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Introduction.

In this paper the notion of Spin?-structure is introduced and some of the
basic materials related to it will be discussed.

To explain the motivation briefly, let us take an n-dimensional compact
oriented Riemannian manifold X. The reduced structure group SO(n) (n=3)
has the universal covering group Spin(n) called the Spin group, together with
the short exact sequence

1 —> Z, —> Spin(n) —> SO(n) —> 1.

A principal Spin(n)-bundle Pspinn, With a Spin(n)-equivariant bundle map &,
from Pspincn, to the reduced structure bundle Psy(,, is then called a Spin-structure
on X ([3, §57). As is well-known, it plays a role of great importance parti-
cularly in the study of the interrelations between topology, geometry and
analysis. However, to our regret, it turns out apparently not always to be
effective for researching into a complex manifold X, w,(X)=c¢,(X) (mod 2), be-
cause there exists a Spin-structure on X if and only if the second Stiefel-Whitney
class vanishes, w,(X)=0. To avoid this disadvantage, the notion of Spin‘-
structure was introduced ([3, §5 Remark 47). That is, using the unitary group
U(l) (=S0O(2)), the Spin group is twisted into the Spin® group, Spin‘(n)=Spin(n)
Xz, U(1), together with the short exact sequence

&
11— Z, — Spin‘(n) — SO(m)XU(1) — 1,

where & ¢, z])=(&o(¢), 2%). The Spin‘-structure is then defined to be a principal
Spin‘(n)-bundle Pspintny Wwith a Spin®(n)-equivariant bundle map &: Pspin®ny—
Psoony X Pyay, where Py, is a certain principal U(1)-bundle. Since the existence
can be characterized by the condition that w,(X) is the mod 2 reduction of an
integral class, a complex structure certainly induces a Spin‘-structure. The
study of complex manifolds using this structure is also too vast to survey here.

Let us consider next the case where X has an almost quaternionic structure.
The so-called quaternionic Kédhler manifolds are examples. The research in



94 M. NAGASE

this paper started with the question whether such a manifold has a Spin-struc-
ture. The answer is apparently negative in general. However, to our joy, on
the model of Spin‘-structure, the notion of Spin?-structure can be consistently
introduced by twisting the Spin group into the Spin? group using the quater-
nionic unitary group Sp(1)=Sp, H)={A=2A+Ai+Aj+2A:k|i2=1} (=SU(2))
(P=j?=k*=—1, ij=—ji=Fk). That is, we set Spin%(n)=Spin(n)Xg, Sp(1) and
have the short exact sequence

1 —> Z, —> Spini(n) —> SO(n)x SOE) —> 1,

where &L, A1)=(&,(¢), Ad(A). The Spint-structure on X is then a principal
Spin?(n)-bundle Pspin?,y with a Spin(n)-equivariant bundle map &: Pspinln)—
Psony X Psosy, where Psos, is an appropriate principal SO(3)-bundle. The ex-
istence is guaranteed by the condition that w,(X) coincides with the second
Stiefel-Whitney class of some principal SO(3)-bundle. Hence, by the argument
in or [14], quaternionic Kihler manifolds certainly satisfy the condition
(see [3.18)), just as in the relation between complex manifolds and Spin‘-struc-
tures.

The effectiveness of the idea is becoming clear, but only the basic parts
are discussed here. Further discussions and applications will be given else-
where. Finally I should like to add that the argument here follows the line of
[10, Appendix D], in which Lawson and Michelsohn offer a clear and lucid
explanation for the Spin‘-structure.

In §1 we review the Spin group and discuss the quaternionic representa-
tions. Just as real and complex ones for Spin and Spin®, quaternionic ones are
crucial for Spin?. In §2, after defining Spin? groups and discussing their real
representations induced from the quaternionic ones, the strict definition of Spin%
structure and its characterization in terms of second Stiefel-Whitney classes will
be given. In §3 we will show that an almost quaternionic structure induces
canonically a Spin%structure. In §4, using Pspin%,) and a real representation
A?: Spin%(n)—G Lg(W), we construct the Spin?vector bundle S=Pspinln,XasW.
The Dirac operator D on it will be also constructed and the Bochner-Weitzen-
bock type formula for the Dirac Laplacian D? will be extracted. Finally in §5,
we will calculate particularly the index of the Dirac operator D* of a Spin?-
manifold of dimension =0 (mod 4).

Acknowledgements. [ would like to thank Professor H.B. Lawson for his
interest in my work and thank the referee for the careful reading of the manu-
script.
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§1. Spin groups and their fundamental H-representations.

Let us denote by Cl(n) the Clifford algebra associated to the n-dimensional
Euclidean space R" with the standard quadratic form g(x)=33 x} (x="%(x,, -+-, x»)):
x+x=—g¢g(x). The automorphism a of C/(n) which extends the map a(x)=—=x
on R" gives the Z,-gradation

(1.1) Ci(n) = CI*(n)Cl(n), Ci*(n) = {p=Cl(n)|alp)=(—D"¢}.

On the other hand we consider the multiplicative group of units in CI/(n) which
is defined to be the subset

Cl*(n) = {peCln)|p ¢ = @' =1 for some ¢ ' Cl(n)}.

Its subgroup generated by all x&R" with ¢(x)=1 is denoted by Pin(n), called
the Pin group. Then the associated Spin group of R™ is defined by

1.2) Spin{(n) = C{°(n)"\Pin(n).

For ¢=Spin(n) and xeR", we have Ad(p)(x)=¢px¢p'eR" and &(p)=Ad(p)e
SO(n). Further the map &, is surjective and its kernel is equal to Z,= {1, —1},
that is, we have the short exact sequence

¢
1.3) 1 —> Z, —> Spin(n) —> SO(n) —> 1.

If n=3, then, since =,(SO(n))=~Z,, Spin(n) is nothing but the universal cover-
ing group of SO(n).

Now let H be the quaternion field {a,+a.i+a.j+ask|la;,eR} (*=j*=k*=
—1, ij=—ji=Fk). Unless otherwise stated, an H-vector space W means always
a vector space with right multiplication of H. In this section we will study
an H-representation of the real algebra Cl(n),

(1.4) p: Cl(n) —> Endg(W)

and collect some information about the H-representation of Spin(n) given by the
restriction, called a fundamental one if p is irreducible,

(1.5) A: Spin(n) —> GLyz(W).

Let us first provide some lemmata. Set K=R, C or H We denote by K(N)
the real algebra conmsisting of NXN-matrices with entries in K and fix the
identifications and embeddings,

a,
¢ ! . . . a,+1ia, a
N ~ (2N ~ 4N . 0 2
(1.6) HY = C*N = RV, ao—l—zal—i-J(aﬂLzas)<—><a2 ias)H a.l’
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(L) H(N)—. C2N) —. R4N),

o

S +ist4j(sisy = Z+w — (5, 77,
. ¢ /A —B

A+iB+— (B A ),

which will be frequently used also in the following sections without quoting.
Remark that is obtained by embedding H(N) (acting on H" from the left),
etc. into C(2N) (acting on C?*" from the left), etc., through the identifications
HY=C*", etc. at [1.6), and induces the embeddings of the general linear groups

(1.8) GL(N, H)—_. GL@N, C) =, GL@4N, R).

Further, denoting by 1=1, the unit matrix of H(N) (etc.) and putting Sp(N)=
Sp(N, H)={A=H(N)|'AA=1} called the quaternionic unitary group (or the

symplectic group), we have
/

(1.9 SpN) é SU@RN)NSp@2N, C) {L> SO@4N).

LemMmA 1.1. (1) K(N) has only one irreducible R-representation up to R-
equivalence—the standard one y: K(N)—(End (K ¥),) Endg(K?Y).

(2) As for the set of C-equivalence classes of irreducible C-representations
of K(N):

() If K=C, it consists of exactly two elements—the standard one v: C(N)
—End(CY), v(A)(x)=Ax, and its conjugate © given by p(A)x)=Ax. An
arbitrarily given irreducible one p is equivalent to v if pG1)=il and equi-
valent to v if p(il)=—il.

(ii) If K=R or H, it consists of only one element,

191 R(N) —> (CQEndg(RY)—_,) End(C"), K=R,

V€2 H(N) —> (Endg(H")—~_) Endo(C*¥), K=H.

(3) K(N) has only one irreducible H-representation up to H-equivalence—the
standard one v¥: K(N)—Endg(HY), v¥(A)(x)=Ax.

ProoF. Refer to [8, Chap. 8] for the proofs of (1) and (2){d). As for (2)(ii):
Take an irreducible C-representation p: R(N)—End (W). It produces an irre-
ducible one

p: C(N) = CQR(N) —> End¢(W), p(zQA)(x) = zp(A)(x).

Since p(E1)(x)=pER1)(x)=ix, it is equivalent to the standard one. Hence p=v°
because p is the restriction of 5 to R(N)={l}QR(N) (CC(N)). Next we take
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an irreducible C-one p: H(N)—Endc(W). By using the real algebra isomorphism

(1.10) CRH= C(2), z®(5+j1;>e_>(_zi ZZZ)

it produces an irreducible one
p: C2N)=CR2)QR(N) = CQrHRR(N) = CQrH(N) — End.(W).

Remark that the identification C@N)=C2)QR(N) is given by the Kronecker
product,

Abyy - Abiy
: — ARB.

Abyy -+ Abyy

If ZleC(ZN) corresponds to zQRA=CRrH(N), then ﬁ(/Nl)(x) is defined to be
zp(A)(x). Since C(2N)=i1-i1RQ1-iR1R1-i/R1eCRH(N), we have j@E1)(x)
=ix. Hence j is equivalent to the standard one v. Its restriction to H(N)=
{1} QrH(N) (CC(@2N)) is obviously equivalent to v°. Therefore p=y¢. As for
(3): Refer to [8, Chap. 8] for the case K=H. Let us examine the case K=C
or R. Take an irreducible H-one p: K(N)—Endg(W). Consider the generaliza-

tion of (1.10)

(L.1D) C(N)®rH = End¢(HY) = C@2N)
= A8 Apy\ _
A®Zeﬁﬂmﬁﬂﬂee(_AvIﬁ)zLQ%M)
and
(1.12) R(N)QH = Endyz(H) = H(N)

ARA <> (x—Ax2) <> AX.

Here Endix(HY) (K=C or H) means the real algebra consisting of endomor-
phisms of H” on which K acts from the left. Through them the representation
p produces

p:C2N) or HIN)= K(N)QrH —> Endz(W).

These are obviously irreducible and, hence, respectively equivalent to the irre-
ducible R-ones

v: C(2N) —> Endg(C*"), v: H(N) —> Endx(H").

That is, for example, if K=C then we have the commutative diagram,
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f

w e e—
ﬁ(A®2)J L(A®1)J 1Ax, x1
w—L et g

where ARA€C(N)QrH and the maps f and ¢ are R-linear isomorphisms.
Further W is originally a right H-vector space and the composition A=¢"1-f is
an H-linear isomorphism. Indeed we have

h(x2) = h(p(ARD)x) = ¢ (LAR) [ (x))
= (o Y x)A = h(x)A.

Hence the p, which is the restriction of 5 to C(N)=CN)Rr{l} (CC@2N)), is
H-equivalent to the standard one y”. The case K=R also can be shown
similarly. n

LEMMA 1.2. (1) Any irreducible K-representation of Cl°(n) restricts to an
irreducible K-representation of Spin(n). (2) Two K-representations of Cl%(n) are
K-equivalent to each other if and only if so are the restrictions to Spin(n).

PrROOF. It suffices to show Spin(n) contains an additive basis for Ci%(n).
Fix an orthonormal basis {e,, ---, ¢,} of R"™ and consider the basis ler=ey e,
eipllz(z'1< o <Zip)t (ep=1) for Cl(n) regarded as an R-vector space. Then
the subset {e¢;|I=(@,< --- <i,), p=0 (mod 2)} is certainly a basis of C/°(n) and
the elements belong to Spin(n). |

Now, by the above lemmata and the well-known identification of the Clifford
algebras with the matrix algebras (for example, [10, Chap. I. Theorem 4.3)),
and with somewhat complicated but routine work, we can get Table I.

Table 1.

n Cl(n) # W fundamental A

8m R(2*™) 1| H*™ | a direct sum of two H-inequiv. H-irr. rep.
14+8m C(2'™) 1| H*™ | H-irreducible
2+8m H(2'™) 1| H*™ | Hirreducible
3+8m | H2'™PH@2'™) |2| H*™ | A*; H-rreducible, H-equivalent
4+4-8m H(21*4™) 1| H?**™ | a direct sum of two H-inequiv. H-irr. rep.
54-8m C(2%+4m) 1| H®**™| a direct sum of two H-equiv. H-rr. rep.
6-+8m R(23+4m) 1| H®**™ | a direct sum of two H-equiv. H-rr. rep.
7+8m | RQ2**™PR2*+™) 2| H***™ | A*; H-irreducible, H-equivalent
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At the column #, the numbers of the H-equivalence classes of irreducible H-
representations are placed. The vector spaces W are their representation spaces.
If n=3+8m or 7+8m, then p*: K(N)DKN)—Endg(H"), p*(G., G)(x)=GCG.x,
represent the two irreducible H-ones and restrict to A®.

Let us observe briefly the case n=8m or 4+8m, which is essential in §5.
Set N=2*™, 21**m and K=R, H respectively. Fix an orthonormal basis {e,, ---, ¢,}
of R™ and consider the volume element

(1.13) e =g e, eCln).

Then we have a real algebra isomorphism

(1.14) Cl(n) = K(N), e<——><(1) _f)l)

where 1 is the unit matrix of K(N/2). The identification and the standard H-
representation ¥ at (3) give the irreducible one

(1.15) p: Cl(n) = K(N) —> Endg(H").

The element ¢ Cl(n) belongs to C/°(n) if and only if pe=ep. Hence, through
1.14), we have

A, 0 o,
(1.16) Clo(n) = {( . A_)eK(N)!AieK(N/Z)} = K'(N).
Accordingly the restriction p° of g to Ci°(n) can be decomposed into
#0 — p0+@p0—,
(1.17) 4 0
p=: Cln) = K'(N) —> Endg ("), (", )= A

Further, obviously, ¢°* are H-irreducible and H-inequivalent to each other. They
restrict to

(1.18) A, = ALPA; .
now implies that so are Ag.

§2. Spin? groups and Spin? structures.

Let us define the Spin? group by twisting the Spin group using Sp(l).
That is, we set

2.1) Spin%(n) = Spin(n)X £,Sp(1) = Spin(n) X Sp(1)/{£(1, 1)}

with the group multiplication given by [¢1, 41 1[¢@s, 22 1=[ P12, Aide].
By identifying naturally Im H= {a,i+a.j+ask} with R® (i.e., ayi+a.j+ask
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t(a;, a, as)) and SO(Im H) with SO(3), we have the group homomorphism
Ad: Sp(1)—S0@3), Ad AD)(x)=4AxA"! for xelm H. As is well-known, it is sur-
jective and its kernel is equal to {#1}. Thus, combined with [1.3), it implies
the short exact sequence

3
(2.2) 1— Z, — Spin’(n) — SO(n)xXSO@3) —> 1

£y, 4D = (Gilp), Ad(2)
Z, = {1=[1, 11=[-1, =11, [1, —1]=[-1, 11}.

Let us first examine the R-representation of Spin%(n) induced from (1.5),
called a fundamental one if is irreducible,

2.3 A% 2 Spini(n) —> GLg(W), AT, Ax = Au(p)xA.

LEMMA 2.1. Take two H-representations p, p’ of Cl(n) and construct accord-
ingly A,, A%, Ay, A2 as above. Then we have

(1) A, and A}, are H-equivalent to each other if and only if A} and A} are
R-equivalent to each other,

(2) A, is H-irreducible if and only if A% is R-irreducible.

PrOOF. Express the representation spaces of g, g/ by W, W’. As for (1):
Assume that there exists an H-linear isomorphism f:W-—-W’ with f(A(p)x)=
A(p)f(x) for all o=Spin(n) and xW. Then, for [¢, A]J=Spin%(n), we have
F(Co, 2Dx)=f(AlR)x)=f(Ap)0)T = A'p) f(x)2=A"Cgp, ADf(x). This means
that A? and A’? are R-equivalent. Conversely, assume that there exists an R-
linear isomorphism f: W—W’ with f(A'[¢, 2D)x)=A"[¢, A1) f(x) for all [¢, 1]
&Spin%(n) and xW. Then, by putting =1 we have f(A(p)x)=A'(¢)/f(x) and,
by putting ¢=1 we have f(xA)=f(x)A. As for (2): Assume A is H-irreducible.
And set W=W,HW,, a decomposition into R-linear Spin?(n)-invariant subspaces.
Then the definition of Spin%(n) asserts that each W, is a right H-linear subspace
and is, further, Spin(n)-invariant. Thus, by the assumption on A, we have
W,=1{0} or W,={0}. The converse can be shown similarly. [ ]

Hence Table I implies Table II.
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Table II.

n fundamental A?

8m a direct sum of two R-inequiv. R-irr. rep., AI=A?"PAI"

1+8m R-irreducible

2+8m R-irreducible

3+8m A ; R-irreducible, R-equivalent

4+48m a direct sum of two R-inequiv. R-irr. rep., A7=AY" DAL~

54-8m a direct sum of two R-equiv. R-irr. rep.

6-+8m ! a direct sum of two R-equiv. R-irr. rep.

7-+8m ‘ A% ; R-irreducible, R-equivalent

Next let us define and study the Spin?structure. We take a principal
SO(n)-bundle Psg(ny over a manifold X.

DEFINITION 2.2. A Spin?-structure on Pgo(,, consists of a principal Spin%(n)-
bundle Pspin9r, and a principal SO(3)-bundle Psoiy over X together with a
Spin%(n)-equivariant bundle map

& Pspin%y — Psoy X Psowy ,

i.e., &(pg)=E&(p)&(g) for all p&Pspintny and g&Spin¥(n). The bundle Psgysy is
called its fundamental class.

Let us discuss the existence condition, etc.. The short exact sequence 1—Z,

Ad
—Sp(1) — SOB)—1 yields the long exact sequence of pointed sets:

Ad 2,712
2.4 e —> HY(X 5 Sp(1)) — HY(X ; SOQ®) — H*X ; Z,)

We recall briefly the definition of the cohomology H'(X ; G) with coefficients in
some (possibly non-abelian) Lie group G; in general H'(X; G) is not a group.
Take an open cover U= {U,}.ca of X. The family {continuous g,s: U.NUp
—G|gapgs8r.=1 in U,NUgNU, for all a, B, y} is called a 1-cocycle on 9.
We define two l-cocycles {g.p} and {gus} on €U to be equivalent if there exists
a “0O-cochain” {continuous g,: U,—G} such that gus=gz'g.s8s in U,NUpg for
all «, 8. The set of equivalence classes of l-cocycles on U is denoted by
HY (U ; G). HYX;G) is then defined to be the inductive limit of H (U ; G) with
respect to the refinement of open covers. Since Sp(1) and SO(3) are not abelian,
HY (X ; Sp(1)) and HY(X; SO(3)) may be just pointed sets, however with the
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distinguished elements (i.e., {g,s=1}). By definition H'(X; SO(3)) represents
the equivalence classes of principal SO(3)-bundles over X, that is,

(2.5) PRINso o (X) = HY(X ; SO@3)),

and W, at is just the second Stiefel-Whitney class. Next consider the long
exact sequence induced by [2.2),

E 2 ~'2
(2.6) - — HI(X ; Spin¥(n) —> H(X ; SO)BHX ; SOG) =y HUX ; Zy).

Here w,(P) is also the second Stiefel-Whitney class of the element P of
HY(X ; SO(n))=PRINgq,(X). The sequences and (2.6) imply

PROPOSITION 2.3.  Psgy has a Spint-structure if and only if wy(Pson,) be-
longs to the image of the map W,.

Further, since @,(Psp))® is the mod 2 reduction of the first Pontryagin class
p1(Psocsy), we have the following: ¢f. the characterization of the existence of
Spin‘-structure in terms of characteristic classes.

COROLLARY 2.4. If Pspwy has a Spini-structure, then wyo(Pspm,)? is the
mod 2 reduction of an integral class.

Remark that the converse may not hold in general.

Two Spin?-structures £%: P%pin%ny—Psowny X Powy (@=1, 2) are defined to be
equivalent if there exist Spin%(n)-, SO(3)-, equivariant bundle isomorphisms
St Pipin?ny—Plpintny, 11 Psowy—Psowy with &2es=(id.X?)-&'. Then we have

PROPOSITION 2.5. If Psoy has a Spint-structure, then the set of equivalence
classes of Spint-structures corresponds bijectively to AAd(H'(X ; Sp())DBHNX ; Z,).

Proor. Take such a structure &: Pspin?ny—Psomy X Psowsy.  Since Wa(Pspcs)
=w,(Psomy), the fundamental class Psoi, €HYX ; SOB)) can run within the
subset Ker W,=Ad (H'(X ; Sp(1))). Next we fix the class Psgi,=P%o», and ex-
amine how many £: Pspin?(ny—Psom) X PSoey there are. The fibration SO(n)Xx
SO(3) iPso(mego(3) Z X induces the exact sequence

n.* ;%

?
00— H'X; Z,) —> H'(PsoyX Psocw) ; £2) —> H(SO()XSOQ3); Zs).

This asserts that the set of such Pspin2(s) bijectively corresponds to {@a € H'(Psqn)
X Plows ; Zs)|i*a is equal to the double covering eH'(SOMn)XS0Q); Z)}
=H'(X; Z,). [ ]

Let E be an oriented n-dimensional Riemannian vector bundle over a mani-
fold. A Spin?-structure on E means a Spin?structure on the principal SO(n)-



Spin? structures 103

bundle Pgg,)(E) consisting of positively oriented orthonormal frames. Remark
that the choice of Spin?-structure for the fibre metric on E canonically deter-
mines a Spin?structure for any metric. Here we are using the fact that, for
any metric, the inclusion from Pgsq,,(E) to the bundle P;y, (., (E) of all positively
oriented frames is a homotopy-equivalence. A Spin?-manifold means an oriented
Riemannian manifold with a SpinZ%structure on its tangent bundle.

Since the second Stiefel-Whitney class of a bundle Psg¢,, Which carries a
Spin-structure &;: Pspincny—Pso) vanishes, it has a canonically determined
Spin%structure. It is obtained by setting Psy,=XXSO0(3), Pspa,=XXSp(l),
trivial bundles, and considering the natural map

2.7) . PSpinq(n) = PSpin(n)XZZPSp(l) —> Psony X Psoay -

In the next section we will provide an example which is not trivial as above
and for which the Spin?structure theory will be essentially effective.

§3. Almost quaternionic structures and SpinZstructures.

Let E—X be an n-dimensional real vector bundle over a manifold. In this
section we will show that an almost quaternionic structure induces canonically
a Spin%structure. .

The almost quaternionic structure V is a 3-dimensional subbundle of E*QFE
which has locally a basis {/, J, K} satisfying the familiar identities

3.1 I*=]*=K**=—id,, IJ]=—JI=K,

called its canonical local basis. Remark that the endomorphism ¢ =V is assumed
to act on E from the right: (I/)(e)=J((e)). For details refer to Gray [7],
Ishihara [9] and Salamon [14, 15, 167, etc..

Assume E has such a structure V. The fibre E, can be regarded as a
right H-vector space by identifying the actions of 7, j, k= H with the actions
of I, J, K. Take a basis {e,, ¢, ---, ex} of the right H-vector space E,. Then
{es, -+, en, ley, -+, ley, Jei, -, Jewn, Key, -+, Key} forms a basis of E, as an
R-vector space. Hence n=4N. Moreover, since two canonical local bases
{1, J, K} on U, {I’, J’', K’} on U’ have the relation

r I
(3.2) ({{’/) = S({() for some SeC=(UNU’, SO@3)),

E can be regarded as being oriented by the above ordered basis. Let us next
discuss the reduction of its structure group. We embed GL(N, H) into GL(4N, R)
by and also embed GL(1, H) acting on HY from the right into GL4N, R)
through [(1.6),
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Al —41 =41 Al

4,1 Al —21 —A

Al A1 Al AL
—A1 Al =21 Al

3.3) ¢ A= At i+ 4]+ Ak —>

Thus embedded GL(N, H) and GL(l, H) generate the subgroup GL(N, H)-
GL(, H)=GL(N, H)X z,GL(1, H) of GL(4N, R), with the group multiplication
given by [Gy, 4,1 G., 2:]1=[G:G,, 4:4,]. In particular we consider its subgroup

3.4) SP(N)-Sp(1) = Sp(N) X £,Sp(1).
Similarly to [4, 14.61] for instance, the following can be shown easily.

LEMMA 3.1. The vector bundle E admits an almost quaternionic structure V
if and only if n=4N and the structure group GLAN, R) of E can be reduced
to Sp(N)-SpQ).

We take and fix a fibre metric g on (E*¥, V) satisfying
3.5 g(ve, e)+g(e, ve’) =0

for all vV, e, ¢e’=E. This certainly exists and is called a quaternion-Hermitian
metric. By the lemma, (V, g) gives a reduction of the frame bundle of E to a
principal Sp(N)-Sp(1)-bundle

3.6) Pspawyspy(E, V, g) — X

On the other hand, by regarding S at as the transition function @y.; from
U to U’, the family {@y.y} defines a principal SO(3)-bundle

3.7 Psow(E, V) — X .

Using the principal bundles and the following group homomorphism £ which
makes the diagram commutative, we will show later that (V, g) induces a
canonical Spin?-structure on E.

Spin?(4N)
(3.8) B le

’

SHN)-Sp(l) —25X2Y L SouN)xS0@3)

The map inc.: Sp(N)-Sp(1)&.SO(4N) is the inclusion map given above and
Ad([G, Aa=2"*al (if N is odd), =a (if N is even) for a=lm H=R®. To con-
struct £ we will give a lemma.

LEMMA 3.2. There exists a group homomorphism 5 from Sp(N)xSp(l) to
Spin(AN) such that the following diagram commutes:
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SPIN)XSp(l) —————> Spin(dN)

(3.9) l l :,

SHN)-Sp(l) o, SOUN)

PrROOF. In general, for S&Sp(N), there exists P€Sp(N) and yv,=exp(:6;)
(eU1)cSpA)) (=1, ---, N) such that, referring to [1.9), we have

1 41

Yy

»1. 0

: , (P)(S)(P) =
0 vu

(3.10) P-'SP= (

Indeed, since ¢(S) is a unitary matrix, there exists a unitary matrix U such that
U-%(S)U is diagonal. Further such a matrix U can be carefully chosen so that
it belongs to SU@N)NSp(@2N, C) and the diagonal elements of U ¢(S)U are
arranged in the order v, v, -+, vy, Uy, Ds, -+, y. Hence P=¢*(U) satisfies
(3.10). Now we set P=(uy, ---, uy) and Ju,=u,i, Ju,=u,j, Ku,=u,;k. Then
the element

~ - N 01 . 01 0[ . 01
3.11) E(S) = ZI=II (cos §+s1n—2—ullul)(cos —2—+sm§]ulKul)
belongs to Spin (4N). 1t is easily verified that this element does not change
when we replace 6, by 8,42z and, moreover, it does not depend on the choice
of P. Further we have

X

(3.12) E(ES) =1uS),  B(S)E(T)= E(ST).

The first identity implies the second. Indeed the second identity holds for
T=1 and the first identity asserts &(Z(S)Z(T)=E&(E(S)E(E(T)=1c«(S)’«(T)=
('e(ST)=&y(E(ST)). That is, &=Ad: Spin(4N)—SO@N) sends both H(S)Z(T)
and Z(ST) to the same element. Therefore, by taking a curve from 1 to T in
Sp(N), they turn out to be equal to each other. Let us prove the first identity.
It will suffice to show the case N=1. Put P=(u;,)=(u), §,=6. Then the matrix
representation of ¢¢(S) with respect to the ordered basis {u, Ju, Ju, —Ku} is

cosf O —sinf O

0 cos 0 0 sin 8
sinf 0 cosfd O

0 —sinéd O cos @

J(P7ISP) =
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On the other hand, by straightforward computation, we have
EE(S)xou+ 21 JutxoTu+ xi(— K1)
= (x4 c0S @— x5, sin )u+(x, cos @+ x; sin 0)Ju
+(x, 8in @+ x4 cos 8)Iu-+(—x, sin O+ x5 cos 8)(—Ku).

Thus the first identity is proved. Now, the action of [G, 4]=Sp(IN)-Sp(1) to
xeHY is given by [G, A]x=GxA=G-A1-Ad A7})(x). asserts that &(5(G))
=¢«(G) and &(&(AL)=c"¢(A1). Using the standard basis {e, -, ey} of HY,
next let us define the element & 4(1) of Spin (4N) corresponding to A=A,+2A,i+
A7 424k (€Sp((l)) by

N
(313) EA(IZ) = H (Xo—llfelKel——ZzKelIel——Zglel]el) R
I=1
which satisfies
(3.14) Eo(E4(A)) = 'e(A7'1)-¢"(4).

It will suffice to observe also the case N=1; the subscript { is removed. For
x=4xy, X1, X3, X5)=xpe+x,le+x,Je+x;KecR*, we have

EO(EA(Z))(X) = x¢e+ {(2§+1%~2§—2§)x1+2(20/23+1122)x2+2(2123"1022>9€3} le
4+ {2(A1 45— ZoA3) X1 F(B—234-25—23) X2+ 2(Ag A1+ A2ds) x5} Je
+ {2(A0Aa+A145) X1+ 2(A2hs— Aoh1) X+ (A5 — AT — A3+ AD)x:} Ke

and A7 (x4 x1i+ x5+ x3k)A which corresponds to ¢/¢(A7!1)-¢”(A)(x)=R* is easily
shown to be equal to the right hand side with ¢, Ie, Je, Ke replaced by 1, ¢, J,
k, respectively. That is, is proved. Then, by setting

(3.15)

I

) = EQDE 44),
the desired map & is defined to be
(3.16) E(G, )= E(G)E, ).

The diagram (3.9) is obviously commutative. Moreover, since we have E(H, 7)
-E(G, H=EH)E()5(G)5.(2) and E(H, 7)XG, 0)=EH)E(G)E(1)Z.2), in order
to show that & is a group homomorphism, it suffices to prove 5(G)Z.(4)=
Z.()E&(G), which can be proved along the same lines as that of the second

identity in (3.12). [ |
Now, the homomorphism & can be constructed immediately by
[Z(G, ), 2'] N, odd

(3.17) Z([G, i) = { -
L&Z(G, 4), 1] N, even.
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Note that £(—G, —)=F5(G, A).
THEOREM 3.3. The vector bundle E*N with an almost guaternionic structure
V and with also a fixed quaternion-Hermitian metric g admits a Spini-structure
given by
Pspintuny = Pspany.spr(E, V, g)X g Spin(4N),
Psoiy = Pspvy-spr(E, V, @)X aar SOB) (=Psoy(E, V) if N s odd),
together with the natural Spin®(4N)-equivariant bundle map

&: PSpinq(4N) — Pso<4zv>(E, 8)X Psq ) .

PROOF. Since Psoum(E, 8) = Pspuny-sp,(E, V, @)X ine. SO4N), the map
inc. X Ad’ at (3.8) induces the map &. ‘.

Finally let us make a brief comment on the quaternionic K#hler manifold
(X*¥,V, g), which is a manifold X*¥ with an almost quaternionic structure V
and a quaternion-Hermitian metric g on its tangent bundle and whose holonomy
group Hol(X, g) is contained in Sp(N)-Sp(l). [14, Proposition 2.3] asserts, by
using the notations in §2,

(3.18) u'z(PSO(4N)(TX, g)) == N?Z/Q(Pso(:;)(TX, V)).

This means that (X, V) satisfies the condition of [Proposition 2.3 and turns out,
with no concrete construction, to admit a Spin?-structure. Further it is known,
referring to or [14, § 5], that there exist some examples (some Wolf spaces)
with @Wy(Pso(TX, V)0 and N=1 (mod 2), that is, there exist quaternionic
Kéhler manifolds which admit no Spin-structure. (To prevent confusion X is
assumed, according to [14], to be a quaternionic K#hler manifold. But the
assumption Hol(X, g)CSp(N)-Sp(l) was apparently not used in the proof of
[14, Proposition 2.3]. That is, holds for any almost quaternionic manifold.)

§4. SpinZvector bundles and the Dirac operator.

Let Psony be a principal SO(n)-bundle over a manifold X with a Spin%
structure &: Pspin?ny—Psomn X Psoy. We consider a real vector bundle, called

a Spint-vector bundle,
(41) S= PSpinq(n)XAqW

associated to an R-representation of Spin%(n). Take an open cover {U,} .cu
of X so that U, N - NU,, is contractible for all ay, -, a,.

In general it is impossible to construct principal bundles Pspin(ry, Pspa, such
that Pspin?(n)=Pspinn) X z,Psp1y. We inquire first into the obstructions to their
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existence. Let f={f.p: UaNUs—SO(n)} be the transition functions for Pso,:
fapfprfra=1 on U,NUsNU,. The “transition functions”

(4.2) fr={fts: UanUg—Spin(n)}  with & ftp=rap

construct the Spin-structure Pspincs, if and only if the Cech cocycle

4.3) w = {wopr=/rapfbrfra: UaNUgNU; — Z,(CSpin(n))}

is equal to {1}. The long exact sequence

5:14/2

(4.4) o —> HY(X : Spin(n)) —> H'(X ; SO(n)

H¥X; Z,)

associated to then asserts, since &([ f])=[w’], that if [w’]=0 we can take
" with w'={1}. Thus the class [w'J€H¥X ; Z,) is nothing but the obstruction
to the existence of the Spin-structure Pspinny. Similarly, let h={h,p: U,NUp
—SO(@3)} be the transition functions for Psg): haphprhre=1 on U,NUsNU;.
The “transition functions”

4.5) h={has:Usn\Usg— Spl)}  with Adeh,g=hgp

construct the bundle Ps,q, if and only if the Cech cocycle

(4.6) W = {Dapy=Rashgrhya: Uun\UsNUy — Zo(CSpL))}

is equal to {l1}. The long exact sequence then asserts, similarly to the
above, that the class [W]€H¥X ; Z,) is nothing but the obstruction to the ex-
istence of the desired bundle Pgsyq,.

It is then clear because of the existence of Spin%-structure that the obstruc-
tions [w’] and [@] agree, ‘. e.,

4.7) [wl+[w]=0 (n H¥X; Zy).

Hence, adjusting by coboundaries, we can choose f'={f/,s} and ﬁ:{ﬁ“‘s} SO
that wg s, =W,p, for all a, B, . Thus the transition functions

(4.8) F= {Fas=flzX hos: Usn U — Spin(n)X 2,5 p(1)=Spin%(n)}

satisfy F,sFsFr,=1 on U,NUsNU,, and thus determine the global bundle
Pspinn, and the vector bundie [4.1). That is, while we may not construct
globally the vector bundles, Sx= Pspin(n) X AW —the so-called spinor vector bundle
associated to f’ and the representation (1.5)-—, and V y=Ps, )X can.H associated
to % and the canonical representation can.: Sp(1)—G L z(H) by left multiplication,
both of them exist locally and the H-tensor product of Sx and Vg (the con-
jugate of V) exists globally and is, moreover, equal to S, 7.e.,
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Now let X be an n-dimensional Spin?-manifold with a fixed metric g. The
bundle Pgo,, consisting of positively oriented orthonormal frames carries a
Spint-structure &: Pspin?ny—Pson) X Psowiy. Accordingly the Spin?-vector bundle
(4.1) is defined. Psy,, carries the Levi-Civita connection o= {wfel (8o(n)Q
T+*X|U,)} associated to the metric g. We fix here a connection w= {w, =1 (80(3)
KT*X|U,)} of Pspi,. Then we get the direct sum connection w®*Pw on Psp,)
X Psos. By lifting it, we have a connection ¢= {1 (@p'n¥(n)RT*X|U,)} of
Pspin(n), which is well-defined globally. The identifications of Lie algebras

Ex
(4.10) gpini(n) = apn(n)Pap(l) = 3o (n)Heo(3)
& = *Bwg <> 0w
are convenient: wp= {wg, . @P(1)RXT*X|U,)}. The aims below are to define
the so-called Dirac operator D and to get the Bochner-Weitzenbock type formula

for the Dirac Laplacian D>,
The connection @ induces the covariant derivative on S,

(4.11) V:T'(S) — I'(SKRT*X).
Consider the Clifford bundle
(4.12) CU(X) = PsonyX o Cl(n)

associated to the canonical representation ¢/: SO(n)—Aut (Cl(n)). It carries the
covariant derivative

(4.13) Vet ['(CUX)) — I'(CIX)YRQT*X)

induced from the connection w®. Using the representation clep-£: Spin%(n)—
Aut (Cl(n)) where p: SO(n)XSO(3)—SO(n) is the projection, it follows that
(414) CZ(X) = PSpinq(n)XclopOECl(n) .

Hence S is naturally a bundle of left modules over the bundle of algebras CI(X).
Moreover, one can easily verify that the covariant derivative on S is a module
derivation, 7. e.,

(4.15) V(po) = VY p)a+¢V(a)

for all p=I'(CI(X)) and all e=I'(S).

Let us introduce a fibre metric on S. We take an inner product ¢, > on the
real vector space W satisfying {ew, ew’>=<w, w'>=<wi, w’'A> for all w, w' W,
ecR"® with |le|=1 and A&Sp(l).. This certainly exists and induces a fibre
metric {,>=<{,>s on S which satisfies

(4.16) {edy, G,y =<0y, 03
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for all ¢, ¢,=S; and all e T, XC Cl(X) with e2=—1. Take a basis {w;, ---, Wy}
of W as a right H-vector space and consider the ordered basis {w,, -, wy,
Wit, -, Wyi, W], -+, Wx], wik, -, wyk} of W as an R-vector space. Then
obviously we have A?: Spin?(n)—SOW, <, >) and hence A%: 8pini(n)—8o(W, {, ).
This means that

4.17) e{a;, 05> = No0,, 0,0+<0,, V.05

holds for all eeTX and a,, g,=1(S).
Then, under these preparations, we can define a first-order differential
operator called the Dirac operator

4.18) D:I[(§)—>T(S), Do= Fe.,V.,0,
where, at xeX, {e,, -+, e,} is an orthonormal basis of T,.X. Note that it does

not depend on the choice of the basis. Its principal symbol is given by ¢:(D)
=+/—1& (§=T*X) and hence it is elliptic. Furthermore, with respect to the
inner product of I'(S) given by

(4.19) (0, 09 = <o, 00dg

where dg is the volume element of (X, g), it is formally self-adjoint, 7. e.,

(Da,, a,)=(a,, Da,) for all compactly supported g, 0. 7'(S). This follows easily
from (4.15)-(4.17).

Let us extract the Bochner-Weitzenbock type formula. To any tangent
vector fields V, and V, on X, we associate an invariant second derivative
V,.v,: I'(S)—I'(S) by setting vgl,vza:wlvyzwvvgl v,0, where V% is the Rie-
mannian covariant derivative on (X, g). Recall that this is a tensorial operator

in the variables V,, V,. The connection Laplacian V*V is defined by taking the
trace, 7.¢.,

(4.20) V¥ I'(S) —> ['(S), V¥Ve = —trace (V?,.0).

In terms of local orthonormal frame fields (e, -+, ¢,) induced from normal
coordinates at a point p<X, we have, at the point p,

D= Eb eaveaebveb =2 eaebveaveb =2 eaebve%a,eb
a,
- ZVga,eb'i_ %eaeb(vga.eb_V§b,ea)-
a<

Hence, using the curvature tensor and the induced curvature transformation

Ry, vy (0) = Ty V=V, Vv, =iy, v,1)0
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(4.21) 1
R(g) = —2- az)beaebg{ea,eb(o):

where (e, ‘-, ¢,) is any orthonormal tangent frame at the point in question,
we get the general Bochner identity

(4.22) D*=V*V4+R .

We examine R closely. The computation is local, so the tensor product
expression is effective. That is, referring to [4.10), we denote by VZ and
RE the covariant derivative and its curvature tensor on the (local) Sx with the
connection @® and by V# and KR those on the (local) V5 with the connection
wg. Then, for a (local) cross-section 6=04xQ7 of [4.9), we have

Vo = VR(0) Q0+ 0:QVE(v),
(4.23) N 1 —
R(0) = R¥(0x)RD+ 0 aZb 2.0, 0xQRE (V).

We denote by R the curvature tensor on TX with connection @w® and consider
the scalar curvature

(4.24) k= —318(Rey er(a), e): X — R
a,b

Then the Lichnerowicz theorem ([10, Chap. II. Theorem 8.87]) asserts

(4.25) RE = —}Ix.

Let us examine the remaining curvature term ®R¥., We take the canonical
basis {fi, f», fs} of R® (=Im H) and define the basis {f.Afs} < Of 80(3) by
setting (fo A fo)0)=< a, Wrfo—<fs, V>rfa, Where {,>r is the canonical inner
product of R®. The connection w can be written in the form

1
(4.26) 0= Eb(fa/\fb)(gwba = —2- c;b(fa/\fb)@CUba, Wyg = —Wgp
and its curvature 2-form is given by

(427) QR = doto o= §b<fa/\fb)®gba

:%g(f“/\f”)@gb“’ Qba:_gab,

Qba = dwba,_"wbc/\wca ) {Cl, b; C} = {1, 2: 3}-
Since the isomorphism

(4.28) ad = Ady: Im H= 8p(1) —> 80(3)
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in is given by (ai+asj+a:k)/2— aifsAfst+asfsAfi+asf i fe, we have
(4.29) Wy = ——%(z’w23+]‘w31+ kws)

and its curvature 2-form is

(4.30) Qp =dog+owg \owg = ——%—(z’.st-FjQu—%-lez).

Hence we have

4.31) + T et @RE o) = 5 caestule, ) = Qulo).

In particular, if W=H?Y, then, by the identification W=R*¥ through [1.6), €%
can be written as

(4.32) Q= 5 U+ 0 +KDQ0),
where
00 —1 0 0 —1 0 O
00 0 —1 1 0 0 O
I=t10 0 o =0 0o o 1}
o1 0 O 0 0 —1 0
0O 0 0 1
0O 0 —1 0
K= O 1 0 0 1=1y
-1 0 0 O

THEOREM 4.1. D*=V*V+(1/4)k+ Q%

Let X be compact. Denote by |Q%| the pointwise operator norm of Qg
acting on [(S). Then, since the theorem implies

1
(4.39 1901+ (5 5—1231) Ip1*dg = 0
for p=Ker D, we have

COROLLARY 4.2. Ker D={0} if £=4|Q%]| and > at some point.

§5. SpinZmanifolds of dimension #=0 (mod 4).

Let X be a compact Spin?-manifold of dimension n=0 (mod 4). The funda-
mental representation A% given in Table II induces the fundamental Spin?-vector
bundle

(6.1 S(X) = Pspintny X2z W,
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24m n =8m
W = H¥, N =
2iram, n=4+8m.

Using the volume element e=ee, -+ e, €' (CIX)) (see [L.I3)), S(X) can be de-
composed into

S(X) = SHX)PS~(X),
(5.2)
S*X) = (1£e)S(X) = Pspintcn) Xy a=W*,

where the splitting AZ=A%"PAL with W=W*PW~ was given at Table I (and
also (1.14)-(1.18)). Since V¢le=0 and eé=—&e for all £=TX, the decomposition
(5.2) is parallel with respect to the covariant derivative V (given at and
&-S*(X)cS*(X) for any éTX. Accordingly the Dirac operator is of the form

(5.3) p=(p. l())) D*: I'(S*(X)) —> I'(S*(X)).

Since D is self-adjoint, D* and D~ are adjoints of one another with respect to
the inner product (,) given at [4.19). We will calculate the index of the
operator D*, ind D*=dim Ker D*—dim Coker D*.

Let A(X)EH"*(X : R) be the A-class of X and let V be the vector bundle
associated to Pso(y and the canonical representation of SO(3), i.e., V=_Pspaq
X can. R®. Note that the first Pontryagin class p(V)=p,(Psow)EH*X ; R) can
be represented, using the notation [4.27), by the 4-form

5.4 Py = ey (DA Lot Qu A Lost Qs A2
(2x)
THEOREM 5.1. If n=8m (0=2) or n=448m (6=1), then we have
ind D* = (_2)6{cosh (% ) -A(X)}[X 1,

where [X]€H,(X ; R) is the fundamental class of X.

This is due to the famous Atiyah-Singer theorem (see [10, Chap. III. Theo-
rem 13.8] for instance), which says

(5.9) ind D* = {z,ch a(D*)- AX)}[X],

where n:TX—X is the projection map, ¢(D*) is an element of the K-group
K(TX) determined by the principal symbol ¢(D*) (and the identification 7T*X
=TX through the metric g),

(5.6) o(D7) = [#¥(SHX)RQ0), #¥(S™(X)QC); a(D™)],

ch e(D*) denotes its Chern character (€ H%,(TX ; Q)) and =, is the Thom iso-
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morphism HZ5.(TX; Q)=H** *(X;Q). Our task is to examine =, chea(D*)e
H**(X ; Q) closely. Denoting by »: X—TX the inclusion given by the zero-
section, we have

r*e(D*) = [STX)QCI-[S-(X)RC] = s(X) € K(X),
XTX)-m cha(D*) = r*rx, cha(D*) = r* ch a(D*) = ch 8(X),

(6.7

where X(TX)eH™X; Q) is the Euler class of TX. Thus we have only to
examine ch s(X)eH**(X; Q). To do so, it will be convenient to express ch s(X)
in terms of the curvature 2-form of @. Denoting by $%* the curvature 2-forms
on the local Si(X) with the connections @®* (=@®), we have

(5.8 V2g = (VE)(04)Q0+ a+QV)¥(v)
= (9% + Qx)0),

for a local cross-section 6=0+@7 of S*(X)=Si(X)®x V z. Hence, by Chern-Weil
theory, we have

G chs()=Trexp(Y-L(G% +0)~Trexp (Y- L(3% +22)

In order to calculate this we make some preparations. Consider the irre-
ducible C-representation »¢: Cl(n) — Endo(C¥) (n=8m), End¢(C*") (n=4+8m)
given at Lemma 1.1(2) (ii). They restrict to AC: Spin(n)—GL(CY), GL(C*M).
The spinor representations A® are decomposable. Note that, in accordance with
custom, the complex volume element e.=:"/%¢ is used to decompose them: see

K1.13) and [1.14).

(5.10) A¢ = AP AC-,
CV*D {0}
CY* =(1xe)CY =(1+xe)C¥ = { , n=8m,
{0}
C?M* = (1+ec)C* = (1Fe)C?Y
{0} pHY 2 = {0} DCY
= { s n=4-+8m.
HY*H{0} = CYP {0}

Hence, we have the (local) vector bundle with splitting, S¢(X)=S§X)DSe(X),
associated to Pspincsy and the above. The connection @® induces the connection
@° on it. Denoting by 2¢=0°*@®7°" the curvature 2-form with corresponding
splitting, we have

.11) Tr exp (%El 2°*)~Tr exp (—*% 2°-) = ATXAX)™

This is a part of the calculation of the index of Dirac operator on the “Spin
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manifold” ([10, Chap. III. Proposition 11.247). Now, by computing the right
hand side of (5.9), we will show [Theorem 5.1.

Proof of [Theorem 5.1 for n=8mn. The irreducible H-representation p: Ci(n)
=R(N)—Endg(H") induces the R-representation tr: Cl(n)=R(N)—Endg(R*Y),
pr(A)=AR1, (the Kronecker product). It further induces the C-representation
syt Cl(n)=R(N)—End(CRR*Y), which is decomposed into the irreducible ones,
ey =veDVeBVePC. ts restriction to Spin(n) 'is accordingly decomposed
mto

A©) = ACPACPACPAC
CROR*Y = (CQR™)E -+ DICORY).

On the other hand, by using the volume element e, it admits another decom-
position,

(5.12)

(5.13) A© = AO+HPA©-
(CRRY)* = CR(1+e)R*Y = CRRY*
(CRRY*BA0})D - B(CRRY*B{0}))
{ (CR{0}BRY2)D -+ ICR({0} BRY'?)).
Observing (5.12) and [5.13), it turns out that A©* can be decomposed into

A(C): — ACi@ACi@ACiEBACt,
(C®R4N)i — CN:@cN:EBcN:«@cNt .

(5.14)

Since the curvature 2-form of the connection @® on the (local) complex vector
bundle associated to the (local) Pspincn, and the representation is exactly
Qr=0QR*POR-, (5.14) gives the identity

(5.15) V=lgr. _ V=lgeeey, .

On the other hand, (5.14) and obviously assert

0 ‘913 932 QIZ

\/—_1 o \/—Tl Qsl 0 sz ng _ \/:T -

(5.16) 272.' QH — 1N/2® 47f 923 ng 0 931 = 1NI2® WZ” 'QH
921 Qza -Q]s 0

and we have the formal factorization

5.17) det (tL—— %—?ég) - (tz— % p,)z = (— X)Xt +x)? .
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Therefore, denoting the eigenvalues of (v/—1/27)2¢* by x%, ---, x¥ s, the matrix
(v/—1/27)(2%*+0%) can be diagonalized into the form

X3 0 x 0 0 07
0 x 0 0
(5.18) . Q1,415
0 0 0 —x O
XN 0 0 0 —x
Now [5.4), (5.9), [6.11) and [5.18) imply
NIz . N2 _
(.19) ch s(X) = 2(e”+e"”)< S et~ S e’”l)
i=1 i=1

= 4 cosh (% PV VUT XA
Combined with (5.7) and [5.5), this implies for n=8m. "

Proof of for n=4+8m. The irreducible H-representation
p: Cln)=H(N)— Endg(HY) induces the R-representation pg: Cl(n)=H(N)—
Endg(R*Y), pr(Z+ W)= Z+jW); see [1.7). It further induces the C-repre-

sentation pc,: Cl(n)=H(N)—Endc(CQR*Y). We consider the crucial C-linear
isomorphisms

(5.20) CRR"Y = CRCYW = C*NEo*Y
Qo
@ o |28 (oot ra) =28(5) —A(5)e 7).
as

where the tensor products X are over R and the action of A&C on CRQR*Y or
CRC? is defined to be A(zQa)=4zQa. Through (5.20) the action of p(\(Z+ ;W)
is changed into that of the matrix

zZ —W\./Z W
a & Dol D)
on C**PC*M. Also gives the decomposition of g, into the irreducible
ones, p,=v°@Pv¢. Accordingly the restriction to Spin(zn) is decomposed into

(5.22) A© = ACPAC.

On the other hand, by using the volume element e, it admits another decom-
position,

(523) A(C) — A(C)+€BA(C)_ ,
(COR™Y: = CRL )R = COR™* .
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Further, since R*V*=(1+e)H"=C*"* by [5.10), implies
(5.24) C®R4Nt — C®CZN¥ — CZN;@C2N$ .

Thus we get the decomposition

(5.25) A(C)t — AC:EBAC; ,

which, combined with [5.21), gives the expression according to [5.24),
\/?1 AR __ '\/:T A C =

(5.26) —lom = laeg,.

Let us express also (+/—1/27)Q% in terms of the matrix acting on C*¥*@C2"=,
First consider the identification CQR*»=CRXR*V*=CRQC* *=CRQH"*=CRC".
The curvature 2, which acts on CQR?Y, is expressed as with 1=1y,.
This acts via right multiplication by (Q.+72:s+4202:,)/2 on CRQHY/? and,
hence, gives a C-linear map on CRCY given by

a V=l (@ 1, =1 —B
(5.27) Z®(ﬁ)*—">2®"—2 923(19)‘{"2@(?931 “—2 912)( — )
Second, consider the identification CRCY =CRC* 7= C*N*PC***=C¥PC".
Then the map (5.27) becomes a C-linear map on CYPHCY given by
V=1
2

(5.28) 701 — { stf‘f‘(% Q24— ‘\/_2:1912>T’}

el(-3o Yo Y T0r).

This is easily shown by the fact that the identification CRCY¥Y=CYEC¥ given
at induces the correspondences:

Lie(§)- Vo) (De(3).
Lie( )+ vmievmi( ) (De()

Thus (+/—1/27)Q% acting on C***PC?*¥* can be expressed as the matrix

— Qa5 Qi+ V=124 _ 15
Qo g ) ELO 0

and we have the formal factorization

(5.29) %—;-1.97,: = 1@%(

\/_"_1 A\ — 12 i —
(5.30) det (zlz-——%—g,,) = £ Py = (= )+ ).

Hence, denoting the eigenvalues of (+/—1/27)2°* by x%, -+, x%, the matrix
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(v/=1/27)( 2%+ Q%) can be diagonalized into the form

(5.31) ()8 0)®12+1N®(g ).

Xy

Now [5.4), (5.9), [5.11)] and [5.31) imply

N _ N +
(5.32) ch s(X) = (er+e-r)(lz=1 oi — Ee’t)

— —2cosh (% pl(V)”Z)X(TX)A(X)‘I .

Combined with (5.7) and [5.5), this implies for n=4-+8m. ]
There is an interesting consequence of [Iheorem 5.1 and Corollary 4.2,

COROLLARY 5.2. If a compact Spin®-manifold X of dimension n=0 (mod 4)
admits a metric with positive scalar curvature and a fundamental class Psgsy
with a locally flat connection, then the A-genus of X vanishes, A(X)=0.

ProOOF. X has a Spin?-structure associated to such a metric g and such a
fundamental class with a locally flat connection w. The Dirac operator D asso-
ciated to g and w is defined on the fundamental Spin?-vector bundle. Then the

condition at is clearly satisfied and hence Ker D= {0}. Consequently
ind D* = dim Ker D*—dim Ker D~ = 0. Moreover p,(Pso))=0 because of the

existence of a locally flat connection. Combined with [Theorem 5.1, this implies
AX)=AX(X]=0. =
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