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Introduction.

Let I be a principal congruence subgroup of SL(n, Z) of level m=3. Then
M=SO(n)\SL(n, R)/I" is a locally symmetric space with finite volume. The
purpose of this paper is to study the end of M from the point of view of Rie-
mannian geometry. We investigate the distribution of flat, totally geodesic,
isometrically embedded submanifolds of M and determine the tangent cone of
M at infinity. (The tangent cone at infinity of a metric space (Y, d) is the
limit space lim:.. (Y, d/t), g) when it exists, where ¢ is an arbitrary point of
Y and the limit is taken in the sense of Gromov’s Hausdorff distance [14],
[15].)

Tits buildings are known to be very valuable for studying the geometry at
infinity of manifolds of nonpositive curvature (see [1], [6]). In [16], we studied
the case n=3 and used, instead of the Tits building itself, its quotient by I
The same method works in studying the general case.

Let {Tr| be the quotient space of the geometric realization of the Tits
building of SL(n, @) by I'. This space is a union of a finite number of sim-
plices corresponding to the ['-conjugacy classes of proper parabolic @-subgroups
of G=SL(n, R). And we can label the simplices with subsets @’s of a funda-
mental system 1” of the roots of G relative to A, where A is a maximal torus
of G.

By means of the fundamental open set for I', we decompose M into a finite
number of pieces M,, ---, M;. These correspond bijectively to the maximal
simplices Al ---, A% of |Tr|. We can find a totally geodesic, isometrically em-
bedded Euclidean sector S; in M; for each ¢, which is isometric to the closure
of Weyl chamber in the Lie algebra a, of A. The manifold M is contained in
a d-neighborhood of the union of S; for sufficiently large 6>0. So U, S; is,
as it were, a skeleton of M. The more we rescale and shrink the metric g of
M, the more M becomes thin and resembles the union of S;, which is almost
the cone C|Tr| of |Tr]|.
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On the other hand, there is a natural compactification M of M due to Borel-
Serre ([4]). Its boundary oM is a disjoint union of faces ¢’(Q) corresponding
to the ['-conjugacy classes of proper parabolic Q-subgroups of G (or simplices
in |Tr|). We can construct oM as follows. Let P be the group of upper
triangular matrices in G. For each subset @ of 1, there exists a unique para-
bolic @-subgroup Py containing P. Let Pg=MgAgNe be the standard Levi
decomposition of Py and V=(KN\MgNg)\MoNg/(I'NMgNg). This manifold Vj
has a fiber bundle structure, whose fiber is the nilmanifold Ng/(I'"\Ng) and
whose base space is the locally symmetric space (KNMg)\Mg/(I'NMp). We
cut off the ends of Vg and denote by Vg the resulting compact manifold. If a
parabolic @-subgroup @ is conjugate to P, then the face e¢’(Q) is the interior
of Vy_9. We put Vy_g’s on the simplices of |T | labelled with @, and paste
them according to the face relation of |Tr| to get the boundary oM.

We extract a family {y,} ez, of geodesic rays from \UJi-, S; which is in
one-to-one correspondence with the set of the points of |7 r|. If a parabolic
Q-subgroup @ corresponds to a point ye|T | and Q is conjugate to Py, then
74([s, «)) has a neighborhood U, which is diffeomorphic to the product Vy_g
X[s, ) for sufficiently large s>0. Let U, . be the transversal section Vy_g
X {t} of r,. We take a divergent sequence {p,} of points along 7, and study
the limit space lim;... (M, p;). Then we can see that the fiber Ng/(I'"\Ng) of
Vy.e in U, shrinks as ¢t goes to infinity (Proposition C of §4). The portion
around 7, collapses in different ways when y runs over |T r]|.

Our main results are as follows.

THEOREM A. There exists a family {yy} yeir 1 of geodesic rays in M which
corresponds bijectively to the points of |Tr|.

REMARK. (1) When y ranges over the interior of a maximal simplex A®
of [Tr|, the interior of S; is filled with 7,((0, oo))’s.

(2) Let us say that two geodesic rays 7i, 72: [0, 0©)»>M are equivalent if
and only if there exists C>0 such that dy(y.(t), 7:(6))<C for all £=0. Then

among the rays in {y,},eirp, 7y and r,, are not equivalent for y=+y’. We
state this and related matters in §7.

THEOREM B. There exists a metric deirp on the cone C|Tr| of |Tr| and

tim((M, 38), ) =(CITrl. deizp), 0),

t—oo

where O is the vertex of the cone and gq, is the coset of the identity element
eceG.

REMARK. The cone C|T | is also constructed by pasting a finite number
of copies B,, ---, B; of the closure of a Weyl chamber in a,. The restriction
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of the above metric dcir, to each B; coincides with the original Euclidean
metric.
For R>0, let

BR(qo; M) - {p€M|dM(py qo) é R})
0Br(go, M) = {pEM|du(p, q) = R},

and let V be a space obtained from 0.X as follows. For each ©, we replace
the collar neighborhood 0V y_gx[0, 1] of Vy_g by 0V y_gXx[—a, 1] with a>0.
And then collapse all the fibers Ny_g/(I'"\Ny_g)’s over oVy_¢X[—a, —b]
(0<b<a) for each 6.

From Theorem A, B and the study of the limit space lim;... (M, y,(0),
0Bgr(po, M) resembles V in the sense of Hausdorff distance dz for sufficiently
large R. Thus we can visualize the “collapsing” phenomenon of M by using
the space |Tr]|.

In this paper we suppose n=4. (Though our argument is valid for n=2, 3,
the case n=2 is already well known (see [8]) and the case n=3 is studied in
[163.)

The organization of this paper is as follows. In §1, we construct |7 r|
and associated family {yr,},eir, of geodesics in M. We also construct the cone
C|Tr| and give it a polyhedral metric d¢ir,. In §2, we calculate the Buse-
mann function with respect to each y,, and prove [Theorem Al In §3, we
show the existence of isometrically embedded Euclidean spaces in M. In §4,
we investigate the limit spaces along the ray y,. In §5, we decompose M into
the pieces and study how they are pasted together. In §6, we construct an
e-pointed Hausdorff approximation from ((M, g/t), ¢») to (C|Tr|, deiry1), O)
and prove [Theorem B. In §7, we study a certain equivalence relation between
rays in M and related matters.

The author would like to express his sincere gratitude to Professor K.
Fukaya for his invaluable advice and continuous encouragement. He also wishes
to express his appreciation to the referee for giving him useful comment.

Notation.
For a metric space (X, d), a point p of X, and a positive number D, we
denote by By(p, X) the set {¢=X|d(p, ¢)<D}.

§1. Preliminaries.

We recall that the principal congruence subgroup I” of level m is given by

I'= {g=(g:)eSL(n, Z)|g:;=0;; mod m},
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where 0;; is the Kronecker’s delta. Let n=4 and |7 r| be the quotient space
of the geometric realization of the Tits building of SL(n, @) by I". Then there
exists a family {y,},eir of geodesics in SO(n)\SL(n, R)/I" naturally associated
with |Tr|. In this section, we construct |Trl|, {r,}yeir,, the cone C|Tr| of
|Tr|, and the metric diz, on C|Tr].

1-1. Construction of |T p]|.

Let G=SL(n, R), K=SO(n). Let P be the group of upper triangular ma-
trices in G, A the group of diagonal matrices in G with positive entries. For
a subgroup H of G, we denote by Hy (resp. Hz), the group HN\SL(n, Q) (resp.

HNSL(n, Z)).
For each /=1, ---, n—1, we define the map 6,: A—R* as follows.
(1-1-1) 0.(a)= -2 for a=diag (a,, -, an)SA.

i+1

We put Y'={64,, ---, §._,}. For a subset OCY, we put

(1-1-2) Po = {g=(g:)€G|g;=0 if i>7 and {0;, 0.1, -+, 0.1} L6}

Notice that Pr=GCG and P;=P. The Py’s are called the standard parabolic sub-
groups of G, and each proper parabolic @-subgroup Q of G is conjugate by
some element of SL(n, @) to one of the Pg’s with @=+1".

Let <V be the set of all (proper) maximal parabolic @-subgroups of G. And
let 3 be the collection of finite subsets of €V such that SCCV is an element of
Y if and only if Qs:= MNges @ is a parabolic @-subgroup of G. We include
the empty set in Y. The pair (<V, 2) gives a simplicial complex 7. Then T
is a building and we call this the Tits building of SL(n, Q) (see §5 of [18]).
We denote by |T| the geometric realization of T which is constructed as fol-
lows. Let RY be the set of all maps from <V to R. We identify Q&<V with
the map ¢=RY defined by ¢(Q)=1 and ¢(P)=0 for P#Q. For each S=
{Qy, -, @}, we put |S|={Zi.t:Q;eRV|0<t, Tiiti=1}. Let |T|=
UseslS|. We give |S| the topology as a subset of the finite dimensional vector
space spanned by Q,, -+, ¢, and give |T| the weak topology.

The group I’ acts on <V by Q-g=g 'Qg for Qe<V and g=[. We also
write Q¢ instead of g~'Qg. This action induces the action of I" on 7 (and
hence on |T']) in the obvious way.

Let us reconstruct the quotient space |7 r| in a combinatorial way. We
remark that each simplex of |T| is either a maximal one or a boundary sim-
plex of some maximal one. So it suffices to consider how [-equivalence classes
of maximal simplices of |T'| are pasted together in |T r|.

Notice that a maximal simplex of T is the set of maximal parabolic Q-
subgroups which contain a fixed minimal parabolic @-subgroup.
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Let z,, -, z; be a complete representative system of Py\Gq/I" (these dou-
ble coset classes are known to be finite by Borel [2]). We can take z,, -, z;
in Gz because G=SL(n, R). We put z,=e.

Then the I'-conjugacy classes of minimal parabolic @-subgroups of G are
represented by P2, ..., P22 Hence P*, ---, P?2 correspond bijectively to the
maximal simplices in |7 p|.

Let A=|v,v; -+ v,-1| be a simplex whose vertices are vy, vs, =+, Un_;. FoOr
a non-empty subset =10, -+, 0, }C1"; 1<i,<i< -+ <i;=<n—1 we put A(O)
=|vy - Vigl- This is one of the boundary simplices of A. _

Let us prepare A copies of A, and number them from 1to 4; i.e., AY, .-+, A%,
For p=1, -+, 4, let the vertices of A® be vf, v4, -+, v4_,; l.e., AP=]|vfv§ - v5_,].
We define the simplicial map ¢,: {vy, -+, vaci} = {08, -+, v4_1} by @,(v;)=v4 for
j=1, .-, n—1, and denote by @, the homeomorphism from A to Af induced by
¢,. We also denote by A*(@) the boundary simplex @,(A(0)) of A”.

The simplex A?(O) corresponds to the simplex {QeV|Q>D(Pr_g)*} in T.
But the two simplices {QeV|QD(Pr_g)*¢} and {QEeV|QD(Pyr_g)*#} might be
I'-equivalent. This is the case where there exists an element y of I” such that
(Pr_e)*#"=(Pr_g)*». This condition is equivalent to the following: (Pr_g)ez,I"
=(Py_9)qz;,]“.

Therefore we paste A, -, A% together in accordance with the condition
below to get a space |Tr]. »
(1-1-3) We paste A°? and A*# along A°(O) and A#(@) by the homeomorphism
D ,°D; | neoy if and only if (Pr-g)ez,I'=(Pr-e)ez.l .

1-2. A family of geodesics.

Let M:K\G and P(n, R) be the set of all positive definite, symmetric
matrices contained in SL(n, R). We identify M with P(n, R) in the usual way;
i.e., G=SL(n, R) operates transitively on P(n, R) by conjugation (x-g=‘gxg
for xeP(n, R), g=G), and the isotropy group of x,=1,=diag(l, ---, 1) P(n, R)
is K=S0(n). We give M the canonical metric & associated with the Killing
form of the Lie algebra ¢ of G. (The Killing form of g is given by 2n-
trace (XY) for X, Y eg.)

We remark that x,-A is a totally geodesic, flat submanifold of M which is
isometric to the Euclidean space R*"!. We define unit speed geodesics in x,-A
which issue from x, as follows.

Let a, be the Lie algebra of A, i.e., a,={diag(a,, ---, ax)la;, -, a,€R;
a;+ - +a,=0}. For a=diag(a,, -, a,)=a, we put

D=D(a)=|la]| =2vn > aa;.

1sisjsn-1

If a=+0, the"unit vector in the direction of a is
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X = X(@) = diag(ai/D, -, a,/D)

and the unit speed geodesic 7=7(a): [0, oo)—»]\7[ in the direction of a is defined
by
F(t) = xo-exptX = x,-diag (e®1t/?, ...  g%nt/D)

= diag (e*™1¥/P ... g*nlID) for =0,

where exp: a,—A is the exponential map.
Let d6;: a,—R be the differential of 4, and put A={d@,, ---, df,-,}. Then
A is a fundamental system of positive roots for the pair (g, a,). We put

af = {a=diag(a,, -, a)Ea,la#0, o, < - Za,}.

Then af\U {0} is the closure of a Weyl chamber of a,.

Let M=M/I" and g be the metric of M induced by §. Let =: M—M be
the projection. We put %t,={7-(f(a)-z,)|ac=aj}.

Let us assign the point 22— %y Fs 7% 0y 4 Fn"dnn

Ap— 0 Ap—Q; Ap— &y

geodesic w-(f(a)-z,) in ®,, where a=diag(a, ---, a,). Then for each p we get
a one to one correspondence of %, and the set of all points of A?. Since |T p|
is obtained by pasting the faces of A, -+, A% together a finite number of times,
we obtain the required family {r,},cir, of geodesics by deleting some geo-
desics from \Uz_; R,.

v5_, of A” to the

1-3. Polyhedral metric on C|Tr]|.

We identify the Lie algebra a, of A to the Euclidean space R™! by using
the Killing form as the inner product. Let ¢;: R”“%ap be the identification
map. We define a diffeomorphism ¢, : A—»xo-A(C:A7I) by ¢.(a)=x,-a for acA.
Define a2 map ¥: x,-A—R"' by ¥T(x)=¢1i'eloge¢3;'(x) for x=x,-A, where log
is the inverse map of exp.

We define unit speed geodesics 7,: [0, 0)—M (=1, -, n—1) by

where the 7—: (resp. (+1)—(G+1)) entry of the matrix on the right side is
equal to e**=™C: (resp. ¢%/%i), and C,=+/2n+/1(n—i).

Let A;={asA|0:,a)<1 for i=1, ---, n—1}. Then A, is the image under
the exponential map of the closure aj\U {0} of a Weyl chamber. And the 7; are
the geodesics corresponding to the edges of the Weyl chamber.

If we put E,=%(7,([0, «))), then E,, ---, E,_, are half-lines through the
origin. Let B be the convex cone spanned by E,, -+, E,.;. Then ¥(x,-A;)=
{(m7(a))X[0, 0))|asaf} coincides with the cone B.

For a subset ©CY", we define B(@) to be a face spanned by {E.|0,6}.
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This face B(®) is the cone over the simplex A(@) defined in §1-1.

Let us prepare 4 copies of B, and number them from 1 to 4; i.e., B,, -+, B;.
We denote by B,(@) the face of B, which corresponds to B(@), and by
¥,: x,-Ai—B, the diffeomorphism which corresponds to ¥.

Now we get C|T | by pasting B,, -:-, B, together in accordance with the
condition below.

(1-3-1) We paste B, and B, together along B,(0) and B,(0) by the isometry
V,-¥;' s, if and only if

(P)"—G)Qz,or - (PT—Q)QZ;JF-

Remark that B,(0) is the cone over A?(@) for each non-empty subset @ of
Y and p=1, ---, 4. We give B, the induced metric d, from R""' for each p,
and let dciry1 be the metric whose restriction to B, coincides with d,. We
call this metric d¢ir i the polyhedral metric.

§2. Busemann functions and the proof of Theorem A.

In this section we use the following notations (cf. [9], [10]). We para-
metrize a geodesic by arc length unless otherwise mentioned. Two geodesics

7, @ of M are said to be equivalent if the function d(7(), 5@¢) is uniformly
bounded on [0, o). We denote by 1\71(00) the set of all equivalence classes of .
geodesics of M. The equivalence class represented by a geodesic 7 is denoted
by #(o0). For peM, xeM(o), we denote by 7,, the unique geodesic such that
7pz(0):p: ?px(oo):x-

DEFINITION 2-1. For x&M(), p=M, we define the Busemann function
hep t0 be hay(@)=lim... {d(g, 7p:(t)—t} for all geil.

LEMMA 2-2 (Lemma 2.1 of [16]). Let 7: [0, 00]->A7I be any unit speed geo-
desic. Then moj: [0, co)—=M is a ray if and only if hiwy 7w0)(7(0)-2)=0 for all
gerl.

Recall that a ray is a geodesic which realizes the distance between any two
points on it.

For simplicity we denote Afa) ), 7y DY h(a) for aca,—{0}. Let N=

]

LEMMA 2-3. Let a<af. Then the Busemann function h(a) is invariant
under the action of N on M.

ProoF. First we show that A(a)(x) is a continuous function of a=a; for
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a fixed xeM. Let h(a)(x)=dgz(x, F(a)s))—s for s>0. For each positive
integer n, we put 0,= /5w (%, x) and l,=du(x, 7(a)(n)). Then, from the
Rauch comparison theorem ([7]), we have

0 = hpla)(x)—=hass(a)(x) = da(x, {(a)(n)—du(x, F[la)n+s)+s
< lh—A124+s2+20,5cos @,+s.

Hence, 0 A (a)(x)—h(a)(x)<l,(1—cosf,). Again by the comparison theorem,
we have cos 0,=n?*+[2—[3, where [,=du(x,, x). So we obtain

0 = ha(a)(x)—h(a)(x)

ni+I1E—13\  BB—(l,—n)
= l”(l_ 2nl, )_ 2n
33 ___L X .
é 27’1 - 2n {dﬂl(x‘)] ‘x)} .

Thus the convergence A,{a)(x)—h(a)x) (n—c0) is uniform on aj and the func-
tion a—h(a)(x) is continuous on aF. Therefore it suffices to show that
hla)x-g Y )=h(a)(x) for all g&N, xeM in the case where a lies in the interior
Int af of the Weyl chamber.

Suppose that a=diag (a;, -, an), i.e., ;<@ < -- <a,. Let a;=diag (e*1*'?,

1 8ij
..o, e*2¥P) Then #(a)t)=x,-a;. If we put g:(o ;)EN, then

1 e(ozl——afz)t/Dg12 e(al—a;;)t/D e(al-an)t/Dgln

13

1 e(“z‘“e})ﬁlbg28 wee pglag-ap)t/D on
atgaz‘l o 1 cee e(“S“an)t/D an
1

Notice that
da(f(a)®)-g, 7)) = du(Xo- a:g, %o ar)
= du(x,-a:gaz’, x,).
Since lim;.., a:ga;*=1,, we have
1{12 da(fla)t)-g, 7(@)t) =0.
Therefore,
| h(a)(x-g™)—h(a)(x)]

= |lim {d g (H@)®)- g, ¥)—t} —lim {da(F(@)®), x)—1}
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= l}iqrg{dﬂ(?(a)(t)-g, x)—da(7(a)®), x)}
= %{rgldﬂ<?(a)(t)-g, x)—da(f(a)@), x)|
< lim da(F(a)?)-g, H@)®) =0,
and h(a)(x-g~)=h(a)(x) for all xeM. O

For x=(x;;)&P(n, R), we denote by A,(x), the (kX k)-minor determinant

Xq1 *0 Xip
Xop o Xop | .

det| “**  “** | in the top left corner.
X1t Xpe

LEMMA 2-4. Let a=diag (a,, -+, a)eaf, and x=(x;;)€P(n, R). Then we
have

h(a)x) = C log (EAk(x)akh“ak)

= n log (:ﬁ (Ak(x))‘dok(a/uau)),
where

J— .e = ‘\/‘77 1 =
C = C(al, 3 an) - 2 ,\/Zlgi§j5n_1aiaj -

n
-

Proor. First observe that we can calculate directly the Busemann func-
tions on the Euclidean space R""1,

Let 4:[0, o)>R™*' be a unit speed geodesic and y=(y,, =+, Yp-1)ER™?
be a point. We extend ¢ in the opposite direction and get the geodesic
d:(—o0, 0)-»R"*! Let t,R be the (unique) number such that the line through
y and &(¢,) is perpendicular to §(R). Then the Busemann function Az, s, is
given by A, 50 (¥)=—1,.

Since the totally geodesic submanifold x,-A is isometric to R*™! and #(a)
lies in x,-A, we compute h(a) on x,-A.

Notice that any element x=diag (x,, -, ¥,)EX,-A can be (uniquely) written
as x=x,-(exp B) with f=((log x,)/2, -+, (log x,)/2)Ea,. Let #: (—oo, co)—a,be the
geodesic given by #(¢)=t-a/||a||, and ¢z be the unique number such that the line
through B8 and #(#) is perpendicular to #(R). Then (fg-a/|lal|—8, a)=0, where
(,) is the inner product given by the Killing form of a,.

Recall that the inner product is given by (X, Y)=2n-trace (XY) for X, Y
€a, Since x,-x,- -+ -x,=1, we have
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Therefore we have
2-4-1)  h(a)x) = —C«{:i (ar—a,) log xk} for x=diag(x,, ---, x,)Ex,-A.

Recall that M=x,-AN.
So from Lemma 2-3, h(a) is the unique function which is N-invariantfand
satisfies the equation (2-4-1) on x,- A.

Let
1 8ij x1
g = e N, e x,- A,
0 1 xn
x =(x;;) € P(n, R), and
x = diag (x1, -+, X3)-g = ‘g(diag (x1, -+, x))g.
Since

gix 8ok Gr-ne 1

1 g2 G 8
1 ges- G

X1 X1k

we have Ak(x):det(é : )=xi- oo xp and Xp =4 (x)/Ax(x) for k=1, -,
x ..-x

n—1. Therefore . He

ha)(x) = ha)(diag (x1, -+, x2))

n-1

- —c{kzl (@s—an) log x,;}
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Ap(x) “k‘“n}

g fagereen (2

= —C log ([T Aux)ta-ex)

n-1
= C log (kl;[lAk(x)“kH-ak). O

For each nXn matrix x=(x;;) and each permutation ¢ of n letters, we
denote by x-¢, the matrix

Xa(1e(1) Xotnyotey 0 Xotha(n)
Xoyotty KXoy *° Xo@atn)
Xonyo(ty Xotmyo2) 70 Xetnyolnm)

LEMMA 2-5. Let a=diag(ay, -+, a)sa,—{0} and x=P(n, R). Take a
permutation ¢ of n letters such that a,q) SAsey< -+ <@gny. Then the Busemann
function h(a) is given by the following.

h(a)(x) = C log {:Ii (Ak(x.g))aack+1>-aack)}

=n log {:I;[i(Ak(x.0-))—d0k((alnan)-o)} .

PrOOF. Since 7(a)=7(a-0)-¢', we have h(a)}x)=h(a-o)x-0). So, from
Lemma 2-4,
hia)x)= hla-6)(x-0)

= C log {:I;Ii (Ak(x-o'))ao‘(k-u)‘“a(k)} .

LEMMA 2-6. h(a)(x,-2)=0 for all aca,— {0} and gSL(n, Z).

PROOF. Let ¢ be a permutation such that a,, =< - Zagsm,. Recall that
xX,-g="'gg is a positive definite symmetric matrix. So (x,-g)-¢ is also positive
definite, symmetric and hence the minor determinants A.((x,-g2)-0); k=1, -,
n—1 are all positive. Notice that each A.((x,-g)-¢) is also an integer. There-
fore Ay((x4-g)-0)=1 for k=1, ---, n—1, and the assertion follows immediately
from Lemma 2-5. O

COROLLARY 2-7. zo(f(a)-g) is a ray in M for all aca,—{0} and ge
SL(n, Z).

PROOF. Immediate from I'CSL(n, Z) and Lemma 2-2. o
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PROOF OF THEOREM A. Take the family {r,},ecir, of geodesics in M
constructed in §1-2. It corresponds bijectively to the points of |Tr|. From
Corollary 2-7, 7, is a geodesic ray for each ye|Tr|. We have thus proved
the theorem. Q.E.D.

REMARK. As stated in [I], we can construct (another) geometric realiza-
tion of T in the ideal boundary M(eo). By using this, we can state the rela-
tion between 7, and ye|Tr| in Theorem A more clearly. Let

(%0+ A1g)(e0) = {c(o0)|c(t) = xo-(expta)g  for t20, asai},

where gG. We put |T|'=U esrin.z) (Xo- A12)(e0) and give it the topology
induced from the restriction of the Tits metric of M(oo) (1D to |T|’. We
define a homeomorphism @: |T|’—|T| as follows. Let a=diag(a,, -, a,)
caf, g&SL(n, Z), and c({t)=x,-(expta)g for all +=0. Then @(c(c0))=
g Prog Vb S (Pr )
I .the natural projection from |T| to |Tr]|.

The relation between y, and ye|T | is as follows. Let 7, be an arbitrary
lifting of 7, in M. Then we have y=II(D(F,(o))).

(Pr-t,-)% We denote by

§3. Isometrically embedded Euclidean spaces.

We show in this section that #(x,-Az,); p=1, ---, 2 are isometrically em-
bedded Euclidean spaces R*"! (Lemma 3-3). We use this result in §5, 6.

LEMMA 3-1. The restriction of m: M—M to x,-Az is injective for each
zeSLin, Z).

PROOF. Assume that there exist a, b€A such that zw(x,-az)=n(x,-bz).
Then x,-azh=x,-bz for some hel'. Let g=zhz*erl, because I" is a normal
subgroup of SL(n, Z). Then (x,-a)-g=x,-b. So we have ‘ga’g=>* and hence
(a’gb™*)'g=e.

If we put g=(gi;), a®=diag (p, -+, p»), and b*=diag (¢, ---, gn), then a’gh=?
=((pi/95)&:5).- Therefore (p»/qr)gr<X7=1(Pi/gs)gti=1 for k=1, .- n. Be-
cause g:x=1 (mod m), we have gf,=1 and p,/q,<1/g%x<1. But TIi, p:/g:=1,
so pr/qr=1 for k=1, .-, n. Hence a*=5H*. Since the entries in a and b are
positive, it follows that a=b. O

LEMMA 3-2. =zo(f(a)-az) is a ray for any aca,—{0}, a€A and z<
SL(n, Z).

PrOOF. We put a =diag(p,, -+, pn)€A and 7(t) = 7(a)t)-az. Since
dz7'®), x)=dgFla)), x-z"'a™*), we have h(x)=h(a)(x-z"'a™*) for all xeM,
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where we denote h# (.7 by h. We study values of h(x,-azk)=h(a)x,-
azkz'a™) for k<l (note 7/(0)=x,-az).

Let g=(g;;)=zkz"*<I’, because I" is a normal subgroup of SL(n, Z). We
put x=x,-(aga )="(aga*)aga™). We have aga™=(p:/ D)8

Let ¢ be a permutation of n letters such that a,q Saee, < -+ Sagny, and
v; be the 7-th column vector of aga~! for /=1, ---, n. Then

(Weat1ys Vo) *+* Wotrys Vacky)
Ay(x-0) =det :

(Votr)s Vony) =+ (Watrys Vatky)

where (,) denotes the usual inner product of the Euclidean space R". So we

have
2
Pp De
J Pa(ll)gﬁlg<l) Pa(i)gﬂlc(m

Ay(x-0) = det : :
p,@k pﬁk

; 88 ,0¢
Pa(ngﬁwm Dot Proh [

2
1§ﬁ1<~-</3k§n1

pa(i) ) }2
> _— . .
= {det( o(j)gu(z)a(]) st jsk

Doty ooy ootk
= | det - :
Doy \Gotirar = Gatkratks
-1 2
po(l) —i
X t. |

pa(k) _l
8oty " Bathyolky \ ?
= {det : :

i
\Go(rray **° otkrath) /

Since g, we have

ooy " Bowate) 1 |
: : = : ) mod m ,
gotkyoy ** otkroth 1
and
8atyaty " ook
det : : =1 mod m .

8otkray **° 8atkralk)

Therefore Ax(x-0)=1, and from Lemma 2-5, h(x,-azk)=h(a)(x)=0. Then }
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Lemma 2-2 implies 7<(7(a)-az) is a ray. O

LEMMA 3-3. Let =, be the restriction of n:M—M to x,-Az for ze
SL(n, Z). Then r,: x,- Az—M is a globally isometric embedding.

ProoF. Immediate from Lemmas 3-1 and 3-2. O

§4. Limit spaces along rays.

For each geodesic ray 7, in Theorem A, we study the limit space
lim;... (M, 7,()). Our argument is similar to ones used in [1I], [12]. Let a=
diag (a,, -+, az)Eay, p{l, -, 4}, and y,=n-(F(a)-z,).

For R>0, we put

L(R) = {geSL(n, R)|da(x,, x,-g)<R},
Hy(R) = {e'*z,kzte ke, da(xy-e'%z,k, x4-¢'%2,)< R}.
Since [ is a normal subgroup of SL(n, Z), we can also write
H(R) = {e'*k’e"'*e L(R)|k'el'}.
We define a metric d on L(R) by
d(g, g')=sup{da(x-g, x-g")|x€Br(x,, M)}  for g, g’ L(R).

Then (L(R), d) is a compact metric space and H,(R) is a closed subset of L(R)
for each positive integer /. We may assume, by taking a subsequence if neces-
sary, that H;(R) converges to a subset H(R) with respect to the Hausdorff dis-
tance in L(R). For R<R’, there is a natural inclusion 14 z : H(R)—H/(R")
such that I% r/(g)=g on Bg(x,, 1\71), and these maps induce an inclusion I: H(R)
—H(R’). We put H=\_z>, H(R) and give it a compact open topology. It is
easy to see that H is a closed subgroup of SL(n, R). Therefore H is a Lie
group.
Hence, we have immediately

im .. (M, H, x0), (M, T, {a)D)-2,) =0,

where dp...n is the equivariant pointed Hausdorff distance (see §3 of [13]). So
from Lemma 1-11 of [11], we have

lim (M, x(7(a)(0)-2,)) = (M/H, %),

where X, is the equivalence class of x,.

It remains only to determine H. We need some preparation.

For a proper subset O@CY with ¥'—60=1{0,, 0,,, -, 6;} and i,< - <,
we define a sequence (of numbers) (@) as follows: Let us line up the numbers
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i1, =+, 41, and insert a vertical line between 7, and 7,,, if and only if 7,,,#7,+1.
We line up the lengths of the parts which are placed among the vertical lines
and denote this sequence by X(@). For example, when I'—®=1{8,, 6, 6;, 0,
0s, 010}, we get X(@)=(1, 3, 1, 1) from the sequence 2[4 5 6|8|10.

If @+ and X(O)=(w,, -, w,), we define a subgroup My_g of Py_g by the
following equation (4-1), and put

Ar_¢ = {asA|B(a)=1 for all BT -6},
Nr-e = {g=(g:)ENIg;=0 if i<j and {6;, .44, -, 0,4} CT —6},
where N is the nilpotent group defined after Lemma 2-2 (see §2).
(4-1) My_¢ = {diag (1, -, €i,-1, F1, €ijvwyer, s Ein-1, Foy Eigrager, =, En)
eG|g;€eSL*(w;+1, R) for j=1, -, u and g;=+1}.

In the case @=1", we put A3=A, Ny=N, and My="M={diag (¢,, --, €.)l¢,
==1 for j=1, ---, n}.

The standard Levi decomposition of Py_g is given by Py_g=My_gAr_sNy_e
for each subset OCT (see [3]).

LEMMA 4-2. Let a=diag(a,, -+, a)sat, V—O0={0,la,=a..}, and H as
above. Then H:Ny'_(.;(My‘_@f\F).

PrROOF. First we notice that for each positive number R there exists a
positive number C(R) such that if g=(g;;)€ L(R), then |g;;|=<C(R) for all 7, j.

Step 1. HC(My_¢N\I')Ny_s.

Let geH be given. Then there exists a positive number R>0 such that
g€ H(R). For simplicity, we can assume the following : there exists a sequence
{k,}7, of elements of I” such that g,=e'%ke"'*e H,(R)C L(R) and lim;.,. g:=4.

We denote by g, ;; (resp. k;,;;) the i—j entry of g, (resp. k;). Then we
have g, ,;=e'*i"*Pk, ;;, We remark that each %, ;; is an integer and that
g1 <C(R). If 7> and a;>a; (in other words, if ;> and {8}, 0;.,, -+, 0.1}
¢Y—0), we have k,; ;=0 and hence g; ;;=0 for sufficiently large /. So here-
after we assume g,=Pyr_¢.

We decompose g; as

g1 = hlnl; /’ll S5 M)"_QA}"._Q, n, < Nr-@ .

We denote by h;,;; (resp. n;,4;) the i—j entry of h; (resp. n;). We remark that
if @;=a;, then one of the following three conditions is satisfied.

(4-2-a) i=7,
(4_2_b> Z > .] and {0j) 0j+17 Ty ai—l} c Y—@ »
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(4_2-(:) i < ] and {0ir 0i+1) ) 0j—1} C Y_@ .

Let us investigate the entries of A;. If the pair (7, ;) does not satisfy any of
the conditions (4-2-a)~(4-2-c), we have h, ;;=0. If the pair (7, j) satisfies one
of the above three conditions, we have h; ;=g :;=Fk; ;. Therefore h,erl,
because [” is the principal congruence subgroup. Moreover we have h,eMy_g
(that is, the Ay_g-factor of 4, is the identity matrix). We obtain h,eMy_oN T,
gi1€(My_eNI')Ny_g and hence g(My_¢NI" )Ny _¢.

Step 2. (My_eNI')Ny_.oCH.

Let g=(gi)=hn; he My_eNI', nENy_¢ be given. We denote by #hy;
(resp. n;;) the i—j entry of h (resp. n).

Let gi=(gi.:5)=e '“ge'*ePyr_g9. Then we have g ,;=e'“@i%g,;. We can
decompose gi; as gi=hni; ni=(ng ;;)ENr_g, ny, ;=% *¥n,;;. We take an
element n,=(n,,;) of I' such that |n,;;—ni ;| <m for 7, j=1, ---, n. We put
ki=(k,)=hn, el and g,=(g.:y)=e'"ke"'*€ Py _q.

If @;>a; (resp. a;=«a;), then we have g,;=g, ;=0 (resp. gi.;=gi;=Nn,).
If a;<a;, then we have

n n

’
> hisnl,sj'_ > his”l,s]’
$=1 8§=1

|ii—8u.45] = etfaimap

n
< et 3 hul [nf=nis)
§=1

< et it Cl'mn

where C’=max; ;_,,.. . | hi;l. Hence lim,... g,=g.

Let S={g’=(gi)eCG|\gi;—gij|<C'mn for ¢, j=1, ---, n}. Notice that g,=
et*ke”t*=S. Since S is compact, there exists a positive number R such that
SCL(R). Hence g,eH/(R)CL(R) and geH(R). Therefore g H.

Step 3. The Levi subgroup My_gAr_¢ normalizes the unipotent radical
Ny_g of Pr_¢ ([3]). Therefore, from Step 1 and Step 2, we have

H=My_oNI')Ny_¢g = Ny_¢(My_eNI).
O

Since M = x,-My_gAr_¢Nr_o, the limit space lim,...(M, z(Fa)()-z,) is
diffeomorphic to (KN\My_e)\My_¢/(I'MMy_g))X Ar_g, we have thus proved
the following.

PrROPOSITION C. Let a =diag(a,, -, ax)saf, pe{l, -, 2}, and y,=mo
(Fla)-z,). Suppose that y is an interior point of AP(O), thatis I'—O0={0;|a,=
Qpii}.

(1) If =Y (y is an interior point of AP), then the limit space
lim;... (M, 7,(1)) is diffeomorphic to the Euclidean space R"'.
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(2) If O+Y (y is an interior point of the boundary simplex A°(O) of AP),
and XU O)=(w;, -, w.), then the limit space lim;...(M, y,()) is diffeomorphic to
Mo 1 X - X Moy X R¥®, where #O0=n—1—(w,+ - +w,) is the cardinality of
o, Mo ;s1=S0(@;+D\SL(w;+1, R)/I' (w;+1; m) for j=1, -, u, and I" (w;+1; m)
CSL(w;+1, Z) is the principal congruence subgroup of level m.

§5. Decomposition of M.

5-1. Fundamental open set.
1 Nij
Let ‘M= {diag (¢,, -, e.)EG|e;==1 for j=1, .-, n}, N= {( J)e G}
0 1
as in §4, and put P°=°MN.

DEFINITION 5-1-1. For a map t:Y—R*, we denote by A, the set {as
A|B(a)<t(B) for all BT}, and for a relatively compact open subset pC P° and
t, we call the set S;,=K-A,-» a Siegel-domain.

The next fact is a special case of Borel’s theorem ([2]).

THEOREM 5-1-2 (Borel). (1) If {g., -, g} is a complete representative
system in Gq for the double coset classes Po\Gq/I’, then there exists a relatively
compact open subset 7, CP° and a map t,: V'—R* which satisfy the following
condition: If nCP°® contains 7, and t: V'—R* is a map such that t(f)=1t.(B) for
all BEY then \ Ui, Siy8:.'=G.

(2) For any relatively compact subset 3 in P°, any map t: T —R* and any
pair g, g'€Gyq, the set {y'|S;,gyN\S:y 8" #¢} is finite.

As mentioned in §1-1, we take {z,, ---, 2.} C©Gz as a complete representative
system for Pyg\Go/I’, and put z,=e.

DEFINITION 5-1-3. For any >0, we put
A= {acA|Bf(a)<t for all T}, and
A, = {acA|Bla)<t for all BT},
From Theorem 5-1-2, we can take a number #,>>1 and a relatively compact
open subset w of N suitably, such that
M= l\ljl n'(xo-/itowzi),

where ©: M—M is the projection and x,=I,=diag (1, ---, 1) as in §1-2.
Furthermore we can choose o sufficiently large so that it contains a funda-
mental domain of NN/I" in N.

DEFINITION 5-1-4. For each subset @C1", we put
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A,(0) = {as A, B(a)=1 for all BT —6)}.

REMARK. Recall that the inverse image under the isometry ¥ : x,- A—R""!
of the cone BCR" ! is x,-A,. We notice that ¥-(B(O))=x,-A,(6O).

Let Mi=a(x,- Ar0z:), Si=n(xy-Aiz:), and Sy(0)=n(x,- A,(0)z;) for each i,
©. We decompose M into the pieces M,, ---, M;. Lemma 3-3 implies that S,
is a totally geodesic, isometrically embedded submanifold (of M) contained in
M;. And S;(0) is a part of the boundary of the submanifold S;.

In the next two (sub)sections, we examine the correspondence of the way

of pasting the pieces M, ---, M; together to the one of pasting B,, ---, B;
together. .

5-2. In this (sub)section we see the following: if B; and B, are pasted
together in C|T | along B,(®) and B;(@), then S;(0) (CM,) is near to S;(O)
(CMy).

PROPOSITION 5-2-1. For a subset OCY, the following two conditions are
equivalent.

(5-2-1-a) (Pr-@)ez:l = (Pr_e)ez;I".
(5-2-1-b) There exists heI such that 74(0)-z,=71(0)-z;h for all k with ,€06.

ProoOF. For xe]\?(oo), we put G.,={geG|x-g=x}. Since Pr.g=
Mo ,e6 Pr-is,1, we have only to verify that

Gfk(m) = PT-(ak) for k=1, .-+, n—1.

These are immediate consequences of the following proposition.

PROPOSITION 5-2-2 (Eberlein [9]). Let p be the orthogonal complement of
the Lie algebra of K in g with respect to the Killing form. (The complement P
consists of symmetric matrices in g.) Let X&p, and 7(t)=x,-¢'¥ be a unit speed
geodesic in M. Then an element 2EG liesin Gy if and only if lim,.. et¥ge t¥
exists in G,

We define hg ; ; for each triple (0, ¢, j) as follows, where @ is a nonempty
subset of 1° and ;. If there exists hel which satisfies

(5-2-3) 7r(00)-z; = F4(o0)-z;h for all & with 6,6,

we choose such an A arbitrarily and denote it by hg,; ;. If there is no element
hel” which satisfies the relation we put hg. . ;=e.
Let L, be as follows.

(5-2-4) L, = max{da(x,-2i, Xo-2jhe,1, )I@#=OCY ; i, j=1, -+, A;i#]}.
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Then the Hausdorff distance between S;(@) and S () in M is not greater than
L; when B,(@) and B,(0) are pasted together in C|Tr|. More precisely, we
have the following.

LEMMA 5-2-5. Let © be a nonempty subset of ¥, (Pr-g)ez:l =(Pr_e)ez;I";
i+7, and a€A,. ‘

If aeA(O)={beA,|B(a)=1 for all B&€Y —6}, then we have dy(n(x,-az;),
m(xy-az;))< Ls.

PROOF. From Proposition 5-2-1, we have 7:(c0)-z;=71(c0)-z;hg, 4 ; for all k
with 0};6@
So,

z:hgls, 25t € N G?k(oo> = N Pr‘-(okl = Pr_o.
0,6 =

We take the unit vector Xea, and />0 such that a=¢'*, and define a unit
speed geodesic 7:[0, co)—M by F#)=x,-¢'* for all t=0. Since Giw)2DPr_sg,
we have 7(c)-z;hg!;, ;23'=7(c0) and the function

t—— du(7(®), 7(t)-2:h8l:,;25") = da(F(t)-zi, 7(¥)-2;h6.1.5)
is monotone decreasing on [0, c0). Therefore, we have
du(m(x,-az;), ©(x,-az;))
= dalxorazi, %orazshe,i,5) = da(7()-zi, 7(D)-z;h6,4.5)

= da(70)-z;, 7(0)-25h0,1.5) = da(xo 24 X0 25h0,4,5) = Ly
O

5-3. We study how the Mi:z(xo-/itowzi); ¢=1, ---, 4 are pasted together.
We define six (positive) constants L,, L,, L,, L;, t,, L.
Let L{>0 be as follows.

(5-3-1) 1:=sup{du(x,-an, x,-a)|a€A;, nEw}.

The right side of is finite, because the set {ana™'|ac€A,, ncw} is rela-
tively compact (see for example [2]). We put L,=2L] and L,:= max, ;; ..z
da(Xe+2;, Xo-2;).

To choose the remainder of the constants, we need the following (due to
Borel-Raghunathan).

LEMMA 5-3-2 (Lemma 2.1 of [17]). Let nCP°® be any relatively compact
open subset, t: V'—R* any map.

For Be&Y, there exists sg>0 such that the following holds; we define the
map t': Y—R* by t'(B)=sp, t'(@)=Ua) for a+f and let g&Gz be any element,
then S;1,gN\S,#¢ only if g&€Pr_ip).
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Apply this lemma to the case n="M.w, t(B)=t,, for all B=¥’, and take a
positive number ¢,, such that

(5-3-3) t; < min {ss}, <1,
Ber

For each subset ©CY", we define a subset D(@) of A as follows.
(5-3-4) D(@®) = {acAlb(a)<t, for all =6,
t,<B(a)<t, for all BT —6}.
We remark that A, —A,=\Ug.r D(O) (see Fig.).

D({6.})

Fig. (n=4). This is a picture of A cut off along the hyperplane
which is perpendicular to a line exp tv for a suitable vesaf.

LEMMA 5-3-5. For each OCY, lg=-sup{da(x,-b, xo-A(@)| b D(@)} is
finite.

Proor. The number [, is finite, because {e}=A.(¢)CD(@) and D(¢) is
compact. Since A,()DDY"), we have [=0.

Therefore we assume that 6={0,, -, 0,,} #¢, I'. By permuting 6,, -,
0.., we obtain 6, ---, 87, such that ’={81, ---, 6_,} and that 05=0,, for
j=1, -, k. Let beD(®) and 8j(b)=s,; i=1, ---, n—1. We take the element
b’ of A,(@) with 0i(b")=s; for i=1, ---, k and @{(b")=1 for i=k+1.

We show that the number d;(x,-b, x,-b’) is bounded from above by a con-
stant independent of 5. For each 7/, we can take v,=q, such that d@i(X)=
(X, v;) for all X=a,, where (,) is the inner product induced from the Killing
form. Let B8 (resp. 8’) be the element of a, with b=exp 8 (resp. b’=exp §’).
Since {vi, -+, Va_i} is a basis of a,, we can determine the 2(n—1) numbers B§;,
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Bi; i=1, ---, n—1 which satisfy the following equations.
n-1 n-

(5-3-5-a) B=Bvi, B =B
i=1 i=1

Then we have
(5-3-5-b)  dOif) = 3 B(vi, v)= logs, for i=1, =, n—1,
j=1
and
et logs;, if i=1, -, k,
(5-3-5-¢) doi(p") = 2 Bivy, vj) =
j=1 0 if izk+1.

Let H be the (n—1)X(n—1) matrix whose i—j entry is (v;, v,). We denote
by g:; the i—; entry of H-*. Then we have
n-1
ﬁl—ﬁ; = X gij lOg S; for z_—_]_, ., n—1.
j=k+1

So we have

6-3-5-0)  Ig—FI = 2 l 2 g.(log s1)g (10g s)(vi, V)

< (n—1(n—k—1p{max| gy, |} {maxi(v,, v,)1}
X [max{|log |, |log t:]}]*.

The right side of the above inequality (5-3-5-d) is independent of B;, 8; and
hence b. Therefore, du(x,-b, x,-b")=||f—p’ll is bounded by the constant inde-
pendent of b. O

We put
(5-3-6) L,=2max{lg|OCT}.

PROPOSITION 5-3-7. If a positive number L satisfies the inequality L>L,,
then the following holds.

If beD(0O) satisfies the condition dg(x,, xo-b)=L, then

(1) there exists at least one map BEY such that B(b)=t,, and

(2) da(xe+b, xo- Ay(ONS L.

PrOOF. Immediate from the above construction. O

We put 2=\Ui-; xo-A;wz;. By Borel’s theorem 5-1-2 (2), the set {hel"|Q-
hNR+¢} is finite, so we denote this by {h,, ---, h;}. We denote by g4}’ the
k—I entry of zhz'z7': i.e., z;h3'2;'=(g%4)1sr,1s.. We define the compact sub-
set S of SL(n, R) by



214 T. HATTORI

S = {(l‘klglfefj)mk,zgnESL(n, R)loétkzé(max(to, El_l_))";

i, j=1, -, ; p=1, - s}.
We put
(5-3-8) s = max{dz(x,, X,-8)|gES}.
We take a positive number L such that L>L,.
LEMMA 5-3-9. Let a, bEA,; n, mEw; i, j&{l, -, A} such that
w(xy-anz;) = w(x,-bmz;)

and suppose du(x,, xo-a)=2L.
(1) If i=j, then da(xy-a, x,-b)<L,.
(2) If i+, there exists at least one map BY such that B(a)>t..
(3) If i+, let @ be the subset of ¥ which satisfies the following condition ;

Bla) £t, for all BB and t,<B(a)<t, for all BT —6.
Then, ’

du(x,-Ay(O), x4-a) < L, and du(x,-a, x9-b) < L+ Ls.
Moreover, Bi(O) and B(O) are pasted together in C|Tr]|.

PROOF. Since n(xo-anzi):#(xo-bmzj), there exists an element A of I” such
that xy-anz;=x,-bmz;h. We can put k=anz;h 'z;'m™'b~ K.

First, suppose i=j.

Then we have x,-an=x4-bmz;hz;*. Since [I' is a normal subgroup of
SL(n, Z), we can put h'=zhzi'el’. So x,-an=x,-bmh’ and =n(x,-an)=
w(xy-bm). From this and Lemma 3-3, we have

da(%e-a, Xo+b) = dy(n(xy-a), n(x,-b))
< dy(r(xy-a), ©(xo-an))+dy(w(x,-bm), 7(x,-b))
<2Li=1L,.

Next, suppose 7+7.
If we suppose (2) to be false, we have anz;h™'z;'=kbm and B(a)<t, for all
BsY. So from Lemma 5-3-2, we have

I) = zih“z}‘ = m P)‘_(ﬂ) = P.
‘ per

Therefore, z;=pz;h and Pgz,I'=Pyz;I’, This contradicts the hypothesis.
Finally we prove (3).
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Let i#7 and @ be as in the statement of (3). As can be seen from the
conclusion of (2) above, we have ©@#1. And from Proposition 5-3-7 (1), we
have @+#¢. Since anz;h~'z;'=kbm, from Lemma 5-3-2, we have

p= zih'lz}I e N Pr_”s, = Pr_g.
Beb

Therefore, z,=pz;h and
(Pr-6)qz:" = (Pr_g)ez;I".

From this and (1-3-1), B,(O) and B40) are pasted together in C|Tr|. Let us
show that apa~'eS. Since x,-anz;h=x,-bmz;, we have Q-hN\Q+¢. Let py;
be the i—; entry of p=z;h~'27' and a, the i—7 entry of a. Then the ;—;
entry of apa™ is (a;/a;)p:;. 1f i>j and {8 0., -, 6;.,}CY—06, then q,/qa,
=0,a)f;.,(a)--+-0;-,(a)>)" and 0< a,;/a;<(1/t)" If i>j and {8;, 0.y, -, 0;_,}
¢Y—6, then p;;=0 because p=Pr_g. If i<y, then a;/a;=0,a)8;,,(a) - -
0;-.(a)<(t,)". From the above and that 2-hrN2+#¢, hel', we have apa~‘ss.
So du(xe, Xo-apa )< Ls.

Therefore we obtain

da(xe-a, x4°b)
S dalxo-a, xo-ap)+da(xy-ap, xo-anp)+dg(x,-anp, x,-b)
= du(xy, Xo-apa)+dua(xe-a, xo-an)+du(xy-bm, x,-b)
< Li+2L1=L,+Ls.

The inequality da(x,-Ay(O), x,-a)< L, is obvious from Proposition 5-3-7, be-
cause acD(O). |

§6. Tangent cone at infinity.

6-1. Preliminary map f.

For each je{l, ---, n—1}, we denote by s; the reflection in a, with respect
to the hyperplane H;={a<a,|d@;(a)=0}. The group W generated by {s;, -
Sn-1} is the Weyl group.

Let U’ (resp. U) be the normalizer (resp. centralizer) of a, in K. (We have
U="M=M,;). Then W is naturally identified with U’/U. Under this identi-
fication, we take and fix a representative g,=Kz; for each weW. That is,
Ad(gz')a=a-w for all aca,. In particular, we put g.=e¢. We remark that
Zuwlw uy €M for all w, w'eW.

Since the reflection s; fixes every points of the hyperplane Hj, g;, fixes point-
wise the set x,-A4,(’—{6;}). Hence 8:;,€ P .

For weW, ie{l, ---, 4} we choose z(y, {21, ---, 22} such that Pegu,z;I”

»
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=Pz, »I'. The symbol (w, 7) stands for one of the numbers 1, ---, 2. More-
over we choose prw, 1€ P and y;,, 11" such that guwzi=prw, 12w, 7w i3 W€
decompose prw, i1 as follows.

Prw. i1 = Mrw, ;30rw, i1Mcw, <15
m[w,ij = 0M, a[w,i] = A, n[w,ij (== N.

By increasing o if necessary, we may assume that w@ contains 7, ;; for all

weW and 7{1, ---, 4}. We can take a positive number #,(>¢,) such that the

following holds; If aA,, then aa;y, 1€ A:, for all weW and iel, -, 4}.
We replace L, by 2sup{du(x,-an, x,-a)lac A, n€w}, and put

(6-1-1) Lo =max{du(x,, Xo*Crw, )| WEW; i=1, -+, 4}.
By increasing L if necessary, we may assume that
(6“1_2) L > 1(L1+L2+L3+2L4+L5+ Le)-

We define a map f: M—C|Tr| as follows.

For an arbitrary point v of M, we consider representations v=n(x,-anz,)
with aEfito, new, ie{l, -+, 4}. This representation is not unique and there
are two possibilities.

{ay There exists a representation v==(x,-anz;) such that dgz(x,, x,-a)
<2L.

<b) For any representation v=n(x,-anz;), du(x, x,-a)=2L is satisfied. In
this case, we fix one representation for each point.

In the case of <a), we put f(v)=0, where O denotes the vertex of the cone
C\|Tr|.

In the case of <b), we take the fixed representation v==(x,-anz;) and consider
two cases.

bY-<1> If acA,, we put f0)=T (x,-a)EB,;.

<Kby-<2y If a&A,, we rewrite x,-a as x,-a’g, for suitable a’cA,; and
weW, and put f@O)=¥ (v, )(Xo*@)EB(w, 5.

Concerning the case <b>, we need some more discussion.

LEMMA 6-1-3. Let xy-bguw=x,-b'gw:, where w, w' W, b’cA, and b is an
interior point of A,(O).

Then b=b" and By, s and By, are pasted together along B, (@) and
B, (@) in C|Tr|.

PROOF. Take B, f'<a, such that b=exp B, b’=exp B’ Then we have
Brw=pg"-w’ and f=p"-w'w'. From Theorem 5F in Ch. I of [5], f=p’ and
w'w! is a product of elements of the set {s;|6,1—6}. Hence b=b" and
Suw 8w E(Pr-e)z. Since we can take ¢=(Pr_g)z such that g,.=¢g.,, we have
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(PY-9>QZ(w’,i)F:(PT—G)ng'ZiF:(PT-Q)ngziF:(Pr—G)Qz(w,i)r as required. O

If a&A, and a is in the image under the exponential map of some Weyl
chamber, then a’ and w in <b>-<{2) of the definition of f are uniquely deter-
mined. Suppose that a& A, and that ¢ is in the image of some wall of a Weyl
chamber, say x,-a€x,-A4,(0)w with @+1. We might be able to choose b, b’
€A,; w, weW such that xy-a=x,-bgw=x,-b'gw. But from the above lemma,
we have b=b' and ¥, ;(x0-0)=¥ (wr,y(%o-b’) in C|Tr|. So there is no am-
biguity in the case <b) of the definition of f.

The submanifold z(x,-Az;) is divided into the union of #(x,-A,gwz:); weW
and each 7(x,-A,gwz;) is isometric to By, 4. It is important (in the successive
discussion) to verify that By, ;) and By, intersect in C|T | if w(xy-A18w2;)
and #(x,-A;gw»-z;) intersect in M. So we reformulate the above lemma as
follows.

LEMMA 6-1-4. If mw(xy A18wz) (X A1 wizi)=m(xy- A1(O)g wz;) with @+1,
then B(w,:y and B, s are pasted together along B (u, (@) and By (O) in
C\Trl.

6-2. Properties of f.
Our aim is to prove that

ldu(v, v)—deirp (f), )] <64AL  for any v, v'EM.

The argument in this (sub)section is almost as same as the one in §4 of
[167. So we omit the proof of Proposition 6-2-5.

LEMMA 6-2-1.
doir pi(f@), f)) < du(v, vV)+(BA+2)L  for v, vEM.

PROOF. Let v=n(x,-anz,), v'=n(x,-bmz;); a, be%ito; n, mew be arbitrary
representations.

Step 1. We join v to v’ by a minimizing geodesic 7’: [0, //J-M. Let 0=
1, <t;< -+ <t,y=l[l’ be a partition of the interval [0, /] such that the following
condition is satisfied.

(6-2-1-1) There exist curves #i: [ts, tk“]—»xo-ﬁtowzikcﬂ such that z/(t)=
woTi(t) for t<[ts, tryr], where =1, .-, v/ —1.

We deform the curve ¢’ in the following way. We start from z;,. Take
the largest £ such that /;,=7,, and join 7'(f,) to 7’'(¢z,:) as follows: let 7’(t,)=
2(%o @iy ne,2i), T(Eee)=0(X0 Qryyy My, 2y,), and join /() to 7(xo-ay,2;)) (resp.
m(Xo-at,,,2:,) to 7'(tz.1)) by a minimizing geodesic, join 7(xo-a:z2;,) to m(x,:
a:,,,z;) by a minimizing geodesic. We remark that for the last geodesic we
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can take a geodesic in zr(xo-/i,ozil) by Lemma 3-3, and so we do. Next we
consider z;,,,. Take the largest 2’ such that ¢,,,=7,. and proceed in the same
way. Repeating this operation, we get a curve z: [0, []—M.

By construction, there exists a partition of the interval [0, /],

O=t<t< - <tha<l<t=I,
where y<2+1, such that the following conditions are satisfied.
(6-2-1-2) (te) = (X0 arnr2s,), Tes1) = T(Xo-bemez;,);
ap, by € “ito? ng, my €@ for each ks{l, .-, v—1}, 7,=1, i,_,==J,
and ¢, ---, ¢,_, are different from each other.
(6-2-1-3) There exists a subdivision,
0=t S, ENMEL S SNpSt <
S S s S St <
<t =1,
such that the following hold.

(6-2-1-3-a) There exists a curve 7,:[ss, 9] — M
which can be written as #,(t)=x,-a.(t)z;, ; ak(t)e/ito,
such that z(t)=m<F,(¢) for t&[ss, 1],
and a.(s:)=ay, ak(ﬂk):bk-

(6-2-1-3-b) Tlesp 9,1 Tletg. 5,3 Tlog,.t,4,1 are minimizing geodesics.
We have
(6-2-1-4) S length [2x] < dulv, v)+AL, .
k=1

Step 2. We define points P, Q, of C|Tr| as follows: For #.(s:)=x,-
aiz2iy, Te(Me)=%o bazy,, let

P, :{ ¥, (xo-an) if a,=4,
Uiwi(xe-az) if arEA; and x,-a,=x,-a}gw ;
a,eA,; weW
[ up(xoba) if by A,
< _{ T ip(xo-bl)  if begtA; and xo-be=x0-bigu ;

bieA,; weWw.
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Step 3. We construct a curve in C|Tr| by joining f(v), P, Q,, P, Qs, -+,
Pv—-l: Q!J-ly f(vl)'
(A) To begin with, from Lemma 6-1-4, we can join P, and Q; by a
(possibly broken) line segment P,Q, such that
length [%k] = Pka .

(B) We join Q, and P,,, in the following way.
(Case 1) If OQr=da(x,, x0-bs)<2L, we join Q, to O, and O to P,,, by
the line segments in that order. Notice that

| da(xo, Xo*@rir)—da(xo, Xo-bp)
= |da(X0-2iy 4y Xo"Qrs1Zi,,)—di(Xe° 24, Xo-bizi,)|
= | du(m(%0-241,), T(Xo" Qri124,, ) —du(@(%0-25,), T(X0-br2s,))]
S du(n(xo-2iy4,), T(Xo-20,)+ du(m(X0+ Qrar2i, ), T(ter)
+du(t(tes), 7(Xo-brzs,))
< L4+2L;=L,+L,.

So, _O—P-I:I:dﬂ(x, Xo*Qr41)<lL+L,+L,, and W+W1<4L+L1+Lz-

(Case 2) If OQ, = da(x,, x0-b:)=2L, from Lemma 5-3-9, we have
da(Xxo*Qryer, Xo-bp)S L+ Le.
Let © be the subset of 77 as in (3) of Lemma 5-3-9 and take an element ¢
of A,(O) such that du(x-bs, Xo-¢)<L,. We put R,=¥, (x,-c)=B;,(0). Note
that B;,(0) and B,,, (@) are pasted together. So R, is also on B,,, (0) and
expressed as ¥y, (x,-0).

Recall that #4(ps)=xo'bsz;, and

{ wik(xo-bk) if bkEAl

E =

Uiw,ip(xe-bi)  if beEA, and x4-be=x0-bigw ;
hed,; weW.,

We define a point Si,; to be &, (xo-be) if b€ A1, Tiwr ipup(¥o-bi) if brE A,

From Lemma 6-1-4, we can join S;,; and P:,, by a (possibly broken) line
segment such that Si,:Pe.i=da(xe-br, Xo-ars1). We can also join Q. to R,
R, to Si.: by (possibly broken) line segments such that Q,R,=d z(x¢-bs, %o-C)
and R.Si.i=dua(xo'c, %o-bx). So we join Q. to Rx, Ri to Si.i, and S;,; to
P.., by the above segments. Then the sum of the lengths of the added seg-
ments is

Tp+1
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QrRr+ RSty +SesiPesi = L+ L+ (Ly+Ly)
=L,+2L,+Ls.

(C) Finally we join f(v) with P, and Q,., with f@’).

If f(v)=P,, nothing to be done.

If f(v)#P,, there are three possibilities.

1> O=fw)#Ph

{2> The representation of » which we fixed in the definition of f is v=
w(xy-a"n"z;); a”efi,o, n’e€w, and dg(x,, x,-a”)=2L.
In this case, from Lemma 5-3-9, we have dz(x,-a, x4-a”)<L,.

<3> The representation of v which we fixed in the definition of f is v=
n(xo-a"n"z,); a”e./izo, n"cw, i#p, and dg(x, x,-a”)=2L.

In the case <1) (resp. <2)), we join f(v) and P, by the line segment. Its
length is not greater than 3L (resp. L,).
In the case <3), we join f(v) and P, in the same way as one used in (B)-(case
2). The length of the curve joining f(v) and P, is not greater than L,+2L,+ L;.

We join @Q,_, and f(v’) in a similar way.

Step 4. We compare the distance dy(v, v’) with the length p of the curve
constructed above. We have,

0 < S length [#,]+@A—1) max{4L+ L, + Ly, L,4+2L,+ Ly}
k=1

+2max{3L, L,, L,+2L,+Ls}.

From (6-2-1-4) and we obtain
deirpi(f@), ) = p < dulv, v')+L+(2—1)-5L+2-3L

= dy, v)+GA+2)L .
O

In particular, as a byproduct of Step 3 of the above proof, we have the
following lemma which we need in §7.

LEMMA 6-2-2. deirpi(f(m(xo-azy), ¥i(xo-a)) <3L for all acA, and ic
{1, -, 4}.
LEMMA 6-2-3.
du(v, V') < deirpi(f(), FW')+9L .

PROOF. Let v=m(x,-anz,;), v'=n(x,-bmz,); a, beA,,; n. mEw be arbitrary
representations.
We define points P, Q in C|Tr| as follows.



Collapsing of quotient spaces of SO(m)\SL(n,R) at infinity 221
{ wl(JCo'a) if aeAl
W(w’i)(xO‘al) if a%Al and XQ‘GZXQ'a’gw;

adcA,;; weW

N T b)  if bEA, and x0-b=x0-b g ;
beA,;, weW.

For an arbitrary positive number ¢, we join P with Q by a curve z: [0, /]
—C|Tr]| such that

(6-2-3-a) t0)=P, t()=Q, [=length[t]< dcirq (P, Q)+¢
(6-2-3-b) There exists a partition of [0, /],
0=t <t< <ty <t,=1{ such that
T([Le, tre1]) C By, for k=1, ---, v—1 and v<A+1.
Then we have
| <deirp(f), fW)N+e+2max{(3L, L, L,+2L+Ls}
<doirp(f), fW)+6L+e.

We define a curve ci: [te, tesi]=M by c.()=n@ 7 Xz(t))-2;, )M for each’k.
We put ve=c,(:) and w,=cr(tr, 0.

From Lemma 5-2-5, we can join w, and v,,, by a geodesic whose length is
not greater than L,.

Next we join v with v,.
If a=A,, we have v,=n(x,-az;) and d,w, v)<L,.
If a¢A,, we have vi=a@3 (7)) 2(w.0))=7(Xe Q' Z(w. ). Since w(x,-az;)=
(X0 @' gw2)=7(Xo* @' Prw,112cw, s ="(X0" @' Arw, 11Mcw, 112cw.11), W have dy(v, v))
<L,+L.
Therefore we can join v and v, by a geodesic whose length is not greater than
L+L..

We join w,_, and v’ in a similar way.

So we have

dy, v) £ I+(A—=1D)L:+2 (L,+ L)
< doirp(fW), FW)N+9L—Ly+¢.

Because ¢ is an arbitrary positive number, we obtain dy @, v")<deir (fv), 7))
+9L—L,. O
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From Lemmas 6-2-1, 6-2-3, and that 4=2, we have

(6-2-4) ldu(, vV)—dcirp (f@), F(W))| <6AL.

PROPOSITION 6-2-5. For sufficiently large v>0, B.(O, C|Tr|) is contained
in the 3L-neighborhood of f(B.(m(x,), M)).

6-3. Proof of Theorem B. :

Let ¢>0 satisfy 10/e>L, and ¢>600AL/s. Then 6AL/t<e/100. We define
amap f.: M—>C|Tr| by f.(v)=f(@)/t for veM.

By [(6-2-4) and Proposition 6-2-5, we have:

(6-3-1)  f(Buose(w(xo), (M, g/1))) is contained in Big/eses100(0, ClTrl).
(6-3-2) B1,.(0, C|Tpl) is contained in the 3L /t-neighborhood
of fu(Bios(m(xo), (M, g/1))) .

So, deforming f. slightly, we get an ¢/10-pointed Hausdorff approximation
g (M, g/t), n(x,))—(C|Tr|, 0). Consequently, there exists an e-pointed
Hausdorff approximation ¢.: (C|T rl|, 0)—((M, g/t), n(x,)). And from the con-
struction there also exists an e-pointed Hausdorff approximation ¢.: (M, g/t),
m(x)—(C|Trl, O).

We have d,.z(M, g/t), n(xo), (CITrl, deirp1), 0)) < e for ¢>6004L/e,
where d,.y is the pointed Hausdorff distance. Therefore lim;... (M, g/t), m(x,))
=({C|Trl, deirp1), O). The proof of Theorem B is now complete.

§7. Final remarks.

We say (in this paper) that two geodesic rays 7, 7.: [0, co)>M are equi-
valent and write y,~7. if and only if there exists C>0 such that du(y.i(?), 1.(®)
<C for all t=0. Since 7y, and y, are geodesic rays, this condition is equivalent
to the following. The Hausdorff distance Hd(y,([0, o)), 7:([0, ©0))) between
71([0, ) and 7,([0, o)) in M is finite. In fact, if Hd(y,([0, o)), 7.([0, )< C
and d(7:(0), 7.(0))<C then we have dyu(7.@), 7.#)<3C for all 1=0.

Let us show that y,’s in Theorem A are not equivalent one another.

PROPOSITION 7-1. Let {yy}yeir, be the family of geodesic rays in Theorem
A. If y#y’, then v, and y, are not equivalent.

PROOF. Suppose that y, and y,. are equivalent, i.e., du(y,@), r, @)<C
for all £=0.

We take the lines /,, [,.: [0, 0)—C|T | which correspond to y, y’ respec-
tively. More precisely, let a=diag (a;, -, ay)ea}, B =diag (B, -+, Br)E0],
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a,—a -1
vtg_*_ ces +—"n—_L‘v¢;-1€
ap,—a, Qp—ay

Ty = 77 (@) 2,), Ty = To(F(B) 2,), y—“ —lugt

A®,and y’ —gi “giv”+gi “gjv"—}— +ﬁ‘gn ‘B‘gllv#_lezx”. We define [, 1, : [0,00)
—C|Tr| by 1,(s)=V ,(x,-(exp(sa/||al))=T ,(F(@)(s)), I, (s)=T (o (exp(s/S/Hﬁll)))
=¥ ,(7(B)s)) for all s=0.

We fix a positive number s. Let n be an arbitrary positive integer. Then,
from Lemma 6-2-2, we have dc¢ir,(f(yy(ns)), {,(ns))<3L and dcirpi(f(yy(ns)),
ly(ns))<3L. From Lemma 6-2-1, we also have dc¢ir,(f(y,(ns), f(yy(ns)H<
dulyy(ns), 1, (ns)+5AL < C+52L. So we have doirpi(ly(ns), I, (ns)<C+
(5A+6)L and de¢iri(ly(s), 1,(s))<(C+(B5A+6)L)/n. Since n is an arbitrary posi-
tive integer, we obtain d¢ir1([,(s), {,:(s))=0. Hence [,(s)=[,.(s) for all s=0,
l,=l,, and y=y’. This is a contradiction. O

In Lemma 3-2, we found many geodesic rays in M. We show that each
of them is equivalent to some 7, in Theorem A.

PROPOSITION 7-2. For any aca,— {0}, acA, and g&SL(n, Z), there exists
a point y in |Tr| such that me(7(a)-ag)~7,.

PROOF. Step 1. Since dy(n(7(a)(t)-ag), n(7(a)t)-g)=du(x,-alexp(ta/{al)g,
x,-(exp (ta/||lal))g)=da(x,-a, x,) for all t=0, we have m-(f(a)-ag)~=m-(F(a)- 2).

Step 2. We show that there exists Seaf and pe&{l, -, 2} such that
mo(Fa)- g)~me(7(B) 2,)-

We can choose an element w of the Weyl group W and Seaj such that
a/lla|=B/IIBIN-w. So x,-(exp(ta/lal))==x,-(exp (/[ 8]))gw for all t=0. Choose
p€{l, -, 4} with Peg,gl'=Pez,I’. Since we can write g,g=pz,r; pEP,,
r€l’, we have Ja)t)-g=7(B)1)-gwg=7(B)t)-pz,y. Notice that the set {apa~*
|lae A,} is compact. Hence, there exists a positive constant C and

du(m(F(a)®)-8), #(F(B)B)-2,))
= da({(@)®)-g, 7(B)D)-z,7) = da(F(B)®)- pz,y, T(B)D)-2,7)

=d ( (expt|l‘g“> (exptugn) ' )< C

for all ¢:=0.
Step 3. We show that there exists a point y&|T | such that m-(7(8)-z,)
~Ty

If B=diag (B, -, Bn)EInt af, then we put y_‘B b Ve - +'B” B- W
1871 ;81 ,Bn ,81
€APf. From the construction of {y,},eir,i, we have me(F(8)-z,)=7y.

If B=diag (B, ---, B.)=0a}, then we put y —gz zlvp"f‘ +B§ ‘85 v
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en?. Wecanfind ps{l, -+, 4} such that y::éz————ﬁlv{‘—i— +‘8—’Cﬁ—’“—lvﬁ_le A
nT Pl n— M1

is pasted together with y’ in |Tr| and that y,==<(7(B)-2z,). Suppose that

Y—0={6,Y|6,(exp f)=1}. Then y’ is on A?(O) and y is on A#(@). There-

fore (Pr-g)ez,I'=(Pr-e)qz,I". Notice that @+#¢. From Lemma 5-2-5, we have

dy(m(x-(€xXp (t8/1B1))z,), w(xo-(exp(tB/1BINz )<Ly for all t=0. So, m-(7(8)-2,)

~mo(7(B) 2 =7y O

OPEN PROBLEM. Is the family {y,},eir;1 G complete representative system
for the set of all equivalence classes of geodesic rays in M?

As a byproduct of Step 2 of the proof of Proposition 7-2, we obtain the
following.

COROLLARY 7-3. For any gSL(n, Z) and weW, there exists pe{l, -, A}
such that the Hausdorff distance Hd(w(x,- A18wg), m(x,o- Ar2,)) between m(xy- A18w8)
and m(x,-Asz,) in M is finite.

We can show the following in a similar way to Proposition 7-1.

PROPOSITION 7-4. If p, psil, -+, 2} and p+#p, then Hd(m(xy-Aiz,), m(x,e-
Aiz,))=00.

Let us call the image of a totally geodesic, isometric embedding Bc, M a
a “closed Weyl chamber in M”. We say that two closed Weyl chambers in M
are equivalent if the Hausdorff distance between them in M is finite.

QUESTION. Is the family {S,=n(x,-Az,)lp=1, -+, A} a complete repre-
sentative system for the set of all equivalence classes of closed Weyl chambers
in M?

In simply connected case, the set of all equivalence classes of closed Weyl
chambers in M forms the Tits building associated with the parabolic (R-)sub-
groups of SL(n, R) (see Appendix 5 of [1]). The above question is a counter-
part of this fact.
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Added in Proof. The problem in § 7 was solved by L. Ji and R. MacPherson

in more general form as follows (Geometry of compactifications of locally sym-
metric spaces, preprint, 1993); Let G be a semisimple algebraic group defined
over Q with @-rank>=1, and X be the symmetric space of maximal compact
subgroups of Gg. Let I'CGqg be a neat arithmetic subgroup and M=X/I"
Then the set of all equivalence classes of geodesic rays in M corresponds bijec-
tively to the quotient |T | of the rational spherical Tits building for G by I
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