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§1. Introduction.

In the first part of this paper, we study operators f(H) and e *¥ f(H) in
L?(R%), where H=—A+V(x) is a Schrodinger operator defined primarily as a
self-adjoint operator in L*R?%). For H,=—A, mapping properties of f(H,) be-
tween LP-spaces and norm estimates for e~t#of(H,) follow from the theory of
Fourier multipliers. One of our goals is to extend these results to a fairly
large class of Schrodinger operators H=H,+V(x). To attain this goal we use
several tools, including properties of the Schréodinger semigroup: e t#, the
spaces (?(L% which are sometimes called amalgams of [? and L?, commutator
estimates, and a result which can be viewed as a version of the
Beurling-Carlson theorem on Fourier multipliers (see [BTW]).

Throughout this paper we suppose the potential V(x) satisfies the following
condition :

ASSUMPTION (A). V is real-valued function on R¢, and it is decomposed
as V(x)=V,(x)—V_(x) such that V.=>0, V,eK¥% and V_cK,, where K, is
the Kato class of potentials.

For the sake of completeness, we recall the definitions of K, and K¢ (cf.
Simon [S: Section A2] for the detail):

DEFINITION. VeK,, if:

For d=3, lim sup
T-0 r=Rd

S o)l

=0;
jz-yisr |Xx—y| %2 Y

For d=2, lmsup| log{|x—y|"}|V()ldy =0;

-0 rcRd

For d=1, sup Slx-wng(dey < oo,

- zcRd
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VeKY if X ,<«m(x)V(x)eK, for any R>0, where X, denotes the characteristic
function of Q.

Then it is known that H defines a closed quadratic form with the form
domain QH)=Q(H,)NQ(V,), where H,=—A and Q(H,)= H'(R%), the usual
Sobolev space. Hence H has a self-adjoint realization (the Friedrichs extension)
which is semi-bounded (cf. [S: Section A27). For a bounded function f(1), f(H)
and e “¥f(H) are defined in L% R?) using the spectral decomposition for H.
We consider continuous extensions of f(H) and ¢ % f(H) in L?(R?%).

We define a class of symbols S(8), SR, as follows:

DEFINITION. feS(B) if feC=(R) and f(4) has an asymptotic expansion in
A™' as A—oo in the following sense: for any N >0,

D= D adtrrry@, izl
k=0
where the remainder term #»y(4) satisfies
d \*
(55) 7@ = Coa@+ 120787, 221, £=0,1,2, -,

We write S(e0)=MNm=0S(m), and note S(c0)DS(R?), the Schwartz space.
Since we are interested in f(H) and H is semi-bounded, we may always assume
supp fC[—M, «) for some M >0 without loss of generality.

THEOREM 1.1. Let f&S5(0). Then f(H) is extended to a bounded operator
in LP(R%) for 1=p<co.

COROLLARY 1.2. Let 1=p=qg=<co, and let B>(d/2)1/p—1/q). If f€S(B)
then f(H) is extended to a bounded operator from LP(R?) to LUR?).

PROOF OF COROLLARY. We decompose f(1) as f(A)=(1+M)Pg(d) where
geS(0) and M is a sufficiently large number. By [S: Theorem B.2.1], (H+M)™#
is bounded from L?(R?) to L%R?%), and combining this with the boundedness of
g(H) in LP(R%), we learn that f(H)=(H+M) #g(H) is bounded from L?(R%) to
LYR%. 0O

We remark that gives an answer to an open question in Simon
[S: Section B2].

Now we would like to consider the time evolution e *# in LP(R%). It is
known, however, that e *#o is not bounded in L?(R?)if p+2 (see, e.g., [BTW ]
p. 27). Instead, we consider e *¥ f(H) where f(4) decays rapidly as A— oo,

THEOREM 1.3. Let 1<p=<co and let f&S(0). Then e “H f(H) is bounded
in LP(R?) for teR. Moreover, for any 8>d|1/p—1/21,
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e~ f(H) | sprty, < C(L+1t))?, teR. (1.1)

The estimate (1.1) is almost, but not exactly, optimal. In fact, it is known
that for the free case,

C(1+]tl)d”/p—1/2‘ —S_ “e_“Hof(Ho)”B(Lp(Rd)) é C(l_*_‘t‘)dll/p-l/ﬂ

holds for t€R, with ¢, C>0 (cf. p. 134). In many cases, we can prove
the optimal upper bound.

THEOREM 1.4. Suppose d<3 and let 1<p=<oco. If f&S(B) for some B>2
+d/4, then
le ' H f(H)|l prprdy, = C(L4[t]|)er/e-t2 teR. (1.2)

In Section 5, we shall discuss several generalizations of [Theorem 1.4, For
example, if V is sufficiently smooth and f&S(e0), then holds for any
dimension (Theorem 5.2).

In the second part of this paper, we study the mapping properties of the
wave operators for short-range scattering between LP”-spaces.

For seR,=(0, ), we write [s]=min{{eN|I>s}. Note that [s] is dif-
ferent from the usual integer part. For the potential V(x), we suppose:

ASSUMPTION (B). VeCt/*(R?), real-valued and for some p>d and for all
multi-indices a with |a|<[d/2] it satisfies

() V| = catixye,  xeRe.

If V satisfies Assumption (B), H is self-adjoint with D(H)=D(H,), and the
wave operators: W.=s-lim,... e**Fe "*Ho exist and are asymptotically complete
(see, e.g., [RS: Vol. III] and references therein).

The main result is the following mapping property of the wave operators:

THEOREM 1.5. Assume d=3 and V satisfies Assumption (B). Let feCH(R.),
and let p, q: 1S p<g=< oo satisfy:

. 1 d-2 1 1

< e il T TN

(i) If1=p<2.q< 7 p+d’

.. 1 d 1 1
Then W.f(H,) and the L*-adjoints: (W.f(H,)* define bounded operators from
L?(R%) to LI(R%).

A series of more precise results is given in Section 7, with the assump-
tions on the potential depending on the values of p and gq.
LP-properties of Schrédinger operators have been studied by several authors,
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mainly using the Schrédinger semigroup: exp (—tH). We refer to Aizenman-
Simon [AS], Simon [S], Pang [P], Davies [D] and references therein (see also
[CFKS: Ch. 2] for an overview). In particular, Pang proved an estimate of
the form (1.1) with f(A)=QA+M) %, a>d+1 and f=d+2; Davies studied the
integral kernel of f(—A) on Riemannian manifolds. In the recent paper [BD],
an estimate of the type (1.1) is obtained with B=2d|1/p—1/2| for potentials
V=V.—V_ such that V.€K,; and V_& L*(R?%).

We also mention the work by Hempel and Voigt [HV], in which they
proved that the spectrum of H in L?(R?) is independent of p. As far as we
know, is the first result giving mapping properties of the wave
operators between the L?-spaces. For mapping properties between the weighted
L*-spaces, see and references therein.

The idea of the proof of Theorems [.1-1.4 is the following: we reduce the
problems in L?(R%) (1=<p<2) to those in [?(L?), which is defined by

(L) = {pe LE,(RY)

loc

3, lol e <o}
where C(n) is the unit cube at neZ?:

C(n) = {xeRd max |x—n| < i}.

-2

The norm of (?(L? is defined by
1/p ’
lplras = ( 3 Iloltean) oLy,

and /?(L%) is a Banach space. More on [?(L%-spaces can be found in [FS] and
the references therein. We first show that some power of the resolvent for H
is bounded from L?(R%) to [?(L?*. Then we study the boundedness of f(H) or
e~™® f(H) in [P(L%, which is continuously embedded in L?(R?). We mainly
consider the case p=1. The general case follows by duality and an interpola-
tion argument.

In the proof of [Theorem 1.5, the following estimate plays an essential role:
let s<—d/2, and let X C>(R) be bounded and supported away from 0, then

”e_“HX(H)”B(Ll,LZ,s) < Cll“_dlz, t-7&0, (13)

where L*® is the weighted L%-space of order s (see Section 6 for the definition).
The estimate looks similar to a result in [JSS], but the proof given in Section
6 is quite different from theirs.

This paper is organized as follows: In Section 2 we prepare several basic
estimates. In Sections 3 and 4, we prove Theorems [[.I and [.3 respectively,
in slightly more general forms. Section 5 is devoted to the discussion of the
estimate [1.2). In Section 6 we prepare several estimates, including [1.3), for
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the proof of [Theorem 1.5, which is proved in Section 7 in a somewhat gener-
alized setting.

We shall use the following notation: For x&R¢ or R, we write {x>=
(141x|*»"%. For Banach spaces X and Y, B(X, Y) denotes the space of bounded
operators from X to ¥ and B(X)=B(X, X). The operator norm is denoted by
I“lax.v or ||+l xoy. We sometimes write L? instead of LP(R?). ||-|| denotes
the L R%)-norm or the operator norm in L2(R?) unless otherwise specified.

At last we want to mention recent progress on this subject made after this
work was completed. Yajima proved strong LP-mapping properties of wave
operators for a class of Schrodinger operators [Y]. His method is completely
different from ours. We have made some improvements and generalizations
for the mapping properties of f(H) and it will be published in [JN2].

ACKNOWLEDGEMENT. This work was started when SN was invited to a
workshop at Aarhus University, Denmark, in the summer of 1991. He thanks
Professor Erik Balslev and the university for the wonderful workshop and their
hospitality.

§2. Preliminary estimates in /?(L%)-spaces.

A. Boundedness of (H+M)=# from L?(R?) to [P(L%).
The goal of this subsection is the next theorem:

THEOREM 2.1. Let 1<p<q=co and let $>>(d/2)(1/p—1/q). Then there exists
M,>0, depending only on H, such that for M>M,, (H+M)=# is extended to a
bounded operator from LP(R%) to [P(L9).

LEMMA 2.2 (Young’s inequality). Let 1<p, q, 7, s, t, u<oco such that 1/p+
1/q—1=1/r and 1/s+1/t—1=1/u. If fel?(L®) and g<I(L"), then fxg<i"(L")
and

[ fxgllireey < 3% fllees)llglla ety . 2.1

PROOF. This result is well-known, see [FS, §2]. We include the proof
for the sake of completeness. Let n=Z<¢. Then by Young’s inequality on R?,
we have

| Fglnean =] 2, f0IeC—dy

Cc(m)

L% (C(n))

= ; 171128 cccmn gLt cccny-cimy

< 2SIz comnlgl- +0l et ccn-m ).

where ¢ runs over {eeZ%le;==*1, or 0, j=1, ---, d}. We now use Young’s
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inequality for /?-spaces to obtain
I f*gliray < Ee Ifllipcs,llg(-+edlla ety
< 3 flleces)llglha et U

LEMMA 2.3. Let 1=p<g<co. Then ¢ *¥# is bounded from LP(R?) to IP(L?)
for t>0, and there exists C, L>0 such that

le= | pe?, 1719y, < Celi(t-e/r-tiwrz4 1), t>0. 2.2)

PROOF. Let k(¢; x, y) be the integral kernel of ¢~*¥, Then it is known
that for some LR and any &£>0,

lk(t; x, »)| < Ct™%%e™ exp (—[x—y|*/4(1+e)) (2.3)

(see, e.g., [S: Theorem B.6.7]). We set e=1 and let k,(¢; x—y) be the right
hand side of [2.3). We first prove:

IBolt; ey £ Celi@t-tmiz41), >0, (2.4)

We compute [[2o(t; )Py, for the case n=0, and n+0, respectively:

0t o = (3 5707)

1z1<1/2

< Ct-d/zeu(ge-p|x|2/stdx)1/p

— Ct—dlzeLl(Se_plz'2/Btd/2dx)llp

— thd(l—llp)/2eLt; (2-5)
2 kolts Vzpcam S CH%H S sup e71#1%%
n#0 n#0 z&C(n)

< Crrditelt 3 gmaim®/t Fa>0,

= n#0 ’

é CeLt . (26) »

Estimates and prove [2.4). We apply with f=k(; -)e
B(L7) with 1/p+1/r—1=1/q, and g=¢&!?(L?)=L"(R*). Then we have

le=llirey = |kot; )xlelliPay
< 3% kot Il llelhrwr,
é CeLt(t—d(l—llT)/2+l)|lSDHLp(Rd)

< Celi(t=20/P-1D/12 4 )| @]l 1o (k2 - 2.7
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This proves the assertion. O

ProoF OF THEOREM 2.1. Let us fix My=max{L, —inf ¢(H)} with L>0 in
Lemma 2.3, We use the formula:

HiM)8 — i B-1,-Mt,—tH )
(H+M) F(‘B)Sot o MigtH gy

By Lemma 2.3, we have

1 [+ ]
IHAM)Polipaa, < [,—(BSSOtﬁ‘le'mﬂe'mtplhp(m)dt

= ng(t‘s'd““”"’q”z"-&-1)0“M‘L"dl‘ll$0llLpuzd) .
0 .
Since B>d(1/p—1/¢)/2, the integral is finite, and (H+M)=# is bounded from
L?(R%) to IP(LY). O

REMARK. In fact, we can take M,=—inf g(H), since in the above proof
we may take any L such that L>—inf ¢(H) (see [S: Section B.5]).

B. Bounded operators in [*(L2).

Here we give a sufficient condition for an L2-bounded operator A to be
bounded in /*(L?), and also give an estimate on the operator norm. Let us
notejthat if an L2-bounded operator A is local (i, e., supp (Af)Ssupp (f) for all
feL?), then it is trivially bounded on /*(L?).

For >0 we define a class of operators Az as follows:

DEFINITION. Aed; if AeB(L*(R?)) and there is C>0 such that
sup [[<- —n)? Aoyl < Cllgll

nezd

for pe L*(R*). For Acsp, we write
IAllg = I All+ sup [I<- —n>E Aoy |l -
nezd

THEOREM 2.4. If Aedpg for some 8>d/2, then A is bounded in I'(L?) and
1Al sarazyy < CIAlG 2P A|-22¢8, (2.8)
where C depends only on d and 8.

PrOOF. We write X,=X¢(,, for simplicity. We first note that if Aedy,

(5, m=—ny?tuAtugl?)” < CllAllsItag]

mezd

for g L*R*) and n€Z*®. For any w>1, we have
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D nAlepl = 3 Im—n| P m—n|f| L, Alwpl+ = [XnAX.ol
meZé m-ni>0 |m-n|sw

<( 5 m-n=)"( =z 2t AL l)

Im-=-n|>w

(3 1) 3 ety

Im-=mnj

< Clo~ =2 Allg+ 02| All} | Z20]] -

In the first inequality we have used fhe Schwarz inequality. Setting w=
(IAllg/I AINY#, we obtain

sz [Xn AXnoll < ClIANG 28| Al =272 Xnooll
me
and this implies

lAplinae < CIANE*PHAI - lolliie, . O

§3. Mapping properties of f(H) in L?(R?).
At first we prepare an algebraic lemma which is useful for proving A ;.

LEMMA 3.1. Let X and Y be topological vector spaces. Let A and B be
continuous linear operators in X and Y, respectively. For a continuous linear
operator L from X to Y, Ad*(L): X-Y, h=0, 1, ---, is defined inductively by

Ad(L)=L, Ad¥L)= Ad*BL—LA), k=1.
Then there exists a set of constants: {I'(n, m)|n=1, 0<m<n} such that
B"L = 3 I'(n, m) Ad"(L)A™™ 3.1)

PROOF. For n=1, we set I'(n, 0)=1 and define [’ (n, m) inductively by

I'in, m+1)= E_‘,ll’(k, m), 1<sm<n—1.
k=m

For example, I'(n, 1)=n, I'(n, 2)=n(n—1)/2, etc.. We prove [3.1) by induction.
For n=1,

BL = LA+(BL—LA)= 3 I'(1, m) Ad™(L)A'™.

Let us suppose holds for n=1,2, .-, [. Then
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B[ = 3 BHBL—LAA"*+ LA
k=0

= é Zk]f'(k, m) Ad™(BL—LA)A* ™Ak LA

=0 0

e

_ {ké Ik, m)} Ad™*I(L)AI-m 4 L AL+

m=0 =m
= 3I0Q+L, m AdNDAS T, O

In what follows we fix M>0 as in and we let R=(H+M)™.
Commutator estimates of the following type have been used for proving

weighted L%-estimates (see, e.g., [JI], [J2], and references therein). In
our context, it is crucial that the estimates are uniform with respect to the
translations.

LEMMA 3.2. For any B>0, there is C>0 such that

”('—'n>ﬂe_i‘R<°——n>_‘B” = C<t>ﬂ ’ nEZd’ tER. (3'2)
PrROOF. We use with X=9=C%(R?), Y =9', A=B=(x;—n,)-
with fixed neZ? and i€ {l, ---, d}. H is a continuous linear operator from 9

to 9@’ and it is easy to see
Ad\H)=1[x;,, H1=20;; Ad*H)=1[x, 20;]= —2;
Ad*(H)=0  for k=3, _ 3.3
where 0,=(0/0x;). From (3.3) we learn that
Ad*(R) = Px(R, 0:R), k=1,2, -,

where P, is an (ordered) polynomial of order k+1. Since Q(H)CHR?), 0;R
is bounded in L%R?). These imply that Ad*(R) is bounded in L% R?) for any
k=0. Using this fact and the formula

Adl(e—itR) — _Z'Sze—isR Adl(R)e—i(t—s)Rds
repeatedly, we obtain
[Ad*(e 't B)| < CtD*, teR (3.4)

for k=1. Combining (34) with Lemma 3.1, we have
[(x;—ny)le B x—n)2¥|
< 310, mIAd™ e Tl n e

< GO, teR
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if /I<2N. Since the estimate is independent of neZ¢ and /= {l, ---, d}, this
implies
[<x—n)*Ve "B x—n)~*¥| < Cy<)*, t=R, neZ?,

for any integer N=0. Now follows by the Calderdn-Lions interpolation
theorem ([RS: Theorem [X.20]). O

LEMMA 3.3. Let >0 and let feCyR) with m>B+1/2. Then f(R)SAp
and

IrRs < C1 folcesat, 35)

where f is the Fourier transform of f, and C depends only on d and B.
PROOF. By and the representation

(R = @y At
we learn

I<-—=n>B f(R)-—n>~F|| < (27r)"’2SH<-—n>‘9e“R<-—n>"SII | f(®)ldt

< CS(t)ﬁI Folde. (3.6)

By the assumption on f, <H™ f(t)eLz(R) and the right hand side is finite by
m>[+1/2 and the Schwarz inequality. Since

I<-—ndB AN, < (14-d)P72)<- —n)f A —nd~8| 3.7
for any A= B(L¥R?)), (3.5) follows from [3.6). O

LEMMA 3.4. Let m=[(d+1)/2]. If feCQ(R), then f(R) is bounded on
ML?).

PROOF. Since m>(d+1)/2, we can determine B8 with d/2<B<m—1/2 and
apply Lemma 3.3 and [Theorem 2.4, O

THEOREM 3.5. Let m=[(d+1)/2]. If feC™RB) and [ has an asymptotic
expansion

f)= Fadt+rn@, 1, (3.8

where ryn(R) satisfies |(d/dA)*ryn(A)| S CA>P™ Y, 421, for k=0, 1, ---, m, then
f(H) extends to a bounded operator on I'(L?).

Proor. Using the Neumann series expansion (1=1)
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= (M=M= 3 MM,
k=0
we can rewrite as
)= B My 7@, 21, (3.9)

where 7, satisfies the same condition as r,». Thus the condition implies
that there is g C*R) such that

g((A+M)") = f(4)  for Aa(H).
Hence f(H)=g(R) and the claim follows from [Lemma 3.4. O

THEOREM 3.6. Let m be an integer with m>[(d+1)/2]+(d/4). If feC™R)
and f has an asymptotic expansion (3.8), then f(H) is bounded on L'(R?).

PRrROOF. Choose g(d)eC™(R) so that supp g (—M, o) and
g0 = F)— "B b+ M)+ for A€ a(H),
k=0

with {b:} in [3.9) Let B=m—[(d+1)/2] and h(2)= (A+M)g(A). Then h
satisfies the assumption of and h(H) is bounded on {}(L?). Com-
bining this with [Theorem 2.1, we learn that g(H)=h(H)(H+M) # is bounded
from LY(R?) to [*(L?), and hence bounded on L'(R%).

On the other hand, (H+M)~* is bounded on L(R?) by [S: Theorem B.2.1]
for k=0. Thus f(H)=2F bx(H+M) *+g(H) is bounded on L'(R%). d

COROLLARY 3.7. If f satisfies the conditions of Theorem 3.6, then f(H) is
bounded on LP(R%) for 1<p<co.

PrOOF. f(H) is bounded on L*(R?) by duality, and the claim follows by
the Riesz-Thorin interpolation theorem ([RS: Theorem IX.17]). O

now follows immediately from

§4. Estimates for ¢ “# f(H) in L?(R%).
For a bounded function g(p), we set
giy) = et s hg(y),  ueR, teR.
By the functional calculus, it is easy to see g.(R)=e *Hg(R).

LEMMA 4.1. Let m>0 be an integer, and let £>2m—1/2 be a real number.
Assume geCT(R) such that |(d/dpYg(p)|<Clpl* for j=0,1, -, m. Assume
B<m—1/2. Then
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S|g<s>1<s>ﬁds <Ccw™,  teR. .1

PrOOF. We note that for heC7{(R), f<m—1/2, we have
1) 1¢stds = [1<symhes)l ¢sy-mds

< ™A zell<- P 1o
< C(| ) e+ 18™ I 12),

where we used the Schwarz inequality, well-known properties of the Fourier
transform, and S8—m<—1/2. Thus we only need to estimate (d/du)™g:(p).
Straightforward differentiation and the assumptions yield

[(d/dpmgup)] < C<tymp® 3 | gD ()] < Cympmame.
j=0

Since —2m-+x£>—1/2, the derivative is square integrable, and the result follows.
O

THEOREM 4.2. Let m>(d+1)/2 be an integer. Let k>4m—1/2 be a real
number. Suppose f&C™R) such that |(d/dAY f(A)|ECLLA>*F, AR, for j=0,1,
««,m. Then e “Hf(H) is bounded on I'(L*) for teR, and for any y>

m d
m—1/2 K
le=®# f(H)| saiczeyy = C <7, teR. 4.2)

m__ 4
m—1/2 2’
without loss of generality. Let B=md/2y, then d/2<8<

PrROOF. The condition on m implies m<

m d

L Eam v

m—1/2. By the condition on f, we can find g CR), such that g((A+M)™?)

=f(A), Aco(H), and such that g satisfies the conditions in Lemma 4.1. Now

we can apply this lemma to obtain (4.1) with the above m and B. Combining
this with Lemma 3.3, we have

lle=**# f(H)lllg = lle™**# g(R)lls = llg(R)lls

and we may suppose

= c[lgus<srtas = capm
for teR. By this implies
le™®# f(H)lsarcreyy = Clle™"*H f(H)||§/*P ||e~*H f(H)||* /2
< Cyemitd = C)r, teR. O
THEOREM 4.3. Let m>(d+1)/2 be an integer. Suppose f=C™R) such that



Lr.mapping properties of functions of Schrodinger operators 265

for some real number £>4m+(d—2)/4 and j=0, 1, ---, m, |(d/dAY F(A)| < CLAD*,

A€R. Then e ¥ f(H) is bounded on L'(R%) and for any 7>7—71——-?1—/7'%

le=®# f(H)|pasy < C;<ET,  teR. 4.3)
In particular, if feS(co) then (4.3) holds for any y>d/2.
PrOOF. The claim follows from [I’heorem 2.1l and [Iheorem 4.2, O
COROLLARY 4.4. Let m and f satisfy the conditions in Theorem 4.3. Then
e "M f(H) is bounded on LP(R*®) for teR, 1<p=co, and for any y> m——ml/2
d|1/p—1/21,

X

e ®® f(H)|pry = C)KET, teR. 4.4)
In particular, if f&S(oo) then (4.4) holds for any y<d|1/p—1/2].

PrROOF. For 1<p<2, using interpolation between (4.3) and the trivial esti-
mate: |e "7 f(H)|pr2,<C we obtain [4.4). The case: 2<p=< follows by
duality. O

§5. Sharp estimates for ¢ *# f(H) on L?(R?).

Here we prove and discuss its generalizations. In order that
we employ more direct method than in the last section. Namely, we study
[*(L*-mapping properties of e *#R* using the commutator method directly,
instead of looking at e~**F, At first we prepare a lemma:

LEMMA 5.1. There is C>0 such that

I<-—nd2e " HRY - —n)~2| < C4?,  teR, neZ?. (5.1)

PROOF. As in the proof of it suffices to show
ITCxi—ny), e # R2]|| < C<tD;5 (5.2)
IL(xi—ny), [(xi—n,), e HR?]]|| < C<H)* (5.3)

for teR, neZ? and ie{l, .-, d}. We first compute:

[(xi—ny), e R?*] = [x;, Re™"¥ R]
= -iS:e'isHR[x,-, H]Re *=9Hds4[x;, Rle " ¥ R+Re " [x,, R].

Using (3.3) and noting that d,R is bounded, we obtain (5.2). The double com-
mutator is
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[(x;—ny), [(x;—ny), e *HR*]]
=[x, %, RIe“M R4 RLx,, e “¥1R+ Re™¥[x,, R]]

= 2(=ip| [ e B ROk, HDem 5 (Cx,, HIR)e -9 duds

+(—=) e RLx,, x,, HTIRe™ -4

+2{[x¢, R1e™"#[x;, R]1+[x4, R1[xs, e " 1R+ R x4, e7*# ][ x4, R]}
+[xi7 [xi) R]]e_itHR+Re_itH|:xiy [xiy R]] .

Using (3.3) again, we learn that the first term of the right hand side is O(Kz)?).
The other terms can be estimated as in the proof of (5.2) using (3.3). O

PROOF OF THEOREM 1.4. By and [3.7), we immediately have
lle* ¥ RY, < C<8>?,  teR.
Since d<3, applies with 8=2 and
le™*# R*|| gcurcreyy < Clle " F R/ le~** R¥|* 72/
< G, teR.
Combining this with [Theorem 2.1l and [Theorem 1.1, we obtain
le™*® f(H)l ey < Clle™# R?|l gauscren | RP~*| ez, irczan | R™2 f(H )| 5wy
S G, teR (5.4)

if feS(B) with >2+d/4. As in the proof of Corollary 4.4, [5.4) implies

for 1Sp=<co. d

For the case d=4, we need an additional condition to prove [1.2). We let
H'(R?%) denote the usual Sobolev space of order /.

THEOREM 5.2. Let d=4 and suppose D(|H|YH)=H'(R?*) for 0<I<[d/4].
If f=S(B) for some B>2[d/4]+d/4, then

lle=“H f(H)| aczicrty, = C<EH2, teR. (5.5)
SKETCH OF PROOF. Let k=[d/4]. The main step of the proof is to show
[AdW (e "B R**)| = C<tY', teR, (5.6)

for 0</<2k, where AdY-) is defined as in the proof of Lemma 3.2. In order
to prove [5.6), we compute as follows:
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AdY(e~1H R2*) = Ad{(R*e~tH R*)
!

= — a k bl ,-itH ¢ &
_a+b+c=ld!b!C!Ad (R >Ad (e >Ad (R*).

We expand the term Ad(e *¥#) as in the proof of [5.3). Using the assumption:
D H|¥*)=HYR?), we can show
(i) Ad*(R*) is bounded from L2*R? to H*(R%), and from H*(R%) to
LXR%);
(i) Ad’(e~*#) is bounded from HI/2(R%) to H-t/?}(R?) and
| Ad® (= ¢7)| gegtorn, g-tor21y, < CEHY, teR.

These imply [5.6). Now it follows from [5.6): [le~*# R**|l,,<C<t)**. Since
2k>d/2, this implies as in the proof of [Theorem 1.4l O

COROLLARY 5.3. Let 1£p=< and suppose H and f satisfy the assumptions
of Theorem 5.2. Then

lle=® 8 f(H)| gerp, < CCE1MP1 leR. 6.7

In particular, if d<7 and D(H)=H*R?), then (5.7) holds for f&S(B) with f>
44-d/4.

If we suppose stronger assumption on H we can relax a condition on f:
THEOREM 5.4. Let 1<p<oco and suppose D(|H|"H)=H'(R?*) for 0ZI<[d/2].

If feS(B) for some B>[d/2]14+d/4, then (5.7) holds. In particular, if d<3,
D(H)=H*R?) and f&S(B) for some B>2+d/4, then (5.7) holds.

The proof is similar, but simpler than that of [Theorem 5.2

§6. Mapping properties of ¢ o and ¢ ¥ between LP-spaces.

In this section we establish some mapping properties of ¢ **#o and ¢ ¥
between LP-spaces or weighted L%-spaces:

L**(R*) = {feL{,(R)|Kx>*f(x)€ L*(R")}.

loc
We first recall a couple of well-known results:

LEMMA 6.1. (i) Assume 1=<p<2 and s>d(1/p—1/2). Then L*3(R?%) is
continuously embedded in LP(R?).

(i) Assume 2<p<co and s<d(l/p—1/2). Then L?(R?) is continuously em-
bedded in L**(R%).

PROOF. The result (i) is a direct consequence of Holder’s inequality, and
(ii) follows from (i) by duality. |
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LEMMA 6.2. Assume 1<p=2 and let q be the conjugate exponent: 1/p+1/q
=1. Then for t+0, e *#o is bounded from LP(R%) to LY(R?) and

et Ho| gpp 19, < (4m|t])~ 2/ P-1D t+#0.
PrOOF. If we note the integral kernel of e~%#o ig
kot; x, y) = (dmit) > exp (— | x—y |*/4it),

the result follows immediately for p=1. If p=2 the result is trivial, and the
other cases follow by the Riesz-Thorin interpolation theorem. O

REMARK. In stating we have abused notation. A priori, ¢ *Ho
is defined on L2(R?%), hence on L*N\L? which is dense in LP(R%). Thus e *#o
€B(L? L% means that this densely defined operator on L? maps into L? and
extends to a bounded operator from L? to L?. We will continue this abuse of
notation without comment.

LEMMA 6.3. Let 2<p<co and let s>d/p. Then the operator {D) Se¢ **Ho
is bounded from L*(R?%) to LP(R%) for t+#0 and

IKDY=*e™* 0l pzr, 2y < ClE| 002D 10, (6.1)

PrOOF. Let ¢ denote the exponent conjugate to p. Then s>d(1—1/q),
and <D)>~*=(H,+1)"*/? is bounded from L' to L? by the Sobolev embedding
theorem. Using we see that e *#o(D>* is bounded from L! to L?,
and follows from the estimate given in Lemma 6.2. O

DEFINITION. Let XeC=(R) be a real-valued function such that for some
A,>0, it satisfies: X(4)=1 for A=4,; X(A)=0 for A<4,/2. Then X is called a low
energy cut-off function.

We will need the following resolvent estimate, essentially due to Murata

M]:

PROPOSITION 6.4. Suppose that V is real-valued, and for some p>2 it satisfies
V()| SC(x>7?, x&R?* Let X be a low energy cut-off function, and let M>
—inf o(H). Let 0=s<p—1 and 0<s,<s. Then

IHA+MP e B U )| pepos, g2.-5 S COHTF 1|7, 10, (6.2)

PROOF. The result follows from [M: Theorem 3.3] and complex inter-
polation. O

REMARK. For s,=0 the result is well-known and holds for a much larger
class of potentials. The result (6.2) can be proved for a class of generalized
Schrodinger operators with smooth long-range potentials by combining the esti-
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mates in [J1, J3]. In this case s in the right hand side of (6.2) should be
replaced by s’: s’ <s.

We now suppose V satisfies the following two hypotheses:

(H1) V is real-valued and there exists p>d such that |V (x)|<C{(x)>"?,
xeR;

(H2) There exist so>d/2—1, s;>d/2 and 2=<p=<oco such that 1/2—1/d<
1/p<so/d, and that for M>—inf ¢(H) the operator {x)*1(H+ M) %02
-V<{D)% extends to a bounded operator from L?(R%) to L%R%).

The main result of this section is the following estimate for e~##:

THEOREM 6.5. Assume d=3 and V satisfies (H1) and (H2). Let X be a low
energy cut-off function and let s>d/2. Then e **¥X(H) is bounded from L'(R?)
to L*~5(R%) for t+0 and

e XU H ) gepr. 2. -5y = Cle|7%%,  t#0.

PROOF. Let p, s, s; and p as in (H1) and (H2). We may assume

d d o0
PR, < — = - —
5 1<so=2<s Sy 5

without loss of generality. We start by writing:
e A(H) = H(H e~ Ho—i| UH)e -0V ¢ Hode (6.3)
0

The first term is estimated by Lemmas [6.1, 6.2, and Theorem 1.1:
IX(H )e™*Ho|| 11 12, -sy = CIAH )| geponylle 0l g ep1, 1oy
< Clt|~e2, t+0.

We write F(t)=e “¥X(H) and U(t)=e *#o for simplicity. By [Lemma 6.3, Pro-
position 6.4 and (H2), we obtain

IFGE—2VU@ ez, g
S KT F ) HA MY s,
X[ HAM Y0V (DY | 12y KDY U] g, 1oy
< Clt—ty~tt0|t—g| % || -2 re-up)

< Cmin{|t—z[%, [t—c|7*}|g[72O/7UD), (6.4)

where M >—inf ¢(H). On the other hand, using [Proposition 6.4, Lemma 6.2
and (H1) we also have
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IFt—=) VU@ per1, 2.5,

§ ”F(t_r>”B(L2,8,L2, -S)HV”B(LOO,LZ,S)“U(T)HB(LI,LOO)
< C4—1y%|7|-92, (6.5)

We now estimate the second term in the right hand side of [6.3) If 0<t<1,
it is estimated by

t
(IR VU@ 15- 07
tie :
= S CIt—rl"sﬂlrl"d‘lfz“/p)dr+g Ci—1>~%| 7|22t
0 t/2
< Cltl=n4Cle|-*m < Clt]-27,

where we have applied (6.4) to the first integral and to the second. Note
that d(1/2—1/p)<1 by (H2). If t>1 we divide the integral into three pieces:

[ IF VU@ g0 g2,z = .4

For I we apply (6.4):

t/2

+St — J+1I+111 .
t/2

1/2

1= S:/ZHF(t—T)VU(T)”B(Ll,L2,-s)dT

1/2 1/2
< CS ]t—ﬂ_slz‘]—d(l/z'”md'[ < Ct——sS |Tl—d(1/2_l/md?
0 0
S Cts L Cree,
For II and 111 we apply (note that we need d =3 in the last step for I1):

t/2
IT= Sl/ztlF(t_T)VU(T)”B(LI,Lz, ~3)df

< Cgtm(t—r)‘sltl'd/zdr < Ct‘sgw |z|~%2dr < Ct~9/2;
1/2 1/2
t t
11 = SmuF(t—r)VU(T) lpcps g2, - d? < CS”2<Z‘—T>—3| o|-4rdy
t t/2
< Ct“’”zgt 2<z‘—‘z'>‘sdz' = Ct"”zg o~ %dr < Ct 92,
/ 0
These computations complete the proof. O
REMARK. Estimates of the form:

le™* F XU ) pepr, gy = ClEI742, 10

were obtained in Journé-Sogge-Soffer [JSS] for a different class of potentials.
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This result is stronger since L>*(R?) is continuously embedded in L% ~%(R%),
s>d/2. The proof given above is quite different from the one in [JSS].

§7. Mapping properties of the wave operators.

In this section we obtain several results on the mapping properties of the
wave operators between LP”-spaces. These results are combined to give a proof
of [Theorem 1.5

The first result is an immediate consequence of a result in Simon and
the intertwining property of the wave operators:

PROPOSITION 7.1. Let V satisfies Assumption (A) and assume that the wave
operators W exist. Let feCT(R), and let 1=p<2<qg<cc. Then W.f(H,) and
(W.f(Hy))* are bounded from LP(R%) to LYR?).

Proor. Let [>d/4 and M >—inf ¢(H). Then (H,-+M)"! and (H+M)™ ! are
both bounded from L?(R%) to L*(R%), and from L*R%) to LY(R?) ([S: Theorem
B.2.1]). We write glA)=A+M)*f(A)eC5(R). Then by the interwining pro-
perty, we have .
W.f(Hy) = (H+M)"\(W.g(Hy))(H,+M)™

and hence it is bounded from L?(R¢)to L%R?%). The statement for (W.f(H,))*
is proved analogously. O

The next proposition is a consequence of [Theorem 1.3 and [Lemma 6.2:

PROPOSITION 7.2. Assume d=3 and Ve&B(L*, L?) for some ¢q:1<¢=<2,
1/q<1—-1/d. Assume moreover that W. exist. Then W.f(H,) is bounded from
LY(R%) to LYR?%) for any feCH(R).

PrROOF. We consider the -+-case only. We choose f,eC%(R) so that
f{ADf(A)=f(A). By the standard Cook’s method we have

WL FH) = fHW £ (H)
= f(H)e e o f (Hyy+i | f(H)e Y o f ()t

The first term in the right hand side is bounded from L'(R%) to L*"\L> by
Corollary 1.2. The integrand in the second term is estimated by
and Lemma 6.2: Let d(1/¢g—1/2)<f<d/2—1, then

“f(H)e“Hve_“HOfl(Ho)HB(LI,LQ)
é He“Hf(H)”B(LQ)“V ”B(Lw,LQ)H e—“Hofl(HO)HB(Ll,Lw)

< COHB|t|-ve < Ct|-2/e+8
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By the choice of B8, d/2—f>1, and the integral is absolutely convergent in the
B(L!, L% norm. The result follows from this. O

PROPOSITION 7.3. Assume d=3, and let q such that 1<¢<2 and 1/¢q<1-1/d.

Assume V satisfies (H1) and (H2), and let feCF(R,). Then (W.f(Hy))* is bounded
from L'(R%) to LYR?).

ProOOF. We first note that (H1) implies the existence of W.. Without loss
of generality, we may suppose f is real-valued. As in the proof of the previous
proposition, we have

OV SCHYY* = f(Ho)e oe™ T fL(H)—i|” f(H)e 0V =4 f(H )t

The first term is bounded from L'(R?%) to L%(R¢?) as before. We estimate the

integrand in the second term using [Corollary 5.3 and Theorems 6.5: We set
s=p/2 in (H1), then

I f(Hoe HoV et f,(H)|

B(LL, LD
< ™ Hof(Ho)| gezooll VI gege. -5, g e F fF1H) gepn, g2, -5

< G sup [Kx)PV(x)] - [t 742 < Clt|~e0-vo, 0.

By the assumption on ¢, d(1—1/¢)>1 and the integral converges absolutely in
B(L', LY-norm. The assertion again follows from this. O

REMARK. If we use results in [JSS], imposing their conditions on V and
H, we can replace the assumption feC%(R,) by f&CH(R).

PROOF OF THEOREM 1.5. We first note that Assumption (B) implies the
existence of W.. Hence if 1<p<2<g< 0, it follows from [Proposition 7.1 that
W.f(H,) and (W.f(H,)* are bounded from L?(R%) to LYR%). Since Assumption
(B) implies Ve B(L>, L'NL*), we can apply [Proposition 7.2 to obtain W, f(H,)
eB(LY, LY if 1/2<1/q<1-1/4d.

We now apply [Proposition 7.3|to prove (W.f(Hy))*eB(L', L%). The condition
(H1) follows immediately from Assumption (B). In verifying (H2), we take
p=2, s;=p/2, s,=[d/2] and use the differentiability of V to commute with
differentiation of order less than s,. Then we note that (H-+M) %/2{D>% ex-
tends to a bounded operator on L2(R%). Thus (H2) is satisfied, and the Proposi-
tion 7.3 implies the boundedness of (W.f(H,)* from L!(R%) to L¥R?*) if 1/2<
1/¢g<1—1/d. Combining these results with a duality argument and the Riesz-
Thorin interpolation theorem, we conclude the proof. O
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