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\S 1. Introduction.

The local commutator method has been initiated by Mourre [11] and major
progress has been made in the spectral and scattering theory for many-particle
Schr\"odinger operators during the last decade. By making use of this method,
for example, the prlnciple of limiting absorption has been established by $[11, 13]$

and the non-existence of positive eigenvalues has been proved by [3]. Further-
more, it has also played a basic role in proving the asymptotic completeness of
wave operators ([4, 9, 16, 17, 21]). In this work, we use this remarkable method
to prove the non-existence of bound states and the principle of limiting absorp-
tion for many-particle Stark Hamiltonians with homogeneous electric fields. The
results obtained have an important application to the problem on the asymptotic
completeness of wave operators. We are going to give a full explanation about
the matter in another paper.

We now consider a system of $N$ particles moving in a given constant electric
field $\mathcal{E}\in R^{3},$ $\mathcal{E}\neq 0$ . We denote by $m_{J},$ $e_{J}$ and $r,\in R^{3}$ , l\leqq i$N, the mass, charge
and position vector of the i-th particle, respectively. We also use the notation
$\langle\cdot, \cdot\rangle$ to denote the usual scalar product in the Euclidean space. Then the
total energy Hamiltonian for such a system is described as

$- \sum_{1\leqq J\leq N}\{\Delta/2m_{J}+e_{J}\langle \mathcal{E}, r_{J}\rangle\}+V$ ,

where the interaction potential $V$ is given as the sum of pair potentials

$V= \sum_{1\subseteq J<k\leqq N}V_{jk}(r_{J}-r_{k})$ .

For notational brevity, the values of masses are fixed throughout as

$m_{J}=1$ , $1\leqq j\leqq N$ ,

but the values of charges are regarded as real parameters. As usual, the
Hamiltonian above is considered in the center-of-mass frame. We introduce the
configuration space $X$ as
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$X= \{r= (r_{1}, \cdots , r_{N})\in R^{3xN} : \sum_{1\leqq j\leqq N}r_{J}=0\}$

and define $E\in X$ by

$E=projection$ onto $X$ of $(e_{1}\mathcal{E}, \cdots , e_{N}\mathcal{E})$ .

We further write $x$ for a generic point in $X$ . Then the energy Hamiltonian $H$

(Schr\"odinger operator) with identical masses $m_{j}=1$ takes the following form in
the center-of-mass frame and acts on the space $L^{2}(X)$ :

$H=-\Delta/2-\langle E, x\rangle+V$ on $L^{2}(X)$ .

We here assume that $|E|\neq 0$ . This is equivalent to saying that the charges
take different values $e,\neq e_{k}$ for some pair $(j, k)$ . We further assume that the
pair potential $V_{jk}(y),$ $y\in R^{3}$ , satisfies the following assumption:

(V) $V_{jk}(y)\in C^{2}(R^{3})$ is a $C^{2}$-smooth real function wlth decay properties

$|V_{jk}(y)|+|\nabla V_{fk}(y)|=O(|y|^{-\rho}),$ $|\nabla\nabla V_{jk}(y)|=O(1)$ for some $\rho>1/2$ .
The decay assumption for the first derivatives is mainly used to prove the
non-existence of bound states and the uniform boundedness for the second deri-
vatives is required to prove the principle of limiting absorption. Throughout
the whole exposition, we use the constant $\rho$ with the meaning ascribed above
and assume, without loss of generality, that $1/2<\rho<1$ . Under assumption (V),

the operator $H$ formally defined above admits a unique self-adjoint realization
in $L^{2}(X)$ . We denote it by the same notation $H$.

We are now in a position to formulate the main results obtained in the
present work.

THEOREM 1 (NON-EXISTENCE OF BOUND STATES). ASSume that (V) iS fulfilled.
Then the operator $H$ has no bound states.

THEOREM 2 (PRINCIPLE OF LIMITING ABSORPTION). Assume that (V) iS fulfilled.
Let $\langle x\rangle=(1+|x|^{2})^{1/2}$ and denote by $L_{\nu}^{2}(X)=L^{2}(X;\langle x\rangle^{2\nu}dx)$ the weighted $L^{2}$ space
over $X$ with weight $\langle x\rangle^{\nu}$ . Let $R(\zeta;H)=(H-\zeta)^{-1},$ ${\rm Im}\zeta\neq 0$ , be the resolvent of $H$.
Then the resolvents have the boundary values to the real axis

$\lim_{\epsilon\downarrow 0}R(\lambda\pm i\epsilon;H)=R(\lambda\pm iO;H)$ , $\lambda\in R$ ,

in the uniform topology as an operator from $L_{\nu}^{2}(X)$ into $L_{-\nu}^{2}(X)$ for $\nu>1/4$ , where
the convergence is locally uniform in R.

AS a consequence of Theorems 1 and 2, we can get the following propaga-
tion property for $\exp(-itH)$ , which follows immediately from the local smoo-
thness theorem due to Kato ([8, 14]).
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COROLLARY 3. Assume that (V) is fulfilled. Let $\nu>1/4$ and let $f\in C_{0}^{\infty}(R)$

be a smooth function with compact support. Then there exists $C>0$ independent

of $\psi\in L^{2}(X)$ such that

$\int_{-\infty}^{\infty}||\langle x\rangle^{-\nu}\exp(-itH)f(H)\psi||_{0}^{2}dt$ $ $C||\psi||_{0}^{2}$ ,

where $||\cdot||_{0}$ denotes the $L^{2}$ norm in $L^{2}(X)$ .

We conclude the section by making a brief comment on the related results
which have been obtained in the spectral analysis for Hamiltonians with Stark
effect. Many works, for example, [1, 5, 6, 7, 12, 19, 20, 22] have been already
done for one or two-particle systems and the two problems which we here
consider, including the completeness of wave operators, have been solved for
various classes of short-range or long-range potentials. On the other hand, there
are only a few works dealing with many-particle systems. The problem of
asymptotic completeness has been studied by $[10, 18]$ only for three-particle
systems and the non-existence of bound states has been proved by Sigal [15]

for $N$-particle systems with fixed centres

$- \sum_{1\leqq j\leq N}\{\Delta/2m_{j}+e_{j}\langle \mathcal{E}, r_{j}\rangle-V_{j}(r_{j})\}+\sum_{k1\leq j<\leqq N}V_{jk}(r_{j}-r_{k})$ ,

under the main assumptions that the charges $e_{j}$ take the same sign ( $e_{j}>0$ or
$e_{j}<0$ for all $j$) and that the interactions $V_{jk}$ between moving particles are
repulsive

$\langle \mathcal{E}, y\rangle\langle \mathcal{E}, \nabla V_{jk}(y)\rangle\leqq 0$

along the direction of electric field $\mathcal{E}$ . The result obtained covers an important
class of $N$-particle systems which includes atoms and Born-Oppenheimer mole-
cules as typical examples. In the present work, we have made the strong decay
assumption $\nabla V_{jk}(y)=O(|y|^{-\rho}),$ $\rho>1/2$ , for the first derivatives of pair potentials
in place of the repulsive condition.

\S 2. Basic notations in many-particle systems.

We here introduce several basic notations which are often employed in the
spectral analysis for many-particle systems.

We denote by letter $a$ or $b$ a partition $a=\{C_{1}, \cdots , C_{m}\}$ of the total set
$\{$ 1, $\cdots$ , $N\}$ into non-empty disjoint subsets (clusters) $C_{j}$ . Such a partition is called
a cluster decomposition. We also denote by $\#(a)$ the number of clusters in $a$ .
The one-cluster decomposition $a=\{1,2, \cdots , N\},$ $\#(a)=1$ , is not used throughout
the entire discussion. We further write a for pair $(], k)$ with 1S j<k$N and
$V_{a}$ for pair Potential $V_{jk}$ . The relations $\alpha\subset a$ and $\alpha\not\subset a$ mean, respectively,
that $j$ and $k$ are in the same cluster in $a$ and that they are in different clusters
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in $a$ . The pair $\alpha=(], k)$ is sometimes identified with the $N-1$ cluster decom-
position $\{(J, k),$(1) $, \cdot.. , (\hat{j}), \cdot.. , (\hat{k}), \cdot.. , (N)\}$ . If $b$ is obtained as a refinement
of $a$ , then we use the same notation $\subset$ to denote this relation as $b\subset a$ .

We define the two subspaces $X^{a}$ and $X_{a}$ of $X$ as

$X^{a}=$ { $r \in X:\sum_{J\in C}r_{J}=0$ for all clusters $C$ in $a$ },

$X_{a}=$ { $r\in X:r^{\alpha}=r_{J}-r_{k}=0$ for all pairs $\alpha\subset a$ }.

These spaces are mutually orthogonal and span the total space $X=X^{\alpha}\oplus X_{a}$ , so
that $L^{2}(X)$ is decomposed as the tensor product $L^{2}(X)=L^{2}(X^{a})\otimes L^{2}(X_{a})$ . We
also denote by $\pi^{a}$ : $Xarrow X^{a}$ and $\pi_{a}$ : $Xarrow X_{a}$ the orthogonal projections onto $X$ “

and $X_{a}$ , respectively, and write $x^{a}=\pi^{a}x$ and $x_{a}=\pi_{a}x$ for a generic point $x\in X$ .
The cluster Hamiltonian $H_{a}$ is defined by

$H_{a}=-\Delta/2-\langle E, x\rangle+V^{a}$ on $L^{2}(X)$

as an operator acting on $L^{2}(X)$ , where

(2.1) $V^{a}(r)= \sum_{\alpha\subset a}V_{\alpha}(r^{\alpha})$ , $r^{\alpha}=r_{J}-r_{k}$ .

Let $E^{a}=\pi^{a}E$ and $E_{a}=\pi_{a}E$ . Then the operator $H_{\alpha}$ is decomposed into

$H_{a}=H^{a}\otimes Id+Id\otimes T_{a}$ on $L^{2}(X^{a})\otimes L^{2}(X_{a})$ .

Here $H^{a}$ is the subsystem Hamiltonian defined by

$H^{a}=-\Delta/2-\langle E^{a}, x^{a}\rangle+V^{a}$ on $L^{2}(X^{a})$

and $T_{a}$ is the free Hamiltonian defined by

$T_{a}=-\Delta/2-\langle E_{a}, x_{a}\rangle$ on $L^{2}(X_{a})$ .

\S 3. Conjugate operator.

We define the direction $\omega$ by $\omega=E/|E|$ and denote the coordinate $z$ as $z=$

$\langle x, \omega\rangle\in R$ , so that $H$ is rewritten as

$H=-\Delta/2-|E|z+V$ .

In the last section, we construct a conjugate operator $A$ with the two properties
below. The main body of this work is occupied by the construction of such a
conjugate operator.

The first property is that:
(A.1) $A$ is a differential operator of the form

$A=-i\{\langle c(x), \nabla\rangle+\langle\nabla, c(x)\rangle\}+c_{0}(x)$ ,
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where $c(x)=\{c_{j}(x)\},$ $1\leqq j\leqq 3(N-1)$ , and $c_{0}(x)$ are smooth real functions and
satisfy the estimates

(3.1) $|\partial_{x}^{\beta}c_{)}(x)|\leqq C_{\beta}\langle z\rangle^{-|\beta|}$ , $|\partial_{x}^{\beta}c_{0}(x)|\leqq C_{\beta}\langle z\rangle^{-1-|\beta|}$ .

Since the coefficients of differential operator $A$ are all real functions with
bounded derivatives to any order, it admits a unique self-adjoint realization on
its natural domain in $L^{2}(X)$ . We denote it by the same notation $A$ . It follows
from assumption(V) and (3.1) that the commutator $[H, A]=HA-AH$ satisfies

(3.2) $[H, A](H+i)^{-1}\in 9(X)$ , $[[H, A],$ $A](H+i)^{-}$ $\in B(X)$ ,

where 9(X) denotes the set of all bounded operators acting on $L^{2}(X)$ .
We now fix energy $\lambda\in R$ arbitrarily and take a smooth real function $f\in$

$C_{0}^{\infty}(R)$ with support in a small interval $(\lambda-\delta, \lambda+\delta),$ $0<\delta\ll 1$ , around $\lambda$ . Then
the second property is stated as follows:
(A.2) If $\delta>0$ is chosen small enough, then there exists $d>0$ such that

$f(H)i[H, A]f(H)\geqq df(H)^{2}+K$

for some compact operator $K$, where $\delta$ and $d$ can be taken locally uniformly
in $\lambda$ and the inequality relation is understood in the form sense.

\S 4. Proof of main theorems.

In this section, we first complete the proof of Theorems 1 and 2, accepting
the conjugate operator $A$ with properties (A.1) and (A.2) as constructed. The
proof of Theorem 1 is based on a modification of the local commutator method
in Froese-Herbst [3], where the non-existence of positive eigenvalues is verified
for $N$-particle systems without homogeneous electric fields. Once the conjugate
operator $A$ has been constructed, the principle of limiting absorption is established
as an immediate consequence of the general result in [2] (see [13] also).

Let $\psi(x)$ be the eigenstate associated with eigenvalue $\lambda\in R$

(4.1) $H\psi=\lambda\psi$ , $\psi\in L^{2}(X)$ .

The proof of Theorem 1 consists of three steps. We show that: (i) the eigen-
state $\psi$ has the polynomial decay property; (ii) $\psi$ has the exponential decay
property; (iii) $\psi$ vanishes identically. To prove (i) and (ii), we analyze the
two commutators $i[H, A]$ and $i[H, \gamma]$ , where $A$ is the conjugate operator as in
section 3 and $\gamma$ is defined by

(4.2) $\gamma=(D_{0}+D_{0}^{*})/2$ , $D_{0}=-i\langle x/\langle x\rangle, \nabla\rangle$ .

4.1. We begin by proving the polynomial decay property.
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LEMMA 4.1. For any $k>0,$ $\langle x\rangle^{k}\psi\in L^{2}(X)$ .

PROOF. The lemma is verified by contradiction and the proof is divided
into several steps. In the proof, we again denote by $||\cdot||_{0}$ the $L^{2}$ norm and
write $\langle\cdot, \cdot\rangle_{0}$ for the scalar product in $L^{2}(X)$ .

(1) Assume that there exists $k>0$ such that

(4.3) $\langle x\rangle^{k}\psi\not\in L^{2}(X)$ .
For $\epsilon,$

$0<\epsilon\ll 1$ , small enough, we define the function $F=F$ ( $|x|$ ; e) by

$F=k(\log\langle x\rangle-\log(1+\epsilon\langle x\rangle))$

with $k>0$ as above and set

$\psi_{\epsilon}=\langle x\rangle^{k}(1+\epsilon\langle x\rangle)^{-k}\psi\in L^{2}(X)$ ,

so that $\psi_{\epsilon}$ is represented as $\psi_{\text{\’{e}}}=e^{F}\psi$ . This function obeys the equation

(4.4) $H_{F}\psi_{\epsilon}=\lambda\psi_{\epsilon}$ ,

where
$H_{F}=e^{F}He^{-F}=-2^{-1}(\nabla-\nabla F)^{2}-|E|z+V$

with $z=\langle x, \omega\rangle,$ $\omega=E/|E|$ . The operator $H_{F}$ can be also written as

$H_{F}=H+B_{F}-|\nabla F|^{2}/2$

with
$B$. $=2^{-1}(\langle\nabla F, V\rangle+\langle\nabla, \nabla F\rangle)$ .

Let $\gamma$ be defined by (4.2). We calculate $\nabla F$ as $\nabla F=xG/\langle x\rangle$ , so that

(4.5) $B_{F}=iG\gamma+2^{-1}(|x|/\langle x\rangle)\partial G/\partial|x|$ ,

where

$G=G(|x| ; \epsilon)=(\langle x\rangle/|x|)\partial F/\partial|x|=k\langle x\rangle^{-1}(1+\epsilon\langle x\rangle)^{-1}>0$

and it behaves like $G=O(|x|^{-1}),$ $|x|arrow\infty$ , uniformly in $\epsilon$ .
(2) We now normalize $\psi_{\epsilon}\in L^{2}(X)$ as

$\varphi_{\epsilon}(x)=\psi_{\epsilon}/||\psi_{\epsilon}||_{0}$ , $||\varphi_{\epsilon}||_{0}=1$ .

By assumption (4.3), it follows that

(4.6) $\varphi_{\epsilon}arrow 0$ weakly in $L^{2}(X)$ as $\epsilonarrow 0$ .
By (4.4) and (4.5), $\varphi_{\epsilon}$ satisfies the equation

(4.7) $H\varphi_{\epsilon}=\lambda\varphi_{\epsilon}-iG\gamma\varphi_{\text{\’{e}}}+J\varphi_{\epsilon}$ ,

where
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$J=J(|x| ; \epsilon)=2^{-1}\{|\nabla F|^{2}-(|x|/\langle x\rangle)\partial G/\partial|x|\}=O(|x|^{-2})$ , $|x|arrow\infty$ .

Hence we see that $\langle x\rangle^{-1/2}\varphi_{\epsilon}$ and $\langle x\rangle^{-1}\varphi_{\epsilon}$ are bounded in the Sobolev spaces
$H^{1}(X)$ and $H^{2}(X)$ over $X$ uniformly in $\epsilon$ , respectively. This, together with
(4.6), implies that both the terms $G\gamma\varphi_{\epsilon}$ and $J\varphi_{\epsilon}$ converge to zero strongly in
$L^{2}(X)$ as $\epsilonarrow 0$ . Thus we have

(4.8) $||(H-\lambda)\varphi_{\epsilon}||_{0}arrow 0$ , $\epsilonarrow 0$ .

(3) We now use the property (A.2) of $A$ . For $\delta>0$ small enough, we take
a smooth real function $f\in C_{0}^{\infty}(R)$ to satisfy that $f$ has support in a small in-
terval $(\lambda-2\delta, \lambda+2\delta)$ around $\lambda$ and that $f=1$ on $[\lambda-\delta, \lambda+\delta]$ . Then it follows
from (A.2) and (4.6) that

$\lim_{\epsilonarrow}\inf_{0}\langle f(H)i[H, A]f(H)\varphi_{\text{\’{e}}}, \varphi_{\epsilon}\rangle_{0}\geqq d\lim_{\epsilonarrow}\inf_{0}||f(H)\varphi_{\epsilon}||_{0}^{2}$

for some $d>0$ . Since $[H, A](H+i)^{-1}$ : $L^{2}(X)arrow L^{2}(X)$ is bounded by (3.2) and
since

$||(Id-f(H))\varphi_{\epsilon}||_{L2(X)}arrow 0$ , $\epsilonarrow 0$ ,

by (4.8), we have

(4.9) $\lim_{\epsilonarrow}\inf_{0}\langle i[H, A]\varphi_{\epsilon}, \varphi_{\epsilon}\rangle_{0}\geqq d||\varphi_{\text{\’{e}}}||_{0}^{2}=d>0$ .

(4) Next we calculate the term $\langle i[H, A]\varphi_{\epsilon}, \varphi_{\epsilon}\rangle_{0}$ by use of relation (4.7).

Let $x_{R}(x)\in C_{0}^{\infty}(X)$ be a non-negative function such that $\chi_{R}$ is supported in $|x|<$

$2R$ and $x_{R}=1$ on $|x|\leqq R$ . We approximate $\varphi\hat{e}$ by $\varphi_{\text{\’{e}}}^{R}=x_{R\varphi_{\text{\’{e}}};}\varphi_{\epsilon}^{R}arrow\varphi_{\epsilon},$
$Rarrow\infty$ ,

strongly in $L^{2}(X)$ . Then we have

$\langle i[H, A]\varphi_{\epsilon}, \varphi_{\text{\’{e}}}\rangle_{0}=\lim_{Rarrow\infty}i\{\langle A\varphi_{\epsilon}^{R}, H\varphi_{\text{\’{e}}}^{R}\rangle_{0}-\langle H\varphi_{\epsilon}^{R}, A\varphi_{\epsilon}^{R}\rangle_{0}\}$

and hence

(4.10) $\langle i[H, A]\varphi_{\epsilon}, \varphi_{\epsilon}\rangle_{0}=-2{\rm Re}\langle A\varphi_{\text{\’{e}}}, G\gamma\varphi_{\text{\’{e}}}\rangle_{0}-\langle i[A, J]\varphi_{\epsilon}, \varphi_{\epsilon}\rangle_{0}$ ,

by (4.7). The second term on the right side converges to zero as e–0.

LEMMA 4.2. $||\langle x\rangle^{\rho/2}G^{1/2}\gamma\varphi_{\epsilon}||_{0}=O(1)$ , $\epsilonarrow 0$ .
We accept this lemma as proved. The proof of the lemma is given after

completing the proof of the lemma. By Lemma 4.2, the first term on the right
side of (4.10) also converges to zero as $\epsilonarrow 0$ . Thus we have

$\lim_{\text{\’{e}}arrow}\sup_{0}\langle i[H, A]\varphi_{\epsilon}, \varphi_{\epsilon}\rangle_{0}=0$ .

This contradicts (4.9) and the proof is complete. $\square$

We now prove Lemma 4.2 which has played a basic role in proving the
polynomial decay property of eigenstate $\psi$ in (4.1).
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PROOF OF LEMMA 4.2. TO prove the lemma, we define the operator $\gamma_{\delta}$ as
$\gamma_{\delta}=g_{\delta}\gamma g_{\delta}$ , $g_{\delta}(x)=\langle x\rangle^{\rho/2}\langle\delta x\rangle^{-(\rho/2+1/4)}$ ,

for $\delta>0$ small enough and evaluate the term

$I_{\delta\epsilon}=\langle i[H, \gamma_{\delta}]\varphi_{\epsilon}, \varphi_{\epsilon}\rangle_{0}$ .

It should be noted that $\gamma_{\delta}\varphi_{\epsilon}\in L^{2}(X)$ for $\delta>0$ . Throughout the proof, we denote
by $b_{k}$ a multiplication operator by $b_{k}(x;\delta)$ with bound $|b_{k}(x;\delta)|\leqq C\langle x\rangle^{k}$ uni-
formly in $\delta$ . According to this notation, the operator $\gamma_{\delta}$ is related to $\gamma,$ $\gamma$ being
defined by (4.2), through the relation $\gamma_{\delta}=g_{\delta}^{2}\gamma+b_{\rho-1}$ .

We first recall that $H$ is rewritten as

$H=-\Delta/2-|E|z+V$ , $z=\langle x, \omega\rangle$ .

Then the commutator $i[H, \gamma_{\delta}]$ is calculated as

$i[H, \gamma_{\delta}]=i[-\Delta/2, \gamma_{\delta}]+i[-|E|z, \gamma_{\delta}]+i[V, \gamma_{\grave{0}}]$ .

The second operator on the right side is equal to

$i[-|E|z, \gamma_{\delta}]=g_{\delta}^{2}\langle x\rangle^{-1}|E|z=g_{\delta}^{2}\langle x\rangle^{-1}(-\Delta/2-H+V)$ .

The first operator is represented in the form

$i[-\Delta/2, \gamma_{\delta}]=i[-\Delta/2, g_{\delta}^{2}]\gamma+g_{\delta}^{2}i[-\Delta/2, \gamma]+b_{\rho-2}\nabla+b_{\rho-3}$ .

Let $D_{0}$ be as in (4.2). Then a simple calculation yields that

$i[-\Delta/2, \gamma]=\langle x\rangle^{-1}(-\Delta-D_{0}^{*}D_{0})+b_{-2}\nabla+b_{-3}$ ,

$i[-\Delta/2, g_{\delta}^{2}]=g_{\delta}^{2}\langle x\rangle^{-1}\{\rho-(\rho+1/2)\delta^{2}\langle\delta x\rangle^{-2}\langle x\rangle^{2}\}D_{0}+b_{\rho-2}$ ,

so that the first operator takes the form

$i[-\Delta/2, \gamma_{\delta}]=g_{\delta}^{2}\langle x\rangle^{-1}\{((\rho-1)-(\rho+1/2)\delta^{2}\langle\delta x\rangle^{-2}\langle x\rangle^{2})D_{0}^{*}D_{0}-\Delta\}+R$

with $R=b_{\rho-2}\nabla+b_{\rho-3}$ . The third operator is written in the form

$i[V, \gamma_{\delta}]=b_{0}$ ,

because the first derivatives $\nabla V_{fk}(y)$ behave like $O(|y|^{-\rho})$ at infinity for $\rho,$ $1/2$

$<\rho<1$ , by assumption (V). Thus we obtain

$i[H, \gamma_{\delta}]=B_{1}+B_{2}+B_{3}+g_{\delta}^{2}\langle x\rangle^{-1}(-H+V)+b_{\rho-2}\nabla+b_{0}$

where
$B_{1}=(1-\rho)g_{\delta}\langle x\rangle^{-1/2}(-\Delta-D_{0}^{*}D_{0})\langle x\rangle^{-1/2}g_{\delta}$ ,

$B_{2}=(\rho+1/2)\delta^{2}g_{\delta}\langle x\rangle^{1/2}\langle\delta x\rangle^{-1}(-\Delta-D_{0}^{*}D_{0})\langle\delta x\rangle^{-1}\langle x\rangle^{1/2}g_{\delta}$ ,

$B_{3}=(\rho+1/2)g_{\delta}\langle x\rangle^{-}/2h_{\delta}^{1/2}(-\Delta)h_{\delta}^{1/2}\langle x\rangle^{-1/z}g_{\delta}$



Spectral analysis for N-particle systems with Stark effect 435

with $h_{\delta}(x)=1-\delta^{2}\langle\delta x\rangle^{-2}\langle x\rangle^{2}>0$ . We should note that the first three operators
$B_{J},$ $1\leq j\leq 3$ , on the right side are non-negative.

We now evaluate the term $I_{\delta\epsilon}$ in question. By relation (4.7), we have

$\langle H\varphi_{\epsilon}, g_{\delta}^{2}\langle x\rangle^{-1}\varphi_{\text{\’{e}}}\rangle_{0}=O(1)$

uniformly in $\delta$ and $\epsilon$ and hence $I_{\delta\epsilon}$ is evaluated from below as

(4.11) $I_{\delta\epsilon}\geqq-d$

for some $d>0$ independent of $\delta$ and $\epsilon$ . Next we evaluate this term from above.
We write it as

$I_{\delta\epsilon}=i\{\langle\gamma_{\delta}\varphi_{\epsilon}, H\varphi_{\epsilon}\rangle_{0}-\langle H\varphi_{\epsilon}, \gamma_{\delta}\varphi_{\epsilon}\rangle_{0}\}$ .

Then lt follows again from (4.7) that

$I_{\grave{0}\epsilon}=-2||g_{\delta}G^{1/2}\gamma\varphi_{e}||_{0}+O(1)$

uniformly in $\delta$ and $\epsilon$ . This, together with (4.11), proves the lemma. $\square$

4.2. We proceed to proving the exponential decay property of eigenstate
$\psi$ in (4.1).

LEMMA 4.3. For any $k>0,$ $\exp(k\langle x\rangle)\psi\in L^{2}(X)$ .

PROOF. The lemma is again verified by contradictlon. The proof is done
by repeated use of the same arguments as in the proof of Lemma 4.1.

(1) Define $k_{0}\geqq 0$ as

$k_{0}= \sup\{k\geqq 0:\exp(k\langle x\rangle)\psi\in L^{2}(X)\}$ .

We deny the statement of the lemma and assume that $k_{0}<\infty$ . By this assump-
tion, we can choose $k,$ $0<k<k_{0}$ , so close to $k_{0}$ that $k+\kappa>k_{0}$ for $\kappa,$

$0<\kappa\ll 1$ ,

small enough. If $k_{0}=0$ , then we take $k$ as $k=0$ . Thus we have

(4.12) $\exp((k+\kappa)\langle x\rangle)\psi\not\in L^{2}(X)$ .

For $\eta\gg 1$ large enough, we set

$\psi_{\eta}=(1+\kappa\eta^{-1}\langle x\rangle)^{\eta}\exp(k\langle x\rangle)\psi\in L^{2}(X)$

with $\kappa>0$ as above. It should be noted that $\psi_{\eta}\in L^{2}(X)$ , even if $k=0$ , whicb
follows from Lemma 4.1 at once.

We now write $\psi_{r_{1}}$ as $\psi_{\eta}=e^{F}\psi$ with

$F=F(|x| ; \eta)=k\langle x\rangle+\eta\log(1+\kappa\eta^{-1}\langle x\rangle)$

and normalize $\psi_{\eta}$ as
$\varphi_{\eta}=\psi_{\eta}/||\psi_{\eta}||_{0}$ , $||\varphi_{\eta}||_{0}=1$ .
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By (4.12), $\varphi_{\eta}$ converges to zero weakly in $L^{2}(X)$ as $\etaarrow\infty$ and also we see,
repeating the same calculation as in the proof of Lemma 4.1, that $\varphi_{\eta}$ obeys the
equation

(4.13) $H\varphi_{\eta}=\lambda\varphi_{\eta}-iG\gamma\varphi_{\eta}+J\varphi_{\eta}$ ,

where

$G=G(|x| ; \eta)=(\langle x\rangle/|x|)\partial F/\partial|x|=(k+\kappa\eta(\eta+\kappa\langle x\rangle)^{-1})>0$ ,

$J=J(|x| ; \eta)=2^{-1}\{|\nabla F|^{2}-(|x|/\langle x\rangle)\partial G/\partial|x|\}$ .

These functions behave like $G=O(1)$ and $J=O(1)$ as $|x|arrow\infty$ uniformly in $\eta\gg 1$ .
Hence it follows from equation (4.13) that $\langle x\rangle^{-1/2}\varphi_{\eta}$ and $\langle x\rangle^{-1}\varphi_{\eta}$ are bounded
in the Sobolev spaces $H^{1}(X)$ and $H^{2}(X)$ uniformly in $\eta\gg 1$ , respectively. Fur-
thermore, $J$ obeys the estimate

$|J(|x| ; \eta)-k^{2}/2|\leqq C(\kappa+\langle x\rangle^{-1})$

uniformly in $\eta$ , so that we may write (4.13) as

(4.14) $H\varphi_{\eta}=(\lambda+k^{2}/2)\varphi_{\eta}-iG\gamma\varphi_{\eta}+J_{1}\varphi_{\eta}$ ,

where
$J_{1}=J_{1}(|x| ; \eta)=J-k^{2}/2=O(\kappa)+O(\langle x\rangle^{-1})$ .

(2) We accept the following lemma as proved, the proof of $which_{\sim}^{r}is$ done
after completing the proof of this lemma.

LEMMA 4.4. AS $\etaarrow\infty$ , one has:

(i) $||\langle x\rangle^{\rho/2}G^{1/2}\gamma\varphi_{\eta}||_{0}=O(1)$ ,

(ii) $||\langle x\rangle^{(\rho-1)/2}\nabla\varphi_{\eta}||_{0}=O(1)$ .

It follows immediately from this lemma that

$\lim_{\etaarrow\infty}||G\gamma\varphi_{\eta}||_{0}=0$

and hence
$\lim_{\etaarrow}\sup_{\infty}||(H-\lambda-k^{2}/2)\varphi_{\eta}||_{0}=O(\kappa)$

by (4.14). We here again make use of property (A.2) and repeat the same
arguments as used in the proof of Lemma 4.1. Then we obtain that

(4.15) $\lim_{\etaarrow}\inf_{\infty}\langle i[H, A]\varphi_{\eta}, \varphi_{\eta}\rangle_{0}\geqq d>0$

for some $d$ independent of $\kappa>0$ small enough.
(3) We calculate the term on the left side of (4.15) by use of ( $4.13^{\backslash }$ . Since

$\langle x\rangle^{L}\varphi_{\eta}\in H^{2}(X)$ for any $L\gg 1$ , we have the relation
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(4.16) $\langle i[H, A]\varphi_{\eta}, \varphi_{\eta}\rangle_{0}=-2{\rm Re}\langle A\varphi_{\eta}, G\gamma\varphi_{\eta}\rangle_{0}-\langle i[A, J]\varphi_{\eta}, \varphi_{\eta}\rangle_{0}$ .

The second term on the right side converges to zero as $\etaarrow\infty$ , because $[A, J]$

$=O(|x|^{-1}),$ $|x|arrow\infty$ , uniformly in $\eta\gg 1$ . We shall show that the first term also
converges to zero as $\etaarrow\infty$ . To see this, we write it as

$\langle A\varphi_{\eta}, G\gamma\varphi_{\eta}\rangle_{0}=\langle\langle x\rangle^{-(\rho-1/2)}G^{1/2}\langle x\rangle^{(\rho-1)/2}A\varphi_{\eta}, \langle x\rangle^{\rho/2}G^{1/2}\gamma\varphi_{\eta}\rangle_{0}$ .
Since $\rho>1/2$ by assumption, it follows from Lemma 4.4 that the first term on
the right side of (4.16) is also convergent to zero as $\etaarrow\infty$ . Thus we have

$\lim_{\etaarrow}\sup_{\infty}\langle i[H, A]\varphi_{\eta}, \varphi_{\eta}\rangle_{0}=0$ ,

which contradicts (4.15) and the proof is complete. $\square$

PROOF OF LEMMA 4.4. TO prove the lemma, we analyze the term

$I_{\eta}=\langle i[H, \gamma_{0}]\varphi_{\eta}, \varphi_{\eta}\rangle_{0}$ ,

where the operator $\gamma_{0}$ is defined by $\gamma_{0}=\langle x\rangle^{\rho/2}\gamma\langle x\rangle^{\rho/2}$ . The idea is almost the
same as in the proof of Lemma 4.2, so we give only a sketch for the proof.

We again denote by $b_{k}$ a multiplication operator by $b_{k}(x)$ with bound $|b_{k}(x)|$

$\leqq C\langle x\rangle^{k}$ . By a calculation similar to that in the proof of Lemma 4.2, we see
tbat the commutator $i[H, \gamma_{0}]$ takes the form

$\dot{z}[H, \gamma_{0}]=Q_{1}+Q_{2}+\langle x\rangle^{(\rho-1)}(-H+V)+b_{\rho-2}\nabla+b_{0}$ ,
where

$Q_{1}=(1-\rho)\langle x\rangle^{(\rho-1)/2}(-\Delta-D_{0}^{*}D_{0})\langle x\rangle^{(\rho-1)/2}$ ,

$Q_{2}=(\rho+1/2)\langle x\rangle^{(\rho-1)/2}(-\Delta)\langle x\rangle^{(\rho-1)/2}$ .
The operators $Q_{1}$ and $Q_{2}$ are both non-negative. Hence it follows from (4.13)

that

(4.17) $I_{\eta}\geqq d||\langle x\rangle^{(\rho-1)/2}\nabla\varphi_{\eta}||_{0}^{2}-1/d$

for some $d>0$ independent of $\eta$ . On the other hand, we again use (4.13) to
obtain that

$I_{\eta}\leqq-||\langle x\rangle^{\rho/2}G^{1/2}\gamma\varphi_{\eta}||_{0}^{2}+d$

with another $d>0$ . This, together with (4.17), proves the lemma. $\square$

4.3. We complete the proof of Theorem 1 by showing that the eigenstate
$\psi$ in (4.1) must vanish identically.

PROOF OF THEOREM 1. ASSume that $\psi\neq 0$ and Set $\psi_{h}(x)=\exp(kz)\psi(x)$ fOr
$k\gg 1$ large enough. Then, $\psi_{k}\in L^{2}(X)$ by Lemma 4.3. We normalize $\psi_{k}$ as

$\varphi_{k}=\psi_{k}/||\psi_{k}||_{0}$ , $||\varphi_{k}||_{0}=1$ .
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AS is easily seen, $\varphi_{k}$ obeys the equation

(4.18) $H\varphi_{k}=(\lambda+k^{2}/2)\varphi_{k}-ikA_{\omega}\varphi_{k}$

where $A_{\omega}=-i\langle\omega, \nabla\rangle$ . The commutator $i[H, A_{\omega}]$ is calculated as

$i[H, A_{\omega}]=|E|+i[V, A_{\omega}]$ .
Since the potential $V$ is bounded by assumption (V), we have

(4.19) $\langle i[H, A_{\omega}]\varphi_{k}, \varphi_{k}\rangle_{0}\geqq 1/d-d||A_{\omega}\varphi_{k}||_{0}^{2}$

for some $d>1$ independent of $k\gg 1$ . On the other hand, we obtain from (4.18)

that
$\langle i[H, A_{\omega}]\varphi_{k}, \varphi_{k}\rangle_{0}=-2k||A_{\omega}\varphi_{k}||_{0}^{2}$ ,

which, together with (4.19), concludes that $\psi=0$ . Thus the theorem is now
proved. $\square$

4.4. We shall prove the second main theorem. As previously stated, this
theorem is obtained as a direct application of the general result (Theorem 4.9)

in [2] (see also [13]), so we give only a sketch for the proof.

PROOF OF THEOREM 2. Let $\lambda\in R$ be fixed arbitrarily and let $f\in C_{0}^{\infty}(R)$ be
a smooth real function such that $f$ is supported in $(\lambda-2\delta, \lambda+2\delta)$ and $f=1$ on
$[\lambda-\delta, \lambda+\delta]$ for $\delta>0$ small enough. Then it follows from property (A.2) and
Theorem 1 that there exists $\delta>0$ small enough such that

$f(H)i[H, A]f(H)\geqq df(H)^{2}$ , $d>0$ .

By this form inequality and (3.2), we know that the conjugate operator $A$ fulfills
all the assumptions of Theorem 4.9 in [2]. Tbus we can prove that the boun-
dary values $R(\lambda\pm iO;H)$ of resolvents to the real axis exist and that

$(1+|A|)^{-\nu}R(\lambda\pm i0;H)(1+|A|)^{-y}$ : $L^{2}(X)arrow L^{2}(X)$

are bounded for any $\nu>1/2$ . Since $\langle x\rangle^{-}/2(H+i)^{-1}\nabla:L^{2}(X)arrow L^{2}(X)$ is bounded,
it follows by interpolation that

$\langle x\rangle^{-\nu/2}(H+i)^{-1}(1+|A|)^{\nu}$ : $L^{2}(X)arrow L^{2}(X)$

is also bounded for any $\nu$ , OSvSl. This enables us to repeat the same argu-
ment as in section 8 of [13] and the desired result can be obtained. Thus the
proof is complete. $\square$

\S 5. Commutator calculus.

We here prepare some commutator calculus which is required to construct
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the conjugate operator $A$ in the next section.
Let $\ovalbox{\tt\small REJECT}(X)$ again denote the totality of bounded operators acting on $L^{2}(X)$ .

We often write $Q_{k},$ $k\in R$ , for the multiplication operator by $\langle x\rangle^{k}$ . Let $\theta_{0}\in R$

be fixed arbitrarily and assume that the real parameter $\theta$ ranges over the in-
terval $I_{0}=[\theta_{0}, \infty)$ . We say that a family of bounded operators $B(\theta)$ with
parameter $\theta\in I_{0}$ belongs to $\ovalbox{\tt\small REJECT}(X)$ uniformly in $\theta$ , if the norm $||B(\theta)||_{L2(X)}$ as an
operator from $L^{2}(X)$ into itself is bounded uniformly in $\theta$ .

LEMMA 5.1. One has the following statements:
(i) $Q_{-k}(H+\theta+i)^{-1}Q_{k}\in\ovalbox{\tt\small REJECT}(X),$ $k\in R$ , uniformly in $\theta\in I_{0}$ ;
(ii) $Q_{-k-1/2}\nabla(H+\theta+i)^{-1}Q_{k}\in B(X),$ $k\in R$ , uniformly in $\theta\in I_{0}$ ;

(iii) $||[\exp(itH), Q_{1/2}](H+\theta+i)^{-1}||_{L2(X)}\leqq C|t|$ , $t\in R$ ,

for $C$ independent of $\theta\in I_{0}$ .

PROOF. The statements (i) and (ii) are easy to prove, so we omit the
proof. (iii) can be also easily verified. Since the commutator is written in the
integral form

$[ \exp(itH), Q_{1/2}]=\int_{0}^{c}\exp(isH)i[H, Q_{1/2}]\exp(i(t-s)H)ds$ ,

(iii) follows from (ii) at once. $\square$

LEMMA 5.2. Let $f\in C_{0}^{\infty}(R)$ . Then

$Q_{-k}f(H+\theta)Q_{k}\in B(X)$ , $0\leqq k\leqq 1/2$ ,

uniformly in $\theta\in I_{0}$ .

PROOF. It suffices to prove the lemma only for the case $k=1/2$ . Denote
by $\hat{f}$ the Fourier transform of $f$ ;

$f(t)=(2 \pi)^{-1/2}\int e^{-its}f(s)ds$ ,

where the lntegration with no domain attached is taken over the whole space.
This abbreviation is used throughout. The operator $f(H+\theta)$ is represented as

$f(H+ \theta)=(2\pi)^{-1/2}\int e^{it\theta}f(t)\exp(itH)dt$ .

Hence it follows from Lemma 5.1 that

$[f(H+\theta), Q_{1/2}](H+\theta+i)^{-1}\in 9(X)$ .
If we write $f(H+\theta)$ as

$f(H+\theta)=g(H+\theta)(H+\theta+i)^{-1}$ , $g\in C_{0}^{\infty}(R)$ ,
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then a simple commutator calculation shows that $[f(H+\theta), Q_{1/2}]\in B(X)$ uni-
formly in $\theta\in I_{0}$ . This proves the lemma. $\square$

LEMMA 5.3. Let $f\in C_{0}^{\infty}(R)$ and let $q\in C^{\infty}(X)$ be a smooth function such that

$|\partial_{x}^{\beta}q(x)|\leqq C_{\beta}\langle x\rangle^{-|\beta|}$ .
Then one has

$Q_{1/2}[f(H+\theta), q](H+\theta+i)\in B(X)$

uniformly in $\theta\in I_{0}$ .
PROOF. The commutator under consideration is represented as

$[f(H+ \theta), q]=(2\pi)^{-1/2}\int e^{it\theta}f(t)[\exp(itH), q]dt$ .

By use of the same argument as in the proof of Lemma 5.1, we can easily
prove that

$(H+\theta+i)^{-1}Q_{1/2}[f(H+\theta), q](H+\theta+i)^{-1}\in B(X)$

and hence
$Q_{1/2}(H+\theta+i)^{-1}[f(H+\theta), q](H+\theta+i)^{-1}\in g(X)$

uniformly in $\theta\in I_{0}$ . If we write

$f(H+\theta)=(H+\theta+i)^{-1}g(H+\theta)(H+\theta+i)^{-2}$ , $g\in C_{0}^{\infty}(R)$ ,

then the lemma is obtained from Lemmas 5.1 and 5.2 by repeated use of simple
commutator calculations and the proof is complete. $\square$

Let $H_{a}$ be the cluster Hamiltonian defined in section 2. The intercluster
potential $I.(x)$ associated with cluster decomposition $a$ is defined by

$I_{a}=H-H_{a}= \sum_{\alpha\not\subset a}V_{a}(r^{\alpha})$ , $r^{\alpha}=r_{j}-r_{k}$ .

LEMMA 5.4. Let $f\in C_{0}^{\infty}(R)$ and let $q\in C^{\infty}(X)$ be as in Lemma 5.3. Assume
further that

$q(x)I_{a}(x)=O(|x|^{-\rho})$ , $\rho>1/2$ , $|x|arrow\infty$ ,

for some cluster decomposition a. Then one has

$Q_{1/2}(f(H+\theta)-f(H_{a}+\theta))q(H_{a}+\theta+i)\in B(X)$

uniformly in $\theta\in I_{0}$ .
PROOF. Let $J(\theta)=f(H+\theta)-f(H_{a}+\theta)$ . We represent this difference as

$J( \theta)=(2\pi)^{-1/2}\int e^{it\theta}f(t)(\exp(itH)-\exp(itH_{a}))dt$
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and also we write

$\exp_{-}(itH)-\exp(itH_{a})=\int_{0}^{t}\exp(isH)iI_{a}\exp(i(t-s)H_{a})ds$ .

Hence, by assumption, it follows from Lemma 5.1 that

$(H+\theta+i)^{-1}Q_{1/2}J(\theta)q(H_{a}+\theta+i)^{-1}\in B(X)$

so that
$Q_{1/2}(H+\theta+i)^{-1}J(\theta)q(H_{a}+\theta+i)^{-1}\in B(X)$

uniformly in $\theta\in I_{0}$ . If we write

$f(H+\theta)=g(H+\theta)(H+\theta+i)^{-1}$ , $g\in C_{0}^{\infty}(R)$ ,

then the difference $J(\theta)$ equals

$J(\theta)=(H+\theta+i)^{-1}\{(g(H+\theta)-g(H_{a}+\theta))-I_{a}f(H_{a}+\theta)\}$ .
Hence we obtain by Lemmas 5.1\sim 5.3 that

$Q_{1/2}J(\theta)q(H.+0+i)^{-1}\in B(X)$

uniformly in $\theta\in I_{0}$ . We again write $f(H+\theta)$ as above. Then

$J(\theta)_{-}\{(g(H+\theta)-g(H_{a}+\theta))-f(H+\theta)I_{a}\}(H_{\alpha}+\theta+i)^{-1}$

and hence it follows again from Lemmas 5.1\sim 5.3 that $Q_{1/z}J(\theta)q\in B(X)$ uniformly
in $\theta\in I_{0}$ . We repeat the same argument as above to obtain the desired result.
Thus the proof ls complete. $\square$

LEMMA 5.5. AS $\thetaarrow\infty$ , one has:
$(i)$ $||Q_{-k}(H+\theta+i)^{-1}||_{L^{2}(X)}=o(1),$ $k>0$ , and, in particular,

$||Q_{-1/2}(H+\theta+i)^{-1}||_{L2(X)}=O(\theta^{-1/2})$ .
(ii) $||Q_{-1/2}\nabla(H+\theta+i)^{-1}||_{L2(X)}=O(1)$ .
(iii) $||Q_{-1}\nabla\nabla(H+\theta+i)^{-1}||_{L2(X)}=O(1)$ .
PROOF. Statements (i) and (ii) can be easily verified. To prove (iii), we

consider the equation

$(H+\theta+i)u=f$ , $f\in L^{2}(X)$ ,

and take the scalar product of $-Q_{-2}\Delta u$ with this equation. Then we obtain
$by^{-}repeated$ use of partial integration that

$|1Q_{-1}\Delta u||_{0}^{2}$ :1$ $C\{||Q_{-1/2}\nabla u||_{0}^{2}+||Q_{-1}u||_{0}^{2}+\theta||Q_{-2}u||_{0}^{2}+||Q_{-1}f||^{2}\}$ .
This, together with (i) and (ii), proves (iii). $\square$
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AS an immediate consequence of Lemma 5.5, we obtain the following

LEMMA 5.6. Let $f\in C_{0}^{\infty}(R)$ . As $\thetaarrow\infty$ , one has:

(i) $||Q_{-k}f(H+\theta)||_{L2(X)}=o(1)$ , $k>0$ .
(ii) $||Q_{-1/2}\nabla f(H+\theta)||_{L^{2}(X)}=O(1)$ .
(iii) $||Q_{-1}\nabla\nabla f(H+\theta)||_{L2(X)}=O(1)$ .

\S 6. Construction of conjugate oPerator.

We recall the notation $E_{a}=\pi_{a}E$ and define $\Lambda$ as

$\Lambda=\{a : E_{a}=0,2\leqq\#(a)\leqq N-1\}$ .

The conjugate operator $A$ with properties (A.1) and (A.2) is constructed by
induction on the numbers $\#(a)$ of cluster decompositions $a\in\Lambda$ . The construc-
tion requires only the assumption $V_{jk}(y)=O(|y|^{-\rho})$ and we do not use the other
decay assumptions for derivatives of first and second order as stated in (V).

6.1. We first consider the case of $(N-1)$-cluster decompositions. Let $a\in\Lambda$ ,

$\#(a)=N-1$ , be a $(N-1)$-cluster decomposition, so that $E=E^{a}=\pi^{a}E\neq 0$ . We
can identify $a$ with some pair $\alpha$ . The subsystem operator $H^{a}$ associated with
$a$ takes the form

$H^{a}=-\Delta/2-\langle E^{a}, x^{a}\rangle+V_{\alpha}$ on $L^{2}(X^{a})$ .

We now define the operator $A^{a}$ as
$A^{a}=-i\langle\omega^{a}, \nabla\rangle$ , $\omega^{a}=E^{a}/|E^{a}|$ ,

which is considered as a differential operator acting over $X^{a}$ as well as over $X$ .
The commutator $i[H^{a}, A^{a}]$ is calculated as

$i[H^{a}, A^{a}]=|E^{a}|+i[V_{\alpha}, A^{a}]$ .

Let $g_{0}\in C_{0}^{\infty}(R)$ be a smooth real function with support in the interval $(-1$ ,
1). Then, by assumption (V) and Lemma 5.6, we can take $\theta_{\infty},$ $0_{\infty}\gg 1$ , so large
that

$g_{0}(H^{a}+0)i[H^{a}, A^{a}]g_{0}(H^{a}+\theta)\geqq dg_{0}(H^{\alpha}+\theta)^{2}$ , $d=|E^{a}|/2>0$ ,

for $\theta\in(\theta_{\infty}, \infty)$ , where the inequality relation is understood in the form sense
over the space $L^{2}(X^{a})$ .

Let $\theta_{\infty}$ be as above. Let $f_{0}\in C_{0}^{\infty}(R)$ be a smooth real function with
support in a small interval $(-\delta, \delta),$ $0<\delta\ll 1$ , around the origin. Note that
$(H^{a}+i)^{-1}[V., A^{a}](H^{a}+i)^{-1}$ : $L^{2}(X^{a})arrow L^{2}(X^{a})$ is a compact operator. Hence, by
Theorem 1, $H^{a}$ has no bound states and also it follows that as an operator
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acting on $L^{2}(X^{a}),$ $f_{0}(H^{a}+\theta)$ satisfies

$||f_{0}(H^{a}+\theta)[V_{\alpha}, A^{a}]f_{0}(H^{a}+\theta)||_{L2(x^{a})}=0(1)$ , $\deltaarrow 0$ ,

uniformly in $\theta\in(\theta_{0}, \theta_{\infty}),$ $0_{0}$ being again fixed arbitrarily. Thus we can take
$\delta>0$ so small that

$f_{0}(H^{a}+\theta)i[H^{a}, A^{a}]f_{0}(H^{a}+\theta)\geqq df_{0}(H^{a}+0)^{2}$ , $d=|E^{\alpha}|/2>0$ ,

for $0\in I_{0}=(\theta_{0}, \infty)$ .
6.2. In the argument above, we have constructed the operator $A^{\alpha}$ with the

following two properties (P.1) and (P.2) for the case $\#(a)=N-1$ . The properties
are formulated as follows.
(P.1) $A^{a}$ is a differential operator of the form

$A^{a}=-i\{\langle c^{a}(x^{a}), \nabla^{a}\rangle+\langle\nabla^{a}, c^{a}(x^{a})\rangle\}+c_{0}^{a}(x^{a})$ ,

where $\nabla^{a}$ denotes the gradient notation over $X^{a}$ and the coefficients $c^{a}(x^{a})=$

$\{c_{j}^{\alpha}(x^{a})\}$ , 15j$3(N--#(a)), and $c_{0}^{a}(x^{a})$ are smooth real functions obeying the
estimates (3.1).

(P.2) Let $f_{0}\in C_{0}^{\infty}((-\delta, \delta)),$ $0<\delta\ll 1$ , be as above. If $\delta>0$ is chosen small enough,
then there exists $d>0$ such that

$f_{0}(H^{a}+\theta)i[H’, A^{\alpha}]f_{0}(H^{a}+\theta)\geqq df_{0}(H^{a}+\theta)^{2}$

for $\theta\in I_{0}$ , where the inequality relation is understood in the form sense over
the space $L^{2}(X^{a})$ .

We now assume that a family of operators $A^{a}$ with $a\in\Lambda,$ $k+1\leqq\#(a)\leqq$

$N-1$ , has been constructed so as to have the two properties above.
6.3. The next task is to construct an operator $A^{a}$ with properties (P.1) and

(P.2) for $a\in\Lambda$ with $\#(a)=k$ , assuming the case of $m$-cluster decompositions
with $k+1\leqq m\leqq N-1$ .

Let $a\in\Lambda,$ $\#(a)=k$ , be a $k$ -cluster decomposition. We define $\Sigma_{a}$ as

$\Sigma_{a}=\{b : b\subset a, b\neq a\}$

and $\Lambda_{a}$ and $\Lambda_{a}^{c}$ as
$\Lambda_{a}=\Sigma_{a}\cap\Lambda$ , $\Lambda_{a}^{c}=\Sigma_{a}\backslash \Lambda_{a}$ .

We can construct a partition of unity $\{]_{b}^{a}(x^{a})\}$ over the space $X^{a}$ with the fol-
lowing property (j), where $b$ ranges over all cluster decompositions in $\Sigma_{a}$ .
The property is that:
(j.1) $j_{b}^{a}\in C^{\infty}(X^{a}),$ $j_{b}^{a}(x^{a})\geqq 0$ and :Ii $bi_{b}^{a}(x^{a})^{2}=1$ ;
(j.2) $j_{b}^{a}(x^{a})$ is homogeneous of degree zero for $|x^{a}|>1$ ;
(j.3) $j^{a}(x^{a})V_{a}(r^{\alpha})=O(|x^{a}|^{-\rho})$ as $|x^{a}|arrow\infty$ for $\alpha\not\subset b$ and $\alpha\subset a$ .

By inductive assumption, we may assume that operators $A^{b}$ with Properties
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(P.1) and (P.2) have been constructed for $b\in\Lambda_{a}$ . For $b\in AC$ , we define the
operator $A_{b}$ as

(6.1) $A_{b}=-i\langle\omega_{b}, \nabla\rangle$ , $\omega_{b}=E_{b}/|E_{b}|$ .

Here it should be noted that $E_{b}\neq 0$ for $b$ as above and it lies in the space
$X^{a}\cap X_{b}$ , so that $A_{b}$ can be regarded as a differential operator acting over $X^{a}$

as well as over $X$ . We further define the operator $\gamma^{a}$ as

(6.2) $\gamma^{a}=(D_{a}+D_{a}^{*})/2$ , $D_{a}=-i\langle x^{a}/\langle x^{a}\rangle, \nabla^{\alpha}\rangle$ .
For the $k$ -cluster decomposition $a\in\Lambda$ , we now define the operator $A^{a}$ as

$A^{a}= \sum_{b\in\Lambda_{a}^{C}}j_{b}^{a}A_{b}j_{b}^{a}+\sum_{b\in\Lambda_{a}}j_{b}^{a}A^{b}j_{b}^{a}+M\gamma^{a}$

with $M\gg 1$ large enough to be determined later. Since $z=\langle x, \omega\rangle=\langle x^{a}, \omega^{a}\rangle$ for
$a\in\Lambda$ , it follows by construction that $A^{a}$ has the property (P.1).

6.4. We shall show that $A^{a}$ has also the second property (P.2). The
present subsection is devoted to a preliminary step for proving this.

Let $a\in\Lambda$ be again a $k$ -cluster decomposition. We denote by $X_{b}^{a}$ the space
$X_{b}^{a}=X^{a}\cap X_{b}$ for $b\in\Sigma_{a}$ , so that $X^{a}=X^{b}\oplus X_{b}^{a}$ and also $L^{2}(X^{a})$ is decomposed as
$L^{2}(X^{a})=L^{2}(X^{b})\otimes L^{2}(X_{b}^{a})$ . The cluster Hamiltonian $H_{b}^{a}$ obtained from $H^{a}$ is
defined as

$H_{b}^{a}=H^{b}\otimes Id+Id\otimes T_{b}^{a}$ on $L^{2}(X^{b})\otimes L^{2}(X_{b}^{a})$ ,

where $H^{b}$ is the subsystem operator associated with $b$ and $T_{b}^{a}$ is the free
Hamiltonian defined by

$T_{b}^{a}=-\Delta/2-\langle E_{b}, x^{a}\rangle$ on $L^{2}(X_{b}^{\alpha})$ .
If, in particular, $b\in\Lambda_{a}$ , then $T_{b}^{a}$ takes the form $T_{b}^{a}=-\Delta/2$ . By $(j.3)$ , the in-
tercluster potential $I_{b}^{a}(x^{a})$ with $b\in\Sigma_{a}$ has the decay property

$j_{b}^{a}(x^{a})I_{b}^{a}(x^{a})=j_{b}^{a}(H^{a}-H_{b}^{a})= \sum_{\alpha\not\subset b\alpha\subset a}r_{b}^{a}(x^{a})V_{\alpha}(r^{\alpha})=O(|x^{\alpha}|^{-\rho})$

as $|x^{a}|arrow\infty$ .
Let $A_{b},$ $b\in\Lambda_{a}^{c}$ , be defined by (6.1). Then, by definition,

$i[H_{b}^{a}, A_{b}]=|E_{b}|>0$

and hence we have

(6.3) $f_{0}(H_{b}^{a}+\theta)i[H_{b}^{a}, A_{b}]f_{0}(H_{b}^{\alpha}+\theta)=|E_{b}|f_{0}(H_{b}^{a}+\theta)^{2}$ , $b\in\Lambda_{a}^{c}$ .
If $b\in\Lambda_{a}$ , then $T_{b}^{a}=-\Delta/2$ as stated above. By use of the Fourier transforma-
tion, we can construct the spectral representation by which $T_{b}^{a}$ is transformed
into the multiplication operator by $\sigma,$

$\sigma\geqq 0$ , on the space $L^{2}([0, \infty)\cdot \mathcal{L})$ for
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some Hilbert space $\mathcal{L}$ . By inductive assumption, $A^{b}$ is a differential operator
acting over $X^{b}$ and hence

$i[H_{b}^{a}, A^{b}]=i[H^{b}, A^{b}]$ .
Thus we have

$f_{0}(H_{b}^{a}+ \theta)i[H_{b}^{a}, A_{b}]f_{0}(H_{b}^{a}+\theta)=\int_{0}^{\infty}\oplus f_{0}(H^{b}+\theta+\sigma)i[H^{b}, A_{b}]f_{0}(H^{b}+\theta+\sigma)d\sigma$

by the direct integral. This, together with property (P.2), yields that

(6.4) $f_{0}(H_{b}^{a}+\theta)i[H_{b}^{a}, A_{b}]f_{0}(H_{b}^{a}+\theta)\geqq df_{0}(H_{b}^{a}+\theta)^{2}$ , $b\in\Lambda_{a}$ ,

for $\theta\in I_{0}$ .
Let $\gamma^{a}$ and $D_{a}$ be as in (6.2). We denote by $b_{k}^{a}$ a multiplication operator

by $b_{k}^{a}(x^{a})$ with bound $|b_{k}^{a}(x^{a})|\leqq C\langle x^{a}\rangle^{k}$ and, in particular, we write $Q_{k}^{a}$ for the
multiplication operator by $\langle x^{a}\rangle^{k}$ . We calculate the commutator $i[H^{\alpha}, \gamma^{a}]$ in a
way similar to that in the proof of Lemma 4.2. We obtain that

(6.5) $G=i[H^{a}, \gamma^{a}]-Q_{-1/2}^{a}(-\Delta/2)Q_{-1/2}^{a}=G_{0}+G_{1}+G_{2}+R$ ,

where $R=b_{-2}^{a}\nabla^{a}+b_{-3}^{a}$ and

$G_{0}=Q_{-1/2}^{a}(-\Delta-D_{a}^{*}D_{a})Q_{-1/2}^{a}$ ,

$G_{1}=Q_{-1/2}^{a}(-H^{a}+V^{a})Q_{-1/2}^{a}$ ,

$G_{2}=i[V^{a}, \gamma^{a}]$ ,

$V^{a}$ being defined by (2.1). It should be noted that $G_{0}$ is non-negative.
We now set

$F1= \sum_{b\in\Lambda_{a}^{C}}\{i[H^{a}, j_{b}^{a}]A_{b}j_{b}^{a}+_{J_{b}^{a}}A_{b}i[H^{a}, j_{b}^{a}]\}$
,

$F_{2}^{a}= \sum_{b\in\Lambda_{a}}\{i[H^{a}, j_{b}^{a}]A^{b}j_{b}^{a}+_{J_{b}^{a}}A^{b}i[H^{a}, j_{b}^{a}]\}$ .

Then it follows from (j.2) that

$F_{1}^{a}+F_{2}^{a}\geqq-M_{1}Q_{-1/2_{\backslash }}^{a}(-\Delta+1)Q_{-1/2}^{a}$

for some $M_{1}>0$ . Hence relation (6.5) enables us to take $M,$ $M\geqq 3M_{1}$ , so large
that

(6.6) $F_{1}^{a}+F_{2}^{a}+Mi[H^{a}, \gamma^{a}]$ I $MG-MQ_{-1}^{a}$ .

The constant $M$ is now determined so as to satisfy the form inequality above.
6.5. We first prove (P.2) for $\theta\gg 1$ large enough. Let $b\in\Lambda_{a}^{c}$ . Then, by

repeated use of Lemmas 5.3\sim 5.6, it follows from (6.3) that for $\epsilon>0$ small
enough, there exists $\theta_{\infty}\gg 1$ such that

(6.7) $f_{0}(H^{a}+\theta)j_{b}^{a}i[H^{a}, A_{b}]j_{b}^{a}f_{0}(H^{a}+\theta)\geqq df_{0}(H^{a}+\theta)\{(j_{b}^{a})^{2}-\epsilon\}f_{0}(H^{a}+\theta)$
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with $d=|E_{b}|/2>0$ for $\theta\in[\theta_{\infty}, \infty)$ . Similarly, for $b\in\Lambda_{\alpha}$ , we obtain from (6.4)

that

(6.8) $f_{0}(H^{a}+\theta)_{J_{b}^{a}}i[H^{a}, A^{b}]_{]_{b}^{a}}f_{0}(H^{a}+\theta)\geqq df_{0}(H^{a}+\theta)\{(]_{b}^{a})^{2}-\epsilon\}f_{0}(H^{a}+\theta)$

with another $d>0$ for $\theta\in[\theta_{\infty}, \infty)$ . By assumption (V), the operator $G_{2}$ takes
the form

$G_{2}=i[V^{a}, \gamma^{a}]=b_{-\rho}^{a}\nabla^{a}+\nabla^{a}b_{-\rho}^{a}$ , $1/2<\rho<1$ ,

and also $G_{1}$ is rewritten as

$G_{1}=Q_{-1/2}^{a}(-H^{a}+V^{a})Q_{-1/2}^{a}=Q_{-1/2}^{a}\{-(H^{a}+\theta)+V^{a}\}Q_{-1/2}^{a}+\theta Q_{-1}^{a}$ .

We may assume that $\theta>0$ . Since $G_{0}$ is non-negative, we have

$G\geqq-Q_{-1/2}^{a}(H^{a}+\theta)Q_{-1/2}^{a}+R_{0}$

with remainder $R_{0}=b_{-\rho}^{a}\nabla^{a}+\nabla^{a}b_{-\rho}^{a}+b_{-1}^{\alpha}$ . Hence, by making use of Lemmas 5.3
\sim 5.6 again, we see that for any $\epsilon>0$ small enough, there exists $\theta_{\infty}\gg 1$ such that

$f_{0}(H^{a}+\theta)Gf_{0}(H^{a}+\theta)\geqq-\epsilon f_{0}(H^{a}+\theta)^{2}$

for $\theta\in[\theta_{\infty}, \infty)$ . This, together with $(6.6)\sim(6.8)$ , proves that $A^{a}$ has the pro-
perty (P.2) for $\theta\gg 1$ .

6.6. We now assume that $\theta$ lies in a compact interval $[\theta_{0}, \theta_{\infty}]$ for $\theta_{\infty}\gg 1$ .
Let $R_{0}$ be as above. We note that $(H^{a}+i)^{-1}R_{0}(H^{a}+i)^{-1}$ is a compact operator
from $L^{2}(X^{a})$ into itself. Furthermore, for $f\in C_{0}^{\infty}(R)$ ,

$[f(H^{a}), j_{b}^{a}](H^{a}+i)$ and $(f(H^{a})-f(H_{b}^{\alpha}))_{J_{b}^{a}}(H^{a}+i)$

are also compact operators, which is seen from the proof of Lemmas 5.3 and
5.4. Hence we can obtain the form inequality

$f_{0}(H^{a}+\theta)i[H^{a}, A^{a}]f_{0}(H^{a}+\theta)\geqq df_{0}(H^{a}+\theta)^{2}+K^{a}$ , $d>0$ ,

for some compact operator $K^{a}$ . According to Theorem 1, this implies that $H^{a}$

has no bound states and also makes it possible for us to take the support of $f_{0}$

around the origin, $suppf_{0}\subset(-\delta, \delta),$ $\delta>0$ , so small that

$f_{0}(H^{a}+\theta)i[H^{a}, A^{a}]f_{0}(H^{a}+\theta)\geqq df_{0}(H^{a}+\theta)^{2}$

with another $d>0$ , where $\delta$ can be chosen uniformly in $\theta\in[\theta_{0}, \theta_{\infty}]$ . Thus we
have proved that the operator $A^{a}$ has the second property (P.2).

6.7. We are now in a position to construct the conjugate operator $A$ with
properties (A.1) and (A.2). Let $\gamma$ be as in (4.2) and let

$\Lambda^{c}=\{a : E_{a}\neq 0,2\leqq\#(a)\leqq N\}$ .

For $a\in\Lambda^{c}$ , we define the operator $A_{a}$ as
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$A_{a}=-i\langle\omega_{a}, \nabla\rangle$ , $\omega_{a}=E_{a}/|E_{a}|$ .
We further introduce a smooth non-negative partition of unity $\{]_{a}(x)\},$ $2\leqq\#(a)$

$\leqq N$, over $X$ . The partition has the same property (i) as before with natural
modifications.

The conjugate operator $A$ in question is now defined as

$A= \sum_{a\in A^{C}}j_{a}A_{a}j_{a}+\sum_{a\in\Lambda}j_{a}A^{a}j_{a}+M\gamma$

with $M\gg 1$ . From (P.1), this operator is easily seen to have the property (A.1).

On the other hand, property (A.2) is also verified by taking $M$ large enough.
In fact, this can be seen by repeating the same arguments as used for proving
(P.2) in the previous subsections 6.4\sim 6.6. Thus we have constructed the con-
jugate operator $A$ with properties (A.1) and (A.2).
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