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\S 1. Introduction.

The purpose of the present paper is to prove the following Theorem 1 and
Theorem 2.

THEOREM 1. Let $F$ be an algebraic number field of degree $n$ and $d(F)$ be
the discnminant of F. Let $K$ be the Galois closure of $F$ over $Q$ , the field of
rational numbers. If $d(F)$ is equal to the discnminant of a quadratic number
field, $i$ . $e.,$ $d(F)$ is not a square and equals the discnminant of the field $Q(\sqrt{d(F)})$ ,
then the following hold:

(a) the Galois group of $K$ over $Q$ is isomorphic to $\Sigma_{n}$ , the symmetnc group
of degree $n$ , and

(b) the extension $K/Q(\sqrt{}\overline{d(F)})$ is unramified (at all finite pnmes of $Q(\sqrt{d(F)})$ .

This is a generalization of theorems which were proved by several authors
(cf. [K], [N], $[0]$ , [Y1] and [Y2]) under the assumption that $d(F)$ is square
free.

COROLLARY. Let $f(t)$ be a monic irreducible polynomial of degree $n$ with
rational integral $coeffi\alpha ents$ and $d(f)$ be the discnminant of $f(t)$ . Let $K=$

$Q(\alpha_{1}, \alpha_{2}, \cdot.. , \alpha_{n})$ , the splitting field of $f(t)$ over $Q$ , where $\alpha_{1},$ $\alpha_{2}$ , $\cdot$ .. , $\alpha_{n}$ are the
roots of an equation $f(t)=0$ . If $d(f)$ is equal to the discriminant of a quadratic
number field $Q(\sqrt{d(f)})$ , then

(a) the Galois group of $K$ over $Q$ is isomorphic to $\Sigma_{n}$ ,

(b) the extension $K/Q(\sqrt{d(f)})$ is unramified,
(c) $0_{K}=Z[a_{1}, a_{2}, \cdot.. , a_{n}]$ , where $O_{K}$ is the ring of integers in $K$ .

(a) and (b) of Corollary are immediate from Th. 1, and (c) follows from a
result of E. Maus [M].

THEOREM 2. Let $F$ and $d(F)$ be as in Theorem 1. Then the following
statements (A) and (B) are equivalent:

(A) $d(F)$ is equal to the discriminant of a quadratic number field $Q(\sqrt{d(F)})$ .
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(B) For every pnme $p$ of $d(F),$ $p$ has exactly one ramified pnme divisor
in $F$ and its ramification index (resp. restdue class degree) is two (resp. one).

REMARK. If $p||d(F),$ $i$ . $e.,$ $d(F)$ is divisible by exactly the first power of $p$ ,
$P$ satisfies the condition in (B) of Th. 2 (cf. the proof of Case 1 in \S 3). Also
see Lemma 4 in \S 4.

In an interesting paper of Yamamura [Y2, p. 107], it is stated that, under
the assumption (B), (a) and (b) of Th. 1 hold, although the proof is omitted. So
it can be said that Th. 1 is a consequence of Th. 2. But, in the present paper,
Th. 1 and Th. 2 will be proved at the same time.

\S 2. Some Lemmas.

The following two lemmas are well known in algebraic number theory.

LEMMA 1 (Dedekind). Let $F$ be an algebraic number field and 9 be the
different of $F$ over Q. Let 9 be a pnme divisor in $F$ of a pnme number $p$ , and
$9^{(}f||9$ and 9e|| $p$ . Then

(a) if $p$ I $e$ , then $d=e-1$ ,

(b) if $p^{v}||e(v>0)$ , then $e\leqq d\leqq ev+e-1$ .

See [F2] for the proof.

LEMMA 2 (Van der Waerden). Let $F$ and $K$ be as in Theorem 1, and $Z$

and $T$ be the decomposrtion group and the inertia group of a pnme divisor in $K$

of a pnme number $p$ respectively. Suppose that $p$ has a decomposrtion in $F$

$p=9_{1}^{e_{1}}f_{2}^{e_{2}}\cdots 9_{g}^{e_{g}}$ $N_{L/Q}(9_{i})=p^{f_{i}}$ $(i=1, 2, g)$ .

When the Galois group of $K$ over $Q$ is regarded as a permutation group of de-
gree $n$ (on the set of conjugates of $F$ over $Q$ ), $Z$ has $g$ orbits each of which is
of length $e_{i}f_{i}$ and decomposes into $f_{i}T$-orbits of length $e_{i}$ .

See [W] or [F2] for the proof.

LEMMA 3. Let $F$ be an algebraic number field. Assume that $F$ has the dis-
cnminant equal to that of a quadratic number field $Q(\sqrt{d(F)})$ . Then $F$ does not
contain any proper intermediate field, $i$ . $e.$ , a field $L$ such that $Q\subseteqq L\subseteqq F$ .

PROOF. $d(L)^{[F.L]}|d(F)$ by a transition property of discriminant, which is
impossible unless $d(L)=1$ , because $d(F)$ is a discriminant of a quadratic field.
But $d(L)=1$ is also impossible by a theorem of Minkowski, unless $L=Q$ .
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\S 3. The proof of Th. 1 and Th. 2.

3.1. The proof of Th. 1 and a part ‘
$(A)\Rightarrow(B)$ of Th. 2.

Assume that $d(F)$ is equal to the discriminant of $Q(\sqrt{d(F)})$ and $p|d(F)$ .
Suppose that we have factorizations

(1) $p=9_{1}^{e_{1}}9_{2}^{e_{2}}\cdots 9_{g}^{e_{g}}$ $N_{L/Q}(g_{i})=p^{f_{i}}(i=1,2, \cdots, g)$ ,
(2) $9_{p}=9_{1}^{a_{1}}\Xi_{2}^{)}\dot{a}_{2}\ldots\Xi_{g}^{)}d_{g}$ ($9_{p}=P$-part” of the different 9 of $F/Q$ )

into prime divisors in $F$.
Case 1, where $p$ is odd. Then $d(F)$ is divisible by exactly the first power

of $p$ . By taking norm $N_{F/Q}$ of both sides of (2), we have

$1=d_{1}f_{1}+d_{2}f_{2}+\cdots+d_{g}f_{g}$ .

Therefore we may assume

$d_{1}=f_{1}=1$ , $d_{t}=0$ $(i\geqq 2)$

and so, by (a) of Lemma 1, $e_{1}=2$ and $e_{i}=1(i\geqq 2)$ . Thus in this case the con-
dition (B) of Th. 2 holds. Moreover the inertia group $T$ of a prime divisor in
$K$ of $9_{1}$ is a group of order 2 generated by a transposition by Lemma 2. In
particular, any prime divisor in $Q(\sqrt{}\overline{d(F)})$ of $p$ is unramified in $K$, since $|T|$

$=2$ and $p$ is already ramified in $Q(\sqrt{d(F)})$ .
Case 2, where $p=2$ . Then $d(F)$ is divisible exactly by 4 or 8.
Subcase 2-1, where $4||d(F)$ . Then we have

$2=d_{1}f_{1}+d_{2}f_{2}+\cdots+d_{g}f_{g}$

and also, by (b) of Lemma 1, $d_{i}\geqq 2$ if $d_{i}\neq 0$ . Thus we may assume

$d_{1}=2$ , $f_{1}=1$ and $d_{i}=0$ $(i\geqq 2)$

and then we see $e_{1}=2$ or 3 and $e_{i}=1(i\geqq 2)$ from Lemma 1. We must show
$e_{1}=2$ . Suppose by way of contradiction that $e_{1}=3$ . Then, by Lemma 2, the
inertia group $T$ is a subgroup of $\Sigma_{3}$ . But since 2 is ramified in $Q(\sqrt{}\overline{d(F)})$ , we
must have $T=\Sigma_{3}$ . This is impossible, because any inertia group has, in general,
a normal Sylow $p$ -subgroup ($p=2$ in the present case) while $\Sigma_{3}$ does not.
Again we see from Lemma 2 that the inertia group $T$ is a group of order 2
generated by a transposition, and so any prime divisor in $Q(\sqrt{d(F)})$ of $p$ is
unramified in $K$ .

Subcase 2-2, where $8||d(F)$ . Then we have

$3=d_{1}f_{1}+d_{2}f_{2}+\cdots+d_{g}f_{g}$ and $d_{\ell}\geqq 2$ if $d_{i}\neq 0$ .

Thus we may assume
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$d_{1}=3$ , $f_{1}=1$ and $d_{i}=0$ $(i\geqq 2)$

and then we see $e_{1}=2$ and $e_{i}=1(i\geqq 2)$ from Lemma 1.
Thus, in all cases, we have proved that the inertia group $T$ is a group of

order 2 generated by a transposition and so any prime divisor in $Q(\sqrt{d(F)})$ of
$p$ is unramified in $K$ . This means that (b) of Th. 1 and a part $(A)\Rightarrow(B)$ of
Th. 2 hold. A part (a) of Th. 1 follows from Lemma 3. In fact, the Galois
group of $K/Q$ , considered as a permutation group of degree $n$ , is a primitive
permutation group by Lemma 3. It is well known that, if a primitive permuta-
tion group contains a transposition, it is a symmetric group. (See also [Yl, $p$ .
476].)

3.2. The proof of a part $(B)=\ni(A)$ of Th. 2.
Let $p$ be a prime divisor of $d(F)$ . Then we may assume $e_{1}=2,$ $f_{1}=1$ and

$e_{i}=1(i\geqq 2)$ . If $p$ is odd, we see $d_{1}=1$ and $d_{i}=0(i\geqq 2)$ from (a) of Lemma 1.
Then we have $p||d(F)$ . Thus if $d(F)$ is odd, $d(F)$ is a discriminant of a quadratic
field. Suppose $p=2$ . Then we see $d_{1}=2$ or 3 and $d_{i}=0(i\geqq 2)$ from (b) of
Lemma 1. If $d_{1}=3$ then $d(F)$ is a discriminant of a quadratic field. Suppose
$d_{1}=2$ . Since the inertia group of a prime divisor in $K$ of 2 is a group of order
2 generated by a transposition by Lemma 2, it induces a nontrivial automor-
phism on $Q(\sqrt{d(F)})$ , because the subgroup of the Galois group of $K/Q$ corre-
sponding to $Q(\sqrt{d(F)})$ consists of even permutations. This means that 2 is
ramified in $Q(\sqrt{d(F)})$ and so $d(F)/4\equiv-1mod 4$ . Thus, also in this case, $d(F)$

is a discriminant of a quadratic field.

\S 4. Concluding remarks.

Let $\mathscr{F}_{ur.n}$ be the class of non-conjugate algebraic number fields of degree $n$

which satisfy the conditions (a) and (b) in Th. 1, and let $\mathscr{F}_{qd.n}$ be the class of
non-conjugate algebraic number fields of degree $n$ with the discriminant equal
to that of a quadratic number field. Theorem 1 shows

$(*)$ $\mathscr{F}_{ur.n}\supseteqq \mathscr{F}_{qd.n}$ .

All examples of algebraic number fields in $\mathscr{F}_{ur.n}$ which are obtained in
[F1], $[0]$ , [YY] and [U] belongs to $\mathscr{F}_{qi.n}(\cdot$ In fact, for such examples, the
condition (B) of Th. 2 is satisfied. It is not so difficult to see that the equality
hold in $(*)$ if $n\leqq 5$ (see [Y2, Remark in p. 107] or Lemmas 4 and 5 below). If
$n\geqq 6$ , however, the equality does not hold as is seen in Example 1 below.

$\langle$See also [ $N$ , Example 2].) It seems to be difficult to state the conditions that
an algebraic number field belongs to the family $\mathscr{F}_{ur.n}$ in terms of its discri-
minant.
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In Lemma 4 and 5 below, $F$ is an algebraic number field of degree $n$ and
$K$ be the Galois closure of $F$ over $Q$ , and the Galois group of the extension
$K/Q$ is regarded as a permutation group of degree $n$ (on the set of conjugates
of $F$ over $Q$).

LEMMA 4. The following condition (C) is equivalent to (B) in Theorem 2.
(C) The inertia group of every ramified pnme of $K$ is a group of order 2

generated by a transposition.
In particular, if $F$ satisfies (C), then $F\in \mathscr{F}_{q\dot{a}}n’ i$ . $e.$ , the discriminant $d(F)$ of

$F$ is equal to that of $Q(\sqrt{}\overline{d(F)})$ .

PROOF. This is immediate from Lemma 2.

Furthermore, we have clearly

LEMMA 5. Assume that $d(F)$ is not square in Q. Then the following two
statements are equivalent:

I. The extenston $K/Q(\sqrt{}\overline{d(F)})$ is unramified.
$lI$ . The inertia group of every ramified prime of $K$ is a group of order 2

generated by an odd permutation.

AS applications of Lemmas 4 and 5, we will exhibit some examples of un-
ramified extensions of quadratic fields wbich are obtained from fields in $\mathscr{F}_{ur,n}$

$-\mathscr{F}_{qd,n}$ or not in $\mathscr{F}_{ur,n}$ .

EXAMPLE 1. Let $f(t)=t^{6}+t^{4}-3t^{3}+t^{2}+3t+3,$ $F=Q(\theta)$ , where $\theta$ is a root of
$f(t)=0$ , and $K$ be the splitting field over $Q$ of $f(t)$ . Then we have $d(f)=d(F)$

$=-2^{3}\cdot 3^{3}\cdot 37\cdot 7577$ and

$f(t)\equiv(t+1)^{2}(t^{4}+t+1)$ $mod 2$

$f(t)\equiv t^{2}(t+1)^{2}(t-1)^{2}$ $mod 3$ .

Other prime divisors 37 and 7577 of $d(F)$ satisfy the condition in (B) of Tb. 2.
(Note the remark after Th. 2 in the introduction.) Thus we see from Lemmas
2 and 4 that the condition II of Lemma 5 is satisfied, and so $K/Q(\sqrt{d(f)})$ is
unramified. It is easy to see that the Galois group of $K/Q$ is $\Sigma_{6}$ . Thus we
have $F\in \mathscr{F}_{ur.n}-\mathscr{F}_{qd,n}$ .

EXAMPLE 2. Let $f(t)=t^{6}-t^{\overline{o}}-t^{4}+t+1,$ $F$ and $K$ be as above. Then we
have $d(f)=d(F)=-11691=-3^{3}\cdot 433$ , and $f(t)\equiv(t^{3}+t^{2}+2t+1)^{2}mod 3$ . Thus, as
in Example 1, we see that $K/Q(\sqrt{-3\cdot 433)}$ is unramified. We note that the
Galois group of $K/Q$ is a group of order 72 which is isomorphic to the wreath
product of $\Sigma_{3}$ by $Z_{2}$ (cf. [S] for the method of computations of Galois groups),

and so $K/Q(\sqrt{-3\cdot 433})$ is an unramified extension with the Galois group iso-
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morphic to a Frobenius group of order 36.

EXAMPLE 3. Let $f(t)=t^{7}-t^{6}-t^{5}+t^{4}-t^{3}-t^{2}+2t+l$ , and $F$ and $K$ be as above.
Then $d(f)=d(F)=-357911=-71^{3}$ and $f(t)\equiv(t+15)(t+22)^{2}(t+47)^{2}(t+65)^{2}mod 71$ .
Therefore, by Lemma 5, $K/Q(\sqrt{-71})$ is unramified. The Galois group of $K/Q$

is isomorphic to a dihedral group of order 14 (cf. [YK]), and so $K/Q(\sqrt{-71})$

is an unramified extension with a cyclic group of order 7 as the Galois group.
This shows that $K$ is the absolute class field of $Q(\sqrt{}\overline{-71})$ , since the class num-
ber of $Q(\sqrt{-71})$ is 7.

Finally, we note that, in Yamamura [Y2], very interesting observations
are done on the “density” of $\mathscr{F}_{ur.n}$ and $\mathscr{F}_{qd.n}$ .
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