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0. Introduction.

A transformation T from the unit interval [0, 1] into itself is called a
Lasota-Yorke transformation, simply, an L-Y map, if it is piecewise C? and
uniformly expanding. A partition ®={I;},; of [0, 1] consisting of intervals is
called a defining partition for an L-Y map T if T'|Intl; is of class C? and the
end points of [js are necessarily singularities of 7. We consider a class g of
L-Y maps which have an infinite defining partition with Markov property. A
typical example of such a map is the so-called the Gauss transformation Tgx=
(1/x)—[1/x], x[0, 1], where [x] denotes the integral part of x. We regard
two maps to be identical if they coincide up to a set of the Lebesgue measure
zero. Therefore the maps need not be defined for all x[0, 1].

The purpose of this paper is to study the following problems for the map
T<=4a by using the spectral properties of the transfer operators acting on the
space BV=BV([0, 1]—-C) of functions of bounded variation:

(I) The integral central limit problems and local ones for the sum

©.1) Suf = B foT",

where f is a real valued function belonging to an appropriate function space.
(II) The problem on the asymptotic distributions of the periodic orbits of 7.
For the sake of simplicity we assume in Section 3 the mixing condition (M)
which implies that T has a unique absolutely continuous invariant probability
measure g with support [0, 1] and the measure-theoretic dynamical system
(T, p) is mixing. Usually the main goal of the problem (I) is to show the
central limit theorem which states that there is a positive number V such that
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0.2) ﬂ{x 10, 1]]e < 71-n—(5nf(x)—nglfd;z> < b}

— Vz—lTVSZeXp(— )dt.

The number V is called the limiting variance which will be given by

t2
2V

0.3) v =tim (' w00 rdwrdp.
If the self-correlation
= ano-{ rrde

decays rapidly, then the general theory for the stationary sequences can be
applied to {f<T"}5-. In fact many authors proved the central limit theorem
(0.2) by showing that R,(f) decays exponentially fast as n goes to co if f
belongs to a nice class of functions (see [7], [8], [10], [22] etc.). But most
results are incomplete because they make assumption that the limiting variance
does not vanish, although the convergence of the limit in (0.3) is guaranteed
by the exponential decay of R.(f). \

One of the remarkable facts we shall prove later in Section 4 is that the
limiting variance turns out to be positive whenever f is a non-constant function
in (T). The space F(T) will be defined to contain log|T’| as well as all the
real functions of bounded variation (see Section 1). Moreover, the transfer
operator approach allows us to prove in Section 5 not only the central limit
theorem (Theorem 5.1) but also the so-called local limit theorem in the follow-
ing general form:

THEOREM 0.1 (Theorem 5.2). Let f be a function in F(T) which is not
identically zero with S:fd,uzo. Let V be the limiting variance as in (0.3). Then
for any rapidly decreasing function w on R and any function g of bounded varia-

tion on [0, 1], the following asymptotic formula holds:

0.5) lim sup

n-0o acR

V| u(Saf(x)+a)g(xm(dx)

_wau(t)q)n,a(dt)gzgmm(dx)yzl?—‘;ex?("2%17)‘ =0

where m denotes the Lebesgue measure on [0,1] and {D, o}n.« 5 a bounded
family of Radon measures on R which are expressed by using the Fourier trans-

form ii(t)"—-‘gcj e~ v y(y)dy as
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0.6) [" w0, = 5 a(ka) exp(v=1(k(nb+aa)).

In the above a<(0, ] and 0Lb<2m are quantities determined by f (see Theorem
5.2). We adopt also the convention that u(o)=0 and 0-c0=0.

Similar assertions have been obtained in [15] for a general L-Y map T and
for a feBV([0, 1]—R). The present space F(T) coincides with BV ([0, 1]—R)
if T has a finite defining partition. However, if T has an infinite defining
partition, F(T) contains many unbounded functions. For example, if we con-
sider the Gauss transformation T's, the functions logx and 3% Xa/ck.n.1/e3(%)
xlogk belong to F(Ts). It is well-known that these functions play important roles
in the study of the metrical theory of continued fractions. This is one of the
reasons why we restrict ourselves to the maps in the class g and extend the
results in [15] to the functions in F(T).

Concerning the problem (II), we owe a great deal to the results in Parry
. [16] and Baladi and Keller [1]. We consider the 7-function

09) W= B B (Saf)x)exp (—s(Safo)x)

for fe%(T), where f,=log|T’|. We can show that 9(f, s) is analytic in the
domain Re s>1 and it can be extended meromorphically beyond the axis Re s=1.
The analytic properties of 5(f, s) are closely related to the local limit theorem
in the above, and therefore the problem (II) is linked to the problem (I). More
precisely, if the function f,=log|7T’| satisfies a certain condition which ensures
a=a(f,)=co in the local limit theorem (0.6), then s=1 is a unique pole of
7(f, s) on the axis Res=1, and it is a simple pole with residue

[\ ran/ 1017 1dp = (' raurnur),

where h,(T) denotes the metrical entropy of T with respect to p. In other
words 7(f, s) can be expressed as

0.10) 7/, )= [, Fduh Ty Hs=1y"+gs)

in a neighborhood of Re s=1, where ¢ is an analytic function in the neigh-
borhood. It is meaningful to give a sufficient condition for a(f,)=co in The-
orem 0.1. We shall prove in Section 4 that if we can label the member of the
defining partition € so that

P) ' 0 <lim(sup |77];77) < o

Jooo Inth

for some p>1, then we have a(f,)=o. The condition (P) will be called the
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polynomial growth condition (for T”). It is clear that the Gauss transformation
satisfies the condition (P). An answer to the problem (II) is the following:

THEOREM 0.2 (Theorem 7.2). Assume that T€ T satisfies the mixing con-
ditions (M) and the condition (P). Let y denote the prime periodic orbit of T
and P(y) denote its period. For g=3(T), let

P -1
N(g, rn= Ea g(T*x) for xe7.

Then we have

N1 e
(0.11) NZs N(fo 1) th,,(T)Sofd”
and

et 1
0.12) N(f?nszN(f’ 7)~ mgofd#:

as t—oo, where fo=log|T’|, and h,(T) denotes the metrical entropy of T with
respect to p. Here we write a(t)~b(t) if lim,...b(t)/a(t)=1.

The proofs of Theorem 0.1 and Theorem 0.2 are carried out in the same
way as the proofs of Theorem 4.1 in [15] and Theorem 4 in [16] respectively.
To this end we introduce the transfer operators L(s, t) for T defined by

0.13) Lis, 0gx) = 33 |T"y1 A7)

with A(x)=exp (f(x)) for feF(T).

By using the method in [7] (see also [1] and [24]), we prove that there
is a neighborhood U of the set {(s, #)|]Res=1, teR} in CXC such that the
family {L(s, t)} ey becomes an analytic family of quasi-compact operators on
BV=BV([0, 1]-C) which have the essential spectral radii uniformly less than
1. This fact enables us to apply the results in Baladi and Keller [1], Morita
[15], and Parry [16] to our problems (I) and (II). We would like to note that
any Markov map fx constructed in Bowen and Series [3, Section 2] associated
with the Fuchsian group with parabolic elements behaves similarly to the mem-
ber of g satisfying the conditions (M) and (P). Therefore we expect that our
results work well in the study of dynamical properties of the geodesic flows on
the corresponding Riemann surfaces. For example, in the last section, we try
to explain the relation between our results and the results obtained by Pollicott
in [20] which are concerned with the metrical theorems for the closed orbits
of the geodesic flow on the modular surface. We must note that Pollicott uses
the results in Mayer [13] on the zeta functions for the Gauss transformation
T¢ and Mayer makes a further investigation for the zeta functions for T in
terms of the thermodynamic formalism in his recent paper [14].
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In the first section we prepare some basic facts. The next three sections
are devoted to the study of the spectral properties of transfer operators L(s, ?).
In Section 5, we give a proof of the local limit theorem. In Section 6 and
Section 7, we consider the second problem and prove Theorem 0.2 (Theorem
7.2). In the last section we give new metrical theorems for continued fraction
expansions and make some comments on the Pollicott’s paper [20]

The author would like to express his gratitude to Professor H. Nakada who
introduces the paper [20] to him.

1. Preliminaries.

In this section we prepare some definitions and notations which will be used
throughout the paper. We denote by m the Lebesgue measure on [0, 1]. Unless
otherwise stated, we ignore the difference occuring on an m-null set. This
causes us no trouble because all the phenomena appearing in this paper are
observed by the Lebesgue measure. A transformation 7 from the unit interval
into itself is called a Lasota-Yorke transformation (an L-Y map in abbreviation)
if it satisfies the following conditions (see [12]):

(L-Y.1) There exists a partition 2={I,}; such that (a) T|Int I; is of class C*
and can be extended to | ; as a C*function, and (b) the set of intervals
{T(Int I;)}; consists of a finite number of distinct intervals.

(L-Y.2) (Lasota-Yorke condition). There is a positive number c¢<1 such that
ess infzero 11| (TY)(x)] > 1/c for sor}m\f}e positive integer N, where TV

——t—
denotes the N times iteration ToTo---oT of T.

For any L-Y map, the partition € in the above can be chosen to be minimal
in the sense that if Q={/J.}. is another partition satisfying (L-Y.1), then for
any k, there is j=j(k) with Int [;DInt J,. We call such a minimal partition a
defining partition for T. We note that the defining partition is unique up to the
difference of the endpoints. It is easy to see that if T is an L-Y map, so is
T™ for each n=1.

Our main concern is a class 9 of L-Ymaps defined as follows. An L-Y
map T is an element of the class g if it satisfies the next three conditions:
(T.1) (Markov property). The defining partition @={I;}; is a Markov partition

for T in the sense:

T(nt I;)NInt I, # @ implies T(Int I;) DInt I,.

(T.2) (Strong Rényi condition). There is a positive number d=4(T) such that

"
T” x
ess Supaes, | 215 < o,
i essmfxe,j[‘?’x] -

and



314 T. MorITA

SISm0 < .
J
(T.3) T(nt I;) = (0, 1) for infinitely many j.

REMARK 1.1. If T is an L-Y map satisfying the condition (T.2), then there
is a positive number C, such that

CT"(essJinf| T"H)rsm(J) < CT(essJinf| T ()t

for any element J of the defining partition @ for T. In fact, if x, yeIntJ
for /e, we have

T x 1 esssups|T”]
1.1 —1| = Trx—Try| < 88U L7
A1) | =1| = g | T T'y| s S5 ()
eSS SUBs T | oo inf | 77| | x—y]
= |T’ylessinf;|T’'| v Il
Since
(1.2) ess inf (n())| T']) < SJ|T’]dm <1
and
7’ /7 H 4
(1.3) ess sup(m())| T'|) = SJ|T 1dmgryengJ1T ldm >0

by the condition (L-Y.1) (b), we obtain the desired inequality in virtue of the
Rényi condition.

REMARK 1.2. It is clear that the strong Rényi condition (T.2) implies the
original Rényi condition esssup;o, 11|77 |/|T"|?°<co. If T has a finite defining
partition, these are equivalent to each other.

For any Borel measure v on [0, 1], and 1<p=<co, L?(y) denotes the usual
L?-space with norm llgnp,,:(S;lgl"dy)”p if p<oo, and | gllw,, = v-esssup|g].
BV =BV([0, 1]—C) is the totality of elements in L'(m) with version of bounded
variation. BV([0, 1]—R) denotes the subspace of BV consisting of real valued
elements. For g BV, we define Vg and V,g as the infimum of the total
variations taken over all the versions of g on [0, 1] and J, respectively. It is
easy to see that ||gllav.,=Ilgllp.n+ Vg becomes a Banach norm on BV for each
p. Since we can show |lgllar.: < llgllav. < 2|lgllar,i for g € BV, the norms
lgllsv,» are all equivalent. Thus we always regard BV as the Banach space
with norm | gllsr=I|gllar.«, unless otherwise stated.

Now we introduce the function space F(T) for an L-Y map in g in the
following way: A real valued measurable function f is an element in F(7T) if
it satisfies the next three conditions:

(F.1) For each J=2, f|] has a version of bounded variation.
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(F.2) There is a positive number C=C(f) such that | f|<log|T’|+C holds
m-almost everywhere.

(F.3) supseeVsf<oo and lim,..Vs,f=0 for some sequence of intervals
{/a}aC® with T(Int J,)=(0, 1) for n=1. Here @<= {J} is the defining partition
for T.

If T has a finite defining partition, F(T') coincides with the space BV([0, 1]
—R) but if T has an infinite defining partition, unbounded functions like
log|T’| belong to F(T).

REMARK 1.3. If we put A=exp(f), then the conditions (F.1), (F.2), and
(F.3) are equivalent to the following conditions (1), (2), and (3), respectively :

(1) For each J=2, A|J has a version of bounded variation.

(2) There is a number C’=C’(f)=1 such that A|T’|<C’ and A|T’|"'=
C’~* hold m-almost everywhere.

(3) supsee(VsA/ess inf;A) < o and lim,..(Vys,A/ess inf; A) =0 for some
sequence of intervals {J.},C%® with T(Int J,)=(0, 1) for n=1. The expressions
of (1), (2), and (3) are sometimes more convenient than those of (F.1), (F.2),
and (F.3).

In the rest of this section we give typical examples of the elements of .

ExAMPLE 1.1. The Gauss transformation Tgx=(1/x)—[1/x] has the defin-

ing partition
1 1=
{(m’ .E]}k=1'

ExAMPLE 1.2. For s>1, we define a transformation T,: [0, 1]—[0, 1] by
Tox = — La(s)k*(x — 1 4+ L(s)™ Zhain™) for x & (1-Ca(s)" Zhtin™, 1—
Ca(s) ' 3kayn®], k=1, 2, ---, where {z(s) is the Riemann’s zeta function.

EXAMPLE 1.3. Tx=2"(x—3p12"%) for xe[p 27, S, 278), n=1, 2, -,
where we regard 3}§-;27% as 0.

These transformations are well-defined on [0, 1] except for countably many
points.

2. Analytic family of transfer operators.
In this section we consider the transfer operator which has the form:
(2.1) Leg(x)= . > G(g(y).
Ny=zx

Here G is an m-measurable function and g will be chosen from BV. First of
all we recall the results in Baladi and Keller [1, pp. 463-466] and apply them to
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our situation. Let T be an L-Y map with defining partition 2={J}. If G
satisfies

2.2) 6= lnimHGnHio/,% <1,

and

2.3) M= S esssup|G| < =,
Jel J

then Ls can be realized as a quasi-compact operator acting on the space BV
with

(2.9) [ Lélsr = 3(VG+M),

where G,(x)=G(x)G(Tx)---G(T" 'x). More precisely, let £,={J} be the defin-
ing partition for 7. We choose a point x; from IntJ for each member J of
¢, and define an operator II, by

(2.5) IT,.g(x) =J§XJ(x)g(xJ),

where X, is the indicator function of the interval J. Then for any 4 with
0<f <1, we can choose a positive number C, depending only on VG, M, and
the minimal positive integer n, such that 1Galleo. m<<@™ for any n=n,, and

(2.6) | La— L3I, | v < C,"

holds. Since L%II, can be easily seen to be a nuclear operator in the sense
of Grothendieck, and consequently, a compact operator on BV, we conclude
that Lg is quasi-compact. For details, one can consult the paper [1]. Keeping
these facts in mind we consider the operator with the form:

@7 L(s, Dg(x) = Low.og(x) = 3, Gls, X380,

where T is an L-Y map in 4, G(s, t)=|T’| A", and A =exp(f) with fe
F(T). The main purpose of the present section is to prove:

LEMMA 2.1. Let T belong to T and let L(s,t) be as in (2.7). Then there
exists a neighborhood U of the set {(s, t)|Res=1, t€R} in CXC such that the
family {L(s, )} nev becomes an analytic family of quasi-compact operators and
im e | G(s, 1)al|¥% <8 holds for any (s, )€U and some 6<1. In particular, the
essential spectral radii of L(s, t)’s are uniformly smaller than 6.

PrOOF. For s=¢++/—1z with ¢=1, re R we put
2.8) G(s, )= |T/| A1,
and
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(2.9) G(s, t, b, D)= |T"|*A" log|T’|)*(log A)* for k£,1=0,1,23, ..

Let us write formally,

w oo /:—12k+t
@10)  Ls+p, 140 = Lowepen = 5 5 000

2 5 PrLecsn

for (p, g)=CxC. If we show that there are positive numbers C,, C,, a, and
b which are independent of &, [, and (s, t) with Res=1 and t=R such that

(2.11) VG(s, t, b, ) < C(|s|+ 1|tk akbt,

and

(2.12) Slesssup|G(s, t, k, )| < C,k!1! akbt,
JED J

then Lg e v, 1’s are realized as operators on BV with norm not greater than
3(Ci(Is|+[t)+CEI a®b? in virtue of the inequality (2.4). Therefore the
right hand side of the equation (2.10) is absolutely convergent with respect to
the uniform operator topology provided that |p|<a~! and |¢|<b~!. Combining
this fact with the estimate (2.6), the lemma is easily verified.

Before we prove the estimates (2.11) and (2.12), we note that there are
positive numbers C, and C, so that

[T x|

<
(213) ;gg :r,syuepl)ntJ ]T’yl = C3
and
(2.14) [logA| < |log|T"||+C..

Indeed, (2.13) follows directly from Remark 1.1 and (2.14) is an easy consequence
of the condition (F.2).

Now we choose a small number ¢ so that 2¢<d, where ¢ is the number
which appeared in the strong Rényi condition (T.2) in Definition 1.1. For s=

o++/—1t with ¢=1, r=R, we have:
|G(s, t, b, ()| = || T x| *A(x)" " **(log | T"x|)*(log A(x))!|
S| T'x]77|log| T x| | *|log A(x)|*

< 1T/ log| T7x 11+ 5 (1) 1log| T7x [ [CE (by (2.14)

L
< [ T7x 1= Tx~[log | Tx11* 5( 1) 1T7x1llog | T7x | CL*,

i=0

Applying the inequality x7%(log x)" < (ae)™®n™ for x =1, and a >0, to
|T'x|~¢|log|T’x||", we obtain
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(2.15) |T’x|*|log|T’x||™® < max{(ess inf|T’x|~¢)|log ess inf|T'x|~¢|", (ae) "n"}
< Cinm
for some positive constant C, depending only on 7. Therefore we have
2.16)  esssup| G(s, t, k, )| < esssup|T’| 7 **Cik* z( )cuich
< esstup| T’ |1 CHC+Co) R .

On the other hand, we know 0<inf;ceesssup; |7’ |m(J) from the inequality
(1.3). Combining this with (2.13), we have (ess inf,|T”|)"**°<(Cym(J))*"%. The
sum of the right hand side taken over all J€% is convergent due to the second
inequality of the strong Rényi condition (T.2). Thus we obtain

2.17) Sesssup|G(s, t, B, )| £ S esssup|T’ | 1HCHC,+Cs) k!
Je J JeP J

= CoCHC+Cy) k.

Applying the Stirling’s formula lim,..(n!/n"*%e""+/27 )=1 to the inequality
(2.17), we obtain the inequality (2.12) with a=C;, and b=C,+C,.
Next we choose any x, y<IntJ and consider

G(s, t, k, D(x)—G(s, t, k, I)(y)=D,+D,+Ds;+D,, where
Dy =(|T'x|*—|T"y|")A(x)"7(log | T’ x | )*(log A(x))*,
= Ty | %(A(x)" "t —A(y)" ") (log | T’x | ) *(log A(x))!,

a = T’y A(y)"((log | T"x |)*—(log | Ty |)*)(log A(x))*
an

= |T'y|*A(y)"(log | T’y )*((log A(x))! —(log A(y))").

Then we have
IDi| < Islesssup (17777 T )] x—y|llog | T"x||*|log A(x)|"

< Islesssup (|77 T"|)esssup (|T"| ) |log [ T"x || *|log A(x)|"| x—y].
By using the strong Rényi condition (T.2), (2.13), (2.14), and (2.15) we obtain
(2.18) IDi| = Isllx—y|C,CHCi+Ci) k*
in the same way as (2.16). For D,,

1Dul = 2ltless sup( 7719120 =E0 1og | 77x 1 log Ao

Therefore we have

2.19) lDz|gzlt\esstupuT'r““)ﬁefs%—ﬁﬁ(j)' CoCHCat CotkPE,
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in virtue of (2.13), (2.14), and (2.15). Next,
(2.20) | Ds| = esssup(IT"|"")kess sup (|77 7 [log | T"|[* ") log A(X)|*| x—y|
< esstup(]T’["’*“)]x—y |CoCEHC +Cp)E*

in the same way as the above. Finally we have

- o JA@)—AW)]
’| -0 ’ k =1 12 \"7 AN/
2.21) |D,| £ esstup([T =) 1log | T’ | lesstupllogA(x)l ess nf, A
- |A(x)—A(p)]
’ g +2¢ k LLkJL
< esstup(|T l )—~——ess oA C1,CHCHCo)rR*IE.

(2.18), (2.19), (2.20), (2.21) and the condition (F.3) imply
S VG(s, t, b, 1) < ([t +1s)CuCHCA+Cr) R*IE.
JePJ
Thus we conclude that
(2.22) VGG, t, b, ) VGG, t, B, D+2 X esssup|G(s, t, &, )]
Je®J Jef J

= (It +1sDCCHC+Co) k*IE.

Here we have used the inequality (2.17). Applying the Stirling’s formula again
to the inequality (2.22), we obtain the inequality (2.11). This completes the
proof of the lemma. //

REMARK. We do not need the Markov property of T for the validity of
Lemma 2.1. The conditions (L-Y.1), (L-Y.2), and (T.2) on T are sufficient.

3. Spectral properties of L(s, t).

As a consequence of Lemma 2.1 in the previous section and the general
perturbation theory for linear operators in [5], and [11] (see also [1]), we
obtain the spectral decomposition of L(s, ?).

PROPOSITION 3.1. Let T € 9. Consider the neighborhood U of the set
{(s, )|Res=1, teR} in CXC and the number <1 which appeared in Lemma
2.1. For any (so, to)€U, choose any 6>6 so that L(se, to) has no eigenvalues
with modulus § as an operator on BV. Then there is an open subset U(s,, to) of
U and there are analytic families {M(s, 1)} . veves,. 1 and {R(s, D} ¢, nevey.tp 0f
operators on BV such that the following spectral decomposition holds:

3.1) L(s, t)= M(s, )+ R(s, 1),

3.2) Mis, 0=""5" 15, DE/(s, D(E(s, D+ Nys, )
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and
(3.3) R(s, t)= E(s, t)L(s, t).

In this decomposition, s, t) are the eigenvalues of L(s,t) on BV with modulus
greater than @, and E (s, t) are the projection operators onto the finite dimensional
eigenspaces corresponding to A(s, t). n(s, t, &) is the number of the Jordan blocks
of the operator L(s,t) restricted to the finite dimensional space spanned by these
eigenspaces, and the operators N(s, t)=(L(s, t)—A(s, 1))E (s, t) are nilpotent. The
operator E(s,t) is defined as the projection onto the complementary subspace of
Zjéi"'é’Ej(s, t)BV and therefore R(s,t)= E(s, t)L(s, t) has the spectral radius
not greater than §. In particular, we have

n(s,t, 8

(3.4 VB s, D+EGs, ) = idsr,

35) Efs, DLGs, 1) = Lis, DEs, 1),

(3.6) Ei(s, WE (s, t) = Efs, )Ey(s, t) = 0:,;E(s, 1),
3.7 Es, YE(s, t) = E(s, )E(s, t)= O,
and

(3.8) E(s, ON/s, ) = Nys, DE/s, ) = Ns, t).

PrOOF. We only give an outline of the proof because this proposition is
proved in [1, Section 2] in the case that (s, ¢,) is fixed. Since {L(s, t)} is an
analytic family in (s, t)eU in virtue of Lemma 2.1, we can choose an open
neighborhood Uf(s,, to)CU of (so, ;) and numbers #,, and 6, with 6,<d<4,
such that the set {z€C|0,<|z|<£60,} is contained in the resolvent set for L(s, t)
for all (s, t)eU(s,, t,) and P=SUP(s, vev s, tp | L(s, Hllsy<oo. Then we have the
following analytic families of projections defined by the Dunford integrals:

1 -1
(3.9) Pus, 1) = 2m/f1‘<g.u=.o+x’“Sm=ez>(z—L(s’ H)-1dz
and
3.10 Pus, ) = — L(s, )'d
(3.10) 5, 1) = 5=\ g (E— L (s, D)z

Clearly, E(s, t) in (3.3) must be Py(s, t), M(s, t) in (3.1) must be L(s, t)P(s, t)
and the Jordan decomposition for M(s, t) on P(s, t)BV gives the decomposition
(3.2). //

From now on we impose the following mixing condition (M) on the map
T in 9.

(M) T has a unique m-absolutely continuous invariant probability measure
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¢ with support [0, 1], and the measure-theoretic dynamical system (7, p) is

mixing, i.e., 1imS:gleT"gzd,u = S:gldyS:ggdy for any g, g.€L%p).

The Radon-Nikodym derivative dp/dm will be denoted by h, It is well-
known that it has a version of bounded variation (see [12]).

REMARK 3.1. As noted in [15], the condition (M) is not essential for our
arguments. In fact for T T, any absolutely continuous invariant measure has
a density in BV and can be decomposed into a finite number of ergodic com-
ponents. Each ergodic component can be decomposed into finitely many mixing
components which are mapped cyclically by T. For details one can consult
[7] and [24].

REMARK 3.2. If Teq satisfies the condition (M), the density h, satisfies
ess inf 2,>0. In particular, 1/h, is also in BV. Although this is a well-known
fact, we give the proof for completeness.

Suppose this is not true, there would be a point x, & [0, 1] such that
ho(xo—)=0 or hox,+)=0 holds for any version of A,. From now on, we fix
a version of h, and write it as h, again. It is well-known that h, satisfies the
Perron-Frobenius equation

Lrhy=_3

1
e Ty o) = holx),  meae.

where Ly (=L(0, 1) in our notation) is the so-called Perron-Frobenius operator
for T with respect to the Lebesgue measure m. We prove that there is an
open interval on which A (x) =0. This contradicts the condition M). We
assume x,=(0, 1). In the case x,=0, or 1, we can show a contradiction in the
same way. Take any open interval I. Then for any &¢>0, there exists n,=
no(e) such that m(T™*IN(x,—e, x,+¢))>0 for n=n, since the dynamical system
(T, p) is mixing. This implies that there is an element /7 of the defining
partition @, for T" such that Int INInt J?# @ and m(T™J2N\(x,—¢, x,+¢€))>0
for all n=n,. If there are infinitely many n with T"(Int J?) D (x,—¢, X,+¢),
there is a point y in the m(J7?)-neighborhood of I such that h,(y—) =0 or
ho(y+)=0 by the Perron-Frobenius equation. On the contrary, suppose that
we can choose a sequence ¢, |0 so that x,&T"Int (J7,) for infinitely many n.
Then we can choose a sequence n,<7;,; such that either sup T"*Int (J2#)<x,
+e¢, and sup T™#Int (J7k) > sup T™ Int (J7£;+2) for all &, or inf T*#Int (J2E)>x,—e,
and inf 7™+ Int (J77) < inf T7#Int (J72#1) for all k. But this is impossible because
T is Markov and there are at most finitely many points which can be the end
point of T(IntJ) for J€2 in virtue of the condition (L-Y.1l) (b). Since the
interval I is arbitrary, we conclude that D_\UD, is dense in [0, 1], where
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D_={y|hy(y—)=0} and D,={y|ho(y+)=0}. Therefore either the closure of
D_ or the closure of D, must contain an open interval. On such an interval
h, must vanishes. We now reach the desired contradiction. //

REMARK 3.3. The maps in Example 1.1, Example 1.2, and Example 1.3
satisfy the condition (M). Some sufficient conditions for T to satisfy the con-
dition (M) are discussed in [2].

We recall Proposition 1.1 in [15] for the later convenience.

PROPOSITION 3.2. Let Lr be the Perron-Frobenius operator for T as above.
Let L, be the operator acting on L'(p) which is defined by
4 )
L.g= P Sr—u.)gd# for g LY (p).

Then for g€ L¥(y) and S'-valued measurable function ¢, the following are equi-
valent :

@ Li(¢ghe) = ghs in LYm),
(2) L.gg)=g in L¥(p), and
3) g°T=¢g in LY (p).

Now we are in a position to state the main results in this section.

PROPOSITION 3.3. Let T be a map in I satisfying the mixing condition (M)
and UCC XC be the open set which appeared in Lemma 2.1. Then we have the
following :

(1) For each teR, L(1,t) can be extended to an operator on L*(m) with
norm not greater than 1.

2) If tveR and L(1, t,) has an eigenvalue A with modulus 1 as an operator
on LY(m), then the corresponding eigenfunction must be a constant multiplication
of h,.

(3) For each t,€R, L(1, t,) has at most one eigenvalue with modulus 1 as an
operator on L'(m).

(4) For each t,=R, there is an open set V(1, t,) of (1, ty) in U with the
following properties: '

(4.a) If L, t,) does not have an eigenvalue with modulus 1, then the spectral
radius of L(s, t) as an operator on BV is less than 1 for any (s, )EV(], t,);

(4.p) If LQ, t,) has an eigenvalue A(1, t,) with modulus 1, then L(s,t) has
the spectral decomposition

(3.11) L(s, 1) = A(s, t)"E,(s, t)+S(s, 1), for n=1

as an operator on BV for (s, )eV (1, t,) with the following properties:
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(4.b.1) A(s, t) is the analytic function in V(l,vto) and coincides with the simple
eigenvalue of L(s,t) with maximal modulus. Moreover we have

|
(3.12) L =y Sofd/l A, 1)
and
eAL D) . Ll : .
@iy S| = —im (S (= sam) a0

= =1, t)V ().

(4.b.2) FE\(s, t) is the projection operator onto the one dimensional eigenspace
corresponding to A(s,t) which depends holomorphically on (s, t) e V(,t,) and
satisfies

(3.14) S;E;(l, t)gdm = S:gdm and S:S(l, tygdm =0 for any g BV.

(4.b.3) S(s, t) is the operator valued holomorphic function in V(1, t,) with
spectral radius less than 1 as the operator on BV.

(4.p.4) E\1,t,) and S, t,) are extended to bounded operators on L*(m)
and the decomposition (3.11) still has a meaning. Moreover, |S, to)"glli,m —0
(n—o0) for any g L(m).

PrROOF. (1) This is a trivial fact.

(2) If LQ, ty)h=Ah for he L'(m) and 2€S?, we have (hhs)eT=1A"""hh{?
in virtue of Proposition 3.2, where 1 denotes the complex conjugation of A and
A=exp(f). For any element J of the defining partition for T with T(intJ)=
(0, 1), we have

V(hhi) = V(hh'oT) = V@A T 0hh3Y)

It |V, A

ViAo .
ess nf, A 1440 e mtV(RAT).

Since hh3' is in BV by Remark 3.2, and f satisfies the condition (F.3), we
obtain V(hh3*)=0. This implies hh,' is a constant function in L!(m).

(3) If 2, and 2, are eigenvalues of L(l, t,) with modulus 1, 1=2;4Y"" for
=1, 2 holds in virtue of Proposition 3.2 and the assertion (2) above. There-
fore we can conclude 4;,=2,.

(4) All the assertions except for the equations (3.12), (3.13), and (3.14)
follow from Ionescu Tulcea and Marinescu Theorem [9] and Proposition 3.1
(see also [7], [10], [15], and [24]). To prove (3.12) and (3.13), we first show
that feL*(m) for all k=1. Since Lr=L(0,1) is a positive operator which

preserves the value of the integration, we have Sl|f|"dm:S:LT(|f]")dm. On
0
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the other hand LT(Ifl")=2Ty,I|T’y["[IogA(y)l ke BV in virtue of the estimate
in the proof of (2.11) and (2.12) in Lemma 2.1. Thus f& L*(m) for all k=1.

For the sake of simplicity we may assume Slfdp:O. For t so that t+f,&
0
V(1, t,) we have

S:eXpw—_us,, fdp= S:expwfits" Fhodm
=1, to)-"g:exp(v——l(to+t>sn Fhodm
=1, to)“"SzL%(exp(\/:I(to—}—t)Sn Fhodm

=1, m—nSl LA, to+t)hodm.

In the above we have used the fact exp(~/—1t,S.f)=A4(1, ¢,)* which is a con-
sequence of Proposition 3.2. In virtue of the spectral decomposition (3.11) and
the above equation, we have

(3.15) S:exp(v——ltsn fdp =1, to)" S: LA, to+t)*hodm
= A1, 7", b0 | B, tothadm

A1, m-"S:sa, toH0)" hodm

= pn(t)+rn(t)-
Thus we have

_ dpatn™)
t=0 dt

dr(tn™%)
t=0 dt

(3.16) dtSeXp(«/ it "f) dp

and

(3.17) 52 S exp<

t=0

_ d*pa(tnV?)
=0 dt®

Saf
V)
We note that the second terms in (3.16) and (3.17) go to 0 exponentially fast
since the operator S(1, £)* can be expressed by the Dunford integral as S(1, t)*
=(1/277:\/——1)SI . z"(z— L1, t))"*'dz with r<1 for any n=1. The left hand side

of (3.16) goes to 0 by the ergodic theorem. Using the Taylor expansion of p,,
we can show that the right hand side goes to A(1, t,)"'(dA(l, t)/dt)| .=, as n

goes to oo. The left hand side of (3.17) equals —(l/n)S:(Snf)Zd,u. On the

d?r,(tn~1%) 1
t=0 dt? lt=0 "

other hand, it is not hard to show that the right hand side goes to A(l, #,)™!
d*2(1, t)/dt*| =, as n goes to oo in the same manner as (3.16). The proof of
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(3.12) and (3.13) is now complete.
Finally, using the fact exp(~/—1t,S,f)=A(1, t,)* again, we obtain

[ gam =1 20, 17" exp(v=TtSu gdm = a1, 1y LA, toyrgdm

= S:Eml, tgdm+A(l, ta>-n§:sa, tyrgdm — S:Ela, t)gdm (n—co).

Thus S:E,(l, tgdm =S:gdm and S:sa, t)"gdm=0 for n=1, getting (3.14). //

4. Classification of (7).

In this section we prove the non-degeneracy of the limiting variance given
by (0.3) or (3.13) for a non-constant element in (7). Furthermore we classify
the elements in F(T) in terms of the spectral properties of the transfer operator
L(,t). As before, we assume T is an L-Y map in g satisfying the mixing
condition (M). Without loss of generality we may restrict ourselves to the

subspace Et‘o(T)z{feff(T)\S:fdpzo}. For fe%,(T), we introduce the sets

4.1 Ar(f) = {t € R|the transfer operator

L(1, t) has an eigenvalue with modulus 1}.
and
4.2) Gp(f) = {4 € S*| L, t)hy = Ah, for some t € Ar(f)}.

In other words, Gy(f) is the totality of numbers which are realized as eigen-
values of L(1, t) with modulus 1 for some t=R. Before classifying F(7T) we
show :

THEOREM 4.1. For fe9(T), the limiting variance V=V (f)=0 if and only
if f is a constant function.

PRrROOF. It suffices to show that if V(f)=0 for fF(T), then f=0 m-a.e..
If V(f)=0, then there is a real valued function g L% g) such that f=g-T—g
by the Leonov’s result (see [8, Ch. 18]). Then we have exp(v/—Iltg-T)=
exp (v —=Itf)exp (v —1tg) for any tR. In virtue of Proposition 3.2 and the

assertion (2) of Proposition 3.3, we conclude that exp(+~/—1tf)=1 for any t=R.
Therefore we have f=0 m-a.e.. //

Next we prove

LEMMA 4.1. For f€F«(T), Ar(f) and G(f) are closed subgroups of R and
St, respectively.

PrOOF. By using Proposition 3.2, it is easy to see that Ary(f) and Gr(f)
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are subgroups of R and S!, respectively. It remains to show the closedness.
Assume t,€ Ar(f) converges to t.. From Proposition 3.2, we have exp (v —1t,f)
=4, m-a.e.. We may assume A, converges to A&S! as n—oco. Consequently,
we have exp (v —It.f)=24 m-a.e.. Proposition 3.2 implies that L(1, t.)ho=2h,.
Therefore Ar(f) is closed in R. Gr(f) is closed in S! by the same reason.

//

Before stating the classification theorem we put

4.3) F(T)={f € F«(T)|f = a+BK for some non-constant integer valued
function K and real numbers a and B0}
and

(4.9) Fo(T) = Fo(T)—(F«(T){0}).

THEOREM 4.2. The elements in F(T) are classified as follows:

1) f=0in L'm) if and only if Ar(f)=R and Gp(f)={1}.

(2) fE€9(T) if and only if Ar(f)=aZ and G (f)={1, 4, ---, 2*7'} for 0<
a<o and a primitive k-th root 2 of 1 with L(1, a)hy=2h,.

@) fe9AT) if and only if Ar(f)={0}, and Gr(f)={1}.

PROOF. (1) If f#0 in L'(g), V(f)>0 by Theorem 4.1. Therefore A(1, 0)
=1, dA{, t)/dt],=o=0, and d®A(l, t)/dt?|,-.e=—V(f)<0 from the assertions in
Proposition 3.3. Thus |A(1, )| <1 for small ¢+0. This implies

4.5) a=inf{t > 0|t = A(f)} > 0.

Here we regard a as o if the set above is empty. We have proved that if
f#0 in L¥p), then Ax(f)+#R. Hence Ar(f)=R implies f=0 in L'(y) and
consequently Gr(f)={1}. The converse is trivial.

(2) If f€9,(T), that is, f=a+BK as in (4.3), then we have exp(v/—127f/8)
=exp(v/—127a/B). From Proposition 3.2, we have L(l, 2x/B)h,=
exp (V—12na/B)h, m-a.e.. Combining this and (4.5) we have a < 0. Since
Ar(f) is closed in R, we conclude that Ar(f)=aZ. Let 2 satisfy L(1, a)h,=
Ah,. We have Gp(f) = {A*|neZ}. Since Gr(f) is closed in S, Gz(f)= {1, 4,
.-, A*71} and 2 must be a primitive k-th root of unity. Conversely, if A+(f)=
aZ, we obtain L(1, a)h, = 2h, for some A & S'. Proposition 3.2 implies that
exp(v/—laf)=2. Therefore f must be in Fy(T).

3) If f+0 in LY(p), and f&F(T), then we have a=oo. Therefore Az(f)
={0}, and Gr(f)={1}. Conversely, a can not be o« if f=0 in L'(g) or f&
F(T). Now we have completed the proof. //

REMARK 4.1. If we can label the elements of the defining partition for T
so that
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|7
P) 0<lim &8Pz 71

oo

< oo for some p>1,
we say that T satisfies the polynomial growth condition (for 77). In this case,
any element f in F(T) for which

. A VA
(F.4) }Lrg essI jsupl T > 0 exists and }LIEESS—IIE;T =0

is always contained in F4(T), where A =exp(f). In particular, log|T’|—
Sllog[T’]d/,zeﬂ’g(T). This is verified as follows: Applying the strong Rényi
0

condition to the inequality (1.1) instead of the Rényi condition, we have

(4.6)

T'x l - ess supy | T”|
Ty = |T’ylessinf;|T’|*
<C essJinflT’|“’lx—y|

—ess inf|T”||x—y|ess inf| T"| %
J J

for any x, yeJe2P. (4.6) implies that log|7T’| satisfies (F.4). On the other
hand, there are finitely many ; such that esssup;,|7’|<K for given K>0 in
virtue of the inequality (1.3). Therefore we can change the labeling so that
esssupy,;| 7’| < esssup [;,,|T’| for j=1, 2, --- without breaking the condition
(P). It is easy to see that the labeling yields lim;. (ess supy,,,| T’|/ess sup;,| T’|)
=1. Combining this fact with (4.6), we obtain

4.7 lim  sup

jowo z€ljiy.YET

The first condition in (F.4) and (4.7) implies

%l:l.

. _ o A(x)
(4.8) }gg S, [ f(x)—f()I —}i‘l‘ cerS Py, log ——— A0y) =0.
The second condition in (F.4) yields
V. .A
(4.9) lim sup, |f(x) ol < hme <lim—2i—— =0.

j-o €88 inf; jA

Therefore if f is in 4,(T), f and consequently, A must be constant on \U3- sols

for sufficiently large j, from (4.8) and (4.9). This contradicts the first condi-
tion in (F.4).
Example 1.1, and Example 1.2 satisfy the condition (P) but Example 1.3

does not. In fact, the function logl’f’l—g log]f"ldp (S nXegpslemk 57 a7k
—2)log2 belongs to F(7T).

5. Limit theorems.

In the following three sections we give our answers to the problems (I}
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and (II) by using the results in Section 3, and 4. The present section is mainly
devoted to the proof of Theorem 0.1 in Introduction. For any L-Y map Teg
and fe%,(T)— {0}, we employ the following convention:

aZ if a< o,
Ar(f)=<a)> = {
{0} if a= o,
(5.1)
{La -, 227 if a<oo,
Gelf) = 4> ={ ‘
1} if a= o,

where a=min(A7(f)—{0}) as in the previous section and A is a primitive A-th
root of unity with L(1, a)hy=A4h, (if a<o) and A=1 (if a=). The (integral)
central limit theorem for the sum S,f=3-¢f-T* is stated as follows:

THEOREM 5.1. Let T be a map in T satisfying the mixing condition (M).
Let f be an element in Fo(T)—{0}. Then there exist positive numbers A,, A,
As, As, and 0<y<1 depending only on T and f such that

(5.2) H exp( S f(x))g(x)m(dx) xkg g(x)m(dx)exp<_ V(g)ﬂ)‘

< (exo(— )AL p 4, L) 1 4 )i

holds for any g € BV and for any k & Z whenever |t| £ Avn (if a = oo, we
consider only the case k=0). Here V(f) is the limiting variance defined by (0.3).
In particular, for any probability measure m, with density g € BV([0, 1]— R),
we have

63 suplmilr € 10,171 5=Sus(0) S 2~ O E V(f)g _exp(— ZV(f) )t

A
= *%—”g”ml

for some positive number As independent of g (c.f. [10], [15], and [22]).

PrROOF. From Proposition 3.3, we have

[lexn(L L s, st gtmian = [ L(L ) stmidn)

=31, o) [ (L ) gComdn) +.5(1, =)' gtemidz).

Comparing the first few terms of the Taylor expansion of the both sides, we
obtain the estimate (5.2). The second assertion follows directly from the
Berry-Esseen inequality which asserts that
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h(u)

sup| F(2)—G(2)| S = S du+——suplc<z>1,

where F(z)=y,((— o, z]), and G(z)=vy((—o, z]) are distribution functions for

probability measures y; and v, on R respectively, G is assumed to be differen-

tiable, and A(x) =S:exp(\/——_luz)(u1—vz)(dz) (see [8]). //

REMARK 5.1. The estimate (5.3) is remarkable in the probability theoretical
point of view, because the convergence rate of the central limit theorem is very
near to that of the independent and identically distributed random sequence.
Philipp [18] obtained more general results for mixing sequences but the con-
vergence rate is not so good in his general setting.

In the sequel, S(R) denotes the space of rapidly decreasing functions on
R and ﬁ(t):Sw e ""1tvy(y)dy is the Fourier transform of u.

Now we are ready to prove the main theorem in this section.

THEOREM 5.2 (Local limit theorem). Let T be a map in I an f€F(T)—
{0}, Ar(f)=<a)> and Gp(f)=<A) are in (5.1) and V =V (f) is the limiting
variance. Then for any usS(R) and any g BV, we have

G4)  limsup VFS:u(Snf(x)+a)g(x)m(dx)

" w10, (a0 g mtdry—exp (52 )| =0,

where {Dn. o} n.« 15 a bounded family of Radon measures on R, represented as

(5.5) S:u(t)@n,a(dt) = 5 a(ka) exp(v=I(k(nb+aa))

with A=exp (~/—1b). In addition, the Radon measure P, , has the following
descriptions :

If a=co, @, , is the Lebesgue measure for each n and a:
[~ uoon,an =" uwar.

If a<co, @, , is the counting measure on the lattice 2n/a)Z+(bn/a)+a:

[ a0 = 5 u(ZE 2 1),

ProoOF. It suffices to prove the theorem for g BV with g=0 and S;gdm

=1. Assume first that 2€9D((—r, r)) for some r>0, where D(K) denotes the
totality of smooth functions with support in KCR. Then we have
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Vi { u(S.f(x)+ a)gmdz)

- E@Sfﬁ@m) exp(v—Tat)dt

= \/71 i S o ﬁ(ka+l‘)¢n(ka+t)e*’:fa(ka+:)dt,

k=-o
where ¢,,<t>=$°° exp(v/—1tS,f)gdm. Fix keZ for a while. Now
v
2
= Ri(k, n)+Ry(k, n)+Rs(k, n)+Ry(k, n) with V =V(f),

a2

2nV)

al Vla(ka+t) J4__ 4 kn 1 ) _
6:6) G- |" alkattiga(kate d—ka)d*"—s—exp(

where

(.7 Ri(k, n) ~vr

2 S smsa/zﬁ(ka-’_t)ﬂbﬂ(ka‘H)eJ__m(k““dtr

1 _

(.8) Rk, n)= ﬁgm<snm(ﬁ(ka+t/\/n )
—a(ka))po(ka+t/v/n e T Taka eV gt
1 _

(5.9) Ry(k, n)= z—ngmanm(m(ka-}-t/\/n )

— 2k exp(—Vi2/2))eTakarti'm gt g(ka),
and
1
~2_7?S|t1>en~’ﬁ

The number ¢, in the above will be determined later.

From the equations (3.12) and (3.13), we have dA(l, t)/dt|,—xo =0, and
d*A(1, 1)/dt?|1=re = —A(1, ka)V =—2¥V. On the other hand, the spectral radius
of L(1, ka+t) is less than 1 for e,<[t|<a/2, in virtue of the assertion (4.a) in
Proposition 3.3. Combining these facts with the spectral decomposition (3.11)
we obtain

(5.10)  Ruk, n)=— exp (—Vt*/24+v—1a/vn )dta* a(ka)e’ ek,

6D IRk, IS Y] LA, k@ larlglavdt supla
< CISE 2oL VE/P AT g oy supl 2],

where C, is a positive constant independent of g and u. It is easy to see that
(.12) |Ri(k, m)| < otV gl oy sup| .

In virtue of the central limit theorem (5.2) we obtain
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G13) Rk, mI S| (AT Al Ve

+As(1t1 /v n)r")gllsv sup| & |
< Cylehn®+ein') gllsv sup| 2|,

where C, is the constant depending only on ». Clearly we have

(5.14) | Rk, n)| = %SltI>Enmexp(—-Vf2/2)dl‘Hg|]BV sup|a|.
Choosing &, so that

(5.15) €, 1 0, g,n'% ] oo, and &4n*? | 0 (n— o),

we have

(5.16) S| Rille, m)+ Rk, m)+Ralk, )+ Rulk, m)|

< Crrn(suplﬁlJrsup l%})!lgllm

where the number C, depends only on » and 7, is a sequence with 7, | 0 (n 1 o).
Combining (5.16) with the fact | _.fi(ka)d*me’~12%e| <2[r/a]sup|i|, we
obtain

|va(™_atg.e =t < ¢t (suplai+sup [ 22 ) iglor

with a positive number C; depending only on r. This implies that
{Vnga(-)e’ 14}, , is a bounded family in the distribution space 9D((—r, 7).
Since each +/ng,(-)e’1« is a distribution of positive type, the family
{Vnga(-)e’ 124}, , turns out to be a bounded family in the space B(R) of
the bounded distributions (see Schwartz [25, p. 276 in Ch. VII]).

Next we take a sequence {p;}5-: of probability measures on R which con-
verges to 0, (the unit mass at 0) weakly as j—co so that g,=9D(R) for every

7. Write v/n S:u(Snf+a)gdm=S:u(t)p,,_a(dt) for convenience. Choose any
ueS(R) and fix it for a while.

(5.17) |7 utoXorn. xan =" uypmn.oan)
=, 09| | et sr—utypm. o(an)|

+S|“25Pj(d5))S:Q(u(t—*—s)_u(t))ﬂn’ a(dt)’
=L, +II,.



332 T. MorITA

Since {Zn, o(*)=Vn@(-)e’ 124}, , is a bounded set in B(R) and #€S(R)C
B(R), we have

00 1 oo p— —_—
(5.18) §gg“_wu(t+s)yn,a(dt)| :5816111;!)lZr-g_ma(t)\/n¢n(t)e“—1z<a+s>dt < Cy(u).

Since the set {vs(:)=s " (u(-+s)—u(-))}o<isis: is bounded in S(R), it is bounded
in 8(R). Therefore we have

(5.19) Sup sup

aeR |8is1

[" wtopn.atan| = .

In the above, C,(u) and C,(u) are positive numbers which depend on u but do
not depend on n and @. Now we obtain

(5.20) 111 =, palst| |7 n@m.odn)] = Cuws,
and
5.2) L] < pls] 2 92C,(w).

Thus we have shown that
(5.22) [ I4-11,| < Cy(u)o

if s is large, where Cs(u) is a positive number which does not depend on 7, «,
and . On the other hand, for fixed j, we have

® < %) =1lkaa jkn 1 ?
S [ T YT B S
—>0 (n— )

in virtue of the estimate (5.16). In addition we have

w — 1 ?
(5.24) ‘k;_ﬂ(a(ka)—(aﬁj)(ka))e"“’“””\/2nvexp(_ 2:V)|

< 3 latka)pka)-1) £ 6

if j is large. If we choose j so that (5.22) and (5.24) are satisfied, then we
obtain by (5.23) that

lim sup sgg v S: u(S,f+a)gdm— ki_ (@)(ka)e’ Tkaa kn

l 2
5P vz (v
< (Cy(w)+1)3.

Since >0 is arbitrary, we complete the proof of (5.4). //
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6. Zeta functions.
Let T be an L-Y map satisfying the mixing condition (M). For feZF(T),
we consider the zeta function defined formally as

6.1) {(s, t) =exp L

iMe

SR

S TLIT/(T )| AT )

1

Ms

= exp TnZ exp (Sn(—s log | T’ | ++v—=1tf)(x)).

n

It

Here the sum rn.-. is taken over all fixed points of T" contained in the
interior of some elements of the defining partition for 7". The following as-
sertions are proved by Pollicott [21] and Haydn [6] with the dynamical system
T being replaced by a mixing subshift of finite type and log|7T’| and f being
replaced by appropriate Hélder continuous functions on the shift space.

THEOREM 6.1. For any (s, t,) with Res=1 and t,=R, let 0 and U(s,, t,)
be the same as in Proposition 3.1. Choose any >0 with 1>86>0 so that
L(so, t) has no eigenvalues with modulus §. Then the function o(s, t) =
H}'éi"'é’(l-—lj(s, t))rank Eies-0F(s t) is realized as a nonvanishing analytic function
in an open neighbourhood W(s,, to)ZU(se, 1) of (So, to). (s, t) can be extended
meromorphically to a neighborhood of the set {(s, t)|Res=1 and teR} in CXC.

REMARK 6.1. Our proof of this theorem is based on the method in [1]
which is also used to relate the eigenvalues of transfer operators to the poles
of Ruelle zeta functions ([23]) for piecewise monotonic transformations. The
results in [1] can be directly applied to an L-Y map with finite defining parti-
tion (generating partition in terms of [1]). In such a case we do not need the
Markov property of T, because we use the Markov extension T instead of T.
But we have to estimate the difference of the original zeta function for T and
the zeta function for T by using the number of the intervals in the defining
partition for 7. This causes a technical difficulty in dealing with an L-Y map
with infinite defining partition. We expect that the Markov property can be
removed from the assumption in Theorem 6.1.

PROOF OF THEOREM 6.1. First of all we recall Proposition 3.1. In the
neighborhood U(s,, t,) of (so, t,), wWe can write

(6.2) L(s, t) = M(s, )+R(s, t) = L(s, ) P(s, )+ L(s, t)Pys, 1),

where P(s,t) and Pu(s, t) are the projection operators defined by the Dunford
integrals in (3.9) and (3.10). Since P(s, t) and Pys, t) depend analytically on
(s, t) in U(s,, t,), we have



334 T. MoriTA

(6.3) sup | Ps, Dllsy = C,
(5. t)eU (59 tg)
and
6.4) sup || Ps, D)*|sy £ C.*  for any n=1,

(8, )EU (8¢ L)

where C, and C, are positive numbers. Put
n(s,t, 6) '
(6.5) Es, =" I (A—afs, D)= Eso.
j=

The decomposition M(s, t):L(s,t)Pl(s,t)zz}’éi"'é) A8, )E (s, t)E (s, t)+N,(s, 1)
in (38.2) is the Jordan decomposition of the operator M(s,t) acting on
the finite dimensional space P(s, t)BV. Therefore trace(L(s, )"P(s, 1))=
trace (L(s, t)"Pi(s, )| p,s.0vv) is well-defined and

©6.6) trace (L(s, " Pi(s, D) =33 A(s, 1" rank E(s, 1).

Jj=1

From the general theory in [11] and [21] we can see that &(s, t) and
trace (L(s, t)"Py(s, t)) are analytic in U(s,, f,), although each A,(s, t) is not neces-
sarily analytic. Put

6.7) Cals, ) =, Ga(s, 1),

where G(s, t)=|T"(-)|*A(-)""'* and
Ga(s, )(x)=G(s, t)x)G(s, t)(Tx) - G(s, t(T" *x).
If we can show that

(6.8) sup [Za(s, t)—trace (L(s, t)"Pi(s, 1))| < Cs87n

(8, tYEW (8¢, tg)
in some neighborhood W(s,, t,) of (so, t,) in U(sy, t,), then exp{Xn-:(L.(s, 1)—
trace(L(s, t)"Pi(s, t)))/n} is analytic and non-vanishing in W(s,, t,). This implies
@(s, 1)=L(s, t)&(s, t) has an analytic continuation to W(s,, f,). Consequently,
{(s, t) can be extended meromorphically to W(s,, t,).

It remains to prove the estimate (6.8). For the sake of the notational sim-
plicity, we may drop (s, t) if there occurs no confusion. For example, L(s, t)
=L, Pjs, t)=P;, Eis, t)=Ej;, and G(s, t)=G and so forth. In addition, we
always consider the right continuous version for an element in BV to avoid
the unexpected ambiguity of equations. For each n and for each element J of
the defining partition &, for T*, we choose a point x;&Int J so that x; is a
fixed point of 7™ if T"J/DIntJ. Since the condition (L-Y.2) guarantees the
uniqueness of a fixed point in J with T"JDInt J, we have
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(6.9) Gn=_ 3 GaxXy(xp)= 2 (L™X5)(xy),
TnJOJ JelPy

where X; denotes the indicator function of the interval /. We note that we
have used the fact L™X;(x,)=0 if m(T*JN\J)=0 in (6.9). For the finite dimen-
sional space P,BV, we can choose a basis e¢,=e,(s, t) and &,=&,(s, t)e BV’,
k=1, 2, ---, d=dim P,BV, with the following properties :

(6.10) é:(e;)=0;; (Kronecker’s delta), |le:llzy=1, and ||é;| sy <2¢
k=1,2, -, d.

Note that d=dim P,BV is independent of (s, t)eU(s,, t,). We explain briefly
how to choose e¢;’s and é,’s. Since P,BV is finite dimensional, we can choose
a basis e, with [les|lsy=1, and min {|les—x|svr|xE[e,, s, -+, €]} =1 in virtue
of the finite dimensional Riesz’ lemma. Thus the functionals &}, e, ---, e} with
ei(e))=0 satisfy |efllp,sv'<227%*. We can extend each e} to a functional é, on
BV with |é,] sy =|e}llppr in virtue of the Hahn Banach theorem.

Combining (6.2), (6.9) and (6.10), we can write

(6.11) Gn= Z (RL")(x)+ Z (PL™5)(xs)
JeP, JEPn

d

= 3 TéPL™per(xn)+ X (EL™X))(xs),
JePy k=1 JePy

where E(s, t)=Py(s, t) in terms of Proposition 3.1. On the other hand, since

P L*=L"P, we have

(6.12) trace (L"R) = 26)(L"Pe)= 3 B e(PL (e,

JePy k=1

1t follows that

(6.13) {.—trace(L"P,)

D> (ék(PlL"XJ)ek(xJ)—ék(PlL"(XJek)))-l—JeZQ (EL™s)(xs)

k=1 JEP,
=I4+1II.
For each %, we obtain
[ex(P L™ )er(xs)—8x(P L (Xses))| = |€x(P.L™"Xs(ex(x7)—er))]
< 2¢CILMAg(er(x ) —ex)llsy

where C, is the constant in the inequality (6.3). Therefore we have

(6.14) 1 = kZd}lZ"ClHL"(XJ(ek(xJ)—ek))HBv.
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We can show that

(6.15) Z LA (f(x)—=fDlev = Z Vf(desssup|G.|+VGy)
JePy JelPy J J J

in the same manner as Lemma 2.6 in [1]. If we choose the neighborhood
W(So, to)CU(S(), to) of (So, to) so that

(6.16) sup esssup|Gn| < C.H
(3,2)EW(8°-t0)

and

6.17) sup sup VG,ZCih"

JEPpy (8. 6)EW (8g.tg) J

hold for some positive numbers C, and C;, we conclude that

(6.18) sup |I| £ CH*”

(8. YEW (8¢, o)

in virtue of the estimates (6.14) and (6.15).
It remains to estimate sup,oewcs,:py |II|. For each J€@,, choose a point
yseInt J and define

L*=GOnL* Ay (kZ2)
(6.19) 7= {

LY, (k=1).
As in (5.2) in Baladi and Keller [1], we can show

(6.20) 1Yiler = VG (4esssuple_1!+TVGk).
J J
Thus we have
(6.21) 2 IYsler <C. VG E*
JePy

holds with a positive constant C, independent of (s, H)&W(s,, t,) and the choice
of y, in virtue of (6.16) and (6.17). As y,, we employ x, which was chosen
before. Observe

(622) L™*X; = LnXJ"‘G(x,])Ln~IXTJ+G(xJ)Ln-IXTJ_G()\z’J)G(Tx'])Ln-ZZTZJ‘i_
o +G(x)G(Txy) - G(T " *x5) LUrn-1s

n-1
= Igﬂ Gi(x )Y res .

On the other hand, the Markov property of T implies that TJe®, if JeP,.,
(k=1). Therefore we can estimate I as follows:

11 =] 2 EL))| = || S 8 Cur)EY rastxy)
Pn 5 n =

nJoJ
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n-1
= IZJO e% k%kZ_JGk(xJ)EYJ (xg)|=

3,3 (LAEY pXT*s))

n-1 ., ~

2 D IR lav £Ces 0% 3 Yylar < Conf™,
=0 J'€Pp—p k=0 J'ePp-p

in virtue of the estimate (6.21), where C, and C, are positive constants inde-

pendent of (s, ¢) in W(s,, t,). The absolute convergence of the series in the

second line is guaranteed as follows :

2 S S IGDEY 2 =S S Lie*(|EY )T x,)
k=0 J'€2n-p JESH, k=0 J'€Pp_p

n-1 vV,
SCuZ 3 IYolw=Cugly

k=1 J'€@Pp-p

by the estimate (6.21), where C,, and C,, are positive numbers independent of
(s, t) in W(s,, t,). This completes the proof of the estimate (6.8). The proof
of the theorem is completed. //

7. Asymptotic distribution of periodic orbits.

In this section we apply the results of Parry [16] to the zeta function
{(s,t) and prove the limit theorems concerning the asymptotic distribution of
periodic orbits of Tea. Lety={x, Tx, ---, TP™-1x} be a prime periodic orbit
of T with period P(7), that is, x, Tx, ---, T?®™~'x are distinct and TFPMx=x.
From the Markov property of T, there are at most a finite number of prime
periodic orbits which contain a division point of a defining partition. The con-
tribution of such a periodic orbit does not influence the asymptotic distribution
of the prime periodic orbits. Therefore we may ignore it. For a prime periodic
orbit y with period P(y) and a function f in F(T"), we define a norm N(f, 7) by

(7.1) N(f, 1) = Seqn f(x) = f(x)+ F(Tx)+ -+ +f(TFD'x),

where x is any element in 7. The %-function 7(f, s) is defined by
(7.2) n(f, s)= El ; N(f, r)exp(—snN(fo, 1)),

where f,=log|T’|. As a consequence of Proposition 3.3 and Theorem 6.1, we
obtain

THEOREM 7.1. Assume that T d satisfies the mixing condition (M) and the
polynomial growth condition (P). If f belongs to Fo(T), then 7(f, s) is analytic
in the domain with Re s>1 and can be extended meromorphically to the neighbor-
hood of the axis Re s=1. Moreover, s=1 is a unique pole of 7(f, s) on the axis
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and it is a simple pole with residue

1 1 1
[fau/ | g1 T 1dp = rap/nuD,
where h,(T) denotes the metrical entropy of T with respect to p.

PROOF. Consider the zeta function {(s, ¢t) given in (6.1). If Res,>1 and
theR, then {(s, t) is well-defined, non-vanishing and analytic in some neighbor-
hood of (s, t,) in CXC. Since T satisfies the condition (P), the function f,—

S: fodpu=fo—h,(T) belongs to F,(T) by Remark 4.1 and the classification theorem

(Theorem 4.2). Therefore the transfer operator L(s, t) with s=1++/—17,teR,
7€ R can not have an eigenvalue with modulus 1 except the case (so, to)=(1, 0).
Combining this fact, Theorem 6.1 and Proposition 3.3, we can see the following :
(1) (s, t) is non-vanishing and analytic in some neighborhood of (s,, t,)
with Re s,=1, Im s,+#0, and ¢,R.
(2) {(s, t) can be expressed in some neighborhood D of (1, 0) as

(7.3) s, 1) = (s, HA—A(s, )7,

where (s, t) and A(s, t) are analytic functions in D with the following properties.
(2.2) (s, t) is non-vanishing in D.
(2.b) A1, 0)=1
(2.c) A4(s, t) coincides with the simple eigenvalue of L(s, t) with the maxi-
mal modulus.

02

ot L. ty=01,0)

I o
= V=1 Sofdp and &

From the definition (6.1) of {(s, t), we can rewrite

(2.d)

e

(8.8)=(1,0)

s, 0 =exp( 5+ Texp(—snN(fo, N+v=TtaN(f, 7).

Thus by taking the logarithmic derivative of {(s, t) at t=0, we have

7.4 oD — V=13 SN, 1 exp (—snN(fo, 1)
= ~/=I7(f, s).

On the other hand, the left hand side of (7.4) can be expressed as
L5, 0) _ X(s,0) . dils, 0)
0,00 1—4G,0) * d(s, 0)

in virtue of the equation (7.3).
Therefore 7(f, s) is analytic in Re s>1 and can be extended meromorphically
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to a neighborhood of {s€C|Res=1}. In addition, s=1 is a unique pole on the
axis Re s=1 and it is simple. By using the equalities in (2.d) above, we can
conclude that

. e A/ =1(s=Dus, 0) _ —+/=12,,0) _ 1
13_{r11 2(f, sis—1)= 1.351 1—1(s. 0) = 20, ‘0) = Sofd#/gofod,u.

Hence we obtain the theorem. //

We can write

(75) 0(f, )= | xRy,

where Ff(x)zzexp(nN(jo,T))él N(f, 7). lkehara’s Tauberian theorem implies
. Fex)y 1

i 0= o

in virtue of Theorem 7.1. If we put
(7.7 n(f, )= DY N(f, r)exp(—=sN(fo, 1)),

it is not hard to see that Theorem 7.1 is valid for 7'(f, s). Thus if we put
F}(x)=Zexp sy msz N(f, 1), we obtain by Ikehara’s Tauberian theorem that

(7.8) Jim T2 S:fd;z/gifody.

$-1 X
Hence we can show the following theorem in the same manner as in [16] and

[17].

THEOREM 7.2. Assume T&d satisfies the conditions (M) and (P). If f
belongs to Fo(T), then we have

N(f, 1) et
(7.9) N(foz»nsz N(fo, 1) ~ th#(T)S"fd#
and
et (1
(7.10 v B N~ e

8. Applications.

First we consider the Gauss transformation

8.1) Tex = 716—_[.31?] ,

where [x] denotes the integral part of x. Clearly T satisfies the mixing con-
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dition (M) and the polynomial growth condition (P). Since Tgx=—1/x% the
function log x —=?%/(12 log 2)&F4(T¢) by the Remark 4.1. Consider the simple
continued fraction expansion of an irrational x<(0, 1):

1
(8.2) X = _——"T— = [al(x)y a2<x>: ] ’
s tamE
where a,(x)’s are positive integers with a,.,(x)=a,(T¢x), n=1, 2, ---. The

n-th order convergent of x is written as

1 = [al(x>7 aZ(x)y Tty an(x)]y
az(x)‘f“

Pal) 1
8.3) =
B g+

aq(x)

where p,(x)/g.(x) is the reduced fraction. It is well-known that

8.4) }1og gn()+ :Z;}:log Tix| <2
and
©5)  (@a® - ar — (14 ) e (1)

(see [4, Chapter 7]). Therefore the central limit theorem applied to log x and
log a,(x)=20%%0 Xa/cx+1),1/271l0g k reads:

THEOREM 8.1. There are positive constants V., V,, C, and C, such that

(8.6) asg&)m{x € (0, 1)|exp(a~/n +7°n/12 log 2) < ga(x)
alb

< exp (bv/n+mtn/12 log 2)} — Sbexp(—-tz/(ZVl))dt! <c,

1 1
V27V, N3

and

8.7 sup \m{x e (0, l)lexp(a n+ ﬁ (L+1/(k2+ k))dlos k)/(lng)n)
a&b<EbR k=1

< 0,(X)ay(x) - an(x) < exp(b\/ﬁ+kfjl<1+1/<k2+k>><’°swwn)}

| exp(—r/@V | ' €
— g7 P (—/@V )t S Cogr

a

This theorem gives an improvement of the results in [19, p. 37, Theorem
2.1.2]. If we apply the local limit theorem Theorem 5.2 to the same functions,
we obtain :
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THEOREM 8.2. For a<b, we have

8.8 Ll_l:& Vnm{x € (0, 1)|exp(a+/n+x2/(12 log 2)+a) < ¢.(x)

< exp(bv/n+n%/(12 log 2)+a)} ——(b—a)72-%r=v=

(a—(n*n)/(12 log 2))2)

2Vin =0

~exp(—
locally uniformly in a and

(8.9) lim sup \/ﬁm{x e (0, 1)|exp(a v+ i[l(l—i—l/(kz—%- k))dlos ’”“““’—i—a)

n-co a€ER

< ax(x)ay(x) - ax(x) < exp(bvat ILA+1/(k+ ) 0s 108D 4 o))

1 a?
—=0) Uy ;eXp(” zvzn)i =0.
Iffiwe apply Theorem 7.2 to T, we have:
THEOREM 8.3. For any f€%(Tg), we obtain
d t
(8.10) WLn S S 4,

NfonstN(fo, 7))  wiJoldx
and
e’ (1 f(x)
@.11) N(foz.r)stN(f’ 2 ?So 1+x dm,

Next we show a limit theorem on the digits a,(x), ax(x), --- by using the
transformation T, (s>1) in Example 1.2. If x<(0, 1) is a periodic point of Tg
with period p, we write x=[a,(x), ax(x), ---J=[a:(x), ax(x), -+, d,(x)]. The
periodic points of T¢ and those of T, are under the one to one correspondence
so that the T,-periodic point y corresponding to [d,(x), as(x), --+, dp(x)] satisfies
[(TEY(9)| =Cr(s)P(a:s(x)as(x) -+ ap(x))’. Let y={x, Tex, -, TV 'x} be a prime
periodic orbit of T¢. Then 7y can be regarded as a GL(2, Z)-orbit equi'{falence
class of reduced quadratic irrationals. Put M(y)=a,(x)as(x) -+ apy(x). Then
Theorem 7.2 applied to T, gives:

THEOREM 8.4.

slogt

#{r| Cr(S)FD M (7) S t} ~ m

for s>1.

In the sequel, we explain briefly the relation between Pollicott’s paper [20]
and our results. Consider the geodesic flow ¢, on the unit tangent bundle T'M
over the modular surface M=H/PSL(2, Z), where H denotes the complex upper
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half plane. Its closed orbits naturally correspond to the periodic orbits of the
Gauss transformation Ts. For example, a ¢,-closed orbit which corresponds to
a Tg-periodic orbit {[d: Gier, **+, Qan, -+, @1 1}3% has the least period
—2log 3%, [ds, G4y, =+, Qon, -+, G;-1). For details, one can consult [20] and
[26]. Pollicott uses the Mayer’s results in [13] on the zeta function which are
based on the study of the transfer operator acting not on BV but on a class
of holomorphic functions. Any way most results in [20] can be reduced to the
study of the analytic properties of the z-function defined by

®12) s N= 5> 8 (AT e, e, b))

1N aj.~agy\i=1
2n . . .
'tnl[ai: Qivr, 5 Qany ooy G311
Noting that log|(T%)|=(x-Tex)™? we can write

i, N= 35~ 3 (S0 +rromin)em(SoelTsrm)

n=1 T T(2;1=.t
=9(f+fTq, s)

in our notation if we employ T% as T in the equation (7.2) or (0.9). Thus we
can apply the results in Section 7 to fegZ(T§) without approximating it by
suitable analytic functions because it is easy to see that T% is also in g and
satisfies the conditions (M) and (P). For example, take logx as f we can
prove Sarnak-Woo Theorem which asserts #{y|exp({(y))<t}~t/(logt) (t— o),
where 7 denotes a prime closed orbit of ¢, and /() denotes its hyperbolic
length.
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