilde{e}_{Y}(\mathscr{M}, 0)=\{a\}$ .

Note that any multi-valued analytic solution of $\mathscr{M}$ is in the form $u=v(x)t^{a}$ with
$v$ holomorphic, whereas, in the real domain $\mathscr{M}$ has a distribution solution $t_{+}^{a}+$

$\delta(x)f_{+}^{b}$ .

1.4. Boundary value problem for Fuchsian systems. Here we recall some
facts on the structure of analytic solutions of a Fuchsian system. First, let us
recall the notion of induced (or tangential) system. Let $\mathscr{M}$ and $\mathscr{I}$ be as in Sec-
tion 1.2. Then the induced system $\mathscr{M}_{Y}$ of $\mathscr{M}$ along $Y=\{t=0\}$ is the sheaf of
9’-modules

$\mathscr{M}_{Y}:=\mathscr{M}/i\mathscr{M}=9/(t9+\mathscr{I})$ ,

where 9’ denotes the sheaf on $Y$ of the ring of linear differential operators
with holomorphic functions in $x$ as coefficients. It is shown in [14] that $\mathscr{M}_{Y}$

is a coherent $9’$-module if $\mathscr{M}$ is formally Fuchsian along $Y$ .

PROPOSITION 1.10 ([13, Th\’eor\‘eme 3.2.2]). Assume that the system $\mathscr{M}$ is
Fuchsian along Y. Then there exists a canonical sheaf isomorphism

$\mathcal{H}\circ m_{9}(\mathscr{M}, O)|_{Y}\cong \mathcal{H}om_{9’}(\mathscr{M}_{Y}, O’)$ ,

where $\mathcal{O}$ and $\mathcal{O}’$ denote the sheaves of holomorphic functions in $(t, x)$ and in $x$

respectively, and $\mathcal{H}0$ )$?\iota$ the sheaf of homomorphisms.

The following proposition follows from [22, Theorem 1.3.9] (see also [21]):

PROPOSITION 1.11. Assume that the system $\mathscr{M}$ is Fuchsian along $Y$ at $0$ and
there exists a Fuchsian operator $P\in \mathscr{I}_{0}$ whose charactenstic exponents $\theta_{1},$ $\cdots$ , $\theta_{m}$

are all constant with $multipli\dot{\alpha}ty$ one. Assume also that $\theta_{i}$– $\theta_{j}$ is not an integer
for any $i\neq j$ . Put $S-\{i\in\{1, \cdots , m\}|\theta_{i}\in\tilde{e}_{Y}(\mathscr{M}, 0)\}$ . Then any (multi-valued)
analytic solution $u$ of $\mathscr{M}$ on $U\backslash Y$ with $U$ being a neighborhood of $0\in X$ can be
written in the form

$u= \sum_{t\in S}v_{i}(t, x)t^{\theta_{i}}$

with holomorphic functions $v_{i}$ on a neighborhood of $U\cap Y$ .

2. FD-Gr6bner basis–analytic and local algorithmic method.

In this section we develop the theory of FD-Gr\"obner bases for left ideals
of the ring $9_{0}$ of differential operators with analytic coefficients. Instead of



304 T. OAKU

$9_{0}$ , the following arguments apply also to the stalk $9_{p}$ of the sheaf 9 at $p\in Y$

$=\{(t, x)|t=0\}$ .
Let $\prec$ be a lexicographic (or an inverse lexicographic) order of $N^{n}$ with

$N:=\{0,1, 2, \}$ . We define a total order $\prec_{FD}$ of the set $N^{2n+2}$ , which we call
the $FD$-order, as follows: For two indices $(\mu, \nu, \alpha, \beta)$ and $(\mu’, \nu’, \alpha’, \beta’)\in$

$N\cross N\cross N^{n}\cross N^{n}$ ,

$(u. \nu, \alpha, \beta)\prec_{FD}(\mu’, \nu’, \alpha’, \beta’)$ if and only if $(\nu-\mu<\nu’-\mu’)$

or $(\nu-t\ell=\nu’-\mu’, |\beta|<|\beta’|)$

or $(\nu-\mu=\nu’-\mu’, |\beta|=|\beta’|, \nu<\nu’)$

or $(\nu=\nu’, \mu=\mu’, |\beta|=|\beta’|, \beta\prec\beta’)$

or $(\nu=\nu’, \mu=\mu’, \beta=\beta’, |\alpha|>|\alpha’|)$

or $(\nu=\nu’, \mu=\mu’, \beta=\beta’, |\alpha|=|\alpha’|, \alpha\prec\alpha’)$ .

Let the $FR$-order $\prec_{FR}$ be the order of $N^{n+2}$ induced by $\prec_{FD}$ ; $i$ . $e.$ , we define

$(\mu, \nu, \beta)\prec_{FR}(\mu’, \nu’, \beta’)$ if and only if $(\mu, \nu, 0, \beta)\prec_{FD}(\mu’, \nu’, 0, \beta’)$ .

It is easy to see that any subset of $\{(\mu, \nu, \alpha, \beta)\in N^{2n+2}|\nu+|\beta|\leqq m\}$ has a maxi-
mum element with respect to the FD-order, and any subset of $\{(\mu, \nu, \beta)\in$

$N^{n+2}|\nu-\mu\geqq m\}$ has a minimum element with respect to the FR-order for any
$m$ . (This definition of the FD-order can be generalized to some extent, but we
do not discuss this problem here.) For an element $P\in 9_{0}$ of the form

$P=, \sum_{\mu\nu,\alpha\beta},a_{\mu.\nu,a,\beta}t^{\mu}x^{\alpha}\partial_{t}^{v}\partial_{x}^{\beta}$ ,

we define the set of exponents, leading exponent, leading coefficient, leading
term of $P$ with respect to the FD-order by

$exps_{FD}(P)=\{(\mu, \nu, \alpha, \beta)|a_{\mu,\nu.a.\beta}\neq 0\}$ ,

$1 \exp_{FD}(P)=\max_{FD}(exps_{FD}(P))$ ,

$1coef_{FD}(P)=a_{\mu,\nu,a,\beta}$ with $(\mu, v, \alpha, \beta):=1\exp_{FD}(P)$ ,

$1term_{FD}(P)=a_{\mu,\nu.\alpha,\beta}t^{\mu}x^{\alpha}\partial_{c^{\nu}}\partial_{x}^{\beta}$ with $(\mu, v, \alpha, \beta):=1\exp_{FD}(P)$ ,

where $\max_{FD}$ denotes the maximum with respect to the FD-order. (If $P=0$ , then
we put $1\exp_{FD}(P)=(\infty, 0,0,0)$ , and suppose $(\infty, 0,0,0)\prec_{FD}(\mu, \nu, \alpha, \beta)$ for any
$(\mu, \nu, \alpha, \beta)\in N^{2n+2}.)$ Let $\varpi$ : $N^{2n+2}arrow N^{n+2}$ be the projection defined by $\varpi(\mu, \nu, \alpha, \beta)$

$=(\mu, \nu, \beta)$ . Then through this projection, we also define the leading exponent,
leading coefficient and leading term of $P$ with respect to the FR-order by
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$1\exp_{FR}(P)=\varpi(1\exp_{FD}(P))$ ,

$1 coef_{FR}(P)=\sum_{\alpha\in N^{n}}a_{\mu_{0},\nu_{0}a,\beta_{0}^{X^{a}}}$ with $(\mu_{0}, \nu_{0}, \beta_{0}):=1\exp_{FR}(P)$ ,

$1term_{FR}(P)=1coef_{FR}(P)t^{\mu 0}\partial_{c^{\nu_{0}}}\partial_{x}^{\beta_{0}}$ with $(\mu_{0}, \nu_{0}, \beta_{0}):=1\exp_{FR}(P)$ .

Moreover, for an exponent $(\mu, v, \beta)\in N^{n+2}$ , we set

$coef_{FR}(P, (\mu, \nu, \beta))=\sum_{\alpha}a_{\mu,\nu.a.\beta^{X^{\alpha}}}$

Recall that the principal symbol of $P$ (of order $m$ ) is defined by

$\sigma_{m}(P)=\sum_{\mu\in N.\alpha\in N^{n},\nu+|\beta_{1}=m}a_{\mu,\nu,a,\beta}t^{\mu}\tau^{v}x^{\alpha}\xi^{\beta}$

regarded as an element of the ring of the convergent power series $C\{t, \tau, x, \xi\}$

with $\xi=(\xi_{1}$ , $\cdot$ .. , $\xi_{n})$ and $\xi^{\beta}=\xi_{1}^{\beta_{1}}\cdots\xi_{n}^{\beta_{n}}$ if $P$ is of order $\leqq m$ . We also write
$\sigma(P)=\sigma_{m}(P)$ if $P$ is precisely of order $m$ .

The following two lemmas are easily proved.

LEMMA 2.1. For $P,$ $Q\in 9_{0}$ we have

lexp$FD(PQ)=1\exp_{FD}(P)+1\exp_{FD}(Q)$ ,

$1coef_{FD}(PQ)=1coef_{FD}(P)1coef_{FD}(Q)$ ,

$1\exp_{FR}(PQ)=1\exp_{FR}(P)+1\exp_{FR}(Q)$ ,

$1coef_{FR}(PQ)=1coef_{FR}(P)1coef_{FR}(Q)$ .
LEMMA 2.2. $P\in 9_{0}$ is formally Fuchsian along $Y$ at $0$ if and only if

$1\exp_{FD}(P)=(\mu, \nu, 0,0)\in N\cross N\cross N^{n}\cross N^{n}$ with some $\mu,$
$\nu\in N$.

LEMMA 2.3 (A division theorem). Let $P$ and $P_{1},$ $\cdots$ . $P_{s}$ be elements of $9_{0}$ .
Then for any integer $m$ , there exist elements $Q_{1},$ $\cdots$ , $Q_{s}$ and $R$ of $9_{0}$ such that

$P= \sum_{i=1}^{s}Q{}_{i}P_{i}+R$ ,

$exps_{FD}(R)\cap\bigcup_{i=1}^{l}$ (lexp $FD(P_{i})+N^{2n+2}$) $\subset 1\exp_{FD}(\mathscr{F}_{m})$ ,

$1\exp_{FD}(Q{}_{t}P_{i})\prec_{FD}=1\exp_{FD}(P)$ , $1\exp_{FD}(R)\prec_{FD}=1\exp_{FD}(P)$ .

We denote such $R$ , which is not necessarily unique, by $red_{FD}(P, \{P_{1}, \cdots , P_{s}\}, m)$ .

PROOF. Given $P,$ $P_{1},$ $\cdots$ . $P_{s}$ , put $E_{i}=1\exp_{FD}(P_{i})+N^{2n+2}$ and $E= \bigcup_{i=1}^{s}E_{i}$ . We
consider all the possible expressions of the form

(2.1) $P= \sum_{i\Rightarrow 1}’Q{}_{\iota}P_{i}+R$
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with $Q_{i},$ $R\in 9_{0}$ satisfying

(2.2) $1\exp_{FD}(Q{}_{i}P_{i})\prec_{FD}=1\exp_{FD}(P)$ for any $i$ .
Let $redl\exp_{FR}(R)$ be the maximum element of the set

$\{(\mu, \nu, \beta)\in N\cross N\cross N^{n}|\nu-\mu\geqq m+1, (\mu, \nu, \beta)\in W(exps_{FD}(R)\cap E)\}$

with respect to the FR-order. (Put $redl\exp_{FR}(R)=(\infty, 0,0)$ if the above set is
empty.) Now take an expression that minimizes $redl\exp_{FR}(R)$ (in the FR-order)
among all the expressions of the form (2.1) with the condition (2.2). Suppose
$redl\exp_{FR}(R)\neq(\infty, 0,0)$ and put $(\mu_{0}, \nu_{0}, \beta_{0})=redl\exp_{FR}(R),$ $(\mu_{i}, \nu_{i}, \beta_{i})=1\exp_{FR}(P_{i})$

$(i=1, \cdots , s)$ . Write

$R= \sum_{\mu\nu.\beta}a_{\mu.\nu.\beta}(x)t^{\mu}\partial_{\iota^{\nu}}\partial_{x}^{\beta}$ ,
$P_{i}= \sum_{\mu,\nu.\beta}a_{t,\mu,\nu,\beta}(x)t^{\mu}\partial_{t^{\nu}}\partial_{x}^{\beta}$ .

Put $S=\{i\in\{1, \cdots, s\}|(\mu_{0}, \nu_{0}, \beta_{0})\in\varpi’(E_{i})\}$ and $a(x)=a_{\mu_{0}.\nu_{0}.\beta_{0}}(x),$ $a_{i}(x)=a_{i.\mu_{t}.\nu_{i},\beta_{i}}(x)$

for $i\in S$ . By the Weierstrass-Hironaka division theorem for convergent power
series (cf. [3]), there exist convergent power series $q_{i}(x),$ $r(x)$ such that

$a(x)= \sum_{i\in S}q_{i}(x)a_{i}(x)+r(x)$ , $r(x)= \sum_{\alpha}r_{a}x^{\alpha}$ ,

$1\exp_{FD}(q_{i}(x)a_{i}(x))\prec_{FD}=1\exp(a(x))$ for $i\in S$ ,

$r_{a}=0$ if $\alpha\in\bigcup_{i\in S}(\alpha_{i}+N^{n})$ .

Put
$Q_{i}’=q_{t}(x)t^{\mu_{0}-\mu t}\partial_{\iota^{\nu_{0}-\nu_{i}}}\partial_{x}^{\beta_{0}-\beta_{\ell}}$ , $R’=R- \sum_{i\in S}Q’{}_{t}P_{i}$ .

Then it follows $redl\exp_{FR}(R’)\prec_{FR}redl\exp_{FR}(R)$ since we have $redl\exp_{FR}(R’)\prec_{FR}=$

$(\mu_{0}, v_{0}, \beta_{0})$ and

$coef_{FR}(R’, (\mu_{0}, \nu_{0}, \beta_{0}))=a_{\mu_{0},\nu_{0}.\beta_{0}}(x)-\sum_{i\in S}q_{i}(x)a_{i}(x)=r(x)$

with $exps_{FD}(r(x)t^{\mu_{0}}\partial_{t^{\nu_{0}}}\partial_{x}^{\beta_{0}})\cap E=\emptyset$ . Moreover we have

$P= \sum_{t=1}^{l}Q{}_{\iota}P_{i}+\sum_{i\in S}Q_{i}’P_{i}+R’$

This contradicts the minimum property assumed above. This completes the
proof.

DEFINITION 2.4. Let $\mathscr{I}_{0}$ be a left ideal of $9_{0}$ . Then a finite subset $G=$

$\{P_{1}, \cdots , P_{s}\}$ of $\mathscr{I}_{0}$ is called an $FD$-Grobner basis of $\mathscr{I}_{0}$ (along $Y$ ) if it satisfies the
following two conditions:

(1) $G$ generates $J_{0},$ $i.e.,$ $J_{0}=9_{0}P_{1}+\cdots+9_{0}P_{s}$ .
(2) Put $E_{FD}(\mathscr{I}_{0})=\{1\exp_{FD}(P)|P\in \mathscr{I}_{0}\}$ . Then we have
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$E_{FD}( \mathscr{I}_{0})=\bigcup_{P\in G}(1\exp_{FD}(P)+N^{2n+2})$ .

DEFINITION 2.5. For $P,$ $Q\in 9_{0}$ with

lexp$FD(P)=(\mu, \nu, \alpha, \beta)$ , $1\exp_{Fp}(Q)=(\mu’, \nu’, \alpha’, \beta’)$ ,

the $S$-polynomial (or $S$-operator) of $P$ and $Q$ is defined by

$sp_{FD}(P, Q)=1coef_{FD}(Q)t^{\mu\vee\mu’-\mu}\partial_{\iota^{\nu\nu’-\nu_{X}\alpha\vee\alpha’-\alpha}}\partial_{x}^{\beta v\beta}‘-\beta P$

$-1coef_{FD}(P)t^{\mu\vee\mu’-\mu’}\partial_{\ell^{\nu\vee\nu’-\nu’}}x^{\alpha\vee\alpha^{r}-a’}\partial_{x}^{\beta v\beta’-\beta’}Q$ ,

where we use the notation

$v\vee\nu’$ $:= \max\{\nu, \nu’\}$ , $\alpha\vee\alpha’$ $:=( \max\{\alpha_{1}, \alpha_{1}’\}, \cdots , \max\{\alpha_{n}, \alpha_{n}’\})$

for $v,$
$\nu’\in N$ and $\alpha=(\alpha_{1}, \cdots \alpha_{n}),$ $\alpha’=(\alpha_{1}’, \cdots \alpha_{n}’)\in N^{n}$ .

THEOREM 2.6. Let $\mathscr{I}_{0}$ be a left ideal of $9_{0}$ and $G=\{P_{1}, \cdots , P_{s}\}$ be a set of
generators of $\mathscr{I}_{0}$ . Then the following two conditions for $G$ are equivalent:

(1) $G$ is an $FD$-Grobner basis of $\mathscr{I}_{0}$ .
(2) For any $i,$ $j$ with $1\leqq i<j\leqq s$ and for any $m\in Z$ , there exist $Q_{ij1}$ , $\cdot$ . , $Q_{ijS}$

$\in 9_{0}$ and $R_{ij}\in \mathscr{F}_{m}$ such that

$sp_{FD}(P_{i}, P_{j})=\sum_{k=1}^{s}Q_{ijk}P_{k}+R_{ij}$

with $1\exp_{FD}(Q_{ijk}P_{k})\prec_{FD}1\exp_{FD}(P_{i})1\exp_{FD}(P_{f})$ for any $k$ .
PROOF. Without loss of generality we may assume $1coef_{FD}(P_{k})=1$ for $k=$

$1,$
$\cdots,$

$s$ . Assume (1) and let $m$ be an arbitrary integer. Then in view of Lemma
2.3, there exist $Q_{1}$ , , $Q_{s},$ $R\in 9_{0}$ such that $sp_{FD}(P_{i}, P_{j})=\Sigma_{k=1}^{s}Q{}_{k}P_{k}+R$ with
$exps_{FD}(R)\cap E\subset E_{FD}(\mathscr{F}_{m})$ and

$1\exp_{FD}(Q{}_{k}P_{k})\prec_{FD}=1\exp_{FD}(sp_{FD}(P_{i}, P_{j}))\prec_{FD}1\exp_{FD}(P_{i})1\exp_{FD}(P_{j})$ ,

where $E:= \bigcup_{i\Leftarrow 1}^{s}(1\exp_{FD}(P_{i})+N^{2n+2})$ . Since $R\in \mathscr{I}_{0}$ and $G$ is an FD-Gr\"obner basis,
we have $1\exp_{FD}(R)\in E\cap exps_{FD}(R)\subset E_{FD}(\mathscr{F}_{m})$ . This implies (2).

Next, assume (2). In order to prove (1), let $P$ be an arbitrary element of
$\mathscr{I}_{0}$ . In the course of the proof, we use the ring $\Phi_{0}:=C[[t, x]]\langle\partial_{t}, \partial_{x}\rangle$ of dif-
ferential operators with formal power series coefficients. Note that $1\exp_{FD}$ , etc.,

are also defined for the elements of $\Phi_{0}$ . We shall prove $1\exp_{FD}(P)\in E$ in two
steps.

(1st step) Fix an integer $m<0$ such that $ord_{F}(P)>m$ . We consider all the
possible expressions for $P$ of the form

(2.3) $P= \sum_{k=1}^{\epsilon}Q{}_{k}P_{k}+R$
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with $Q_{k}\in\Phi_{0}$ and $R\in E_{m}^{i}$ , where

$\hat{\mathscr{F}}_{m}:=\{P=.\sum_{\mu\nu.\alpha}.a_{\mu,\nu.a.\beta}t^{\mu}x^{a}\partial_{c^{\nu}}\partial_{x}^{\beta}\in\Phi_{0}\beta|a_{\mu,\nu a.\beta}=0$ if $\nu-\mu>m\}$ .

There is at least one such expression since $PeS_{0}$ . Among the expressions of
the form (2.3) let us choose one that minimizes $\max_{FR}\{1\exp_{FR}(Q{}_{k}P_{k})|k=1, \cdots , s\}$

with respect to the FR-order. In the sequel, we suppose that the expression
(2.3) has this minimum property. Put $1\exp_{FD}(P_{k})=(\mu_{k}, \nu_{k}, \beta_{k})$ . Our aim to show

(2.4) $( \mu, \nu, \beta):=\max_{FR}\{1\exp_{FR}(Q{}_{k}P_{k})|k=1, \cdots , s\}=1\exp_{FR}(P)$ .
Suppose $(\mu, \nu, \beta)\succ_{FR}1\exp_{FR}(P)$ . Write the $S$-polynomial explicitly as

$sp_{FD}(P_{i}, P_{j})=S{}_{ij}P_{i}-S_{ji}P_{j}$

for $i<j$ , where we put $S_{ij}=t^{\mu tj}\partial_{\ell}^{\nu_{ij}}x^{\alpha_{ij}}\partial_{x}^{\beta_{ij}}$ with $\mu_{ij}:=\mu_{i}\vee\mu_{J}-\mu_{i}$ , etc. for $i\neq j$ .
Then using the assumption (2) with $m$ replaced by $m’:=m- \nu-1-\max\{\mu_{i}\vee\mu_{j}|$

1Si $<j\leqq s$ }, we have, for l\leqq i<j$s,

$S_{ij}P_{i}-S_{ji}P_{j}= \sum_{k=1}^{s}Q_{ijk}P_{h}+R_{ij}$

with the same conditions as in (2) with $m$ replaced by $m’$ . Put $p_{i}=\sigma(1term_{FR}(P_{i}))$ ,
$s_{ij}=\sigma(S_{ij})$ , and

$q_{ijk}=\{$

$\sigma(1term_{FR}(Q_{ijk}))$ if $1\exp_{FR}(Q_{ijk}P_{k})=(\mu_{i}\vee\mu_{j}, v_{i}\vee\nu_{j}, \beta_{t}\vee\beta_{f})$

$0$ otherwise,

which are all monomials in $t,$ $\tau,$
$\xi$ with power series in $x$ as coefficients. Then

we have the relations

(2.5) $S_{ijp_{\ell}-s_{ji}p_{j}=\sum_{k=1}^{s}q_{ijk}p_{k}}$ $(1\leqq i<j\leqq s)$

in the ring of formal power series $C[[t, \tau, x, \xi]]$ . Hence $\{p_{1}, \cdots , p_{s}\}$ constitutes
a Gr\"obner (or standard) basis of the ideal which they generate in $C[[t, \tau, x, \xi]]$

with respect to the order $\prec_{0}$ in $N^{2n+2}$ defined as follows: For two indices
$(\mu, \nu, \alpha, \beta)$ and $(\mu’, \nu’, \alpha’, \beta’)\in N^{2n+2}$ ,

$(\mu, \nu, \alpha, \beta)\prec_{0}(\mu’, \nu’, \alpha’, \beta’)$ if and only if

$\mu+\nu+|\alpha|+|\beta|>\mu’+\nu’+|\alpha’|+|\beta’|$

or $(\mu+v+|\alpha|+|\beta|=\mu’+v’+|\alpha’|+|\beta’|$

and $(\nu, \mu, \beta, \alpha)\prec(\nu’, \mu’, \beta’, \alpha’)$ in the lexicographic order $\prec$ of $N^{2n+2}$).

The theory of Gr\"obner basis for (formal) power series (cf. [6]) shows that the
submodule



Algorithmic methods for Fuchsian systems 309

$\{(q_{1}, ’ q_{s})\in(C[[t, \tau, x, \xi]])^{s}|\sum_{k=1}^{s}q_{k}p_{k}=0\}$

of $C[[t, \tau, x, \xi]]^{s}$ is generated by the relations (2.5), $i$ . $e.$ , generated by vectors
of power series

$\partial_{ij}:=(0, (i)S_{ij},$ $\cdots$
$-S_{ji}(j)$ $0)-$ ( $q_{ij1},$

$\cdots$ qijs)

for $l i<$ ] $\leqq s$ . Here note that the k-th component of $\vec{v}_{ij}$ is written in the form
$v_{ijk}(x)t^{\mu i\mu j-\mu k}\tau^{\nu\iota\vee^{\nu}j-\nu_{k}}\xi^{\beta_{i}\beta_{j-}\beta_{k}}$ with some $v_{ijk}(x)\in C\{x\}$ .

NOW returning to the expression (2.3) with the minimum property assumed
above, put

$q_{k}=\{$

$\sigma(1term_{FR}(Q_{k}))$ if lexp$FR(Q{}_{k}P_{k})=(\mu, v, \beta)$

$0$ otherwise.

Then expression (2.3) and the assumption $(\mu, v, \beta)\succ_{FR}$ lexp$FR(P)$ imply $\Sigma_{k=1}^{s}q_{k}P_{k}$

$=0$ . Hence there exist $u_{ij}\in C[[t, \tau, x, \xi]]$ such that

(2.6)
$(q_{1}, \cdots , q_{s})=\sum_{1\lessgtr i<Js\}u_{ij}\vec{v}_{ij}$ .

Moreover, considering the monomials in $t,$ $\tau,$
$\xi$ of exponent $(\mu-\mu_{k}, v-p_{k}\beta-\beta_{k})$

with coefficients in $C[[x]]$ in the k-th component of the both sides of (2.6), we
may assume that $u_{ij}$ is of the form

$u_{ij}=c_{if}(x)t^{\mu}\tau^{\nu\nu}\xi^{\beta_{-}\beta_{i}\beta_{j}}$

with some $c_{ij}(x)eC[[x]]$ . (It follows $c_{ij}(x)=0$ if $(\mu,$ $)/,$ $\beta$) $\neq(\mu_{i}\vee\mu_{j}, v_{i}\vee v_{j}, \beta_{i}\vee\beta_{j}).)$

Put
$U_{tj}=c_{ij}(x)t^{\mu-\mu t\mu_{j}}\partial_{\iota^{\nu-v_{i^{\nu}j}}}\partial_{x}^{\beta_{-}\beta\iota v^{\beta_{j}}}$ ,

$\vec{V}_{ij}=(0, \cdots S_{tj}ti)\ldots$ $-S_{ji}^{J)}( 0)-(Q_{ij1}, \cdots Q_{ijS})$ ,

$(Q_{1}’, \cdots Q_{s}’)=(Q_{1}, \cdots Q_{s})-\sum_{i}U_{ij}\vec{V}_{ij}$ .

Then from (2.3) we get

$P= \sum_{k\approx 1}^{s}Q_{k}’P_{k}+\sum_{i<j}U_{ij}\vec{V}_{ij}\cdot(P_{1}, \cdots P_{s})+R$

$= \sum_{k=1}^{\}Q_{k}’P_{k}+\sum_{<ij}U_{ij}R_{ij}+R$ .

Here it follows $\sum_{i<j}U_{ij}R_{ij}+R\in\hat{\mathscr{F}}_{m}$ from the assumptions above. Moreover,
(2.6) implies lexp$FR(Q_{k}’P_{k})\prec_{FR}(\mu, v, \beta)$ . This contradicts the minimum property
of the expression (2.3) assumed above. Hence we may assume (2.4) for the
expression (2.3).

(2nd step) Put $(\mu_{0}, v_{0}, \alpha_{0}, \beta_{0})=1\exp_{FD}(P)$ and $m=v_{0}-\mu_{0}-1$ . We consider
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all the possible expressions of the form (2.3) with $Q_{k}e\Phi_{0}$ and $R\in\hat{\mathscr{F}}_{m}$ satisfying
the condition (2.4). By virtue of (1st step), there exists at least one such ex-
pression. Moreover, for such expression (2.3) that satisfies (2.4), we have $|\alpha|$

$\leqq|\alpha_{0}|$ if we put

(2.7) $( \mu_{0}, v_{0}, \alpha, \beta_{0})=\max_{FD}$ {lexp$FD(Q{}_{k}P_{k})|k=1,$ $\cdots$ , $s$ }

since $(\mu_{0}, \nu_{0}, \alpha, \beta_{0})\succ_{FD}=(\mu_{0}, V_{0}, \alpha_{0}, \beta_{0})$ . Hence there exists an expression (2.3)

that minimizes the exponent (2.7) with respect to the FD-order. In the sequel,
let us assume that (2.3) has this mimimum property. Then our aim is to show
$\alpha=\alpha_{0}$ .

Assume $\alpha\neq\alpha_{0}$ . Then we have $(\mu_{0}, \nu_{0}, \alpha, \beta_{0})\succ_{FD}(\mu_{0}, \nu_{0}, \alpha_{0}, \beta_{0})$ . By a per-
mutation of the indices we may assume

$1\exp_{FD}(Q{}_{k}P_{k})=(\mu_{0}, \nu_{0}, \alpha, \beta_{0})$ for $1\leqq k\leqq\sigma$ ,

$1\exp_{FD}(Q{}_{k}P_{k})\prec_{FD}$ ( $\mu_{0}$ , Vo, $\alpha,$ $\beta_{0}$ ) for \sigma +1;$ $k\leqq s$

for some $\sigma\geqq 2$ . Put $c_{k}=1coef_{FD}(Q_{k})$ and $Q_{k}’=1term_{FD}(Q_{k})$ for $k=1$ , , $\sigma$ . Then
we have $Q_{k}’=c_{k}t^{\mu_{k}’}\partial_{c^{\nu_{kX^{\alpha’}k}’}}\partial_{x}^{\beta_{k}’}$ with

$\mu_{k}’:=\mu_{0}-\mu_{k}$ , $v_{k}’:=\nu_{0}-\nu_{k}$ , $\alpha_{k}’:=\alpha-\alpha_{k}$ , $\beta_{k}’:=\beta_{0}-\beta_{k}$ .

Put also $Q_{k}’’=Q_{k}-Q_{k}’$ for $k=1$ , , $\sigma$ . Then we get

(2.8) $P= \sum_{k=1}^{\sigma}Q_{k}’P_{k}+\sum_{k=1}^{\sigma}Q_{k}’’P_{k}+\sum_{k=\sigma+1}^{\}Q_{k}P_{k}$ .

Here note that $1\exp_{FD}(Q_{k}’’P_{k})\prec_{FD}(\mu_{0}, \nu_{0}, \alpha, \beta_{0})$ for $k=1$ , , $\sigma$ . The first term
of the right hand side of (2.8) can be rewritten as

(2.9) $P’:= \sum_{k=1}^{\sigma}Q_{k}’P_{k}=\sum_{k=1}^{\sigma}c_{k}t^{\mu_{k}’}\partial_{\iota^{\nu_{kX^{\alpha_{k}’}}’}}\partial_{x}^{\beta_{k}’}P_{k}$

$= \sum_{k\Rightarrow 1}^{\sigma-1}$ $(c_{1}+ \cdot .. +C_{k})(t^{\mu_{k}’}\partial_{t}^{\nu_{kx^{\alpha_{k}’}\partial_{x}^{\beta_{k}’}P_{k}-t^{\mu_{k+1}’}\partial_{t}^{\nu_{k+1x^{a_{k+1}’}\partial_{x}^{\beta_{k+1}’}}’}}’}P_{k+1})$

$+(c_{1}+ +c_{\sigma})t^{\mu_{\sigma}’}\partial_{\iota^{\nu_{\sigma}’}}x^{\alpha_{\sigma}’}\partial_{x}^{\beta_{\sigma}’}P_{\sigma}$ .

Since $1coef_{FD}(P_{k})=1$ we have

$1term_{FD}(P)=1term_{FD}(P’)=(c_{1}+\cdots+c_{\sigma})1term_{FD}(t^{\mu_{\sigma}^{r}}\partial_{t^{\nu_{\sigma}’}}x^{a_{\sigma}^{r}}\partial_{x}^{\beta_{\sigma}’}P_{\sigma})$

with $1\exp_{FD}(P)=$ ( $\mu_{0}$ , Vo, $\alpha,$ $\beta_{0}$) if $c_{1}+$ $+c_{\sigma}\neq 0$ . Hence it follows $c_{1}+\cdot$ .. $+c_{\sigma}=0$

from the assumPtion.
On the other hand, using the Leibniz formula, we have
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(2.10) $r^{\mu_{\dot{k}}}\partial_{\ell}^{\nu_{kx^{a_{k}’}\partial_{x}^{\beta_{k}’}P_{k}-t^{\mu_{k+1}’}\partial_{c^{\nu_{k+1X^{a_{k+1}’}}’}}\partial_{x}^{\beta_{k+1}’}P_{k+1}}’}$

$=t^{\mu 0-\mu k\vee^{\mu}k+1}\partial_{c^{\nu}}0-\nu_{k^{\nu}k+1-k\vee^{\alpha}k+1}x^{\alpha\alpha}\partial_{x}^{\beta_{0-}\beta_{k}\beta_{k+1}}sp_{FD}(P_{k}, P_{k+1})$

$+S_{k}P_{k}+T_{k+1}P_{k+1}$

with some $S_{k},$ $T_{k+1}\in\Phi_{0}$ such that

$1\exp_{FD}(S_{k}P_{k}),$ $1\exp_{FD}(T_{k+1}P_{k+1})\prec_{FD}(\mu_{0}, \nu_{0}, \alpha, \beta_{0})$ .
Put

$m’=m-1- \max\{\nu_{0}-\mu_{0}-\nu_{k}\nu_{k+1}+\mu_{k}\vee\mu_{k+1}|k=1, \cdots , \sigma-1\}$ .
Combining (2.8), (2.9), (2.10) and the assumption (2) with $m$ replaced by $m’$ , we
get

$P= \sum_{k=1}^{\sigma-1}(c_{1}+\cdots+c_{k})t^{\mu 0-\mu k\mu k+1}\partial_{\iota^{\nu}}0-\nu_{k\vee^{\nu}k+1-k\vee^{a}k+1}x^{aa}\partial_{x}^{\beta 0-\beta_{k\vee^{\beta_{k+1}}}}$

$( \sum_{k=1}^{\}Q_{ijk}P_{k}+R_{ij})+\sum_{k=1}^{\sigma-1}S_{k}P_{k}+_{k=2}T{}_{k}P_{k}+\sum_{k=1}^{\sigma}Q_{k}’’P_{k}+\sum_{k=\sigma+1}^{s}Q{}_{k}P_{k}$ .

This contradicts the minimum property of the expression (2.3) with respect to
the FD-order.

NOW we have proved that there exists an expresslon (2.3) with some $Q_{k}e$

$\Phi_{0}$ and $R\in\hat{\mathscr{F}}_{m}$ such that lexp$pD(Q{}_{k}P_{k})_{=}\prec_{FD}1\exp_{FD}(P)$ for any $k$ . Thus lexp$FD(P)$

$=1\exp_{FD}(Q_{k})+1\exp_{FD}(P_{k})\in E$ holds for some $k$ . This completes the proof of
Theorem 2.6.

Theorem 2.6 together with Lemma 2.3 enables us to give an algorithm to
compute, at least theoretically, an FD-Gr\"obner basis of a given left ideal of $9_{0}$ .

ALGORITHM 2.7 (FD-Gr\"obner basis). Given a finite set $G$ of generators of a
left ideal $J_{0}$ of $9_{0}$ , finds an FD-Gr\"obner basis of $\mathscr{I}_{0}$ .
$m:= \min\{ord_{F}(P)|P\in G\}$ ;
$G_{m}:=G$ ;
REPEAT

$G_{m-1}:=G_{m}$ ;
$m:=m-1$ ;
REPEAT

FOR each pair $(P, Q)$ of elements of $G_{m}$ DO $\{$

$R:=red_{FD}(sp_{FD}(P, Q),$ $G_{m},$ $m)$ ;
IF $R\not\in \mathscr{F}_{m}$ THEN $G_{m}:=G_{m}\cup\{R\}j$

$\}$

UNTIL $red_{FD}(sp_{FD}(P, Q),$ $G_{m},$ $m)\in \mathscr{F}_{m}$ for any $P,$ $QeG_{m}$ ;
UNTIL $G_{m}$ becomes stationary, $i.e.,$ $G_{m}=G_{\mu}$ for any $\mu<m$ ;
RETURN $G_{m}$ ;
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The output of this algorithm is indeed an FD-Gr\"obner basis by virtue of
Theorem 2.6. The termination condition of this algorithm is fulfilled a priori
in finitely many steps because of the Noetherian property of monoideals (or

monomial ideals) generated by the leading exponents of elements of $G_{m}$ (cf. [7,

pp. 68-72]).

The FD-Gr\"obner basis solves the problem $C$ completely (see Sections 4, 5)

and the problem A partially as follows. (It is known that a holonomic system
is always formally Fuchsian (cf. [11]).)

THEOREM 2.8. Let $\mathscr{M}$ and $\mathscr{I}$ be as in Section 1.2 and let $\mathscr{I}_{0}$ be the stalk of
the sheaf $\mathscr{I}$ at $0$ . Assume that $G$ is an $FD$-Grobner basis of the left ideal $\mathscr{I}_{0}$ of
$9_{0}$ . Then $\mathscr{M}$ is formally Fuchsian along $Y=\{(t, x)|t=0\}$ at $0$ if and only if
there exists $P\in G$ such that $1\exp_{FD}(P)=(\mu, v, 0,0)$ with some $\mu,$ $veN$

PROOF. If there exists $P\in G$ such that $1\exp_{FD}(P)=(\mu, v, 0,0)$ , then $P$, and
consequently $\mathscr{M}$ is formally Fuchsian along $Y$ . Now assume that $\mathscr{M}$ is formally
Fuchsian along $Y$ . Then there exists $A\in \mathscr{I}_{0}$ which is formally Fuchsian along
$Y$ . Hence we have $(\mu’, \nu’, 0,0)\in E_{FD}(\mathscr{I}_{0})$ for some $\mu’,$ $v’\in N$. Since $G$ is an
FD-Gr\"obner basis of $\mathscr{I}_{0}$ , we have by definition

$E_{FD}( \mathscr{I}_{0})=\bigcup_{P\in G}(1\exp FD(P)+N^{2n+2})\ni(\mu’, v’, 0,0)$ .

Hence there exists $P\in G$ such that lexp$FD(P)=(\mu, v, 0,0)$ with some $\mu,$
$v\in N$.

This completes the proof.

3. FR-Gr6bner basis–algebraic and global algorithmic method.

3.1. FR-Gr6bner basis. In order to carry out actual computation, we in-
troduce the ring $9_{R}$ of differential operators whose coefficients are polynomials
of $t$ with rational functions of $x$ as coefficients:

$9_{R}:-C(x)[t]\langle\partial_{t}, \partial_{x}\rangle$

$= \{P=\sum_{\mu\nu.\beta}a_{\mu.\nu.\beta}(x)t^{\mu}\partial_{t^{\nu}}\partial_{x}^{\beta}|a_{\mu.\nu,\beta}(x)$ is a rational function of $x\}$ ,

where the sum is fin\’ite with respect to $\mu,$ $v,$ $\beta$ .
For an operator $Pe9_{R}$ of the form

$P= \sum_{\mu.\nu.\beta}a_{\mu.\nu.\beta}(x)t^{\mu}\partial_{t^{y}}\partial_{x}^{\beta}$ ,

we define its leading exponent, leading coefficient, leading term (in the FR-order)
by

lexp$FR(P)= \max_{FR}\{(\mu, v, \beta)|a_{\mu.\nu,\beta}(x)\neq 0\}$ ,
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$1coef_{FR}(P)=a_{\mu.\nu,\beta}(x)$ with $(\mu, \nu, \beta):=1\exp_{FR}(P)$ ,

lterm $FR(P)=a_{\mu.\nu.\beta}(x)t^{\mu}\partial_{\iota^{\nu}}\partial_{x}^{\beta}$ with $(\mu, \nu, \beta):=1\exp_{FR}(P)$ .
In the same way as Lemma 2.1 we get

LEMMA 3.1. For $P,$ $Q\in 9_{R}$ we have

$1\exp_{FR}(PQ)=1\exp_{FR}(P)+1\exp_{FR}(Q)$ ,

$1coef_{FR}(PQ)=1coef_{FR}(P)1coef_{FR}(Q)$ .

DEFINITION 3.2. Let $I$ be a left ideal of $9_{R}$ . Then a finite subset $G=$

$\{P_{1}, , P_{s}\}$ of $9_{R}$ is said to be an $FR$-Grobner basis of $I$ (along $Y=\{t=0\}$ ) if
it satisfies the following two conditions:

(1) $G$ generates $I,$ $i$ . $e.,$ $I=9_{R}P_{1}+\cdots+9_{R}P_{S}$ .
(2) Put $E_{FR}(I):=$ {lexp$FR(P)|P\in I$ }. Then we have

$E_{FR}(I)=E_{FR}(G):= \bigcup_{P\in G}$ (lexp$FR(P)+N^{n+2}$).

DEFINITION 3.3. FOr $P,$ $Qe9_{R}$ with

$1\exp_{FR}(P)=(\mu, \nu, \beta)$ , $1\exp_{FR}(Q)=(\mu’, \nu’, \beta’)$ ,

the $S$-polynomial (or the $S$-operator) of $P$ and $Q$ is defined by

sp$FR(P, Q)(Q)t^{\mu\vee\mu’-\mu}$

$-1coef_{FR}(P)t^{\mu\vee\mu’-\mu’}\partial_{\ell^{\nu\vee\nu’-\nu^{l}}}\partial_{x}^{\beta v\beta’-\beta’}Q$ .
AS in the previous section, we define a filtration of $9_{R}$ by

$\mathscr{F}_{m}=\{P=\sum_{\mu\nu.\beta}a_{\mu.\nu.\beta}(x)t^{\mu}\partial_{\iota^{\nu}}\partial_{x}^{\beta}\in 9_{R}|a_{\mu.\nu.\beta}(x)=0$ if $\nu-\mu>m\}$

for any integer $m$ (we use the same notation as for the filtration of $9_{0}$).

DEFINITION 3.4. Let $G=\{P_{1}$ , $\cdot$ .. , $P_{s}\}$ be a finite subset of $9_{R}$ and $m$ be an
arbitrary integer. For an element $P$ of $9_{R}$ ,

(1) $P$ is said to be $\mathscr{F}_{m}$-reducible with respect to $G$ if and only if

$1 \exp_{FR}(P)e(\bigcup_{i=1}^{s}(1\exp_{FR}(P_{i})+N^{n+2}))\backslash E_{FR}(\mathscr{F}_{m})$ .
$P$ is said to be $\mathscr{F}_{7n}$-irreducible with respect to $G$ if it is not $\mathscr{F}_{m}$-reducible.

(2) Let $P$ be $\mathscr{F}_{m}$-reducible. Then an $S_{m}$-reduction step for $P$ by $G$ is a
procedure to replace $P$ by

$P- \frac{1coef_{FR}(P)}{1coef_{FR}(P_{i})}t^{\mu-\mu i}\partial_{t^{\nu-\nu_{i}}}\partial_{x}^{\beta-\beta_{i}}P_{i}$
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with an arbitrary $i\in\{1, \cdots , s\}$ such that lexp$FR(P)\in 1\exp_{FR}(P_{\iota})+N^{n+2}$ ,
where $(\mu, v, \beta)=1\exp_{FR}(P)$ and $(\mu_{t}, \nu_{i}, \beta_{i})=1\exp_{FR}(P_{i})$ .

(3) An $\mathscr{F}_{m}$-reduction procedure for $P$ by $G$ is a sequence of $\mathscr{F}_{m}$-reduction
steps so that its final output becomes $\mathscr{F}_{m}$-irreducible. We denote the
output by $red_{FR}(P, G, m)$ although it is not uniquely determined by $P$,
$G,$ $m$ .

Note that a sequence of $\mathscr{F}_{m}$-reduction steps always terminates in finitely
many steps because the FR-order defines a well-order on $\{(\mu, v, \beta)EN^{n+2}|\nu-\mu$

$>m\}$ .
DEFINITION 3.5. Let $I$ be a left ideal of $9_{R}$ and $m$ be an integer. Then a

finite subset $G=\{P_{1}, \cdots , P_{s}\}$ of $9_{R}$ is said to be a set of $\mathscr{F}_{m}$-generators of $I$ if
it satisfies the following two conditions:

(1) $G$ generates $I,$ $i.e.,$ $I=9_{R}P_{1}+\cdots+9_{R}P_{s}$ ,
(2) For any distinct $i,$ $j\in\{1, \cdots , s\}$ , the output of some $\mathscr{F}_{m}$ -reduction pro-

cedure for $sp(P_{i}, P_{j})$ by $G$ belongs to $\mathscr{F}_{m}$ .

THEOREM 3.6. Let I be a left ideal of $9_{R}$ and $G$ be a finite set of genera-
tors of I. Then the following three conditions are equivalent:

(1) $G$ is an $FR$-Grobner basis of $I$ .
(2) $G$ is a set of $\mathscr{F}_{m}$-generators of I for any integer $m$ .
(3) For any $P\in I$ and any integer $m$ , the output of an arbitrary $\mathscr{F}_{m}$-reduc-

tion procedure for $P$ by $G$ belongs to $\mathscr{F}_{m}$ .
PROOF. Condition (2) implies that for any $m\in Z$ and distinct $i$ , je $\{1, \cdots, s\}$ ,

there exist $Q_{1},$ $\cdots$ , $Q_{\epsilon}e9_{R}$ and $R\in \mathscr{F}_{m}$ such that

sp$FR(P_{i}, P_{j})=Q_{1}P_{1}+$ $+Q_{s}P_{s}+R$

with $1\exp_{FR}(Q{}_{k}P_{k})\prec_{FR}$ lexp$pR(P_{i})1\exp_{FR}(P_{j})$ for any $k=1,$ $\cdots$ , $s$ . Hence it is
proved that (2) implies (1) in the same (and easier) way as the proof of Theorem
2.6.

NOW assume (1) and choose arbitrary $Pe$ $I$ and $m\in Z$ . Let $R$ be the output
of an arbitrary $\mathscr{F}_{m}$-reduction procedure for $P$ by $G$ . Then $R\in I$ and hence
$1\exp_{FR}(R)eE_{FR}(I)=E_{FR}(G)$ . It follows $R\in \mathscr{F}_{m}$ since $R$ is $\mathscr{F}_{m}$-irreducible. This
proves (3).

Finally (3) implies (2) since $sp_{FR}(P_{i}, P_{j})\in I$ . This completes the proof.

ALGORITHM 3.7 (FR-Gr\"obner basis). Given a finite set $G$ of generators of a
left ideal $I$ of $9_{R}$ , finds an FR-Grobner basis of $I$ .
$m:= \min\{ord_{F}(P)|PeG\}$ ;
$G_{m}:=G$ ;
REPEAT
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$G_{m-1}:=G_{m}$ ;
$m:=m-1$ ;
REPEAT

FOR each pair $(P, Q)$ of elements of $G_{m}$ DO $\{$

$R:=red_{FR}(sp_{FR}(P, Q),$ $G_{m},$ $m)$ ;
IF $R\not\in \mathscr{F}_{m}$ THEN $G_{m}:=G_{m}\cup\{R\}$ ;

$\}$

UNTIL $red_{FR}(sp_{FR}(P, Q),$ $G_{m},$ $m)\in \mathscr{F}_{m}$ for any $P,$ $Q\in G_{m}$ ;
UNTIL $G_{m}$ becomes stationary, $i.e.,$ $G_{m}=G_{\mu}$ for any $\mu<m$ ;
RETURN $G_{mj}$

The output of Algorithm 3.7 is indeed an FR-Gr\"obner basis in view of
Theorem 3.6. The termination condition of Algorithm 3.7 is satisfied for some
$m$ although we do not know when in general. In order to overcome this dif-
ficulty, we introduce the method of homogenization in the next section.

Let us denote by $A_{n+1}=C[t, x]\langle\partial_{t}, \partial_{x}\rangle$ the Weyl algebra, or the ring of
differential operators with polynomial coefficients (cf. [2]).

For an operator $P\in 9_{R}$ , there exists a polynomial $b(x)$ of least total degree
such that $b(x)PeA_{n+1}$ and we denote such $b(x)$ by den$(P)$ (the denominator of $P$).

An FR-Gr\"obner basis provides an FD-Gr\"obner basis at a generic point of $Y$

as follows:

THEOREM 3.8. Assume that a subset $G=\{P_{1}$ , $\cdot$ .. , $P_{s}\}$ of $A_{n+1}$ is an FR-
Grobner basis of the left ideal $I:=9_{R}P_{1}+\cdot$ .. $+g_{R}P_{S}$ of $9_{R}$ . Put

$a(x)=1coef_{FR}(P_{1})(x)\cdots 1coef_{FR}(P_{s})(x)$

and assume $a(x_{0})\neq 0$ . Put $p=(O, x_{0})$ . Then $G$ is also an $FD$-Grbbner basis of
the left ideal $Jp:=9_{p}P_{1}+\cdots+9_{p}P_{S}$ of $9_{p}$ .

PROOF. We may assume $x_{0}=0$ . Put

$(\mu_{t}, \nu_{i}, \beta_{i})=1\exp_{FR}(P_{i})$ , $a_{i}(x)=1coef_{FR}(P_{i})eC[x]$

for $i=1,$ $\cdots$ $s$ . Take arbitrary $i,$ $j\in\{1$ , $\cdot$ . , $s\}$ with $i\neq j$ . Then we have

(3.1) $sp_{FR}(P_{i}, P_{j})=a_{j}(x)S_{ij}P_{i}-a_{i}(x)S_{ji}P_{j}$

with $S_{ij}=t^{\mu_{if}}\partial_{\iota^{\nu_{ij}}}\partial_{x}^{\beta_{ij}}$ , where $\mu_{ij}=\mu_{i}\vee\mu_{j}-\mu_{i}$ , etc.. On the other hand, since
$a_{i}(0)a_{j}(0)\neq 0$ , we have

(3.2) sp$rD(P_{i}, P_{j})=a_{j}(0)S{}_{ij}P_{i}-a_{i}(0)S_{ji}P_{j}$ .
Let $R_{ij}$ be the output of an $\mathscr{F}_{m}$-reduction procedure for sp $rR(P_{i}, P_{J})$ by $G$ .

Then there exist $Q_{1},$ $\cdots$ , $Q_{s}e9_{R}$ and $R\in \mathscr{F}_{m}$ such that

(3.3) $sp_{FR}(P_{i}, P_{j})=Q_{1}P_{1}+$ $+Q_{s}P_{s}+R$
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with lexp$FR(P_{i}Q_{i})\prec_{FR}$ lexp$FR(P_{i})1\exp_{FR}(P_{j})$ . Moreover, by the definition of $\mathscr{F}_{m^{-}}$

reduction procedure there exists a positive integer $k$ such that $a(x)^{k}Q_{i}(i=$

$1$ , , $s)$ and $a(x)^{k}R$ belong to the Weyl algebra $A_{n+1}$ . Hence $Q_{i}$ and $R$ can
be regarded as elements of $9_{0}$ and as such

$1\exp_{FD}(P_{k}Q_{k})\prec_{r}1\exp_{FD}(P_{i})1\exp_{FD}(P_{j})$ $(1\leqq k\leqq s)$

holds. From (3.1), (3.2), (3.3) it follows

$sp_{FD}(P_{i}, P_{j})=Q_{1}P_{1}+$ $+Q{}_{s}P_{s}+R$

$-(a_{j}(x)-a_{j}(0))S{}_{J}P_{i}+(a_{i}(x)-a_{i}(0))S_{fi}P_{f}$ .

Hence Theorem 2.6 assures that $G$ is an FD-Gr\"obner basis since

$1\exp_{FD}((a_{j}(x)-a_{j}(0))S{}_{ij}P_{i})\prec_{FD}1\exp_{FD}(S{}_{ij}P_{i})=1\exp_{FD}(P_{i})1\exp_{FD}(P_{j})$ .

This completes the proof.

COROLLARY 3.9. Let $G=\{P_{1}$ , $\cdot$ .. , $P_{s}\}$ be a subset of $A_{n+1}$ and let.
$G_{m}=\{P_{1}, \cdots P_{s}, P_{s+1}, \cdots P_{\sigma}\}$

be the output of Algorithm 3.7 $mth$ the input G. Put $1coef_{FR}(P_{j})=a_{j}(x)/b_{j}(x)$

zvzth polynomials $a_{j}(x),$ $b_{j}(x)$ relatively prime to each other. If a point $p=(0, x_{0})$

of $Y$ satisfies $a_{1}(x_{0})\cdots a_{\sigma}(x_{0})\neq 0$ , then $G$ constitutes an $FD$-Grobner basts of the
left ideal $\mathscr{I}_{p}=9_{p}P_{1}+$ $+9_{p}P_{s}$ of $9_{p}$ .

PROOF. First note that, for any $j=s+1,$ $\cdots$ , $\sigma,$ $P_{j+1}$ is the output of some
$\mathscr{F}_{m}$-reduction procedure for the $S$-polynomial of some pair of elements of $G_{j}=$

$\{P_{1}, \cdots , P_{j}\}$ by $G_{j}$ . Hence as polynomial den $(P_{s+1})$ divides $a_{1}(x)\cdots a,(x)$ and
den $(P_{J+1})$ divides $a_{1}(x)\cdots a_{j}(x)$ by induction. This implies that all $P_{j}’ s$ are
regarded as elements of $9_{p}$ and contained in the ideal $\mathscr{I}_{p}$ generated by $G$ .
Combined with the preceeding theorem, this completes the proof.

3.2. FR-Gr6bner basis through homogenization.
In tbis section, we present a modification of Algorithm 3.7 by using a kind

of homogenization. This compensates the lack of the termination condition in
Algorithm 3.7. Let us denote by $9_{R}[z]$ the (non-commutative) ring of the poly-
nomials of $z$ with coefficients in $9_{R}$ . Hence $z$ can be regarded as a parameter
for an element $P$ of $9_{R}[z]$ . We define a filtration $\{\mathscr{F}_{m}^{h}\}$ of $9_{R}[z]$ by

$\mathscr{F}_{m}^{h}=\{_{\mu,\nu.\beta\zeta}\Sigma.a\mu.\nu,$
$\beta.\zeta(x)t^{\mu}\partial_{\iota^{\nu}}\partial_{x}^{\beta}z^{\zeta}\in 9_{R}[z]|a_{\mu.\nu,\beta.\zeta(X)=0}$ if $\nu-\mu-\zeta>m\}$

for each integer $m$ .

DEFINITION 3.10. An element $P$ of $9_{R}[z]$ is called $F$-homogeneous (of order
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$m)$ if there exists an integer $m$ so that $P$ is written in the form

$P= \sum_{\nu-\mu-\zeta=m}0_{\mu,\nu,\beta,\zeta(x)t^{\mu}\partial_{t}^{\nu}\partial_{x}^{\beta_{Z}\zeta}}$ .

DEFINITION 3.11. For an operator $Pe9_{R}$ of the form

$P=, \sum_{\mu\nu.\beta}a_{\mu}y\beta(x)t^{\mu}\partial_{t^{\nu}}\partial_{x}^{\beta}$ ,

we define its $F$-homogenization $P^{h}$ by

$P^{h}=. \sum_{\mu\nu.\beta}a_{\mu,\nu\beta(X)t^{\mu}\partial_{t^{v}}\partial_{x}^{\beta_{Z^{v-\mu-m}\in}}}9_{R}[z]$

with $m:= \min\{\nu-\mu|a_{\mu,\nu,\beta}(x)\neq 0\}$ .

It is easy to see that $P^{h}$ is F-homogeneous.
NOW we introduce a total order $\prec_{FRH}$ in $N^{n+3}$ by

$(\mu, \nu, \beta, \zeta)\prec_{FRH}(\mu’, v’, \beta’, \zeta’)$ if and only if $(\nu-\mu-\zeta<v’-\mu’-\zeta’)$

or ($\nu-\mu-\zeta=\nu’-\mu’-\zeta’$ and $(\mu,$ $\nu,$ $\beta)\prec_{FR}(\mu’,$ $\nu’,$ $\beta’)$ )

for $(\mu, \nu, \beta),$ $(\mu’, \nu’, \beta’)\in N^{n+2}$ and $\zeta,$ $\zeta’\in N$. Then with respect to this order,

leading exponent and leading coefficient are defined by

$1 \exp_{FRH}(P)=\max_{FRH}\{(\mu, \nu, \beta, \zeta)|a_{\mu,\nu.\beta,\zeta}(x)\neq 0\}$ ,

$1coef_{FRH}(P)=a_{\mu^{y},\beta,\zeta}(x)$ with $(\mu, \nu, \beta, \zeta):=1\exp_{FRH}(P)$

for an operator $P\in 9_{R}[z]$ of the form

$P=. \sum_{\mu\nu.\beta\zeta}.O_{\mu.\nu.\beta,((x)t^{\mu}\partial_{c^{\nu}}\partial_{x}^{\beta_{Z}(}}$ .

DEFINITION 3.12. Let $I$ be a left ideal of $9_{R}[z]$ and $G=\{P_{1}, , P_{s}\}$ be a
finite subset of $I$ . Then $G$ is said to be an $FRH$-Grobner basis of $I$ (along $Y=$

$\{t=0\})$ if it satisfies the following two conditions:
(1) $G$ generates $I,$ $i.e.,$ $I=9_{R}[z]P_{1}+\cdots+9_{R}[z]P_{s}$ .
(2) Put $E_{FRH}(I):=\{1\exp_{FRH}(P)|P\in I\}$ . Then we have

$E_{\Gamma RH}(I)=E_{FRH}(G):= \bigcup_{P\in G}(1\exp_{FRH}(P)+N^{n+3})$ .

DEFINITION 3.13. FOr $P,$ $Qe9_{R}[z]$ with

$1\exp_{FRH}(P)=(\mu, \nu, \beta, \zeta)$ , $1\exp_{FRH}(Q)=(\mu’, \nu’, \beta’, \zeta’)$ ,

the $S$-polynomial (or the $S$-operator) of $P$ and $Q$ is defined by
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$sp_{FRH}(P, Q):=1coef_{FRH}(Q)t^{\mu\vee\mu’-\mu}\partial_{\iota^{\nu\nu’-\nu}}\partial_{x}^{\beta v\beta’-\beta}z^{C\vee C’-\zeta}P$

$-1coef_{FRH}(P)t^{\mu\vee\mu’-\mu’}\partial_{\iota^{v\nu’-\nu’}}\partial_{x}^{\beta\vee\beta’-\beta’}z^{\zeta\zeta’-\zeta’}Q$ .

DEFINITION 3.14. Let $G=\{P_{1}, \cdots , P_{s}\}$ be a finite subset of $9_{R}[z]$ consist-
ing of $F$-homogeneous operators. For an $F$-homogeneous operator $P\in 9_{R}[z]$ ,

(1) $P$ is said to be reducible with respect to $G$ if and only if

$1\exp_{FRH}(P)ei=1U1$ (lexp$FRH(P_{i})+N^{n+3}$).

$P$ is said to be irreducible with respect to $G$ \’if it is not reducible.
(2) Let $P$ be reducible with respect to $G$ . Then a reduction step for $P$ by

$G$ is a procedure to replace $P$ by

$P- \frac{1coef_{FRH}(P)}{1coef_{FRH}(P_{i})}t^{\mu-\mu\iota}\partial_{\iota^{\nu-v_{i}}}\partial_{x}^{\beta-\beta\iota_{Z^{\zeta-\zeta_{i}}}}P_{i}$

with an arbitrary $ie\{1, \cdots , s\}$ such that $1\exp_{FRH}(P)\in 1\exp_{FRH}(P_{i})+N^{n+3}$ ,
where $(\mu, \nu, \beta, \zeta)=1\exp_{FRH}(P)$ and $(\mu_{i}, \nu_{i}, \beta_{i}, \zeta_{i})=1\exp_{FRH}(P_{i})$ .

(3) A reduction procedure for $P$ by $G$ is a sequence of reduction steps so
that its final output becomes irreducible or zero. We denote the output
by $red_{FRH}(P, G)$ although it is not uniquely determined by $P$ and $G$ .

LEMMA 3.15. In the same notation as in Definition 3.14, every reduction
procedure for $P$ by $G$ terminates in finitely many steps.

PROOF. Suppose tbat $P$ is $F$-homogeneous of order $m$ and reducible with
respect to $G$ . Let $P’$ be the output of a reduction step for $P$ by $G$ . Then we
have by definition lexp$FRH(P’)\prec_{FRH}1\exp_{FRH}(P)$ and $P’$ is $F$-homogeneous of order
$m$ if $P’\neq 0$ . Hence every reduction step does not change the F-homogeneous
order as long as the output is not zero. This implies that for every sequence
of reduction steps, the output becomes zero or irreducible in finitely many steps
since the order $\prec_{FRH}$ is a well-order restricted to the set $\{(\mu, \nu, \beta, \zeta)eN^{n+3}|$

$\nu-\mu-\zeta=m\}$ . This completes the proof.

THEOREM 3.16. Let $G$ be a finite set of $9_{R}[z]$ consisting of F-homogeneous
operators. Let I be the left ideal of $9_{R}[z]$ generated by G. Then the follow-
ing two conditions are equivalent:

(1) $G$ is an $FRH$-Grobner basis of $I$ .
(2) For any pair $(P, Q)$ of distinct elements of $G$ , the output of some reduc-

tion procedure for $sp_{FRH}(P, Q)$ by $G$ is zero.

PROOF. Since $sp_{FRH}(P, Q)$ is also $F$-homogeneous, this theorem can be proved
in the same way as Theorem 3.6 by replacing the $\mathscr{F}_{m}$ -reduction procedure by
the reduction procedure.
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THEOREM 3.17. Let $S$ be a finite set of generators of a left ideal I of
$9_{R}$ . Put $S^{\hslash}=\{P^{\hslash}|P\in S\}$ and $I^{h}$ be the left ideal of $9_{R}[z]$ generated by $S^{h}$ .
Let $G^{h}$ be an $FRH$-Grobner basis of $I^{h}$ consisting of $F$-homogeneous operators.
Then $G:=\{subst(P, z, 1)|P\in G^{h}\}$ is an $FR$-Grobner basis of $I$ , where subst $(P, z, 1)$

denotes the result of substitution $z=1$ in $P$.
PROOF. First let us show that $G$ is a set of generators of $I$ . Put $G^{h}=$

$\{P_{1}, , P_{s}\}$ and let $P$ be an element of $I$ . Then there exist $Q_{1}$ , $\cdot$ .. , $Q,\in 9_{R}[z]$

such that
$z^{\zeta}P^{h}=Q{}_{1}P_{1}+\cdots+Q{}_{s}P_{s}$

for some $\zeta\in N$. Then it follows

$P=subst(z^{\zeta}P^{\hslash}, z, 1)$

$=subst(Q_{1}, z, 1)subst(P_{1}, z, 1)+\cdots+subst(Q,, z, 1)subst(P_{s}, z, 1)$ .
Hence $I$ is generated by $G$ .

Next, let us show

(3.4) $\{1\exp_{FR}(P)|P\in l\}=\bigcup_{P\in G}1\exp_{FR}(P)+N^{n+2}$ .

Suppose $PeI$ . Then it is easy to see that lexp$FRH(P^{\hslash})=(1\exp_{FR}(P), \zeta)$ with
some $\zeta eN$. On the other hand, since $G^{h}$ is an FRH-Gr\"obner basis, we have

lexp $FRH(z^{\zeta’}P^{h}) \in\bigcup_{i\Rightarrow 1}^{l}1\exp_{FRH}(P_{i})+N^{n+3}$

with some $\zeta’\in N$. This implies

$1\exp_{FR}(P)\in i=1U1\exp_{FR}(subst(P_{i}lz, 1))+N^{n+2}$ .

This proves (3.4), and at the same time, completes the proof of Theorem 3.17.

This theorem yields the following algorithm of computing FR-Gr\"obner basis.

ALGORITHM 3.18 (FR-Gr\"obner basis). Given a finite set $G$ of generators of
a left ideal $I$ of $9_{R}$ , finds an FR-Gr\"obner basis of $I$ .
$G:=\{P^{h}|PeG\}$ ;
REPEAT

FOR each pair $(P, Q)$ of elements of $G$ DO $\{$

$R:=red_{FRH}(sp_{FRH}(P, Q),$ $G)$ ;
IF $R\neq 0$ THEN $G:=G\cup\{R\}$ ;

$\}$

UNTIL $red_{FRH}(sp_{FRH}(P, Q),$ $G)=0$ for any $P,$ $Q\in G$ ;
$G:=\{subst(P, z, 1)|PeG\}$ ;
RETURN $G$ ;
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The output of Algorithm 3.18 is indeed an FR-Gr\"obner basis in view of
Theorem 3.17.

In the same way as was pointed out by Buchberger [5] for the polynomial
ring, we can often save computation in Algorithm 3.18 by the following criterion
(the proof is similar and omitted):

PROPOSITION 3.19. Let $G$ be a finite subset of $9_{R}[z]$ conststing of F-homo-
geneous operators and $P,$ $Q$ be two distinct elements of G. Assume that there
exists a sequence $\{P_{1}, \cdots , P_{k}\}$ of elements of $G$ such that

(1) $P_{1}=P,$ $P_{k}=Q$ ,
(2) $1\exp_{FRH}(P_{1})\ldots 1\exp_{FRH}(P_{k})=1\exp_{FRH}(P)1\exp_{FRH}(Q)$ ,

(3) $red_{FRH}(sp_{FRH}(P_{j}, P_{j+1}),$ $G)=0$ by some reduction procedure for any $j=1$ ,
... . $k-1$ .

Then the output of some reduction procedure for $sp_{FRH}(P, Q)$ becomes zero.

4. Computation of the characteristic exponents.

We use the same notation as in Section 1. In particular, let $\mathscr{I}$ be a left
ideal of $9_{0}$ associated with a Fuchsian system $\mathscr{M}$ as in Section 1.2. We assume
$Y=\{(t, x)|t=0\}$ . In fact, we can treat any non-singular complex analytic hyper-
surface $Y$ for the (theoretical) computation of Algorithm 2.7. For the (practical)
computation of Algorithm 3.6, we can treat any hypersurface $Y$ that can be
brought into the hyperplane $t=0$ by a birational transformation of $C^{n+1}$ .

THEOREM 4.1. Assume that the system $\mathscr{M}$ is Fuchsian along $Y$ at $0$ with
$P_{1},$ $\cdots$ $P_{s}e9_{0}$ . Let $G$ be an $FD$-Grobner basis of $\mathscr{I}_{0}:=9_{0}P_{1}+\cdots+9_{0}P_{s}$ . Put

$G’=$ { $P\in G|1\exp_{FD}(P)=(\mu,$ $\nu,$ $\alpha,$ $0)$ for some $\mu,$
$\nu eN$ and some $\alpha\in N^{n}$ }.

Then the set of the characteristic exponents of $\mathscr{M}$ at $0$ is given by

(4.1) $e_{Y}(\mathscr{M}, 0)=$ { $\theta eC|\psi(\partial(P))(\theta,$ $0)=0$ for any $PeG’$ }.

Moreover, let $P$ be an element of $G’$ with minimum order with respect to $\partial_{t}$ .
Then there exist a monic polynomial $f(\theta, x)eO_{\acute{0}}[\theta]$ and $a(x)e\mathcal{O}_{0}’$ such that
$\psi(\hat{\sigma}(P))=a(x)f(\theta, x)\tau^{k}$ with some $k\in Z$ , and the ideal $\ovalbox{\tt\small REJECT}_{Y}(\mathscr{M}, 0)$ is generated by
$f$ . In particular, we have

$\tilde{e}_{Y}(\mathscr{M}, 0)=\{\theta eC|f(\theta, 0)=0\}$ .
PROOF. TO prove (4.1) it suffices to show that the ideal $\mathscr{I}_{Y}(\mathscr{M}, 0)$ is gener-

ated by
$\{\tau^{-ord_{F^{(P)}}}\cdot\psi(\hat{\sigma}(P))|PeG’\}$ .

It is easy to see by definition that this set is contained in $\ovalbox{\tt\small REJECT}_{Y}(\mathscr{M}, 0)$ . Suppose
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$ge\ovalbox{\tt\small REJECT}_{Y}(\mathscr{M}, 0)$ . Then in view of Lemma 1.5, there exist $P\in \mathscr{I}_{0}$ and $k\in N$ such
that $\psi(\partial(P))=g(\theta, x)\tau^{-k}$ . This implies $1\exp_{FD}(P)=(v+k, \nu, \alpha, 0)$ with some $\nu\in N$

and $\alpha\in N^{n}$ . We may assume $G=\{P_{1}, \cdots , P_{s}\}$ with $ord_{F}(P_{i})=k_{i}$ for $i=1,$ $\cdots$ , $s$ .
Set $\psi(\partial(P_{i}))=f_{i}(\theta, x)\tau^{k_{i}}$ for $P_{i}eG’$ .

Since $P\in J_{0}$ and $G$ is an FD-Gr6bner basis, there exist $Q_{1},$ $\cdots$ , $Q_{s}e9_{0}$ and
$R\in \mathscr{F}_{-k-1}$ so that

$P=Q{}_{\iota}P_{1}+$ $+Q_{s}P_{s}+R$ , $1\exp_{FD}(Q{}_{i}P_{i})\prec_{FD}=(\nu+k. \nu, \alpha, 0)$

in view of Theorem 2.6. This implies $ord_{F}(Q_{i})\leqq-k-k_{i}$ , and if $ord_{F}(Q_{i})=$

$-k-k_{i}$ , we have $P_{i}\in G’$ and $q_{i}(\theta, x):=\tau^{k+k_{i}}\cdot\psi(\hat{\sigma}(Q_{i}))\in \mathcal{O}_{0}’[\theta]$ . Put $S=\{i\in$

$\{1, \cdots s\}|ord_{F}(Q_{i})=-k-k_{i}\}$ . Then we have

$\partial(P)=\sum_{i\in S}\text{\^{a}}(Q_{i})\text{\^{a}}(P_{i})$

and hence
$g(\theta, x)=isq_{i}(\theta-k_{i}, x)f_{i}(\theta, x)$ .

This implies that $\ovalbox{\tt\small REJECT}_{Y}(\mathscr{M}, 0)$ is generated by $\{f_{i}(\theta, x)|P_{i}\in G’\}$ . This proves (4.1).

Let $f(\theta, x)eO_{0}’[\theta]$ be the monic polynomial which generates $\ovalbox{\tt\small REJECT}_{Y}(\mathscr{M}, 0)$ as in
Lemma 1.8. Put $S’=\{ie\{1, \cdot.. , s\}P_{i}\in G’\}$ . Then since $G$ is an FD-Gr\"obner
basis, there exist $a(x)\in O_{0}’$ and $r_{i}(\theta, x)\in O_{0}’[\theta]$ such that

$a(x)f( \theta, x)=\sum_{i\in S’}r_{i}(\theta-k_{i})f_{i}(\theta, x)$

and that the degree of $r_{i}(\theta, x)f_{i}(\theta, x)$ in $\theta$ is less than or equal to that of
$f(\theta, x)$ , which we denote by $m$ . Hence, if $r_{i}\neq 0$ , the degree of $f_{i}$ in $\theta$ must. 1
be $m$ , which implies $f_{i}(\theta, x)=a_{i}(x)f(\theta, x)$ with some $a_{i}(x)\in O_{0}’$ since $f$ divides
$f_{i}$ in $0_{0}[\theta]$ . This completes the proof.

On generic points, we can compute the characteristic exponents from an
FR-Gr\"obner basis. In fact, the following is an immediate consequence of
Theorems 3.8 and 4.1.

COROLLARY 4.2. Under the same assumptions as in Theorem 3.8, put

$S=$ { $ie\{1,$ $\cdots$ , $s\}|1\exp_{FR}(P_{i})=(\mu_{i},$ $v_{i},$ $0)$ with some $\mu_{i},$
$\nu_{i}eN$}.

Among the set $\{P_{i}|i\in S\}$ , let $P_{\ell_{0}}$ have minimum degree with respect to $\partial_{t}$ and
set $\psi(\partial(P_{i_{0}}))=f_{\ell_{0}}(\theta, x)\tau^{k}$ . Then we have

$\ovalbox{\tt\small REJECT}_{Y}(\mathscr{M}, p)=\ovalbox{\tt\small REJECT}_{Y}(\mathscr{M}, p)=\mathcal{O}_{p}’[\theta]f_{i_{0}}(\theta, x)$ .
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5. Computation of the induced system.

Here we use the same notation as above and assume the system $\mathscr{M}$ (as in
Section 1.2) is (formally) Fuchsian along $Y=\{(t, x)|t=0\}$ at $0$ . We study the
structure of the induced system $\mathscr{M}_{Y}=9/(\mathscr{I}+t9)$ of $\mathscr{M}$ along $Y$ . The induced
system is a system which the restriction to $Y$ of the holomorphic solutions of
$\mathscr{M}$ satisfy. Our purpose is to determine the structure of the stalk $\mathscr{M}_{Y.0}$ of $\mathscr{M}_{Y}$

at $O\in Y$ as a module over $9_{0}’=C\{x\}\langle\partial_{x}\rangle$ . We denote by $u$ the modulo class of
$1\in 9$ in .St $=9/\mathscr{I}$ , and for $Pe9$ , we denote by [Pu] the modulo class of $P\in 9$

in $\mathscr{M}_{Y}$ .
Let us begin with the following general result:

THEOREM 5.1. Assume $\mathscr{M}$ is formally Fuchsian along $Y$ at $0$ and

$\{k\in N|k\geqq k_{0}\}\cap e_{Y}(\mathscr{M}, 0)=\emptyset$

for some $k_{0}\in N$. Then $\mathscr{M}_{Y.0}$ is generated by $[\partial_{c^{j}}u]$ with $0\leqq_{J}\leqq k_{0}-1$ as a $9_{0^{-}}’$

module. In particular, we have $\mathscr{M}_{Y,0}=0$ if $k_{0}=0$ .

PROOF. By definition, $\mathscr{M}_{Y,0}$ is generated by $[\partial_{\iota^{j}}u]$ with $j\geqq 0$ over S6.
NOW assume $k\geqq k_{0}$ . Then there exists $P\in \mathscr{I}_{0}$ such that $\psi(\hat{\sigma}(P))=f(\theta, x)\tau^{-j}$ with
$j\geqq 0$ and $f\in \mathcal{O}_{0}’[\theta]$ satisfying $f(k, 0)\neq 0$ . Hence $P$ can be written in the form

$P=t^{j}f(t\partial_{t}, x)+t^{j+1}P’(t, \partial_{t}, x, \partial_{x})$

with $P’\in \mathscr{F}_{0}$ . From this we get

$\partial_{c^{j+k}}P=\partial_{t}^{j+k}(t^{j}f(t\partial_{\ell}, x)+t^{j+1}P’)$

$=(t\partial_{t}+k+1)(t\partial_{t}+k+2)\cdots(t\partial_{t}+k+j)f(t\partial_{t}+k, x)\partial_{t}^{k}+\partial_{t}^{j+k}t^{j+1}P’$ .

This implies in $\mathscr{M}_{Y.0}$

$0=[\partial_{\iota^{j+k}}Pu]=(k+1)(k+2)\cdots(k+j)f(k, x)[\partial_{c^{k}}u]+[\partial_{t}^{j+k}t^{j+1}P’u]$ .
Since $\partial_{\iota^{j+k}}t^{j+1}P’\in \mathscr{F}_{k-1}$ , there exists $Q(\partial_{t}, x, \partial_{x})\in 9_{0}$ with order less than $k$ with
respect to $\partial_{t}$ so that

$\partial_{\iota^{j+k}}t^{j+1}P’-Q(\partial_{t}, x, \partial_{x})et9_{0}$ .
Thus we get

$[\partial_{t^{k}}u]e9_{0}’[u]+9_{0}’[\partial_{\ell}u]+\cdots+9_{0}’[\partial_{t^{k-1}}u]$ .
This proves the statement of Theorem 5.1 by induction on $k$ .

In view of this theorem, $\mathscr{M}_{Y}$ represents the relations among the restrictions

$u(O, x),$ $\partial_{t}u(0, x),$ $\cdots$ , $\partial_{\ell}^{k_{0}-1}u(0, x)$

$of_{\wedge^{-}}a$ holomorphic solution $u(t, x)$ of $\mathscr{M}$ on a neighborhood of $Y$ .
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NOW let us describe an effective method to compute the induced system
$\mathscr{M}_{Y.0}$ under some moderate condition, which is always satisfied at a generic
point of Y. (See [24] for a different general method not based on Theorem 5.1.)

Assume that the system $\mathscr{M}$ satisfies the same assumptions as in Theorem
5.1. Let $G$ be a finite set of generators of the left ideal $\mathscr{I}_{0}$ of $9_{0}$ . We assume
that there exists an element $P_{0}$ of $G$ such that $\psi(\hat{\sigma}(P_{0}))=f(\theta, x)\tau^{-J_{0}}$ and that
$f(k, 0)\neq 0$ for any integer $k\geqq k_{0}$ . (We may assume $0\geq 0.$ ) In view of Corollary
4.2, this assumption is fulfilled if $G$ satisfies the conditions of Theorem 3.8 at
$0$ ;i.e., if $G$ consists of elements of $A_{n+1}$ with $1coef_{FR}(P)(0)\neq 0$ for any $P\in G$ ,
and if $G$ is an FR-Gr\"obner basis of the ideal which it generates over $9_{R}$ .

We define a $9_{0}’$-homomorphism $\rho:9_{0}arrow 9_{0}’[\partial_{\ell}]$ as follows: Write $P\in 9_{0}$

explicitly as (1.1). Then we put

$\rho(P)=\sum_{\nu,\alpha,\beta}a_{0.\nu.a,\beta}x^{a}\partial_{x}^{\beta}\partial_{t^{\nu}}e9_{0}’[\partial_{\ell}]$ .

For an element $P$ of $9_{0}’[\partial_{\ell}]$ , its $F$-order $\nu=ord_{F}(P)$ is the order of $P$ with re-
spect to $\partial_{\ell}$ and its formal symbol is of the form $\hat{\sigma}(P)=A(x, \partial_{x})\partial_{t^{\nu}}$ with some
$A\in 9_{0}’$ . Let us denote this $A$ by coef $(P, \partial_{\ell}, \nu)$ .

By the proof of Theorem 5.1, we have, for any $k\geqq k_{0}$ ,

$\partial(\rho(\partial_{\iota^{j_{0}+k}}P_{0}))=p_{k}(x)\partial_{\ell^{k}}$

with some $p_{k}(x)eC\{x\}$ such that $p_{k}(0)\neq 0$ . By using this $P_{0}$ we define $ind(P, P_{0})$

$\in 9_{0}’[\partial_{t}]$ for each $P\in 9_{0}’[\partial_{t}]$ by the following algorithm:

ALGORITHM 5.2 (Definition of $ind(P,$ $P_{0})$). Given $P\in 9_{0}’[\partial_{t}]$ returns $ind(P, P_{0})$

$\in 9_{0}’[\partial_{t}]$ .
INPUT $P\in 9_{0}’[\partial_{t}]$ ;
WHILE $\nu:=ord_{F}(P)\geqq k_{0}$ DO

$P:=P-(coef(P, \partial_{\ell}, \nu)/p_{\nu})\rho(\partial_{\ell^{j_{0}+\nu}}P_{0})$ ;
RETURN $P$ ;

Put $9_{0^{(k_{0})}}’=\oplus_{k=0}^{k_{0^{-1}}}9_{0}’\partial_{\ell}^{k}\subset 9i[\partial_{\ell}]$ . Then $ind(\cdot, P_{0})$ defines a $9_{0}’$-homomorphism
of $9_{0}’[\partial_{t}]$ to $9_{0}^{;(k_{0})}$ . For an element $Q=\Sigma_{k=0}^{k_{0}-1}Q_{k}(x, \partial_{x})\partial_{\ell}^{k}$ of $9_{0}^{\prime(k_{0})}$ , we write
$[Qu]=\Sigma_{k=0}^{k_{0^{-1}}}Q_{k}(x, \partial_{x})[\partial_{\ell^{k}}u]\in \mathscr{M}_{Y,0}$ .

THEOREM 5.3. Under the assumptions above, there exists an integer $j_{0}\geqq 0$

such that $\mathscr{M}_{Y.0}$ is explicitly given by the system of equations

$[ind(\rho(\partial_{\iota^{j}}P), P_{0})u]=0$ for any $P\in G$ and any $j=0,1,$ $\cdots$ , $j_{0}$

for unknowns $[u],$ $\cdots,$
$[\partial_{\iota^{k_{0}-1}}u]$ .

PROOF. Suppose $PeG$ and $j\geqq 0$ and put $\nu=ord_{F}(P)$ . Then by Algorithm
5.2 we have
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$\rho(\partial_{c^{j}}P)=\sum_{k=k_{0}}^{\nu+j}Q_{k}(x, \partial_{x})\rho(\partial_{c^{j_{0}+k}}P_{0})+ind(\partial_{\iota^{j}}P, P_{0})$

with some $Q_{k}(x, \partial_{x})e9_{0}’$ . Thus $ind(\rho(\partial_{t}^{j}P), P_{0})$ belongs to $\mathcal{L}:=\rho(\mathscr{I}_{0})$ . This im-
plies $[ind(\rho(\partial_{\iota^{j}}P), P_{0})u]=0$ .

Let us denote the $9_{0}’$-homomorphism $ind(\cdot, P_{0})$ simply by ind. Then ind:
$9_{0}’[\partial_{t}]arrow 9_{0}^{;(k_{0})}$ is surjective since $ind(\partial_{\ell^{j}})=\partial_{t}^{j}$ if $j<k_{0}$ . Moreover the inverse
image $ind^{-1}(ind(\mathcal{L}))$ is again contained in $X$ . In fact, for $Pe9_{0}’[\partial_{t}]$ with $\nu:=$

$ord_{F}(P)$ we have

$P= \sum_{k=k_{0}}^{\nu}Q_{k}(x, \partial_{x})\rho(\partial_{\iota^{j_{0}+k}}P_{0})+ind(P)$

with some $Q_{k}e9_{0}’$ , and hence $ind(P)\in \mathcal{L}$ if and only if $Pe\mathcal{L}$ . This implies

$\mathcal{L}\subset ind^{-1}(ind(X))\subset ind^{-1}(X\cap 9_{0}^{\prime(k_{0)}})\subset \mathcal{L}$ .

Hence we have $9_{0}’$-module isomorphisms induced by $\rho$ and ind,

$\mathscr{M}_{Y,0}\cong 9_{0}’[\partial_{\ell}]/\mathcal{L}\cong 9_{0^{(k_{0})}}’/ind(X)$ .

Since $\mathcal{L}$ is a $9_{0}’$-submodule of $9_{0}’[\partial_{t}]$ generated by the set $\{\rho(\partial_{c^{j}}P)|P\in G, j\geqq 0\}$ ,
$ind(\mathcal{L})$ is a $9_{0}’$-submodule of $9_{0}^{\prime(k_{0})}$ generated by the set $\{ind(\rho(\partial_{\ell^{j}}P))|PeG$ ,
$j\geqq 0\}$ . Since $9_{0}’$ is a Noetherian ring, there exists $j_{0}$ so that $ind(\mathcal{L})$ is generated
by $\{ind(\rho(\partial_{t}^{j}P))|PeG, 0\leqq_{J}\leqq j_{0}\}$ . This completes the proof.

Finally, let us assume that the Fuchsian system $\mathscr{M}$ has a constant charac-
teristic exponent $\lambda\in C$ ;i. e., $\lambda\in e_{Y}(\mathscr{M}, p)$ for any $peY$ . Then we can define
the system $\mathscr{M}^{(\lambda)}$ for the unknown $t^{-\lambda}u$ as follows: Let $P_{1}$ , . $P_{s}$ be as in
Section 1.2 and put $k_{i}=ord_{F}(P_{i})$ and $k_{i}^{+}= \max\{k_{i}, 0\}$ . Put $Q_{i}=t^{-\lambda+k_{i}^{+}}P_{i}t^{\lambda}\in 9_{0}$

and define the system $\mathscr{M}^{(\lambda)}$ by

$\mathscr{M}^{(\lambda)}$ : $Q_{1}u=\cdots=Q_{s}u=0$ .

Then its induced system $\mathscr{M}_{Y}^{(\lambda)}$ represents the relations among $v(O, x),$ $\partial_{t}v(0, x),$ $\cdots$

for analytic solutions $u$ of $\mathscr{M}$ of the form $u=v(t, x)t^{\lambda}$ with $v(t, x)$ holomorphic
on a neighborhood of $Y$ .

6. Examples of actual computation.

We have implemented the algorithms presented so far on a computer algebra
system $Risa/asir$ (cf. [16]). For example, by using this implementation, we can
compute the characteristic exponents and the induced systems along each irre-
ducible component of the singular loci of the systems for Appell’s hypergeo-
metric functions of two variables. Since these systems are holonomic, they are
formally Fuchsian by a theorem of Kashiwara, but it does not seem obvious
that they are Fuchsian along their singular loci.
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In the sequel we put $n=1$ and use the notation $\partial_{x}=\partial/\partial x,$ $\partial_{y}=\partial/\partial y$ with
$(x, y)\in C^{2}$ as well as $(t, x)eC^{2}$ as in the preceding sections. Let us describe
briefly the computation for the systems for Appell’s $F_{3}$ and $F_{4}$ (see $e$ . $g.,$ $[25]$

for computation of $F_{1}-F_{3}$ based on the concrete representation of solutions).
Our computation is purely algorithmic.

EXAMPLE 6.1 (System for Appell’s $F_{3}$). The system $SU_{3}$ for Appell’s hyper-
geometric function $F_{3}$ is defined by

$\mathscr{M}_{3}$ : $P_{31}u=P_{32}u=0$ ,

where
$P_{31}:=x(1-x)\partial_{x}^{2}+y\partial_{x}\partial_{y}+\{\gamma-(\alpha+\beta+1)x\}\partial_{x}-\alpha\beta$ ,

$P_{32}:=y(1-y)\partial_{y}^{2}+x\partial_{x}\partial_{y}+\{\gamma-(\alpha’+\beta’+1)y\}\partial_{y}-\alpha’\beta’$

with parameters $\alpha,$
$\alpha’,$ $\beta,$ $\beta’,$ $r\in C$ . (We assume these parameters take generic

values.) It is well-known that $\mathscr{M}_{3}$ is a holonomic system of rank 4 and its
singular loci are defined by $xy(x-1)(y-1)(xy-x-y-1)=0$ . (See [19] for the
algorithmic verification.)

Put $Y=\{(x, y)|x=0\}$ and $I=9_{R}P_{31}+9_{R}P_{32}$ . Then Algorithm 3.18 returns
$G:=\{P_{31}, P_{32}, P_{33}\}$ as a FR-Gr\"obner basis for $I_{3}$ along $Y$ ; here $P_{33}$ is a Fuchsian
operator given by

$P_{33}=(1-x)yx^{2}\partial_{x}^{3}+(y-1)yx^{2}\partial_{y}\partial_{x}^{2}$

$+\{(-\alpha+\alpha’-\beta+\beta’-\gamma-3)x+(-\alpha’-\beta’+2\gamma+1)\}yx\partial_{x^{2}}$

$+(\alpha+\beta+1)(y-1)yx\partial_{y}\partial_{x}$

$+[\{(\alpha’-\beta+\beta’-\gamma-1)\alpha+(\beta+1)\alpha’+(\beta’-\gamma-1)\beta+\beta’-\gamma-1\}x$

$+(\beta’-\gamma)\alpha’-\gamma\beta’+\gamma^{2}]y\partial_{x}+\alpha\beta(y-1)y\partial_{y}+\alpha\beta(\alpha’+\beta’-\gamma)y$ .

This implies that $\mathscr{M}_{3}$ is Fuchsian along $Y$ on $\{(0, y)\in Y|y\neq 0,1\}$ . (We can also
verify that $\mathscr{M}_{3}$ is also Fuchsian along $Y$ at $(0,0)$ and $(0,1)$ by Algorithm 2.7.)

We get
$e_{Y}(\mathscr{M}_{3}, p)=\delta_{Y}(\mathscr{M}_{3}, p)=\{0, \alpha’-\gamma+1, \beta’-\gamma+1\}$

for any $p\in Y\backslash \{(0,0), (0,1)\}$ . Hence any multi-valued analytic solution $u$ of $\mathscr{M}_{3}$

around $Y$ is expressed in the form

$u=v_{1}(x, y)+v_{2}(x, y)x^{\alpha’-\gamma+1}+v_{3}(x, y)x^{\beta’-\gamma+1}$

with $v_{1},$ $v_{2},$ $v_{3}$ holomorphic on a neighborhood of $Y\backslash \{(0,0), (0,1)\}$ . Moreover,
by Algorithm 5.2 $v_{1}(0, y),$ $v_{2}(0, y),$ $v_{3}(0, y)$ satisfy the equations

$\{y(1-y)\partial_{\nu^{2}}+(\gamma-(\alpha’+\beta’+1)y)\partial_{y}-\alpha’\beta’\}v_{1}(0, y)=0$ ,
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$(y\partial_{y}+\alpha’)v_{2}(0, y)=0$ , $(y\partial_{y}+\beta’)v_{3}(0, y)=0$ .
We know that these systems give precisely the induced systems because the
sum of the rank of these systems equals the rank of the system $\mathscr{M}_{3}$ .

EXAMPLE 6.2 (System for Appell’s $F_{4}$). The system $\mathscr{M}_{4}$ for Appell’s $F_{4}$ is
defined by

$P_{41}u=P_{42}u=0$ ,
where

$P_{41}:=x(1-x)\partial_{x}^{2}-2xy\partial_{x}\partial_{y}-y^{2}\partial_{y}^{2}+\{\gamma-(\alpha+\beta+1)x\}\partial_{x}-(\alpha+\beta+1)y\partial_{y}-\alpha\beta$ ,

$P_{42}:=y(1-y)\partial_{y}^{2}-2xy\partial_{x}\partial_{y}-x^{2}\partial_{x}^{2}+\{\gamma’-(\alpha+\beta+1)y\}\partial_{y}-(\alpha+\beta+1)x\partial_{x}-\alpha\beta$

with parameters $\alpha,$ $\beta,$
$\gamma,$ $\gamma’eC$ . This is a holonomic system of rank 4 with

singular locus $xy(x^{2}+y^{2}-2xy-2x-2y+1)=0$ . Put $I=9_{R}P_{1}+9_{R}P_{42}$ and

$Y=\{(x, y)|x^{2}+y^{2}-2xy-2x-2y+1=0\}$ .
We make a birational coordinate transformation

$t=x^{2}+y^{2}-2xy-2x-2y+1$ , $x=x-y$

and rewrite $P_{41},$ $P_{42}$ in the new coordinate system $(t, x)$ .
Inputting $\{P_{41}, P_{42}\}$ to Algorithm 3.7, we get, as the output of the algorithm

stopped when $m=-1,$ $G=\{P_{41}, P_{42}, P_{43}, P_{44}\}$ with

$1term_{FR}(P_{41})=(x+1)(x-1)^{2}\partial_{\ell}\partial_{x}$ , $1term_{FR}(P_{42})=(x+1)^{2}(x-1)\partial_{t}\partial_{x}$ ,

$1term_{FR}(P_{43})=2(x+1)(x-1)t\partial_{c^{2}}$ , lterm$FR(P_{44})= \frac{1}{2}(x+1)^{3}(x-1)^{2}\partial_{x}^{3}$ .

Moreover, $P_{43}$ is Fuchsian along $Y$ on $Y\backslash \{(0,1), (0, -1)\}$ (hence so is $\mathscr{M}_{4}$). (By
using Algorithm 2.7 we can verify that $\mathscr{M}_{4}$ is also Fuchsian along $Y$ at $(0, \pm 1))$ .
We do not know if $G$ is indeed an FR-Gr\"obner basis of $I$ along $Y$ . In any
case, we know by the algorithms that any multi-valued analytic solution $u$ of
$\mathscr{M}_{4}$ around $Y$ is written in the form

$u=v_{1}(t, x)+v_{2}(t, x)t^{\gamma+\gamma’-\alpha-\beta-1/2}$

with $v_{1},$ $v_{2}$ holomorphic on a neighborhood of $Y\backslash \{(0,1), (0, -1)\}$ satisfying
$R_{1}v_{1}(0, x)=R_{2}v_{2}(0, x)=0$ , where

$R_{1}=(x-1)^{2}(x+1)^{2}\partial_{x^{3}}$

$+(x-1)(x+1)\{(2\alpha+2\beta+\gamma+\gamma’+2)x-3\gamma+3\gamma’\}\partial_{x^{2}}$

$+[\{(4\beta+2\gamma+2\gamma’)\alpha+(2\gamma+2\gamma’)\beta+\gamma+\gamma’\}x^{2}-2(\gamma-\gamma’)(2\alpha+2\beta+1)x$

$+(-4\beta+2\gamma+2\gamma’-4)\alpha+(2\gamma+2\gamma’-4)\beta+(-8\gamma’+5)\gamma+5\gamma’-4]\partial_{x}$

$+4\alpha\beta\{(\gamma+\gamma’-1)x-\gamma+\gamma’\}$ ,
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$R_{2}=(x-1)(x+1)\partial_{x}+\{(3\gamma+3\gamma’-2\alpha-2\beta-2)x-\gamma+\gamma’\}$ .
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