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$0$ . Introduction.

In this paper, we continue our investigations on homogeneous, locally
strongly convex affine hypersurfaces in $R^{n+1}$ , which we started in [DV1] and
[DV2].

A nondegenerate hypersurface $M$ of the equiaffine sPace $R^{n+1}$ is called locally
homogeneous if for all points $p$ and $q$ of $M$, there exists a neighborhood $U_{p}$ of
$p$ in $M$, and an equiaffine transformation $A$ of $R^{n+1},$ $i.e$ . $A\in SL(n+1, R)\ltimes R^{n+1}$ ,
such that $A(p)=q$ and $A(U_{p})\subset M$ . If $U_{p}=M$ for all $p$ , then $M$ is called homo-
geneous.

We denote the affine normal by $\xi$ and the induced affine connection by $\nabla$ .
We will always assume here that $M$ is locally strongly convex. Let $S$ denote
the shape operator of the affine immersion. Since $M$ is locally strongly convex,
$S$ is diagonalizable. If $S$ is a multiple of the identity, $M$ is called an affine
sphere. Locally strongly convex homogeneous affine spheres have been studied
in [S], see also the discussions in [DV2]. If the affine shape operator at each
point has an eigenvalue $\lambda$ with multiplicity exactly $n-1$ , where $n$ is the di-
mension of $M$, we call $M$ proper quasi-umbilical. lf $\lambda=0$ (so rank $(S)=1$ ), we
recall the following result from [DV1].

THEOREM A [DV1]. Let $M$ be a locally strongly convex, locally homogeneous
affine hypersurface with rank $(S)=1$ in $R^{n+1}$ . Then $M$ is affine equivalent to the
convex Part of the hypersurface with equation

$(Z- \frac{1}{2}\sum_{i=1}^{r}X^{2}\iota)^{\tau+2}(W-\frac{1}{2}\sum_{=1}^{s}Y_{j}^{2})^{s+8}=1$ ,

where $r+s=n-1$ and $(X_{1}, \cdot.. , X_{r}, Y_{1}, \cdot.. , Y_{s}, Z, W)$ are the coordinates of $R^{n+1}$ .
Here, we will mainly consider the case that $\lambda\neq 0$ . In Section 2, we will

start to construct a special local tangent frame on a locally strongly convex,
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proper quasiumbilical, homogeneous affine hypersurface. As a consequence of
that construction, we derive the following theorem.

THEOREM 1. Let $M^{n}$ be a locally strongly convex, locally homogeneous $a$]$fine$

hypersurface in $R^{n+1}$ . Assume that $M$ is also $ProPer$ quasi-umbilical. Then
$\det(S)=0$ .

If $M$ is a surface $(n=2)$ , the above theorem remains true, if the condition
that $M$ is locally affine homogeneous is replaced by the weaker condition that
the eigenvalues of the shape operator of $S$ are constant $([V])$ . In general, if
the affine shape operator has constant eigenvalues, it is not known how many
different non-zero eigenvalues can occur (cf. for a Euclidean hypersurface of
$R^{n+1}$ , if all the eigenvalues of the Euclidean shape operator are constant, there
can be at most 1 non-zero eigenvalue).

In Section 3, we will then gradually improve our choice of h-orthonormal
frame. By combining then the results obtained there, with Theorem $A$ , we
obtain the following classification theorems.

THEOREM 2. Let $M^{3}$ be a locally strongly convex, locally homogeneous, ProPer
quasiumbilical affine hypersurface in $R^{4}$ . Then $M$ is affine equivalent to the convex
part of one of the following hypersurfaces:

$(y- \frac{1}{2}(x^{2}+z^{2}))^{4}w^{2}=1$ ,

$(y- \frac{1}{2}x^{2})^{3}(z-\frac{1}{2}w^{2})^{3}=1$ ,

$(y- \frac{1}{2}x^{2})^{3}v^{2}w^{2}=1$ ,

$(y- \frac{1}{2}x^{2}-\frac{1}{2}w^{2}/z)^{4}z^{3}=1$ ,

where $(x, y, z, w)$ are the coordinates of $R^{4}$ .
THEOREM 3. Let $M^{4}$ be a locally strongly convex, locally homogeneous, proper

quasiumbilical affine hyPersurface in $R^{f}$ . Then $M$ is affine equivalent to the convex
part of one of the following $hyPersurfaces$ :

$(y-\overline{2}(x^{2}+z^{2}+v^{2}))w^{2}=1$ ,

$(y- \frac{1}{2}(x^{2}+u^{2}))^{4}(z-\frac{1}{2}w^{2})=1$ ,

$(y- \frac{1}{2}x^{2})^{s}u^{2}v^{2}w^{2}=1$ ,
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$(y- \frac{1}{2}x^{2}-\frac{1}{2}(w^{2}/z+u^{2}/z))^{6}z^{4}=1$ ,

$(y- \frac{1}{2}x^{2}-\frac{1}{2}w^{2}/z)^{4}z^{3}u^{2}=1$ ,

$(y- \frac{1}{2}x^{2})(z^{2}-(w^{2}+u^{2}))=1$ ,

where $(x, y, z, w, u)$ are the coordinates of $R^{5}$ .

Remark that, by the constructions of [DV2], all of the above examples can
be viewed as compositions of affine spheres. Also from [DV2], we get that all
the above examples are globally homogeneous.

1. Preliminaries.

Let $M^{n}$ be a differentiable $n$ -dimensional manifold in the affine space $R^{n+1}$

equipped with its usual flat connection $D$ and a parallel volume element $\omega$ and
let $\xi$ be an arbitrary local transversal vector field to $M^{n}$ . For any vector
fields $X,$ $Y,$ $X_{1},$ $\cdots$ . $X_{n}$ , we write

(1.1) $D_{X}Y=\nabla_{X}Y+h(X, Y)\xi$ ,

(1.2) $\theta(X_{1}, \cdots , X_{n})=\omega(X_{1}, \cdots , X_{n}, \xi)$ ,

thus defining an affine connection $\nabla$ , a symmetric $(0, 2)$-tyPe tensor $h$ , called
the second fundamental form, and a volume element $\theta$ . We say that $M$ is
nondegenerate if $h$ is nondegenerate and this condition is independent of the
choice of transversal vector field $\xi$ . In this case, it is known (see [N2]) that
there is a unique choice (up to sign) of transversal vector field such that the
induced connection $\nabla$ , the induced second fundamental form $h$ and the induced
volume element $\theta$ satisfy the following conditions:

(i) $V\theta=0$ ,

(ii) $\theta=\omega_{h}$ ,

where $\omega_{h}$ is the metric volume element induced by $h$ . We call $\nabla$ the induced
affine connection, $\xi$ the affine normal and $h$ the affine metric.

Let $A$ be an equiaffine transformation of $R^{n+1}$ . Since both $D$ and the volume
form $\omega$ of $R^{n+1}$ are preserved by equiaffine transformation of $R^{n+1}$ , we get that
the affine normal $\xi$ to $A(M)$ is related to $\xi$ by

$\xi(A(p))]=A_{*}\xi(p)$ .
Moreover, we also have
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$D_{A_{*}X}A_{*}(Y)=\tilde{\nabla}_{A*X}A_{*}Y+\tilde{h}(A_{*}X, A_{*}Y)\xi(A)$

$A_{*}(D_{X})Y=A_{*}(\nabla_{X}Y)+h(X, Y)A_{*}\xi$ ,

where V and $\tilde{h}$ are respectively the induced affine connection and the affine
metric on $A(M)$ . So, since $D_{A_{*}X}A_{*}(Y)=A_{*}(D_{X}Y)$ , by comparing tangential and
transversal parts of the above expressions, the affine metric and the induced
connection are preserved as well.

By combining (i) and (ii), we obtain the apolarity condition which states
that $\nabla\omega_{h}=0$ . A nondegenerate hypersurface equipped with this special trans-
versal vector field is called a Blaschke hypersurface. Throughout this paper, we
will always assume that $M$ is a Blaschke hypersurface. If $h$ is positive (or

negative) definite, the hypersurface is called locally strongly convex. Notice
that if $h$ is negative definite, we can always replace $\xi$ by $-\xi$ , thus making the
new affine metric positive definite. Therefore, if we say thatMis locally strongly
convex, we will always assume that $\xi$ is chosen so that $h$ is positive definite.

Condition (i) implies that $D_{X}\xi$ is tangent to $M^{n}$ for any tangent vector $X$

to $M$. Hence, we can define a $(1, 1)$-tensor field $S$ , called the affine shape
operator by

(1.3) $D_{X}\xi=-SX$ .
$M$ is called an affine sphere if $S=\lambda I$. We define the affine mean curvature $H$

by $H=(1/n)trace(S)$ . Again, if $A$ is an equiaffine transformation of $R^{n+1}$ , we
can relate the shape operators on $A(M)$ and $M$ by

$\tilde{S}A_{*}(X)=-D_{A*(X)}\tilde{\xi}(A)=-D_{A_{*}(X)}A_{*}\xi=-A_{*}(D_{X}\xi)=-A_{*}SX$ .
Hence the shape operator is affine invariant.

The following fundamental equations of Gauss, Codazzi and Ricci are given by

(1.4) $R(X, Y)Z=h(Y, Z)SX-h(X, Z)SY$ (Equation of Gauss)

(1.5) $(\nabla h)(X, Y, Z)=(\nabla h)(Y, X, Z)$

(1.6) $(\nabla_{X}S)Y=(\nabla_{Y}S)X$

(1.7) $h(X, SY)=h(SX, Y)$

(Equation of Codazzi for $h$ )

(Equation of Codazzi for $S$)

(Equation of Ricci).

Since $\dim(M)\geqq 2$ , if $M$ is an affine sphere, it follows from (2.6) that $\lambda$ is con-
stant. If $\lambda\neq 0$ , we say that $M$ is a proper affine sphere and if $\lambda=0$ , we call
$M$ an improper affine sphere. From (1.5) it follows that the cubic form $C(X, Y, Z)$

$=(\overline{\nabla}h)(X, Y, Z)$ is symmetric in $X,$ $Y,$ $Z$ . The theorem of Berwald states that
$C$ vanishes identically if and only if $M$ is an open part of a nondegenerate
quadric.

Let $\hat{\nabla}$ denote the Levi Civita connection of the affine metric $h$ . The dif-
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ference tensor $K$ is defined by

$K(X, Y)=\nabla_{X}Y-\hat{\nabla}_{X}Y$ ,

for vector fields $X$ and $Y$ on $M$. Notice that, since both connections are torsion
free, $K$ is symmetric in $X$ and $Y$ . We also write $K_{X}Y=K(X, Y)$ . From [N2],

we have that

(1.8) $h(K_{X}Y, Z)=- \frac{1}{2}C(X, Y, Z)$ .

Notice also that the apolarity condition together with (1.8) implies that Tr $K_{X}$

$=0$ for every tangent vector $X$ .

2. Proof of Theorem 1.

In the remainder of this paper, $M^{n}$ will always denote a locally strongly
convex, locally homogeneous, proper quasi-umbilical hypersurface of $R^{n+1}$ . Since
$M$ is locally strongly convex, it follows from the Ricci equation that the affine
shape operator is diagonalizable. The fact that $M$ is locally homogeneous then
implies that the eigenvalues of the shape operator are constant on $M$. This can
be seen in the following way.

Let $p,$ $q\in M$. Then, by the definition of local homogeneity, there exists an
equiaffine transformation $A$ of $R^{n+1}$ which maps $P$ to $q$ and which maps a
neighbourhood $U$ of $P$ to a neighbourhood $V$ of $q$ in $M$. Since the affine shape
operator is affine invariant, we know that if $e_{1},$ $\cdots$ , $e_{n}$ are eigenvectors of the
affine shape operator at the point $P$ with eigenvalues $\lambda_{i}$ , then $A_{*}e_{1},$ $\cdots$ , $A_{*}e_{n}$

are eigenvectors of $S$ at the point $q$ with eigenvalues $\lambda_{i}$ .
Therefore, if $M$ is also proper quasi-umbilical, $S$ has two different constant

eigenvalues $\lambda$ and $\mu$ , where the multiplicity of $\lambda$ is $n-1$ and the multiplicity of
$\mu$ is equal to 1. In view of Theorem $A$ , we can restrict ourselves to the case
that $\lambda\neq 0$ . Then we have the following basic lemma.

LEMMA 2.1. Let $p\in M$. Then there exists a local orthonormal frame $\{E_{1}$ ,
$U_{1},$ $\cdots$ , $U_{n-1}$ } defined on a neighborhood of $p$ , such that

$SE_{1}=\mu E_{1}$ , $SU_{i}=\lambda U_{i}$ , $\lambda\neq 0$

$\nabla_{U_{1}}E_{1}=bE_{1}$ , $\nabla_{U_{i}}E_{1}=0$ , $i>1$

$\nabla_{E_{1}}E_{1}=cE_{1}+2bU_{1}$ , $\nabla_{E_{1}}U_{i}=n-1j1a_{ij}U_{J}$ ,

$\nabla_{U_{i}}U_{j}=(a_{ij}+a_{fi})E_{1}+\sum_{k=1}^{n-1}d_{ij}^{k}U_{k}$ ,

where $c=-\Sigma_{t=1}^{n-1}a_{ii}$ and $b$ are constants.
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PROOF. We take $p\in M$. We construct a tangent basis $e_{1},$ $u_{1},$
$\cdots$ , $u_{n-1}$ at

the point $P$ such that $Se_{1}=\mu e_{1}$ and $Su_{t}=\lambda u_{t}$ . Then, since $\mu$ and $\lambda$ are different
numbers, and the eigenvalues of the shape operator are constant it follows from
[N1] (Lemma 1, pp. 48-49 with $A=S-\mu I$ ) that we can extend these vectors to
local vector fields $E_{1},$ $U_{1},$ $\cdots$ $U_{n-1}$ , such that $SE_{1}=\mu E_{1}$ and $SU_{\iota}=\lambda U_{\iota}$ . Notice
that, up to sign, the vector field $E_{1}$ is uniquely determined. Tbis implies that
by taking 2 points $P$ and $q$ and the equiaffine transformation of $R^{n+1}$ which
maps $p$ to $q$ and a neighbourhood $U$ of $P$ to a neighbourhood of $q$ , we have that

$A_{*}(E_{1}(x))=\pm E_{1}(A(x))$ .

Since $A$ is an equiaffine transformation (which from Section 1 preserves the
affine metric and the induced affine connection), this implies that

$h(\nabla_{A*(E_{1})}A_{*}E_{1}, A_{*}(E_{1}))=h(A_{*}(\nabla_{E_{1}}E_{1}), A_{*}(E_{1}))=h(\nabla_{E_{1}}E_{1}, E_{1})$ .

So $c(q)=\pm c(p)$ and thus $c$ is a constant on $M$. Similar arguments will be used
throughout the paper, without further mentioning them.

We define functions $d_{lj}^{k},$
$a_{\iota_{J}},$

$h_{\iota_{J}},$ $b_{t},$
$g_{\iota},$ $c,$ $f_{t},$

$c_{\iota J},$ $\alpha_{tj}$ such that the connection
$\nabla$ is given by

$\nabla_{E_{1}}E_{1}=cE_{1}+\sum_{i=1}^{n-1}g_{t}U_{t}$

$\nabla_{E_{1}}U_{t}=f_{t}E_{1}+\sum_{J=1}^{n-1}a_{\iota_{J}}U_{J}$

$\nabla_{U_{t}}E_{1}=b_{\iota}E_{1}+\sum_{=J1}^{n-1}h_{\iota_{J}}U_{J}$

$\nabla_{U_{t}}U_{J}=\alpha_{tj}E_{1}+\sum_{k=1}^{n-1}d_{lJ}^{k}U_{k}$ .

We first apply the Codazzi equation for $S$ . We obtain that

$0=(\nabla_{E_{1}}S)U_{\iota}-(\nabla_{U_{t}}S)E_{1}$

$=\lambda\nabla_{E_{1}}U_{t}-S(\nabla_{E_{1}}U_{\iota})-\mu\nabla_{U_{t}}E_{1}+S(\nabla_{U_{\iota}}E_{1})$

$=( \lambda-\mu)f_{t}E_{1}-(\mu-\lambda)\sum_{=J1}^{n-1}h_{\iota_{J}}U_{J}$ .

Hence $f_{t}=h_{\iota_{J}}=0$ .
Next it is clear that we can pick $U_{1}$ such that $b_{2}=b_{3}=\cdots=b_{n-1}=0$ . We call

$b_{1}=b$ . Hence $\nabla_{U_{1}}E_{1}=bE_{1}$ and $\nabla_{U_{J}}E_{1}=0$ for $j>1$ . We now show that $b$ is con-
stant. Let us assume that at some point $q,$ $b(q)\neq 0$ . Then, $U_{1}$ is also nniquely
determined around $q$ . Since $M$ is locally homogeneous, we immediately get that
$b$ is a constant on a neighbourhood of $q$ . Since $b$ varies differentiably, $b$ is a
constant.
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Next, we will apply the Codazzi equation for $h$ . From

$(\nabla h)(E_{1}, U_{i}, E_{1})=(\nabla h)(U_{i}, E_{1}, E_{1})$ ,

we deduce that $f_{i}+g_{i}=2b_{i}$ . Hence $g_{1}=2b$ and $g_{f}=0$ , for $j>1$ . The Codazzi
equation

$(\nabla h)(E_{1}, U_{i}, U_{j})=(\nabla h)(U_{i}, U_{j}, E_{1})$ ,
gives us that

$\alpha_{ij}=a_{tj}+a_{ji}$ .
Finally we find from the apolarity condition

$( \nabla h)(E_{1}, E_{1}, E_{1})+\sum_{\ell=1}^{n-1}(\nabla h)(E_{1}, U_{i}, U_{i})=0$ ,

that $c=-\Sigma_{i=1}^{n-1}a_{ii}$ . This completes the proof of the lemma. $\square$

In the next lemmas, we will then gradually obtain more information about
the other coefficients, using also the Gauss equation.

LEMMA 2.2. We have $b\neq 0$ .

PROOF. Let us suppose that $b=0$ .
that

$-\lambda U_{1}=R(E_{1}, U_{1})E_{1}$

Then we have from the Gauss equation

$=\nabla_{E_{1}}\nabla_{U_{1}}E_{1}-\nabla_{U_{1}}\nabla_{E_{1}}E_{1}-\nabla_{[E_{1}.U_{1}]}E_{1}$

$=-c \nabla_{U_{1}}E_{1}-\sum_{j=1}^{n-1}a_{1j}\nabla_{U_{f}}E_{1}=0$ .

Since we assumed that $\lambda\neq 0$ , this gives us a contradiction. $\square$

The following lemma then describes the derivatives of the vector field $U_{1}$ ,
which is, since $E_{1}$ is uniquely determined and $b\neq 0$ , also uniquely determined
and therefore affine invariant ( $i.e$ . applying an equiaffine transformation, which
locally preserves the hypersurface, maps the vector field $U_{1}$ into itself).

LEMMA 2.3. We can choose $U_{2}$ in such a way that we have that

$\nabla_{U_{1}}U_{1}=(\frac{c}{2}-\frac{a_{11}}{2})E_{1}+(2b+\frac{\lambda}{2b})U_{1}$ ,

$\nabla_{U_{2}}U_{1}=-\frac{a_{21}}{2}E_{1}+\frac{\lambda}{2b}U_{2}$ ,

$\nabla_{U_{j}}U_{1}=\frac{\lambda}{2b}U_{j}$ , $j>2$ ,

where $a_{21}$ is constant.

PROOF. From the Gauss equation, using the fact $c$ and $b$ are both constants,
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we have that

$-\lambda U_{j}=R(E_{1}, U_{j})E_{1}$

$=\nabla_{E_{1}}\nabla_{U_{j}}E_{1}-\nabla_{U_{j}}\nabla_{E_{1}}E_{1}-\nabla_{[E_{1},U_{j}]}E_{1}$

$=\nabla_{E_{1}}(\delta_{j1}bE_{1})-\nabla_{U_{j}}(cE_{1}+2bU_{1})-\nabla_{\Sigma a_{jk}U_{k}-\delta_{j1}bE_{1}}n-1E_{1}k=1$

$=2\delta_{j1}b(cE_{1}+2bU_{1})-c\delta_{j1}bE_{1}-a_{f1}bE_{1}-2b\nabla_{E_{j}}U_{1}$ .

Taking $j=1$ then gives us that

$\nabla_{U_{1}}U_{1}=(\frac{c}{2}-\frac{a_{11}}{2})E_{1}+(2b+\frac{\lambda}{2b})U_{1}$ .

If $j>1$ , we obtain that

(2.1) $\nabla_{U_{j}}U_{1}=-\frac{a_{j1}}{2}E_{1}+\frac{\lambda}{2b}U_{j}$ .

From this last formula it is clear that we can choose $U_{2},$ $U_{3}$ , $\cdot$ .. , $U_{n-1}$ in such
a way that

$\nabla_{U_{2}}U_{1}=-\frac{a_{21}}{2}E_{1}+\frac{\lambda}{2b}U_{2}$ ,

$\nabla_{U_{j}}U_{1}=\frac{\lambda}{2b}U_{j}$ , $j>2$ .

Since $E_{1}$ and $U_{1}$ are uniquely determined, we get from these last equations that
$a_{21}$ is constant. If this constant is non-zero, we also see that $U_{2}$ is uniquely
determined. $\square$

By combining the formulas of Lemma 2.3 and (2.1) with those of Lemma
2.1, we also see that

$c=5a_{11}$ ,

$a_{12}=- \frac{3}{2}a_{21}$ ,

$a_{1j}-a_{j1}=0$ , $j>2$ .

About the d’s, we obtain already some information in the following lemma.

LEMMA 2.4. $d_{1t}^{1}=0$ and $d_{ik}^{1}=d_{1t}^{k}+d_{1k}^{i}-\delta_{ik}(\lambda/2b)$ for $i,$ $k>1$ .

PROOF. From the Gauss equation and Lemma 2.3 we have for $i>1$ that

$0=h(R(U_{i}, U_{1})E_{1},$ $E_{1})$

$=h(\nabla_{U_{i}}\nabla_{U_{1}}E_{1}-\nabla_{U_{1}}\nabla_{U_{i}}E_{1}-\nabla_{\nabla_{U_{i}}U_{1}-\nabla_{U_{1}}U_{i}}E_{1}, E_{1})$

$=h(b\nabla_{U_{i}}E_{1}, E_{1})-h(\nabla_{U_{i}}U_{1}-\nabla_{U_{1}}U_{i}, U_{1})b=bd_{1i}^{1}$ .
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TO obtain the second claim, we use the Codazzi equation. Then we find for
$i,$ $k>1$ that

$d_{ik}^{1}=-d_{i1}^{k}+d_{1i}^{k}+d_{1k}^{i}=- \delta_{ik}\frac{\lambda}{2b}+d_{1i}^{k}+d_{1k}^{i}$ . $\square$

LEMMA 2.5. We also have that $\mu=0$ , hence $\det(S)=0$ .

PROOF. By applying the Gauss equation, using also the fact that $a_{11}$ and
$a_{12}$ are both constants, we obtain that

$-\mu E_{1}=R(U_{1}, E_{1})U_{1}$

$=\nabla_{U_{1}}\nabla_{E_{1}}U_{1}-\nabla_{E_{1}}\nabla_{U_{1}}U_{1}-\nabla_{[U_{1}.E_{1}]}U_{1}$

$= \nabla_{U_{1}}(a_{11}U_{1}+a_{12}U_{2})-\nabla_{E_{1}}(2a_{11}E_{1}+(2b+\frac{\lambda}{2b})U_{1})$

$-b\nabla_{E_{1}}U_{1}+a_{11}\nabla_{U_{1}}U_{1}+a_{12}\nabla_{U_{2}}U_{1}$

$=a_{11}(2a_{11}E_{1}+(2b+ \frac{\lambda}{2b})U_{1})+a_{12}\nabla_{U_{1}}U_{2}$

$-2a_{11}(5a_{11}E_{1}+2bU_{1})-(2b+ \frac{\lambda}{2b})(a_{11}U_{1}+a_{12}U_{2})$

$-b(a_{11}U_{1}+a_{12}U_{2})+a_{11}(2a_{11}E_{1}+(2b+ \frac{\lambda}{2b})U_{1})+a_{12}(-\frac{a_{21}}{2}E_{1}+\frac{\lambda}{2b}U_{2})$ .

By taking different components, using also Lemma 2.4, we deduce that

(2.2) $-\mu=-6a_{11}^{2}+a_{12}(a_{12}+a_{21})+a_{12}(-\underline{a_{21}})=-6a_{11}^{2}-a_{12}a_{21}$ ,

(2.3) $a_{11}(-3b+ \frac{\lambda}{2b})=0$ ,

(2.4) $a_{12}h(\nabla_{U_{1}}U_{2}, U_{j})=0$ , $j>2$ ,

(2.5) $a_{12}(h(\nabla_{U_{1}}U_{2}, U_{2})-3b)=0$ .
First, we assume that $a_{21}=0$ . Then we apply the Gauss equation and find,

using amongst others that $\nabla_{E_{1}}U_{j}$ is orthogonal to $U_{1}$ for $j>1$ , that

$0=R(U_{j}, E_{1})U_{1}$

$=\nabla_{u_{f}}\nabla_{E_{1}}U_{1}-\nabla_{E_{1}}\nabla_{U_{j}}U_{1}-\nabla_{[U_{j},E_{1}]}U_{1}$

$=a_{11} \frac{\lambda}{2b}U_{j}-\frac{\lambda}{2b}\nabla_{E_{1}}U_{j}+\nabla_{\nabla_{E_{1}}U_{j}}U_{1}=a_{11}\frac{\lambda}{2b}U_{j}$ .

It follows that $a_{11}=0$ . From (2.2), we then get that $\mu=0$ . This completes the
proof of the lemma in this case.

Therefore, for the remainder of the proof, we shall assume that $a_{21}\neq 0$ .
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So $U_{2}$ is determined uniquely. Since $M$ is homogeneous this implies that $a_{22}$ is
also constant. We will derive a contradiction in this case. First notice that
it then follows from (2.4) and (2.5) that

(2.6) $\nabla_{U_{1}}U_{2}=-\frac{a_{21}}{2}E_{1}+3bU_{2}$ .

Applying then the Gauss equation once more gives us that

$-\lambda U_{2}=R(U_{1}, U_{2})U_{1}$

$=\nabla_{U_{1}}\nabla_{U_{2}}U_{1}-\nabla_{U_{2}}\nabla_{U_{1}}U_{1}-\nabla_{[U_{1}.U_{2}]}U_{1}$

$= \nabla_{U_{1}}(-\frac{a_{21}}{2}E_{1}+\frac{\lambda}{2b}U_{2})-\nabla_{U_{2}}(2a_{11}E_{1}+(2b+\frac{\lambda}{2b})U_{1})$

$-(3b- \frac{\lambda}{2b})\nabla_{U_{2}}U_{1}$

$=- \frac{a_{21}}{2}bE_{1}+\frac{\lambda}{2b}(-\frac{a_{21}}{2}E_{1}+3bU_{2})$

$-(2b+ \frac{\lambda}{2b})(-\frac{a_{21}}{2}E_{1}+\frac{\lambda}{2b}U_{2})-(3b-\frac{\lambda}{2b})(-\frac{a_{21}}{2}E_{1}+\frac{\lambda}{2b}U_{2})$ .

So, by comparing components, we get that $a_{21}(-4b+\lambda/(2b))=0$ . Since we as-
sumed that $a_{21}\neq 0$ , this gives us that

(2.7) $\lambda=8b^{2}$ .
By substituting this in (2.3), we see that $a_{11}=c=0$ .

Remark that in case $M$ is 3-dimensional, the apolarity condition for $U_{1}$

implies $b+(2b+\lambda/(2b))+3b=0$ . Since $\lambda=8b^{2}$ , this yields a contradiction. There-
fore, we may assume that the dimension of $M$ is at least 4.

Next, we again apply the Gauss equation to obtain that

$0=R(U_{2}, E_{1})U_{1}$

$=\nabla_{U_{2}}\nabla_{E_{1}}U_{1}-\nabla_{E_{1}}\nabla_{U_{2}}U_{1}-\nabla_{[U_{2},E_{1}]}U_{1}$

$= \nabla_{U_{2}}a_{12}U_{2}-\nabla_{E_{1}}(-\frac{a_{21}}{2}E_{1}+\frac{\lambda}{2b}U_{2})+\sum_{f-1}^{n-1}h(\nabla_{E_{1}}U_{2}, U_{j})\nabla_{\sigma_{j}}U_{1}$

(2.8)

$=a_{12} \nabla_{U_{2}}U_{2}+\frac{a_{21}}{2}2bU_{1}-\frac{\lambda}{2b}(\nabla_{E_{1}}U_{2})$

$+ \frac{\lambda}{2b}\nabla_{E_{1}}U_{2}+a_{21}(2bU_{1})+a_{22}(-\frac{a_{21}}{2}E_{1})$ .

Taking the $E_{1}$-component of this expression shows that $2a_{12}a_{22}-(a_{21}/2)a_{22}=0$ .
Hence $a_{22}=0$ . Therefore (2.8) reduces to $a_{12}\nabla_{U_{2}}U_{2}+3a_{21}bU_{1}=0$ , from which we
deduce that
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(2.9) $\nabla_{U_{2}}U_{2}=2bU_{1}$ .

We then have to apply the Gauss equation several times more. First, using
(2.7), we obtain that for $j>2$

$0=R(U_{j}, E_{1})U_{1}$

$= \nabla_{U_{j}}a_{12}U_{2}-\nabla_{E_{1}}4bU_{j}+4b\nabla_{E_{1}}U_{j}-h(\nabla_{E_{1}}U_{j}, U_{2})\frac{a_{21}}{2}E_{1}$

$=- \frac{3}{2}a_{21}\nabla_{U_{j}}U_{2}-\frac{1}{2}a_{21}a_{j2}E_{1}$ .

From this it follows that we can choose $U_{3},$ $\cdots$ , $U_{n-1}$ such that

$\nabla_{U_{3}}U_{2}=-\frac{1}{3}a_{32}E_{1}$ ,

$\nabla_{U_{j}}U_{2}=0$ , $j>3$ .
Moreover, we get that, for $j>3,$ $a_{j2}=a_{2j}=0$ and $a_{23}=-(4/3)a_{32}$ , where, because
$M$ is locally homogeneous and $E_{1},$ $U_{1}$ and $U_{2}$ are uniquely determined, $a_{23}$ is a
constant.

Next, we will use another Gauss equation, which will show us amongst
others that $a_{32}\neq 0$ . We have that

$\mu E_{1}=R(E_{1}, U_{2})U_{2}$

$=2b\nabla_{E_{1}}U_{1}-\nabla_{U_{2}}(a_{21}U_{1}+a_{23}U_{3})-a_{21}\nabla_{U_{1}}U_{2}-a_{23}\nabla_{U_{3}}U_{2}$

$=2ba_{12}U_{2}-a_{21}(- \frac{a_{21}}{2}E_{1}+4bU_{2})-a_{23}\nabla_{U_{2}}U_{3}$

$-a_{21}(- \frac{a_{21}}{2}E_{1}+3bU_{2})+a_{23}(\frac{1}{3}a_{32}E_{1})$ .

Taking the $E_{1}$ component, using also (2.2), we get that

$- \frac{3}{2}a_{21}^{2}=a_{21}^{2}-\frac{4}{9}a_{32}^{2}-\frac{4}{9}a_{32}^{2}$ .

From this we get that $a_{32}^{2}=(45/16)a_{21}^{2}\neq 0$ . From the Gauss equation (2.10), we
then deduce that

$\nabla_{U_{2}}U_{3}=-\frac{1}{3}a_{32}E_{1}-10b\frac{a_{21}}{a_{23}}U_{2}$ .

Finally, we use the Gauss equation once more. We compute

$0=R(U_{2}, U_{3})U_{1}$

$=4b \nabla_{U_{2}}U_{3}-4b\nabla_{U_{j}}U_{2}+\frac{a_{21}}{2}\nabla_{U_{3}}E_{1}+10b\frac{a_{21}}{a_{23}}\nabla_{U_{2}}U_{1}$

$=(-10b \frac{a_{21}}{a_{23}})(4bU_{2}+\frac{a_{21}}{2}E_{1}-4bU_{2})$ ,



488 F. DILLEN and L. VRANCKEN

in order to deduce that $a_{21}=0$ . This completes the proof of the lemma. $\square$

From this lemma, the proof of Theorem 1 follows immediately. Looking
once more at the proof, we immediately obtain the following corollary.

COROLLARY 2.1. $a_{11}=c=a_{1j}=a_{j1}=0$ , where $j>1$ .

3. Proofs of Theorem 2 and Theorem 3.

We start by defining a matrix $A=(a_{ij})$ . Since

(3.1) $h(K_{E_{1}}U_{i}, U_{j})=- \frac{1}{2}(\nabla h)(E_{1}, U_{i}, U_{f})=\frac{1}{2}(a_{ij}+a_{ji})$ ,

we see that, although the matrix $A$ itself depends on the choice of h-orthonormal
$U_{1},$ $\cdots$ , $U_{n-1}$ , the fact that $A$ is skew-symmetric or not, is independent of that
choice. In the following lemma, we prove that this matrix $A$ is a skew-sym-
metric matrix.

LEMMA 3.1. ${}^{t}A=-A$ . In Particular, for $h$ -orthonormal $U_{1}$ , . $U_{n-1}$ as
defined in Section 2, we have

$\nabla_{U_{i}}U_{f}=\sum_{k=1}^{n-1}d_{if}^{k}U_{k}$ .

PROOF. Clearly, we already know that for all $j,$ $a_{j1}=a_{1j}=0$ . Therefore,
we may assume that $i,$ $j>1$ . Next, we consider the restriction $K$ of $K_{E_{1}}$ to
$\{E_{1}, U_{1}\}^{\perp}$ . By restriction, we always mean that for $U\in\{E_{1}, U_{1}\}^{\perp}$ ,

$KU=K_{E_{1}}U-h(K_{E_{1}}U, E_{1})E_{1}-h(K_{E_{1}}U, U_{1})U_{1}$ .

We then choose $U_{2},$ $\cdots$ , $U_{n-1}$ as eigenvectors of this symmetric linear operator.
Remark that since $\{E_{1}, U_{1}\}^{\perp}$ is uniquely determined, the eigenvalues of this
operator must be constant. This together with (3.1) implies that there exist
constants $\mu_{i}$ such that $\mu_{i}\delta_{ij}=(a_{ij}+a_{jt})/2$ and $2\mu_{i}$ is an eigenvalue. Since $\mu=0$ ,

we have from the Gauss equation that

$0=h(R(E_{1}, U_{i})U_{j},$ $E_{1})$

$=h(\nabla_{E_{1}}\nabla_{U_{i}}U_{j}-\nabla_{U_{i}}\nabla_{E_{1}}U_{j}-\nabla_{[E_{1}.U_{i}]}U_{j}, E_{1})$ .
Since $\nabla_{E_{1}}E_{1}$ and $\nabla_{E_{1}}U_{k}$ are orthogonal to $E_{1}$ and the numbers $\mu_{i}$ are constants,
using also Corollary 2.1, we get that

$0=- \sum_{k=2}^{n-1}a_{jk}h(\nabla_{U_{i}}U_{k}, E_{1})-\sum_{k=2}^{n-1}a_{ik}h(\nabla_{U_{k}}U_{j}, E_{1})$

$=--$ $\sum_{k=2}^{n-1}$ (a $jk$ (a $ik+a_{ki})+a_{ik}$ (a $kj+a_{jk})$ )
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$=-2 \sum_{k=2}^{n-1}a_{jk}\delta_{ik}\mu_{k}+a_{ik}\delta_{jk}\mu_{j}$

$=-2\mu_{i}a_{fi}-2\mu_{j}a_{ij}$ .

So taking $i=j$ gives us $\mu^{2}=0$ . Hence $A$ is a skew-symmetric matrix. $\square$

LEMMA 3.2. We define a matrix $D$ by $D_{if}=d_{1i}^{j},$ $2\leqq i,$ $j\leqq n-1$ . Then $(D+$

${}^{t}D)=2\tilde{K}$, where $\tilde{K}$ is the restriction of $K_{U_{1}}$ to $\{E_{1}, U_{1}\}^{\perp}$ . Then there exist num-
bers $r$ and $s,$ $r+s=n-2$ , such that the symmetric linear $oPerator2K$ has two
eigenvalues $\lambda_{2}=\lambda/b$ (muliiPlicity $s$ ) and $\lambda_{1}=\lambda/(2b)+2b$ (multipliciiy $r$). Moreover,
$we_{-}have$ that $\lambda=-2b^{2}(r+3)/(1+s+r/2)$ . Finally, if $j$ and $k$ correspond to different
eigenspaces then $d_{1j}^{k}=0$ .

PROOF. We choose $U_{2},\cdots,$ $U_{n-1}$ as eigenvectors of $K_{U_{1}}$ restricted to $\{E_{1}, U_{1}\}^{\perp}$ .
Remark that since this space is affine invariant, the eigenvalues must be con-
stant on $M$. However, since

$h(K_{U_{1}}U_{i}, U_{j})=- \frac{1}{2}(\nabla h)(U_{1}, U_{i}, U_{j})=\frac{1}{2}(d_{1t}^{j}+d_{1f}^{t})$ ,

there exist constants $\lambda_{i}$ such that

(3.2) $\lambda_{i}\delta_{ij}=d_{1i}^{j}+d_{1j}^{i}$ .
Hence Lemma 2.4 implies that $d_{ij}^{1}$ is constant. Using Lemma 2.3, Lemma 2.4
and Lemma 3.1, we find from the Gauss equation for $i,$ $j>1$ that

$\lambda\delta_{ij}=h(R(U_{1}, U_{i})U_{j},$ $U_{1})$

$=h(\nabla_{U_{1}}\nabla_{U_{i}}U_{j}-\nabla_{U_{i}}\nabla_{U_{1}}U_{j}-\nabla_{[U_{1}.U_{i}]}U_{j}, U_{1})$

$=d i_{j}d_{11}^{1}-\sum_{k=2}^{n-1}d_{1j}^{k}d_{ik}^{1}-\sum_{k2}^{n1}d_{1i}^{k}d_{kj}^{1}+\frac{\lambda}{2b}d3_{j}$

$=(d_{11}^{1}+ \frac{\lambda}{2b})(-\delta_{ij}\frac{\lambda}{2b}+d_{1i}^{j}+d_{1j}^{i})-\sum_{k=2}^{n-1}d_{1j}^{k}(-\delta_{ki}\frac{\lambda}{2b}+d_{1k}^{i}+d_{1i)}^{k}$

(3.3)

$- \sum_{k=2}^{n-1}d_{1i}^{k}(-\delta_{kj}\frac{\lambda}{2b}+d_{1k}^{j}+d_{1j}^{k})$

$=(d_{11}^{1}+ \frac{\lambda}{2b})(\lambda_{i}-\frac{\lambda}{2b})\delta_{tf}-\sum_{k=2}^{n-1}d_{1j}^{k}\delta_{ik}(\lambda_{i}-\frac{\lambda}{2b})-\sum_{k=2}^{n-1}d_{1i}^{k}\delta_{jk}(\lambda_{j}-\frac{\lambda}{2b})$

$=(d_{11}^{1}+ \frac{\lambda}{2b})(\lambda_{\ell}-\frac{\lambda}{2b})\delta_{ij}-d_{1j}^{i}(\lambda_{\ell}-\frac{\lambda}{2b})-d_{1i}^{j}(\lambda_{j}-\frac{\lambda}{2b})$ .

Hence, by taking $i=j$ , we get that

(3.4) $\lambda+d_{11}^{1}\frac{\lambda}{2b}+(\frac{\lambda}{2b})^{2}=(d_{11}^{1}+\frac{\lambda}{b})\lambda_{i}-\lambda_{i}^{2}$ .

This proves that $2\tilde{K}$ has at most two eigenvalues, namely the two solutions of
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the above equation.
Moreover, it follows also from (3.2) and (3.3) that if $U_{i}$ and $U_{j}$ belong to

different eigenspaces, then

(3.5) $\lambda_{t}d_{1j}^{i}+\lambda_{j}d_{1i}^{j}=0$ .

Since in this case (3.2) becomes $d_{1i}^{j}+d_{1j}^{i}=0,$ $(3.5)$ implies that $d_{1j}^{i}=d_{1i}^{j}=0$ .
So in order to obtain the proof of the lemma, we only have to relate $\lambda,$ $b$ ,

$\lambda_{1},$ $\lambda_{2}$ . First remark that it follows from Lemma 2.3 that $d_{11}^{1}=(2b+\lambda/(2b))$ . Then,
by solving $\lambda_{i}$ from (3.4), we get that

(3.6) $\lambda_{2}=\frac{\lambda}{b}$ ,

(3.7) $\lambda_{1}=\frac{\lambda}{2b}+2b$ .

Let us denote by $r$ (resp. $s$ ) the multiplicity of $\lambda_{1}$ (resp. $\lambda_{2}$). From the apolarity
condition for the vector field $U_{1}$ , we get that

$\sum_{i=1}^{n-1}d_{1t}^{i}+h(\nabla_{U_{1}}E_{1}, E_{1})=0$ .

This implies that $3b+\lambda/(2b)+(s/2)(\lambda/b)+r(\lambda/(2b)+2b)/2=0$ , such that

(3.8) $\lambda=-2b^{2}\frac{r+3}{(1+s+r/2)}$ . $\square$

From now on, we will assume that $U_{2}$ , , $U_{n-1}$ are chosen in such a way
that

(1) $U_{2},$ $\cdots$ , $U_{r+1}$ are eigenvectors of $\tilde{K}$ with eigenvalue $\lambda_{1}/2$ ;
(2) $U_{r+2},$ $\cdots$ , $U_{r+s+1}$ are eigenvectors of $\tilde{K}$ with eigenvalue $\lambda_{2}/2$ .

Notice that we allow both $\gamma$ and $s$ to be equal to zero. It immediately follows
from the previous lemma and (3.6), (3.7) and (3.8) that $\lambda_{1}\neq\lambda_{2}$ . Remark also that
because $E_{1}$ and $U_{1}$ are uniquely determined, the above vector spaces are uniquely
determined. So we can define several differentiable distributions. We first
define as $I_{1}$ and $I_{2}$ the following sets of indices:

$I_{1}=\{2, \cdots r+1\}$ ,

$I_{2}=\{r+2, \cdots , r+s+1=n-1\}$ .

Then, we define distributions $T_{0},$ $T_{1}$ and $T_{2}$ by

$T_{0}=span\{E_{1}, U_{1}\}$

$T_{\alpha}=span\{U_{j}|j\in I_{\alpha}\}$ ,

where $\alpha=1,2$ . Also, all these distributions are determined in an equiaffine
invariant way, i.e. if $A$ is an equiaffine transformation which locally preserves
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the surface and if $X\in T_{\beta},$ $\beta=0,1,2$ , then also $A_{*}X\in T_{\beta}$ . So, we can define
constants $a_{1},$ $a_{2},$ $a_{3}$ and $a_{4}$ on $M$ by

$a_{1}=$ $\Sigma$ $(\nabla h)(U_{i}, U_{j}, U_{k})^{2}$ ,
$i,j.k\in I_{1}$

$a_{2}=$ $\Sigma$ $(\nabla h)(U_{i}, U_{j}, U_{k})^{2}$ ,
$i,j,$ $k\in 1_{2}$

$a_{3}= \sum_{i,j\in I_{1}.k\in I_{2}}(\nabla h)(U_{i}, U_{j}, U_{k})^{2}$ ,

$a_{4}= \sum_{\ell\in I_{1}.j.k\in I_{2}}(\nabla h)(U_{i}, U_{j}, U_{k})^{2}$ .

The following lemmas will then be useful to prove integrability properties for
different combinations of the above distributions.

First, we have:

LEMMA 3.3. We have for $i,$ $j\in I_{1}$ and for $k,$ $P\in I_{2}$ that $d_{ij}^{k}=0=d_{kp}^{i},$ $i$. $e$ .

$h(\nabla_{U_{i}}U_{j}, U_{k})=h(\nabla_{U_{k}}U_{p}, U_{i})=0$ .

PROOF. We compute, using the fact that by Lemma 2.4 and our choice of
orthonormal frame $d_{if}^{1}$ is constant for all indices $i,$ $j$ , that

$0=h(R(U_{i}, U_{j})U_{k},$ $U_{1})$

$=h(\nabla_{U_{i}}\nabla_{U_{j}}U_{k}-\nabla_{U_{j}}\nabla_{U_{i}}U_{k}-\nabla_{[U_{i}.U_{j}]}U_{k}, U_{1})$

$= \sum_{p=2}^{n-1}d_{jk}^{p}d_{ip}^{1}-d_{ik}^{p}d_{jp}^{1}-(d_{if}^{p}-d_{ji}^{p})d_{pk}^{1}$ .

Applying Lemma 2.4, we can rewrite this as

$0= \sum_{p=2}^{n-1}(d_{jk}^{p}(-\delta_{ip}\frac{\lambda}{2b}+df_{t}+d_{1p}^{i})-d\not\in_{k}(-\delta_{fp}\frac{\lambda}{2b}+d_{1j}^{p}+d\{_{p}))$

$- \sum_{p=2}^{n-1}(d_{ij}^{p}-d_{ji}^{p})(-\delta_{pk}\frac{\lambda}{2b}+d_{1p}^{k}+df_{k})$ .

Since the vector fields $U_{i}$ are eigenvectors of $\tilde{K}$, this equation reduces to

$0=d_{jk}^{i}( \frac{\lambda}{2b}+2d_{1i}^{t})-di_{k}(\frac{\lambda}{2b}+2di_{j})-(d_{ij}^{k}-dj_{i})(\frac{\lambda}{2b}+2d_{1k}^{k})$ .

Applying then the Codazzi equation $d_{ji}^{k}=-d_{jk}^{i}+d_{ij}^{k}+d_{ik}^{j}$ gives us that

$0=d_{jk}^{i}(2d_{1i}^{i}-2d_{1k}^{k})-d\{$ $k(2d_{1j}^{j}-2d_{1k}^{k})$ .
Hence if $i,$ $k\in I_{1}$ and $j\in I_{2}$ , we see that $0=d_{ik}^{j}$ . Similarly, we get $d_{ik}^{j}=0$ for
$i,$ $k\in I_{2}$ and $j\in I_{1}$ . This completes the proof of the lemma. $\square$

LEMMA 3.4. The distributions $T_{a},$ $\alpha=1,2$ are integrable.

PROOF. Let $U_{2},$ $\cdots$ , $U_{r+1}$ be the local basis of $T_{1}$ which we constructed
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earlier. Then Lemma 3.3 implies that $\nabla_{U_{i}}U_{j},$ $i,$ $j\in I_{1}$ is orthogonal to $T_{2}$ . So,
since $\nabla$ is torsion free, we also have that $[U_{i}, U_{j}]$ is orthogonal to $T_{2}$ . From

$\epsilon$ Lemma 2.4, we then see that $d_{ij}^{1}=d_{ji}^{1}$ , which implies that $[U_{i}, U_{j}]$ is orthogonal
to $U_{1}$ . Finally, from Lemma 2.1, we see that $[U_{i}, U_{j}]$ is also orthogonal to
$E_{1}$ . This completes the proof that $T_{1}$ is integrable. The proof that $T_{2}$ is
integrable is similar. $\square$

LEMMA 3.5. We also have that $a_{ij}=0$ , if $i\in I_{1}$ and $j\in I_{2}$ , i. e. $\nabla_{E_{1}}T$. $cT.$ ,
$\alpha=1,2$ .

PROOF. We use the Gauss equation to obtain for $j>1$ that

$0=R(E_{1}, U_{1})U_{j}$

$=\nabla_{E_{1}}\nabla_{U_{1}}U_{j}-\nabla_{U_{1}}\nabla_{E_{1}}U_{j}-\nabla_{[E_{1}.U_{1}]}U_{f}$

$= \sum_{k.m=2}^{n-1}(d_{1j}^{k}a_{km}-a_{jk}d_{1k}^{m})U_{m}+b\sum_{m=2}^{n-1}$ a $jmU_{m}+ \sum_{m=2}^{n-1}$ ( $E_{1}(d_{1J}^{m})-U_{1}$(a $jm)$) $U_{m}$ .

Hence from this, we get that

(3.9) $0= \sum_{k=2}^{n-1}(d_{1j}^{k}a_{km}-a_{jk}d_{1k}^{m})+ba_{jm}+E_{1}(d_{1j}^{m})-U_{1}(a_{jm})$ ,

and since $A$ is skew-symmetric matrix, we also get that

$0=- \sum_{k=2}^{n-1}(d_{1j}^{k}a_{mk}-a_{kj}d_{1k}^{m})-ba_{mj}+E_{1}(d_{1j}^{m})+U_{1}(a_{mj})$ .
Interchanging $m$ and $j$ then yields

(3.10) $0=- \sum_{k=2}^{n-1}(d_{1m}^{k}a_{jk}-a_{km}d4_{k})-ba_{fm}+E_{1}(df_{m})+U_{1}(a_{fm})$ .
Adding (3.9) and (3.10) then gives us that

$0= \sum_{k=2}^{n-1}(d_{1j}^{k}+d\{_{k})a_{mk}-a$ $kj(d_{1k}^{m}+d_{1m}^{k})$ .
So for $j\in I_{1}$ and $m\in I_{2}$ , we get $(\lambda_{1}-\lambda_{2})a_{jm}=0$ . Since $\lambda_{1}\neq\lambda_{2}$ , this completes the

$\mathfrak{s}$ proof. $\square$

LEMMA 3.6. The distributions $T_{0},$ $T_{\alpha},$ $T_{0}\oplus T_{\alpha}$ , and $T_{1}\oplus T_{2}$ , where $\alpha=1,2$

are integrable.

PROOF. From Lemma 3.4, we already know that the distributions $T_{a},$ $\alpha=$

$1,2$ are integrable. The integrability of $T_{0}$ is an immediate consequence of
Lemma 2.1 and Corollary 2.1. In the same way, the integrability of $T_{1}\oplus T_{2}$

follows from Lemma 2.1 and Lemma 2.4.
So, we only have to proof that $T_{0}\oplus T_{\alpha}$ is integrable. By the above, it is

sufficient to show that $[E_{1}, U_{i}]$ and $[U_{1}, U_{i}]$ belong to $T_{\alpha}$ for $i\in I.$ . The first
assumption follows immediately from Lemma 2.1 and Lemma 3.5, while the
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second one is an immediate consequence of Lemma 2.3 and Lemma 3.2. $\square$

In the following lemma, we will then obtain a new simplification of our
orthonormal frame.

LEMMA 3.7. There are local $h$-orthonormal frames $\{V_{1}, \cdots , V_{r}\}$ of $T_{1}$ and
$\{W_{1}, \cdots W_{s}\}$ of $T_{2}$ such that

(1) $\nabla_{U_{1}}E_{1}=bE_{1}$ , $\nabla_{E_{1}}U_{1}=0$ ,

(2) $\nabla_{V_{i}}E_{1}=0$ , $\nabla_{E_{1}}V_{i}=0$ ,

(3) $\nabla_{W_{i}}E_{1}=0$ , $\nabla_{E_{1}}W_{i}=0$ ,

(4) $\nabla_{E_{1}}E_{1}=2bU_{1}$ , $\nabla_{U_{1}}U_{1}=(2b+\frac{\lambda}{2b})U_{1}$ ,

(5) $\nabla_{V_{i}}U_{1}=\frac{\lambda}{2b}V_{i}$ , $\nabla_{U_{1}}V_{i}=\frac{1}{2}(2b+\frac{\lambda}{2b})V_{i}$ ,

(6) $\nabla_{W_{i}}U_{1}=\frac{\lambda}{2b}W_{i}$ , $\nabla_{U_{1}}W_{i}=\frac{\lambda}{2b}W_{i}$ .

PROOF. We consider the integrable distributions $T_{0},$ $T_{1}$ and $T_{2}$ defined
earlier. Since also $T_{i}\oplus T_{j}$ is integrable, we know that there exist coordinates
$x_{1},$ $x_{2},$ $y_{1},$ $\cdots$ , $y_{\tau},$ $z_{1},$

$\cdots$ , $z_{s}$ such that $\partial/\partial x_{i}\in T_{0},$ $\partial/\partial y_{j}\in T_{1}$ and $\partial/\partial z_{k}\in T_{2}$ . In
order to simplify the notation, we denote $\partial/\partial x_{i},$ $\partial/\partial y_{j}$ and $\partial/\partial z_{k}$ respectively
by $\partial x_{i},$ $\partial y_{j}$ and $\partial z_{k}$ .

From (3.1), Lemma 3.1 and Lemma 3.2, we get that $K_{\tau_{0}}T_{\alpha}\subset T_{\alpha}$ and from
Lemma 3.1, Lemma 3.2 and Lemma 3.4, we also have that $\nabla_{T_{0}}T.cT.$ . Hence,
since $K=\nabla-\hat{\nabla}$, it follows that $\hat{\nabla}_{T_{0}}T_{\alpha}\subset T_{a}$ , where $\alpha=1,2$ and $\hat{\nabla}$ is the Levi
Civita connection of the affine metric. Therefore, we get that $\hat{\nabla}_{\partial x_{i}}\partial y_{j}\in T_{1}$ . On
the other hand using Lemma 2.1, Lemma 2.3 and the fact that $\partial x_{i}$ is a com-
bination of $E_{1}$ and $U_{1}$ , we have $(\hat{\nabla}_{\partial y_{j}}\partial x_{i})^{\tau_{0}^{\perp}}=\alpha_{i}\partial y_{j}$ , where $\alpha_{i}$ is a local function
on $M$. We now proceed in the following way. We define $V_{1}$ as the unit length
vector field in the direction of $\partial y_{1}$ . Then it follows from the previous formulas
that $\hat{\nabla}_{E_{1}}V_{1}=\hat{\nabla}_{U_{1}}V_{1}=0$ . So, if we put $V_{2}=\partial y_{2}-h(\partial y_{2}, V_{1})V_{1}$ , we get that

$\hat{\nabla}_{\partial x_{i}}V_{2}=\alpha_{t}\partial y_{2}-\alpha_{i}h(\partial y_{2}, V_{1})V_{1}=\alpha_{i}\tilde{V}_{2}$ .
Therefore, taking $V_{2}$ to be of unit length in the direction of $\tilde{V}_{2}$ , we see that
also $\hat{\nabla}_{E_{1}}V_{2}=\hat{\nabla}_{U_{1}}V_{2}=0$ . Completing the Gramm-Schmidt orthogonalization pro-
cedure in this way, we get a local $h$ -orthonormal frame $V_{1}$ , , $V_{r}$ of $T_{1}$ such
that $\hat{\nabla}_{E_{1}}V_{i}=\hat{\nabla}_{U_{1}}V_{i}=0$ . Similarly, we get an $h$ -orthonormal frame $W_{1},$ $\cdots$ , $W_{s}$

of $T_{2}$ such that
$\hat{\nabla}_{E_{1}}W_{j}=\hat{\nabla}_{U_{1}}W_{j}=0$ .

Hence, the frame $E_{1},$ $U_{1},$ $V_{1}$ , $\cdot$ . , $V_{\tau},$ $W_{1}$ , $\cdot$ , $W_{s}$ satisfies conditions (1) up to
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(6) of the lemma. $\square$

Next, we put $U_{2}=V_{1}$ , $\cdot$ .. , $U_{\tau+1}=V_{\tau},$ $U_{\tau+2}=W_{1},$ $\cdots$ $U_{n-1}=W_{S}$ and define $\mu_{1}$

$=\mu_{2}=\cdots=\mu_{r}=\lambda_{1}$ and $\mu_{\tau+1}=\mu_{r+2}=\cdots=\mu_{r+S}=\lambda_{2}$ . Then, we obtain from the
Gauss equation for $i,$ $j,$ $k>1$ that

$0=h(R(E_{1}, U_{i})U_{j},$ $U_{k})$

$=h(\nabla_{E_{1}}\nabla_{U_{i}}U_{j}-\nabla_{U_{i}}\nabla_{E_{1}}U_{j}-\nabla_{[E_{1}.U_{i}]}U_{j}, U_{k})$

(3.11) $=E_{1}(d_{ij}^{k})$ ,

$0=h(R(U_{1}, U_{i})U_{j},$ $U_{k})$

$=h(\nabla_{U_{1}}\nabla_{U_{i}}U_{j}-\nabla_{U_{i}}\nabla_{U_{1}}U_{j}-\nabla_{[U_{1}.U_{i}]}U_{f}, U_{k})$

(3.12) $=U_{1}(d_{ij}^{k})+( \frac{\mu_{k}-\mu_{J}-\mu_{i}}{2}+\frac{\lambda}{2b})d_{if}^{k}$ .

Then we have the following lemma:

LEMMA 3.8. Let $X_{1},$ $X_{2},$ $X_{3}\in T_{1}$ and let $Y_{1},$ $Y_{2}\in T_{2}$ . Then

$(\nabla h)(X_{1}, X_{2}, X_{3})=(\nabla h)(X_{1}, Y_{1}, Y_{2})=0$ .
PROOF. First, we take $i,$ $j,$ $k\in I_{1}$ . Then we get from (3.12) that

$U_{1}(d_{ij}^{k})=( \frac{\lambda_{1}\lambda}{22b})d_{ij}^{k}=\frac{1}{2}(2b-\frac{\lambda}{2b})d_{if}^{k}$ .

We put $c=(2b-\lambda/(2b))$ . Since $\lambda<0$ , from Lemma 3.2, we see that $c\neq 0$ . So,

since $a_{1}$ is constant we get

$0=U_{1}(a_{1})=U_{1} \sum_{i.j.k\in I_{1}}(d_{ij}^{k}+di_{k})^{2}=c\sum_{t.j.k\in I_{1}}(d_{ij}^{k}+di_{k})^{2}=ca_{1}$ .

Hence $a_{1}=0$ . This implies for all $i,$ $j,$ $k\in I_{1}$ that $(\nabla h)(V_{i}, V_{j}, V_{k})=0$ .
Next, we take $i\in I_{1},$ $j,$ $k\in I_{2}$ . From (3.9) it folIows in this case that

$U_{1}(d_{tj}^{k})=( \lambda_{1}-\frac{\lambda}{2b})d_{ij}^{k}=\frac{1}{2}(2b-\frac{\lambda}{2b})d_{ij}^{k}$ .

We recall that $c=(2b-\lambda/(2b))\neq 0$ . So we again get that

$0=U_{1}(a_{4})=U_{1} \sum_{i\in I_{1},j.k\in I_{2}}(d_{ij}^{k}+d_{ik}^{j})^{2}=c\sum_{i\in I_{1}.j,k\in I_{2}}(d_{ij}^{k}+d_{ik}^{j})^{2}=c$ a 4 .

Hence $a_{4}=0$ . This implies for all $i\in I_{1},$ $j,$ $k\in I_{2}$ that $(\nabla h)(V_{i}, V_{j}, V_{k})=0$ . $\square$

Applying the previous lemma, using also the fact that $\nabla_{T_{2}}T_{2}$ has no com-
ponent in the $T_{1}$ direction, we also see that $h(\nabla_{T},T_{1}, T_{2})=h(\hat{\nabla}_{T_{2}}T_{1}, T_{2})=0$ .
Using this, going again through the proof of Lemma 3.5, we find that

$h\delta_{\partial z_{p}}\partial y_{j},$ $\partial z_{q})=0$ ,
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and hence also $h(\hat{\nabla}_{\partial y_{j}}\partial z_{p}, \partial z_{q})=0$ . So

$\frac{\partial}{\partial y_{J}}(h(\partial z_{p}, \partial z_{q}))=0$ .

Since $W_{1},$ $\cdots$ , $W_{s}$ were constructed out of $\partial z_{1},$ $\cdots$ , $\partial z_{s}$ using Gramm-Schmidt
orthonormalization, the above formulas imply that $h(\hat{\nabla}_{V}W_{p}, W_{q})=0$ , where $V$ is
an arbitrary vector field belonging to $T_{1}$ . Combining this with Lemma 3.8 and
the Codazzi equation, we get that

(3.13) $\nabla_{V_{l}}V_{J}=\delta_{\iota_{J}}2bU_{1}+\sum_{k=1}^{r}v_{lj}^{k}V_{k}$ ,

(3.14) $\nabla_{V_{\iota}}W_{p}=\sum_{k=1}^{r}(c_{p\iota}^{k}+c_{pk}^{l})V_{k}$ , $\nabla_{W_{p}}V_{t}=\sum_{k=\iota}^{\tau}c_{p\iota}^{k}V_{k}$ ,

$\nabla_{w_{p}}W_{q}=(\frac{\lambda}{2b})\delta_{\iota_{J}}U_{1}+\sum_{\iota=1}^{s}w_{pq}^{l}W_{l}$ ,

where $v_{lj}^{k},$ $w_{pq}^{l}$ and $c_{p\iota}^{k}$ are local functions on $M$. In the following lemma, we
shall see how we can still improve our choice of $h$ -orthonormal $V_{1},$ $\cdots$ , $V_{r}$

which span $T_{1}$ .
LEMMA 3.9. We can choose $h$-orthmormal $V_{1},$ $\cdots$ , $V_{r}$ which span $T_{1}$ in such

a way that all Previous equations remain valid and such that (3.13) reduces to

$\nabla_{V_{\iota}}V_{J}=2b\delta_{CJ}U_{1}$ .
PROOF. First, from the Gauss equation, we obtain that

$0=-\lambda(\delta_{J^{k}}V_{\iota}-\delta_{jt}V_{k})+R(V_{t}, V_{k})V_{J}$

$= \sum_{t=1}^{f}(V_{t}(v_{k_{J}}^{t})-V_{k}(v_{lj}^{t}))V_{t}+\sum_{t.u=1}^{f}(v_{k_{J}}^{t}v_{li}^{u}-v_{\iota_{J}}^{t}v_{kt}^{u})V_{u}-\sum_{t,u=1}^{\tau}(v_{\iota k}^{t}-v_{k\iota}^{t})v_{tJ}^{u}V_{u}$ .

From this, we obtain the following matrix equation.

(3.15) $V_{\iota}(v_{k})-V_{k}(v_{\iota})-[v_{\iota}, v_{k}]- \sum_{j=1}^{r}(v_{\iota k}^{J}-v^{J_{kx}})v_{J}=0$ ,

where $v_{k}$ is the $(r, r)$-matrix with components $v_{kt}^{J}$ . Similarly, we obtain from
the Gauss equations $0=-\lambda\delta_{\iota_{J}}W_{p}+R(V_{\iota}, W_{p})V_{J}$ and $0=R(W_{p}, W_{q})V_{t}$ that

(3.16) $V_{\iota}(c_{p})-W_{p}(v_{x})-[v_{\iota}, c_{p}]- \sum_{k=1}^{\tau}c_{pk}^{\iota}v_{k}=0$ ,

(3.17) $W_{p}(c_{q})-W_{q}(c_{p})-[c_{p}, c_{q}]- \sum_{\iota=1}^{s}(w_{pq}^{\iota}-w_{qp}^{l})c_{l}=0$ ,

where $c_{k}$ is the $(r, r)$-matrix with components $c_{kt}^{J}$ .
NOW, we look at the following system of differential equations for an $(r, r)-$

matrlx $\alpha$ .
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(3.18) $\{$

$U_{1}(\alpha)=0$ ,

$E_{1}(\alpha)=0$ ,

$V_{k}(\alpha)=-\alpha v_{k}$ ,

$W_{p}(\alpha)=-\alpha c_{p}$ .
Using (3.11), (3.12), (3.15), (3.16) and (3.17) we get that

$(E_{1}U_{1}-U_{1}E_{1}-[E_{1}, U_{1}])(\alpha)=0$ ,

$(E_{1}V_{k}-V_{k}E_{1}-[E_{1}, V_{k}])(\alpha)=-\alpha E_{1}(v_{k})=0$ ,

$(E_{1}W_{p}-W_{p}E_{1}-[E_{1}, W_{p}])(\alpha)=-\alpha E_{1}(c_{p})=0$ ,

$(U_{1}V_{k}-V_{k}U_{1}-[U_{1}, V_{k}])( \alpha)=-\alpha U_{1}(v_{k})+\frac{1}{2}(2b-\frac{\lambda}{2b})\alpha v_{k}$

$=(- \frac{1}{2}(2b-\frac{\lambda}{2b})+\frac{1}{2}(2b-\frac{\lambda}{2b}))\alpha v_{k}=0$ ,

$(U_{1}W_{p}-W_{p}U_{1}-[U_{1}, W_{p}])(\alpha)=-\alpha U_{1}(w_{p})=0$ ,

$(V_{i}V_{k}-V_{k}V_{i}-[V_{t}, V_{k}])(\alpha)$

$=- \alpha(V_{i}(v_{k})-V_{k}(v_{i})-[v_{i}, v_{k}]-\sum_{j=1}^{\tau}(vi_{k}-v_{ki}^{f})v_{j})=0$ ,

$(V_{i}W_{P}-W_{P}V_{i}-[V_{i}, W_{p}])(\alpha)$

$=- \alpha(V_{i}(c_{p})-W_{p}(v_{t})-[v_{i}, c_{p}]-\sum_{k=1}^{r}c_{pk}^{i}v_{k})=0$ ,

$(W_{p}W_{q}-W_{q}W_{p}-[W_{p}, W_{q}])(\alpha)$

$=- \alpha(W_{p}(c_{q})-W_{q}(c_{p})-[c_{p}, c_{q}]-\sum_{l=1}^{s}(w_{pq}^{l}-w_{qp}^{l})c_{l})=0$ .

The above equations now imply that for all vector fields $X$ and $Y$ tangent to
$M$, we have

$(XY-YX-[X, Y])\alpha=0$ .
Hence, for instance by introducing coordinates, it is then clear that the system
of differential equations has a unique solution $\alpha=(\alpha_{ij})$ with initial conditions
$\alpha(p)=I$. We define local vector fields $V_{i}^{*}$ by

$V_{i}^{*}= \sum_{j=1}^{r}\alpha_{if}V_{j}$ .
Then, it follows from the definition of $\alpha$ that

$\nabla_{U_{1}}V_{i}^{*}=\frac{1}{2}(2b+\frac{\lambda}{2b})V_{i}^{*}$ .
$\nabla_{E_{1}}V_{i}^{*}=\nabla_{W_{p}}V_{i}^{*}=0$ ,

$\nabla_{V_{k}}V_{i}^{*}=2bh(V_{k}, V_{i}^{*})U_{1}$ .
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We denote by $\overline{V}_{i}^{*}$ a Gramm-Schmidt orthogonalization of the $V_{i}^{*}$ . Since by
Lemma 3.5,

$E_{1}(h(V_{i}^{*}, V_{j}^{*}))=E_{1}( \sum_{k=1}^{\tau}\alpha_{ik}\alpha_{jk})=0$ ,

$U_{1}(h(V_{i}^{*}, V_{j}^{*}))=U_{1}( \sum_{k\Rightarrow 1}^{r}\alpha_{ik}\alpha_{jk})=0$ ,

$V_{k}(h(V_{i}^{*}, V_{f}^{*}))=(\nabla h)(V_{k}, V7, V_{j}^{*})+h(\nabla_{V_{k}}V_{i}^{*}, V_{j}^{*})+h(Vf, \nabla_{V_{k}}V_{j}^{*})=0$ ,

we get that $\overline{V}_{i}^{*}$ form an $h$ -orthonormal frame of $T_{1}$ which satisfies

$\nabla_{U_{1}}\overline{V}i=\frac{1}{2}(2b+\frac{\lambda}{2b})\overline{V}_{t}^{*}$ ,

$\nabla_{E_{1}}\overline{V}5=0$ ,

$\nabla_{V_{k}^{*}}\overline{V}f=\delta_{ik}2bU_{1}$ .

This completes the proof of the lemma. $\square$

From now on, we will always work with the special $h$ -orthonormal frame
that we constructed in the previous lemmas. Its properties can be summarized
in the following lemma.

LEMMA 3.10. Let $M^{n}$ be a locally strongly convex, affine homogeneous, $ProPer$

quasiumbilical hypersurface in $R^{n+1}$ . Assume that rank $(S)>1$ . Then there exists
a local $h$-orthonormal basis $\{E_{1}, U_{1}, V_{1}, \cdots , V_{\tau}, W_{1}, \cdots , W_{s}\}$ , where $r+s=n-2$ ,

such that
$\nabla_{U_{1}}E_{1}=bE_{1}$

$\nabla_{V_{\ell}}E_{1}=0$

$\nabla_{W_{i}}E_{1}=0$

$\nabla_{E_{1}}E_{1}=2bU_{1}$

$\nabla_{V_{i}}U_{1}=\frac{\lambda}{2b}V_{t}$

$\nabla_{W_{i}}U_{1}=\frac{\lambda}{2b}W_{i}$

$\nabla_{V_{i}}V_{j}=\delta_{ij}2bU_{1}$

$\nabla_{V_{i}}W_{j}=\sum_{k=1}^{r}(c_{ji}^{k}+c_{jk}^{i})V_{k}$

$\nabla_{E_{I}}U_{1}=0$

$\nabla_{E_{1}}V_{i}=0$

$\nabla_{E_{1}}W_{i}=0$

$\nabla_{U_{1}}U_{1}=(2b+\frac{\lambda}{2b})U_{1}$

$\nabla_{U_{1}}V_{i}=\frac{1}{2}(2b+\frac{\lambda}{2b})V_{t}$

$\nabla_{U_{1}}W_{i}=\frac{\lambda}{2b}W_{i}$

$\nabla_{W_{j}}V_{i}=\sum_{k=1}^{r}c_{ji}^{k}V_{k}$

$\nabla_{W_{i}}W_{j}=(\frac{\lambda}{2b})\delta_{ij}U_{1}+\sum_{k=1}^{s}w_{ij}^{k}W_{k}$ ,

where $\lambda$ and $b$ are constants on $M$ related by $\lambda=-2b^{2}(r+3)/(1+s+r/2)$ and $w_{ij}^{k}$
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and $c_{ij}^{k}$ are local functions.
We consider now different cases depending on the dimension of $M$.

LEMMA 3.11. Let $M^{3}$ be a locally strongly convex, affine homogeneous, proper
quasiumbilical hypersurface in $R^{4}$ . Assume that rank $(S)>1$ . Then either

(1) there exists a local $h$-orthonormal frame $E_{1},$ $U_{1},$ $V_{1}$ on $M$ such that

$\nabla_{U_{1}}E_{1}=bE_{1}$ , $\nabla_{E_{1}}E_{1}=2bU_{1}$ , $\nabla_{V_{1}}V_{1}=2bU_{1}$ ,

$\nabla_{V_{1}}E_{1}=0$ , $\nabla_{E_{1}}V_{1}=0$ , $\nabla_{E_{1}}U_{1}=0$ ,

$\nabla_{U_{1}}U_{1}=(2b+\frac{\lambda}{2b})U_{1}$ , $\nabla_{U_{1}}V_{1}=\frac{1}{2}(2b+\frac{\lambda}{2b})V_{1}$ , $\nabla_{V_{1}}U_{1}=\frac{\lambda}{2b}V_{1}$ ,

where $\lambda=-(16/3)b^{2}$ , or
(2) there exists a local $h$-orthonormal frame $E_{1},$ $U_{1},$ $W_{1}$ on $M$ such that

$\nabla_{U_{1}}E_{1}=bE_{1}$ , $\nabla_{E_{1}}E_{1}=2bU_{1}$ , $\nabla_{W_{1}}W_{1}=\frac{\lambda}{2b}U_{1}$ ,

$\nabla_{W_{1}}E_{1}=0$ , $\nabla_{E_{1}}W_{1}=0$ , $\nabla_{E_{1}}U_{1}=0$ ,

$\nabla_{U_{1}}U_{1}=(2b+\frac{\lambda}{2b})U_{1}$ , $\nabla_{U_{1}}W_{1}=\frac{\lambda}{2b}W_{1}$ , $\nabla_{W_{1}}U_{1}=\frac{\lambda}{2b}W_{1}$ ,

where $\lambda=-3b^{2}$ .

PROOF. Since $M$ is 3-dimensional, we have either $r=1$ and $s=0$ or $r=0$

and $s=1$ . In the first case, the result follows immediately from Lemma 3.10.
In the second case, we use the apolarity condition for $W_{1}$ to obtain that
$h(\nabla_{W_{1}}W_{1}, W_{1})=0$ . $\square$

LEMMA 3.12. Let $M^{4}$ be a locally strongly convex, locally homogeneous,
proper quasiumbilical hypersurface in $R^{5}$ . Assume that rank $(S)>1$ . Then either

(1) there exists a local $h$-orthonormal frame $E_{1},$ $U_{1},$ $V_{1},$ $V_{2}$ on $M$ such that

$\nabla_{U_{1}}E_{1}=bE_{1}$ , $\nabla_{E_{1}}E_{1}=2bU_{1}$ , $\nabla_{V_{i}}V_{j}=2b\delta_{i_{J}}U_{1}$ ,

$\nabla_{V_{i}}E_{1}=0$ , $\nabla_{E_{1}}V_{i}=0$ , $\nabla_{E_{1}}U_{1}=0$ ,

$\nabla_{U_{1}}U_{1}=(2b+\frac{\lambda}{2b})U_{1}$ , $\nabla_{U_{1}}V_{i}=\frac{1}{2}(2b+\frac{\lambda}{2b})V_{i}$ , $\nabla_{V_{i}}U_{1}=\frac{\lambda}{2b}V_{i}$ ,

where $\lambda=-5b^{2}$ ,
(2) there exists a local $h$-orthonormal frame $E_{1},$ $U_{1},$ $V_{1},$ $W_{1}$ on $M$ sach that

$\nabla_{U_{1}}E_{1}=bE_{1}$ , $\nabla_{E_{1}}E_{1}=2bU_{1}$ , $\nabla_{V_{1}}V_{1}=2bU_{1}$ ,

$\nabla_{W_{1}}E_{1}=\nabla_{E_{1}}W_{1}=0$ , $\nabla_{V_{1}}E_{1}=\nabla_{E_{1}}V_{1}=0$ , $\nabla_{E_{1}}U_{1}=0$ ,

$\nabla_{U_{1}}U_{1}=(2b+\frac{\lambda}{2b})U_{1}$ , $\nabla_{U_{1}}V_{1}=\frac{1}{2}(2b+\frac{\lambda}{2b})V_{1}$ , $\nabla_{V_{1}}U_{1}=\frac{\lambda}{2b}V_{1}$ ,
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$\nabla_{U_{1}}W_{1}=\nabla_{W_{1}}U_{1}=\frac{\lambda}{2b}W_{1}$ ,

$\nabla_{W_{1}}W_{1}=\frac{\lambda}{2b}U_{1}-cW_{1}$ , $\nabla_{W_{1}}V_{1}=cV_{1}$ , $\nabla_{V_{1}}W_{1}=2cV_{1}$ ,

where $\lambda=-(16/5)b^{2}$ and $c$ is a positive number with $c^{2}=(24/25)b^{2}$ ,
(3) with resPect to the affine metric $h,$ $M$ is a Produci manifold $M_{0}xM_{2}$ ,

where $M_{2}$ is a sPace of constant sectional curvature $-3b^{2}$ . Moreover $E_{1}$ and $U_{1}$

locally span $TM_{0}(=T_{0})$ and for $W_{1}$ and $W_{2}$ tangent to $M_{2}$ , we have

$\hat{\nabla}_{U_{1}}E_{1}=\hat{\nabla}_{U_{1}}U_{1}=0$ , $\hat{\nabla}_{E_{1}}E_{1}=bU_{1}$ , $\hat{\nabla}_{E_{1}}U_{1}=-bE_{1}$

$K_{E_{1}}E_{1}=bU_{1}$ , $K_{U_{1}}U_{1}=(2b+ \frac{\lambda}{2b})U_{1}$ , $K_{E_{1}}U_{1}=bE_{1}$ ,

$K_{E_{1}}W_{i}=0$ , $K_{U_{1}}W_{i}= \frac{\lambda}{2b}W_{i}$ , $K_{W_{i}}W_{j}= \delta_{ij}\frac{\lambda}{2b}U_{1}$ ,

where $\lambda=-2b^{2}$ , or
(4) there exists a local $h$-orthonormal frame $E_{1},$ $U_{1},$ $W_{1},$ $W_{2}$ on $M$ such that

$\nabla_{U_{1}}E_{1}=bE_{1}$ , $\nabla_{E_{1}}E_{1}=2bU_{1}$ , $\nabla_{U_{1}}U_{1}=(2b+\frac{\lambda}{2b})U_{1}$ ,

$\nabla_{W_{1}}W_{1}=\frac{\lambda}{2b}U_{1}+\alpha W_{1}$ , $\nabla_{W_{2}}W_{2}=\frac{\lambda}{2b}U_{1}-\alpha W_{1}$ , $\nabla_{E_{1}}U_{1}=0$ ,

$\nabla_{W_{1}}W_{2}=\nabla_{W_{2}}W_{1}=-\alpha W_{2},$ $\nabla_{W_{i}}E_{1}=\nabla_{E_{1}}W_{i}=0,$ $\nabla_{U_{1}}W_{i}=\nabla_{W_{i}}U_{1}=\frac{\lambda}{2b}W_{i}$ ,

where $\lambda=-2b^{2}$ and $\alpha$ is a positive number with $a^{2}=(3/2)b^{2}$ .

PROOF. First, we consider the case that $r=2$ and $s=0$ . Applying Lemma
3.10, immediately completes the proof in this case.

Next we consider the case that $r=1=s$ . From Lemma 3.10, we obtain that
there exist local functions $w$ and $c$ such that

$\nabla_{V_{1}}V_{1}=2bU_{1}$ , $\nabla_{W_{1}}W_{1}=\frac{\lambda}{2b}U_{1}+wW_{1}$

$\nabla_{W_{1}}V_{1}=cV_{1}$ , $\nabla_{V_{1}}W_{1}=2cV_{1}$ .
The apolarity condition for $W_{1}$ then implies that $w=-c$ and since $a_{3}$ is constant
on $M$, we get that $c$ is a constant. Also, if necessary by changing the sign of
$W_{1}$ , we may assume that $c$ is positive. The Gauss equation then gives us that

$\lambda V_{1}=R(V_{1}, W_{1})W_{1}=(\frac{\lambda}{2b})^{g}V_{1}-6c^{2}V_{1}$ .

Since $\lambda=-(16/5)b^{2}$ , Lemma 3.10 now completes the proof in this case as well.
Finally, we consider the case that $r=0$ and $s=2$ . In this case, we get from
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Lemma 3.10 that

$\hat{\nabla}_{W_{i}}U_{1}=\hat{\nabla}_{U_{1}}W_{i}=\hat{\nabla}_{W_{i}}E_{1}=\hat{\nabla}_{E_{1}}W_{i}=0$ .
Let $p\in M$. Denote by $M_{a}$ the integral manifold through $P$ corresponding to
the distribution $T_{a},$ $\alpha=0,2$ . The above formula implies that, as a Riemannian
manifold, $M$ is the product of $M_{0}$ and $M_{2}$ . It also follows that $W_{1}$ and $W_{2}$ can
be interpreted as tangent vector fields to $M_{2}$ . Further,

$K_{E_{1}}E_{1}=bE_{1}$ ,

$K_{E_{1}}U_{1}=K_{E_{1}}W_{i}=0$ ,

$K_{U_{1}}U_{1}=(2b+ \frac{\lambda}{2b})U_{1}$ ,

$K_{U_{1}}W_{i}= \frac{\lambda}{2b}W_{i}$ .
We now restrict ourselves to the integral manifold $M_{2}$ . Clearly, we have

that

$D_{W_{i}}W_{j}= \sum_{k=1}^{2}w_{ij}^{k}W_{k}+\delta_{ij}(\frac{\lambda}{2b}U_{1}+\xi)$

$D_{W_{i}}( \frac{\lambda}{2b}U_{1}+\xi)=((\frac{\lambda}{2b})^{2}-\lambda)W_{i}$ .

By [NP] we get that the image of $M_{2}$ lies in a 3-dimensional affine space,
which we will denote by $R^{3}$ . By the apolarity condition of $M$, the affine normal
is given by $(\lambda/2b)U_{1}+\xi$ . Since the distribution $T_{2}$ is determined in an affine
invariant way, the local homogeneity of $M$ implies that $aIso$ the leaves of $T_{2}$

are homogeneous hypersurfaces. So $M_{2}$ is a locally strongly convex, locally
homogeneous 2-dimensional hyperbolic affine sphere. Applying then the clas-
sification theorem of [NS], we then see that either $M_{2}$ is a hyperboloid, with
curvature $-3b^{2}$ and $K^{*}$ vanishes identically or we can choose h-orthonormal
$W_{1}$ and $W_{2}$ on $M_{2}$ in such a way that $\hat{\nabla}_{W_{i}}^{*}W_{j}=0,$ $i,$ $j=1,2$ and moreover

$K_{W_{1}}^{*}W_{1}=\alpha W_{1}$ , $K_{W_{2}}^{*}W_{2}=-\alpha W_{1}$ ,

$K_{W_{1}}^{*}W_{2}=K_{W_{2}}^{*}W_{1}=-\alpha W_{2}$ ,

where $\alpha$ is a positive number satisfying $2\alpha^{2}=\lambda-(\lambda/2b)^{2}$ and $\nabla^{*}$ (resp. $K^{*}$) is
the restriction of $\nabla$ (resp. $K$ ) to the $T_{2}$-component.

We now extend in a parallel way $W_{1}$ and $W_{2}$ to local vector fields on $M_{0}$

$\cross M_{2}$ . Since, from (3.11) and (3.12) it follows that

$U_{1}(h(K_{W_{i}}W_{j}, W_{k}))=E_{1}(h(K_{W_{i}}W_{j}, W_{k}))=0$ ,

we obtain (3) and (4). $\square$
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Using the two previous lemmas by introducing suitable coordinates and
integrating explicitly the following theorems follow immediately.

THEOREM 3.1. Let $M^{3}$ be a locally strongly convex, locally homogeneous,
proper quasiumbilical hypersurface in $R^{4}$ . Assume also that rank $(S)>1$ . Then
$M$ is affine equivalent to the convex part of one of the following hypersurfaces:

$(y- \frac{1}{2}x^{2})^{s}v^{2}w^{2}=1$ ,

$(y- \frac{1}{2}x^{2}-\frac{1}{2}\frac{w^{2}}{z})^{4}z^{3}=1$ ,

where $(x, y, z, w)$ are the coordinates of $R^{4}$ .

THEOREM 3.2. Let $M^{4}$ be a locally strongly convex, locally affine homogeneous,
proper quasi-umbilical hypersurface in $R^{\epsilon}$ . Assume also that rank $(S)>1$ . Then
$M$ is affine equivalent to the convex part of one of the following hypersurfaces:

$(^{\underline{1}}y-x^{2})^{3}u^{2}v^{2}w^{3}=1$ ,

$(y- \frac{1}{2}x^{2}-\frac{1}{2}(\frac{w^{2}}{z}+\frac{u^{2}}{z}))^{5}z^{4}=1$ ,

$(y- \frac{1}{2}x^{2}-\frac{1}{2}\frac{w^{2}}{z})^{4}z^{3}u^{2}=1$ ,

$(y- \frac{1}{2}x^{2})(z^{2}-(w^{2}+u^{2}))=1$ ,

where $(x, y, z, w, u)$ are the coordinates of $R^{5}$ .
Combining the above two theorems with the main theorem of [DV1] then

completes the proof of Theorems 2 and 3.

REMARK. TO obtain a complete classification of quasi-umbilical homogeneous
hypersurfaces seems to be much more complicated. One of the reasons is
technical. In dimensions 3 and 4, we immediately get from Lemma 3.7 that
$[K_{W}, K_{W}]T_{1}=0$ , where $W,\overline{W}\in T_{2}$ . For higher dimensions this condition is not
satisfied automatically.

Also, the number of different examples increases rapidly with the dimension
of $M$. For example

$(v- \frac{1}{2}w^{2}-\frac{1}{2}\sum_{i=1}^{q}(\sum_{j=1}^{r_{t}}(\frac{x_{j}^{i}}{y_{\ell}})^{2}y_{i}))_{P_{=1}^{y_{i}^{r_{i}+s_{i^{+2}}}}}^{3+}\Sigma 3\Leftarrow 1^{r_{i}q}$

. $(u- \frac{1}{2}\sum_{i=1}^{q}(\sum_{j=1}^{s_{i}}(\frac{z_{j}^{i}}{y_{t}})^{2}y_{i}))^{2+\Sigma_{i=\iota^{s_{i}}}^{q}}F(z_{1}, \cdots z_{p})^{2(p+2)/\dot{a}}=1$ ,

where $F$ is the homogeneous function of degree $d$ associated with a homo-
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geneous hyperbolic affine sphere (see [DV2]), is an example of a proper quasi-
umbilical affine homogeneous hypersurface. Its dimension is equal to $n$ , where

$n=p+q+1+ \sum_{i=1}^{q}(s_{i}+r_{i})$ .

It can be checked that all of the above examples satisfy the technical condition
mentioned earlier. One could ask whether these are all the quasi-umbilical
homogeneous hypersurfaces which satisfy that condition.
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