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§1. Introduction.

The purpose of the present paper is to prove the following and
Theorem 2.

THEOREM 1. Let F be an algebraic number field of degree n and d(F) be
the discriminant of F. Let K be the Galois closure of F over Q, the field of
rational numbers. If d(F) is equal to the discriminant of a quadratic number
field, i.e., d(F) is not a square and equals the discriminant of the field Q(A/d(F)),
then the following hold:

(@) the Galois group of K over Q is isomorphic to X ,, the symmetric group
of degree n, and

(b) the extension K/Q(~/dA(F)) is unrami fied (at all finite primes of Q(N/d(F)).

This is a generalization of theorems which were proved by several authors

(cf. [X], [N], [O], and under the assumption that d(F) is square

free.

COROLLARY. Let f(t) be a monic irreducible polynomial of degree n with
rational integral coefficients and d(f) be the discriminant of f(t). Let K=
Qa,, a,, -+, ay), the splitting field of f(t) over Q, where ai, as, -, a, are the
roots of an equation f()=0. If d(f) is equal to the discriminant of a quadratic
number field Q(~/dA(F)), then

(@) the Galois group of K over Q is isomorphic to X,

(b) the extension K/Q(~/d(f)) is unramified,

() Ox=Z[ay, as, -, a,], where Og is the ring of integers in K.

(a) and (b) of are immediate from Th. 1, and (¢) follows from a
result of E. Maus [M],

THEOREM 2. Let F and d(F) be as in Theorem 1. Then the following
statements (A) and (B) are equivalent:
(A) d(F) is equal to the discriminant of a quadratic number field Q(Vd(F)).
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(B) For every prime p of d(F), p has exactly one ramified prime divisor
in F and its ramification index (resp. residue class degree) is two (resp. one).

REMARK. If plld(F), i.e., d(F) is divisible by exactly the first power of p,
p satisfies the condition in (B) of Th. 2 (cf. the proof of Case 1 in §3). Also
see in §4.

In an interesting paper of Yamamura [Y2, p. 107], it is stated that, under
the assumption (B), (a) and (b) of Th. 1 hold, although the proof is omitted. So
it can be said that Th. 1 is a consequence of Th. 2. But, in the present paper,
Th. 1 and Th. 2 will be proved at the same time.

§2. Some Lemmas.

The following two lemmas are well known in algebraic number theory.

LEMMA 1 (Dedekind). Let F be an algebraic number field and D be the
different of F over Q. Let P be a prime divisor in F of a prime number p, and
P D and P¢||p. Then

@ if ple, then d=e—1,

by if p°lle w>0), then e<d<ev+e—1.

See for the proof.

LEMMA 2 (Van der Waerden). Let F and K be as in Theorem 1, and Z
and T be the decomposition group and the inertia group of a prime divisor in K
of a prime number p respectively. Suppose that p has a decomposition in F

pzflelg)?ez'“g)geg NL/Q(g)i):pfi (Z.:1> 2) '”;g>'

When the Galois group of K over Q is regarded as a permutation group of de-
gree n (on the set of conjugates of F over Q), Z has g orbits each of which is
of length e;f; and decomposes into f; T-orbits of length e;.

See or for the proof.

LEMMA 3. Let F be an algebraic number field. Assume that F has the dis-
criminant equal to that of a quadratic number field Q(v/d(F)). Then F does not
contain any proper intermediate field, i.e., a field L such that QZLZF.

PROOF. d(L)¥:E1|4(F) by a transition property of discriminant, which is
impossible unless d(L)=1, because d(F) is a discriminant of a quadratic field.
But d(L)=1 is also impossible by a theorem of Minkowski, unless L=@Q.
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§$3. The proof of Th. 1 and Th. 2.

3.1. The proof of Th. 1 and a part ‘“(A)= (B)” of Th. 2.

Assume that d(F) is equal to the discriminant of Q(+/d(F)) and p|d(F).
Suppose that we have factorizations

(1) p=P.1Py*2 - P8 Npjo(@)=p't ((=1,2, -, @),

(2) Dp=P,11P,%2--- P,% (PD,=“p-part” of the different 9 of F/Q)
into prime divisors in F.

Case 1, where p is odd. Then d(F) is divisible by exactly the first power
of p. By taking norm Ng,q of both sides of (2), we have

1= d1f1+d2f2+ +dgfg .

Therefore we may assume

d1:f1:1, d; =0 (t=2)

and so, by (a) of Lemma 1, ¢,=2 and e¢;=1 (:=2). Thus in this case the con-
dition (B) of Th. 2 holds. Moreover the inertia group 7 of a prime divisor in
K of @, is a group of order 2 generated by a transposition by Lemma 2. In
particular, any prime divisor in Q(+/d(F)) of p is unramified in K, since |T|
=2 and p is already ramified in Q(+/d(F)).

Case 2, where p=2. Then d(F) is divisible exactly by 4 or 8.

Subcase 2-1, where 4||d(F). Then we have

2 = d1f1+d2f2+ te +dgfg
and also, by (b) of Lemma 1, d,=2 if d,#0. Thus we may assume

di=2, fi=1 and d;,=0 (=2)

and then we see e¢;,=2 or 3 and e¢;=1 (/=2) from Lemma 1. We must show
e;=2. Suppose by way of contradiction that ¢,=3. Then, by the
inertia group 7T is a subgroup of X;. But since 2 is ramified in Q(+/d(F)), we
must have T=2%,;. This is impossible, because any inertia group has, in general,
a normal Sylow p-subgroup (p=2 in the present case) while X; does not.
Again we see from that the inertia group 7 is a group of order 2
generated by a transposition, and so any prime divisor in Q(+/d(F)) of p is
unramified in K.
Subcase 2-2, where 8||d(F). Then we have

3=difi+dafot - +d,f, and d, =2 if d;#0.

Thus we may assume
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and then we see ¢;=2 and ¢;=1 (7=>2) from Lemma 1.

Thus, in all cases, we have proved that the inertia group T is a group of
order 2 generated by a transposition and so any prime divisor in Q(+/d(F)) of
p is unramified in K. This means that (b) of Th. 1 and a part “(A) = (B)” of
Th. 2 hold. A part (a) of Th. 1 follows from Lemma 3. In fact, the Galois
group of K/Q, considered as a permutation group of degree n, is a primitive
permutation group by Cemma 3. It is well known that, if a primitive permuta-

tion group contains a transposition, it is a symmetric group. (See also [Y1, p.
4761.)

3.2. The proof of a part “(B)= (A)” of Th. 2.

Let p be a prime divisor of d(F). Then we may assume e¢,=2, f,=1 and
e;=1 =2). If p is odd, we see d;=1 and d;=0 (:=2) from (a) of [Lemma 1l
Then we have plld(F). Thus if d(F) is odd, d(F) is a discriminant of a quadratic
field. Suppose p=2. Then we see d;=2 or 3 and d;,=0 (¢=2) from (b) of
[Lemma 1. If d,=3 then d(F) is a discriminant of a quadratic field. Suppose
d;=2. Since the inertia group of a prime divisor in K of 2 is a group of order
2 generated by a transposition by it induces a nontrivial automor-
phism on Q(+/d(F)), because the subgroup of the Galois group of K/Q corre-
sponding to Q(+/d(F)) consists of even permutations. This means that 2 is
ramified in Q(v/d(F)) and so d(F)/4=—1 mod4. Thus, also in this case, d(F)
is a discriminant of a quadratic field.

§4. Concluding remarks.

Let ., . be the class of non-conjugate algebraic number fields of degree n
which satisfy the conditions (a) and (b) in Th. 1, and let F,4, . be the class of
non-conjugate algebraic number fields of degree n with the discriminant equal
to that of a quadratic number field. shows

(*) gur,n 2 qu.n .

All examples of algebraic number fields in &,., which are obtained in
[F1], [0], [YY] and [U] belongs to Foq,». In fact, for such examples, the
condition (B) of Th. 2 is satisfied. It is not so difficult to see that the equality
hold in () if n<5 (see [Y2, Remark in p. 107] or Lemmas 4 and 5 below). If
n>6, however, the equality does not hold as is seen in Example 1 below.
(See also [N, Example 2].) It seems to be difficult to state the conditions that
an algebraic number field belongs to the family F,, . in terms of its discri-
minant.
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In and 5 below, F is an algebraic number field of degree n and
K be the Galois closure of F over @, and the Galois group of the extension
K/Q is regarded as a permutation group of degree n (on the set of conjugates
of F over Q).

LEMMA 4. The following condition (C) is equivalent to (B) in Theorem 2.

(C) The inertia group of every ramified prime of K is a group of order 2
generated by a transposition.

In particular, if F satisfies (C), then FEF 4. n, i.e., the discriminant d(F) of
F is equal to that of Q(A/d(F)).

ProoF. This is immediate from Lemma 2.
Furthermore, we have clearly

LEMMA 5. Assume that d(F) is not square in Q. Then the following two
statements are equivalent:

[. The extension K/Q(~/d(F)) is unrami fied.

II. The inertia group of every ramified prime of K is a group of ovder 2
generated by an odd permutation.

As applications of Lemmas 4 and 5, we will exhibit some examples of un-
ramified extensions of quadratic fields which are obtained from fields in F,, ,
—Fgq,n OF MOt in Fup p.

EXAMPLE 1. Let f()=t*+¢*—3t°+1*+3t+3, F=Q(0), where 6§ is a root of
f)=0, and K be the splitting field over Q of f({). Then we have d(f)=d(F)
=-—2%.3%.37-7577 and

= ¢+ +t+1) mod?2
f@ =¢+1)¢—1* mod3.

Other prime divisors 37 and 7577 of d(F) satisfy the condition in (B) of Th. 2.
(Note the remark after Th. 2 in the introduction.) Thus we see from Lemmas
2 and 4 that the condition II of Lemma 5 is satisfied, and so K/Q(~/d(f)) is
unramified. It is easy to see that the Galois group of K/Q is 2;. Thus we
have FEF yr n— Fqa. n.

ExAMPLE 2. Let f@)=t*—t*—t*+t+1, F and K be as above. Then we
have d(f)=d(F)=—11691=—3%-433, and f()=@{*+1*+2t+1)®> mod3. Thus, as
in Example 1, we see that K/Q(+/—3+433) is unramified. We note that the
Galois group of K/Q is a group of order 72 which is isomorphic to the wreath
product of X; by Z, (cf. [S] for the method of computations of Galois groups),
and so K/Q(+/—3.433) is an unramified extension with the Galois group iso-
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morphic to a Frobenius group of order 36.

ExampLE 3. Let f()=t"—1*—t"+¢*—1*—1*42t+1, and F and K be as above.
Then d(f)=d(F)=-—357911=—71° and f()=(+15)(¢t+22)%(¢+47)%({t+65)®> mod 71.
Therefore, by K/Q(~/—71) is unramified. The Galois group of K/Q
is isomorphic to a dihedral group of order 14 (cf. [YK])), and so K/Q(~/—71)
is an unramified extension with a cyclic group of order 7 as the Galois group.
This shows that K is the absolute class field of Q(+/—71), since the class num-
ber of Q(+/—71) is 7.

Finally, we note that, in Yamamura [Y2], very interesting observations
are done on the “density” of F,, , and F,q ».
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