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   0. Introduction. 

   A transformation T from the unit interval [0, 1] into itself is called a 
Lasota-Yorke transformation, simply, an L-Y map, if it is piecewise CZ and 
uniformly expanding. A partition ~P= {I;}; of [0, 1] consisting of intervals is 
called a defining partition for an L-Y map T if T Intl; is of class C2 and the 
end points of I;s are necessarily singularities of T. We consider a class Er of 
L-Y maps which have an infinite defining partition with Markov property. A 
typical example of such a map is the so-called the Gauss transformation TGx= 

(1/x)-[1/x], x~[O, 1], where [x] denotes the integral part of x. We regard 
two maps to be identical if they coincide up to a set of the Lebesgue measure 
zero. Therefore the maps need not be defined for all x [0, 1]. 

   The purpose of this paper is to study the following problems for the map 
TEEr by using the spectral properties of the transfer operators acting on the 
space BV =BV ([0,1]->C) of functions of bounded variation 

   (I) The integral central limit problems and local ones for the sum 

                                                  n-1 

(0.1) Snf = f °Tk, 

where f is a real valued function belonging to an appropriate function space. 

   (II) The problem on the asymptotic distributions of the periodic orbits of T. 
   For the sake of simplicity we assume in Section 3 the mixing condition (M) 

which implies that T has a unique absolutely continuous invariant probability 

measure p with support [0, 1] and the measure-theoretic dynamical system 

(T, p) is mixing. Usually the main goal of the problem (I) is to show the 
central limit theorem which states that there is a positive number V such that
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(0.2) x E [0, 1] l a< 1 Snf (x)-n l f dpb           ~ ~n o 

                - 1 b exp -- t2 dt . 
                ~l2nV a 2V 

The number V is called the limiting variance which will be given by 

(0.3) V = lim 1 1(Snf (x)- 1f d )2d . 
                                         n-.~ n o o 

If the self-correlation 

(0.4) R(f) = o (foTn_fdp)(f_fdp)dp                                 oo

decays rapidly, then the general theory for the stationary sequences can be 

applied to { f oT n} n~o. In fact many authors proved the central limit theorem 

(0.2) by showing that R(f) decays exponentially fast as n goes to 00 if f 
belongs to a nice class of functions (see [7], [8], [10], [22] etc.). But most 
results are incomplete because they make assumption that the limiting variance 

does not vanish, although the convergence of the limit in (0.3) is guaranteed 

by the exponential decay of Rn(f ). 
   One of the remarkable facts we shall prove later in Section 4 is that the 

limiting variance turns out to be positive whenever f is a non-constant function 

in E'(T ). The space F(T) will be defined to contain log j T' as well as all the 
real functions of bounded variation (see Section 1). Moreover, the transfer 

operator approach allows us to prove in Section 5 not only the central limit 

theorem (Theorem 5.1) but also the so-called local limit theorem in the follow-
ing general form : 

   THEOREM 0.1 (Theorem 5.2). Let f be a function in EF(T) which is not 

i identically zero with 
o f dp=0. Let V be the limiting variance as in (0.3). Then 

for any rapidly decreasing function u on R and any function g of bounded varia-
tion on [0, 1], the following asymptotic formula holds : 

(0.5) limsup -/n u(Snf(x)+a)g(x)m(dx) 
                  n-.oo aEB o 

            - u(t)0 , a(dt) g(x)m(dx) ~1 VeXp - a2 2nV = 0 

l where m denotes the Lebesgue measure on [0, 1] and {fin, «} n, « is a bounded 

family of Radon measures on R which are expressed by using the Fourier trans-

form u(t)= e--~tyu(y)dy as
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(0.6) _~u(t)~n,a(dt)= k~~u(ka)exp((k(nb+aa))). 

In the above a(0, 00] and 0<b<2~r are quantities determined by f (see Theorem 
5.2). We adopt also the convention that u(oo)=0 and 0• oo=0. 

   Similar assertions have been obtained in [15] for a general L-Y map T and 
for a f EBV([0,1]--~R). The present space Ef(T) coincides with BV([0,1J-~R) 
if T has a finite defining partition. However, if T has an infinite defining 

partition, F(T) contains many unbounded functions. For example, if we con-
sider the Gauss transformation TG, the functions logx and ~k 1X(1/(k+1),l/k](x) 
X logk belong to i'(T G). It is well-known that these functions play important roles 
in the study of the metrical theory of continued fractions. This is one of the 
reasons why we restrict ourselves to the maps in the class if and extend the 
results in [15] to the functions in EF(T). 

   Concerning the problem (II), we owe a great deal to the results in Parry 

[16] and Baladi and Keller [1]. We consider the ,-function 

(0.9) (f, s) = n (Snf)(x) exp (-s(Snf o)(x)) 
                                      T x-x 

for f E E(T ), where f o=log i T' I . We can show that (f, s) is analytic in the 
domain Re s>1 and it can be extended meromorphically beyond the axis Re s=1. 
The analytic properties of i (f, s) are closely related to the local limit theorem 
in the above, and therefore the problem (II) is linked to the problem (I). More 

precisely, if the function f o=log I T' I satisfies a certain condition which ensures 
a=a(f o)=oo in the local limit theorem (0.6), then s=1 is a unique pole of 
ri(f , s) on the axis Re s=1, and it is a simple pole with residue 

                    i 1 1 

               of dp ologl T' I d;a = of d~/h~(T), 

where h(T) denotes the metrical entropy of T with respect to p. In other 
words (f, s) can be expressed as 

(0.10) r1(f, s) = of d,uh(T)-1(s-1)rl-E-~(s) 

in a neighborhood of Re s=1, where ~5 is an analytic function in the neigh-
borhood. It is meaningful to give a sufficient condition for a(f a)=oo in The-
orem 0.1. We shall prove in Section 4 that if we can label the member of the 
defining partition so that 

(P) 0 < lim ( sup I T' I j-p) < 
                                           j-.oo Intl j 

for some p>1, then we have a(f o)=oo. The condition (P) will be called the
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polynomial growth condition (for T'). It is clear that the Gauss transformation 
satisfies the condition (P). An answer to the problem (II) is the following : 

   THEOREM 0.2 (Theorem 7.2). Assume that T Et satisfies the mixing con-
ditions (M) and the condition (P). Let r denote the prime periodic orbit of T 

and P(r) denote its period. For g~ EF(T), let 

                                           P(r>-~ 

                 N(g, r) _ ~ 
k0 g(Tkx) for x T. 

= Then we have 

(0.11 ~ NCf, r) ~, et 1 ) N(fo,r)st N(f o, r) th:(T) of dP 

and 

(0.12) N(f~r)tN(f r)^~ h:et(T) 1fd, 
as t-" o, where f o=log T' I , and h(T) denotes the metrical entropy of T with 
respect to fc. Here we write a(t)-'b(t) i f limn . b(t)/a(t)=1. 

   The proofs of Theorem 0.1 and Theorem 0.2 are carried out in the same 

way as the proofs of Theorem 4.1 in [15] and Theorem 4 in [16] respectively. 

To this end we introduce the transfer operators L(s, t) for T defined by 

(0.13) L(s, t)g(x) _ Ty=x I T'y I -sA(y)~= tg(y) 

with A(x)=exp (f (x)) for f E E(T). 
   By using the method in [7] (see also [1] and [24]), we prove that there 

is a neighborhood U of the set {(s, t) I Re s 1, t R} in C X C such that the 

family {L(s, t)} (s, t)Ev becomes an analytic family of quasi-compact operators on 

BV=BV([0,1]-~C) which have the essential spectral radii uniformly less than 

1. This fact enables us to apply the results in Baladi and Keller [1], Morita 

[15], and Parry [16] to our problems (I) and (II). We would like to note that 
any Markov map f K constructed in Bowen and Series [3, Section 2] associated 

with the Fuchsian group with parabolic elements behaves similarly to the mem-

ber of r satisfying the conditions (M) and (P). Therefore we expect that our 
results work well in the study of dynamical properties of the geodesic flows on 

the corresponding Riemann surfaces. For example, in the last section, we try 

to explain the relation between our results and the results obtained by Pollicott 
in [20] which are concerned with the metrical theorems for the closed orbits 

of the geodesic flow on the modular surface. We must note that Pollicott uses 

the results in Mayer [13] on the zeta functions for the Gauss transformation 

TG and Mayer makes a further investigation for the zeta functions for TG in 

terms of the thermodynamic formalism in his recent paper [14].
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   In the first section we prepare some basic facts. The next three sections 

are devoted to the study of the spectral properties of transfer operators L(s, t). 

In Section 5, we give a proof of the local limit theorem. In Section 6 and 

Section 7, we consider the second problem and prove Theorem 0.2 (Theorem 
7.2). In the last section we give new metrical theorems for continued fraction 

expansions and make some comments on the Pollicott's paper [20] 

   The author would like to express his gratitude to Professor H. Nakada who 

introduces the paper [20] to him. 

   1. Preliminaries. 

   In this section we prepare some definitions and notations which will be used 

throughout the paper. We denote by m the Lebesgue measure on [0, 1]. Unless 

otherwise stated, we ignore the difference occuring on an m-null set. This 

causes us no trouble because all the phenomena appearing in this paper are 

observed by the Lebesgue measure. A transformation T from the unit interval 

into itself is called a Lasota-Yorke transformation (an L-Y map in abbreviation) 

if it satisfies the following conditions (see [12]) : 

(L-Y.1) There exists a partition P_ {I;}; such that (a) T I Int I; is of class C2 
      and can be extended to I; as a C 2-function, and (b) the set of intervals 

      {T(Int I;)}; consists of a finite number of distinct intervals. 

(L-Y.2) (Lasota-Yorke condition). There is a positive number c<1 such that 
       ess infXE[o, l] (T N)'(x) I > 1/c for some positive integer N, where T N 

N 

       denotes the N times iteration T o T o ... o7' of T. 

   For any L-Y map, the partition ? in the above can be chosen to be minimal 

in the sense that if Q= {Jk} k is another partition satisfying (L-Y.1), then for 

any k, there is j= j(k) with Int I; DInt Jk. We call such a minimal partition a 

defining partition for T. We note that the defining partition is unique up to the 

difference of the endpoints. It is easy to see that if T is an L-Y map, so is 

Tn for each n>_1. 
    Our main concern is a class 2' of L-Ymaps defined as follows. An L-Y 

map T is an element of the class 2' if it satisfies the next three conditions : 

(T.1) (Markov property). The defining partition ~?_ {I;}; is a Markov partition 
     for T in the sense : 

          T (Int I;)nlnt 1k * 0 implies T (Int I;) Int 1k. 

(T.2) (Strong Renyi condition). There is a positive number b=b(T) such that 

                     sup ess supxEJ; I T"x I < 

                                                               00, 

                          ess infxE1; T'x I2 b 

and
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     m(I)1 < oo. 

(T.3) T(Int I;) _ (0, 1) for infinitely many j. 

   REMARK 1.1. If T is an L-Y map satisfying the condition (T.2), then there 
is a positive number C such that 

             CT-1(ess J of I T' )-1 <_ m(J) <_ CT(essJinf T' I )-1 
for any element J of the defining partition ? for T. In fact, if x, y Int J 

for JET, we have 

                        T,x-T,y < esssupjIT"I I x-yl      T '
y I T'yl I T'yl 

                                  ess supJ I T" 
ess inf I T' I I x-y I.                                IT'

yless infjIT'I J 
Since 

(1.2) essJinf (m(J) I T') <_ J I T' I dm <_ 1 

and 

(1.3) ess sup(m(J) I T') >__ I T' I dm >_ min I T' I dm > 0 
                  J J JET J 

by the condition (L-Y.1) (b), we obtain the desired inequality in virtue of the 
Renyi condition. 

   REMARK 1.2. It is clear that the strong Renyi condition (T.2) implies the 

original Renyi condition ess sup[01] I T" I / I T' 12 < 00. If T has a finite defining 

partition, these are equivalent to each other. 

   For any Borel measure v on [0, 1], and 1 <_ p <_ oo, L(i) denotes the usual 

Lp-space with norm I gII p, v= 0l l g l pdi 1~p if p < oo, and I g ~, v = v-ess sup I g 
BV=BV([0, 1]-~C) is the totality of elements in L1(m) with version of bounded 

variation. BV([0,1J-->R) denotes the subspace of BV consisting of real valued 

elements. For g~BV, we define Yg and Vg as the infimum of the total 

variations taken over all the versions of g on [0, 1] and J, respectively. It is 

easy to see that II gII BV, p=IIgi p, m+Vg becomes a Banach norm on BV for each 

p. Since we can show II g II Bv,1 < I g II Bv, <_ 2II g II Bv,1 for g By, the norms 

II g II Bv, p are all equivalent. Thus we always regard BV as the Banach space 
with norm II g II Bv= II g II Bv, ~, unless otherwise stated. 

   Now we introduce the function space F(T) for an L-Y map in T in the 

following way : A real valued measurable function f is an element in (T) if 

it satisfies the next three conditions : 

   (F.1) For each JEc, f I J has a version of bounded variation.
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   (F.2) There is a positive number C=C(f) such that f I <_log T' I +C holds 
m-almost everywhere. 

   (F.3) sup,E~VJ f <oo and limV,n f =0 for some sequence of intervals 
{Jn}ncc with T(Int J)=(0, 1) for n>_1. Here {J} is the defining partition 
for T. 

   If T has a finite defining partition, F(T) coincides with the space BV([0, 1] 
-~R) but if T has an infinite defining partition , unbounded functions like 
log T' belong to F(T). 

   REMARK 1.3. If we put A=exp (f), then the conditions (F.1), (F.2), and 

(F.3) are equivalent to the following conditions (1), (2), and (3), respectively : 
   (1) For each J E P, A J has a version of bounded variation. 

   (2) There is a number C'=C'(f)>_ 1 such that A I T' I <_ C' and A J T' -1> 
C'-1 hold m-almost everywhere. 

   (3) supJE~(V,A/ess inf,,A) < cc and limny~(VrnA/ess inf,nA) = 0 for some 
sequence of intervals {Jn} ncc' with T(Int J)=(0, 1) for n>_1. The expressions 
of (1), (2), and (3) are sometimes more convenient than those of (F.1), (F.2), 
and (F.3). 

   In the rest of this section we give typical examples of the elements of r. 

   EXAMPLE 1.1. The Gauss transformation T Gx = (1/x )- [ 1 /x ] has the defin-
ing partition 

                        1 11100 
           k+1' k k=i' 

   EXAMPLE 1.2. For s>1, we define a transformation T3: [0, 1]-[0, 1] by 
   Tsx = - R(s)k'(x -1 + ~R(sY' En_ln-s) for x (1-~R(s)-' n-s~ 1-

'ZR(s)-1 ~L n-'], k =1, 2, •.. , where CR(s) is the Riemann's zeta function. 
                            N n -i k n- k n k    EXAMPLE 1.3. T x=2n(x-}Jk_12-) for x E [~k=i12- , n=1, 2, , 

where we regard ~L2-k as 0. 

   These transformations are well-defined on [0, 1] except for countably many 

points. 

   2. Analytic family of transfer operators. 

   In this section we consider the transfer operator which has the form : 

(2.1) LGg(x) = G(y)g(y) 
                                              Tny=x 

Here G is an m-measurable function and g will be chosen from BV. First of 

all we recall the results in Baladi and Keller [1, pp. 463-466] and apply them to
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our situation. Let T be an L-Y map with defining partition ?= {J} . If G 

satisfies 

(2.2) 8 = lim G n II t, <1, 

and 

(2.3) M= ess sup G I < oo,                                     JET J 

then LG can be realized as a quasi-compact operator acting on the space BV 

with 

(2.4) II Lc! BV < 3(VG+M), 

where Gn(x)=G(x)G(T x)• • •G(T 1 'x). More precisely, let fin= j J} be the defin-

ing partition for T n. We choose a point xJ from Int J for each member J of 

   and define an operator Il n by 

(2.5) Hng(x) - XJ(x)g(xJ), 
                                        JE ~' 

where X, is the indicator function of the interval J. Then for any 8 with 

8<B<1, we can choose a positive number C0 depending only on VG, M, and 
the minimal positive integer n0 such that II Gn O, m<~n for any n>_ no, and 

(2.6) II LG-LG11 nI BV - C0 

holds. Since LGII n can be easily seen to be a nuclear operator in the sense 

of Grothendieck, and consequently, a compact operator on BV, we conclude 

that LG is quasi-compact. For details, one can consult the paper [1]. Keeping 
these facts in mind we consider the operator with the form : 

(2.7) L(s, t)g(x) = LG(s, t)g(x) = G(s, t)(y)g(y), 
                                                       Ty=x 

 where T is an L-Y map in T, G(s, t)= i T' I -SAC-1t, and A = exp (f) with f 
 F(T). The main purpose of the present section is to prove : 

    LEMMA 2.1. Let T belong to T and let L(s, t) be as in (2.7). Then there 
exists a neighborhood U of the set {(s, t) I Re s>_1, tcR} in C X C such that the 

family {L(s, t)} cs, t)EV becomes an analytic family of quasi-compact operators and 
 limny~IjG(s, t)n ~!<8 holds for any (s, t)~U and some 0<1. In particular, the 
 essential spectral radii of L(s, t)'s are uniformly smaller than 8. 

    PROOF. For s=Q+'V-lz with i1, r€ R we put 

 (2.8) G(s, t) = I T' I _sAV=1t' 

 and
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(2.9) G(s, t, k,1) = I T' -'A' t(logl T' )k(logA)l for k, l = 0, 1, 2, 3, 

Let us write formally, 

                                       (~/_1)2k+t (2.10) L(s+p, t+q) = LG(s+p, t+q) = k ! l ! pkglLG(s, r. k, i) 

for (p, q) EE C X C. If we show that there are positive numbers C,, C2, a, and 

b which are independent of k,1, and (s, t) with Re s >_ 1 and t R such that 

(2.11) VG(s, t, k, l) _< C,(I s I + I t I )k ! 1 ! a kb, 

, and 

(2.12) ess sup G(s, t, k, l) j <_ C2k ! l ! a kbl ,                       JET J 

then LG(s, t, k, ~)'s are realized as operators on BV with norm not greater than 

3(C,( I s I + t I )+C2)k ! l ! a kbl in virtue of the inequality (2.4). Therefore the 
right hand side of the equation (2.10) is absolutely convergent with respect to 

the uniform operator topology provided that p <a-1 and qI <b-'. Combining 
this fact with the estimate (2.6), the lemma is easily verified. 

   Before we prove the estimates (2.11) and (2.12), we note that there are 

positive numbers C3 and C4 so that 

(2.13) sup sup I x _< C 3                              JE~t x. yEIntJ I T' y I 

and 

(2.14) I logA I <_ I log I T' H +C 4. 

Indeed, (2.13) follows directly from Remark 1.1 and (2.14) is an easy consequence 

of the condition (F.2). 

   Now we choose a small number E so that 2s <o, where b is the number 

which appeared in the strong Renyi condition (T.2) in Definition 1.1. For s= 

Q + f 4r with o' 1, v E R, we have : 

   G(s, t, k, 1)(x) I = I T 'x I -SA(x)~=t(log T'x )k(logA(x))l 

         <_ ( T' x log I T' x I I k i log A(x) I 

           T'x I I log I T'x I k i log T'x I iC4-i (by (2.14)) 

          < I T'x I +2E T'x -E log I T'x I k l T'x -E I log T'x 11C4-i . 
                                                                 i=o 2 

Applying the inequality x-' (log x)7' <_ (ae)-nnn for x >_ 1, and a > 0, to 

 T'x I -E log I T'x I n, we obtain
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(2.15) I T'x I -E 1 log I T'x I 1 n <_ max{(ess inf I T'x I -E) I log ess inf T'x I -~ 1 n, (ae)-nnn} 

                       ~ Cnnn                  - 5 

for some positive constant C5 depending only on T. Therefore we have 

(2.16) ess sup I G(s, t, k, l)1 < ess sup I T' I -°+ZECSk k l CizC4-1 
                J - J ti=o 2 

                         <_ ess sup T' I _1+3Cb(C4+C5)`kkll . 

J 

   On the other hand, we know 0<infJE~ ess supj T' ( m(J) from the inequality 

(1.3). Combining this with (2.13), we have (ess inf, I T' )-1+S<_(C3m(J))1-~. The 
sum of the right hand side taken over all J Ec is convergent due to the second 

inequality of the strong Renyi condition (T.2). Thus we obtain 

(2.17) ess sup 1 G(s, t, k, l)1 ess sup I T' I -1+SC5(C4+ C5)t k klt 
            JET J JET J 

                          = C6C6(C4+C5)1kklt. 

Applying the Stirling's formula lim(n !/nn+112e-n 2~r )=1 to the inequality 

(2.17), we obtain the inequality (2.12) with a=C5, and b=C4+C5. 
    Next we choose any x, y E Int J and consider 

G(s, t, k, l)(x)-G(s, t, k, l)(y)=D1+D2+D3+D4, where 

        D1= (I T'x I -s_ I T'y I -3)A(x)~=1t(log l T'x ( )k(logA(x))`, 

        D2 = I T'y I -S(A(x)~=1t_A(y)~=1t)(log I T'x )k(logA(x))l, 

        D3 = I T'y I -3A(y)J=1t((log I T'x I )k-(log I T'y I )k)(logA(x))l 
and 

        D4 = I T'y I -sA(y)~=11t(log T'y I )k((logA(x))l-(logA(y))1) 

Then we have 

 

IDS I <_ I s ess sup (I T' -1 I T„ I) x-y l log I T'x I k logA(x) I t 

J 

     <__ s esssup( T,I- 1+2~IT"I)esssup(IT'I-2s)IIogIT'xI k11ogA(x)IlIx-y1 
                J J 

By using the strong Renyi condition (T.2), (2.13), (2.14), and (2.15) we obtain 

(2.18) 1D11 I s I l x-y I C7C5(C4+C5)tkkli 

in the same way as (2.16). For D2, 

     1D21 21 t 1 ess sup(I T' I -°)±A (x)-A(y)1 log T'x I k logA(x) .                   J ess inf
JA 

Therefore we have 

(2.19) D2 2l t less sup( IT' I +2s) I A(x)-A(y) I C8C5(C4+C5)' kkll ,                     J ess inf
JA
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in virtue of (2.13), (2.14), and (2.15). Next, 

(2.20) ID31 <_es Jsup(IT~I-)kesssup(IT,I-111ogIT'Ilk-1)IlogA(x)1~1x_y 

            ess sup(I T' ( +2e) I x_y I C9Cn(C4+C6)~kkll 

J in the same way as the above. Finally we have 

(2.21) I D4 I <_ ess sup(I T' I -~) I togI T' l I kl ess sup I logA(x) I-1 I A(x)-A(y) i                 J J ess infJA 

          <_ ess sup ( T' 1 +2e) I A(x)-A(y) I C10C5(C4+C5)' k kP .              - J ess inf
JA 

(2.18), (2.19), (2.20), (2.21) and the condition (F.3) imply 

             VG(s, t, k, l) <_ (It I + I s I )C11C6(C4+C5)lkkP . 
                 JET J 

Thus we conclude that 

(2.22) VG(s, t, k, l) <_ VG(s, t, k, l)+2 ess sup I G(s, t, k, l)1 
                             JET' J JET J 

                 <_ (It I+ I s I )C,2C5(C4+C5)`kkP . 

Here we have used the inequality (2.17). Applying the Stirling's formula again 

to the inequality (2.22), we obtain the inequality (2.11). This completes the 

proof of the lemma. // 

   REMARK. We do not need the Markov property of T for the validity of 
Lemma 2.1. The conditions (L-Y.1), (L-Y.2), and (T.2) on T are sufficient. 

   3. Spectral properties of L(s, t). 

   As a consequence of Lemma 2.1 in the previous section and the general 

perturbation theory for linear operators in [5], and [11] (see also [1]), we 
obtain the spectral decomposition of L(s, t). 

   PROPOSITION 3.1. Let T E r. Consider the neighborhood U of the set 

{(s, t) I Re s>_1, t~R} in C X C and the number B<1 which appeared in Lemma 
2.1. For any (so, to) U, choose any 0>0 so that L(so, to) has no eigenval ues 

N with modulus B as an operator on By. Then there is an open subset U(sa, to) of 

U and there are analytic families {M(s, t)} (g, t)Evcso, to) and {R(s, t)} cs, t)EU(so, t0) of 
operators on BV such that the following spectral decomposition holds 

(3.1) L(s, t) = M(s, t)+R(s, t), 

                                   n(s, t, B) 
(3.2) M(s, t) = A;(s, t)E;(s, t)(E;(s, t)+N;(s, t))
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and 

(3.3) R(s, t) = E(s, t)L(s, t). 

In this decomposition, t) are the eigenvalues of L(s, t) on BV with modulus 

greater than 8, and E1(s, t) are the projection operators onto the finite dimensional 
eigenspaces corresponding to A,(s, t). n(s, t, B) is the number of the Jordan blocks 
of the operator L(s, t) restricted to the finite dimensional space spanned by these 
eigenspaces, and the operators N,(s, t)=(L(s, t)-A,(s, t))E,(s, t) are nilpotent. The 
operator E(s, t) is defined as the projection onto the complementary subspace of 

     e'E
,(s, t)BV and therefore R(s, t) = E(s, t)L(s, t) has the spectral radius 

not greater than 8. In particular, we have 

                                   n(s, t, B) 
(3.4) E,(s, t)+E(s, t) = idBv, 

                                     j=1 

(3.5) E,(s, t)L(s, t) = L(s, t)E,(s, t), 

(3.6) E1(s, t)E,(s, t) = E,(s, t)E1(s, t) = o ,,E,(s, t), 

(3.7) E,(s, t)E(s, t) = E(s, t)E,(s, t) = 0 , 

and 

(3.8) E,(s, t)Nj(s, t) = Nj(s, t)E,(s, t) = N,(s, t). 

   PROOF. We only give an outline of the proof because this proposition is 

proved in [1, Section 2] in the case that (so, to) is fixed. Since {L(s, t)} is an 
analytic family in (s, t)~U in virtue of Lemma 2.1, we can choose an open 
neighborhood U(so, to)CU of (so, to) and numbers 81, and 82 with O1<<82 
such that the set {zE C ! 81 <_ z I <_ e2} is contained in the resolvent set for L(s, t) 
for all (s, t)EU(so, to) and p=sup(s, t)EU(so, t0) II L(s, t) Bv< 0. Then we have the 
following analytic families of projections defined by the Dunford integrals : 

(3.9) P1(s, t) = 1 2 S(z-L(s, t))-1dz                                 ?C'J-1 lil=p+1 izl=2 

and 

(3.10) P2(s, t) = 1 (z-L(s, t))-'dz.                                  2rrs,/--1 Izl=e1 

Clearly, E(s, t) in (3.3) must be P2(s, t), M(s, t) in (3.1) must be L(s, t)P1(s, t) 
and the Jordan decomposition for M(s, t) on P1(s, t)BV gives the decomposition 

(3.2). // 

   From now on we impose the following mixing condition (M) on the map 
Tiny'. 

   (M) T has a unique m-absolutely continuous invariant probability measure
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12 with support [0, 1], and the measure-theoretic dynamical system (T, ~u) is 

mixing, i.e., lim ~gioTng2dp = lgidi 'g2dlt for any g1, g2EL2(p). 
                        n-+oo 0 0 0 

   The Radon-Nikodym derivative d;a/dm will be denoted by h0. It is well-
known that it has a version of bounded variation (see [12]). 

   REMARK 3.1. As noted in [15], the condition (M) is not essential for our 
arguments. In fact for TE E', any absolutely continuous invariant measure has 
a density in BV and can be decomposed into a finite number of ergodic com-

ponents. Each ergodic component can be decomposed into finitely many mixing 
components which are mapped cyclically by T. For details one can consult 

[7] and [24]. 

   REMARK 3.2. If TE r satisfies the condition (M), the density ho satisfies 
ess inf h0>0. In particular, 1/h0 is also in By. Although this is a well-knownn 
fact, we give the proof for completeness. 

   Suppose this is not true, there would be a point x0 E [0, 1] such that 
h0(x0-)=o or h0(x0+)=0 holds for any version of ho. From now on, we fix 
a version of h0 and write it as ho again. It is well-known that ho satisfies the 
Perron-Frobenius equation 

              LTh0 = 1 
T x T'y h0(y) = h0(x), m-a.e.                                    y- I 

where LT (=L(o, l) in our notation) is the so-called Perron-Frobenius operator 
for T with respect to the Lebesgue measure m. We prove that there is an 
open interval on which h0(x) = 0. This contradicts the condition (M). We 
assume x0 E (0, 1). In the case x0=0, or 1, we can show a contradiction in the 
same way. Take any open interval I. Then for any e>O, there exists n0= 
n0(E) such that m(T nIf(x0-~, x0+~))>0 for n>_ n0 since the dynamical system 

(T, p) is mixing. This implies that there is an element J~ of the defining 
partition 5P for T T' such that Int Ir\Int JF ~ O and m(T nJ~ (1(x0-~, x0+E))>0 
for all n>_ n0. If there are infinitely many n with T n(Int J~) (x0-~, x0+~), 
there is a point y in the m(J8 )-neighborhood of I such that h0(y-) = 0 or 
h0(y +)=0 by the Perron-Frobenius equation. On the contrary, suppose that 

we can choose a sequence ~k 0 so that x0 Tn Int (Jfik) for infinitely many n. 
Then we can choose a sequence nk<nk+i such that either sup TnkInt (J~k)<x0 
+Ek and sup TnkInt (JEk) > sup Tnk Int (JBk+i) for all k, or inf T nklnt (Jfik)>xo-~k 
and inf Tnk Int(J~k) < inf Tnk Int(JEk+1) for all k. But this is impossible because 
T is Markov and there are at most finitely many points which can be the end 

point of T(Int J) for JET in virtue of the condition (L-Y.1) (b). Since the 
interval I is arbitrary, we conclude that D_UD+ is dense in [0, 1], where
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D_= {y ho(y-)=0} and D+= {y I ho(y+)=0}. Therefore either the closure of 
D_ or the closure of D+ must contain an open interval. On such an interval 
ha must vanishes. We now reach the desired contradiction. // 

   REMARK 3.3. The maps in Example 1.1, Example 1.2, and Example 1.3 
satisfy the condition (M). Some sufficient conditions for T to satisfy the con-
dition (M) are discussed in [2]. 

   We recall Proposition 1.1 in [15] for the later convenience. 

   PROPOSITION 3.2. Let LT be the Perron-Frobenius operator for T as above. 
Let L be the operator acting on L1(p) which is defined by 

              L g = d 1gdp for gE L1(p) . 

Then for gE L1(p) and S1-valued measurable function ~5, the following are equi-
valent: 

(1) LT(~5gho) = gho in L1(m), 

(2) L(cg) = g in L1(p), and 

(3) goT - ~bg in L1(p). 

   Now we are in a position to state the main results in this section. 

   PROPOSITION 3.3. Let T be a map in T satisfying the mixing condition (M) 
and UCCXC be the open set which appeared in Lemma 2.1. Then we have the 

following: 
   (1) For each tSR, L(1, t) can be extended to an operator on L1(m) with 

norm not greater than 1. 

   (2) If to~R and L(1, to) has an eigenvalue with modulus 1 as an operator 
on L1(m), then the corresponding eigenf unction must be a constant multiplication 
of ho. 

   (3) For each t0ER, L(1, to) has at most one eigenvalue with modulus 1 as an 
operator on L1(m). 

   (4) For each to E R, there is an open set V(1, t0) of (1, to) in U with the 
following properties : 

   (4.a) If L(1, t0) does not have an eigenvalue with modulus 1, then the spectral 
radius of L(s, t) as an operator on BV is less than 1 for any (s, t)EV (1, t0); 

   (4.b) If L(1, t0) has an eigenvalue 2(1, to) with modulus 1, then L(s, t) has 
the spectral decomposition 

(3.11) L(s, t)' = 2(s, t)TE1(s, t)+S(s, t)n, for n >_ 1 

as an operator on BV for (s, t)~V(1, to) with the following properties :
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   (4.b.1) A(s, t) is the analytic function in V(1, t0) and coincides with the simple 
eigenvalue of L(s, t) with maximal modulus. Moreover we have 

(3.12) dA(; t) = /-1 1 fdpA(1~ t0)                               d t=t° o 

and 

(3.13) d22(1' t) 1 1 n-~ ~ 2 
                   p _ -lim - f T k - f d d ~(1, t0)                    dt2 t=t n-.~ n O k=0 0 

                  = -A(1 , t0)V (f ) 

   (4.b.2) E1(s, t) is the projection operator onto the one dimensional eigenspace 
corresponding to A(s, t) which depends holomorphically on (s, t) E V(1, t0) and 

satisfies 

            1 1 1 

(3.14) E1(1, t°)gdm = gdm and S(1, t°)gdm = 0 for any g E By. 
           0 o A 

   (4.b.3) S(s, t) is the operator valued holomorphic function in V (l, t0) with 
spectral radius less than 1 as the operator on By. 

   (4.b.4) E1(1, t0) and S(1, t0) are extended to bounded operators on L1(m) 
and the decomposition (3.11) still has a meaning. Moreover, I S(1, t°)ng 1, m -~ 0 

(n-~ oo) for any gE L1(m). 

   PROOF. (1) This is a trivial fact. 

   (2) If L(1, t°)h=Ah for hELI(m) and ASS', we have (hho1)oT=2A~-1thho1 
in virtue of Proposition 3.2, where denotes the complex conjugation of A and 

A=exp (f ). For any element J of the defining partition for T with T (int J) = 

(0, 1), we have 

         V(hhol) = V(hho1oT) = V(~A~-1t°hho1) 
                       J J 

                                 t° V,A 

                               ess infJA hh°1 ~~.m--v(hhol) 
Since h h o 1 is in BV by Remark 3.2, and f satisfies the condition (F.3), we 

obtain V (h h o 1)=0. This implies h h o 1 is a constant function in L '(m). 

   (3) If Al and A2 are eigenvalues of L(1, t0) with modulus 1, 1=A A~-1t0 for 
i=1, 2 holds in virtue of Proposition 3.2 and the assertion (2) above. There-

fore we can conclude Al=AZ. 

   (4) All the assertions except for the equations (3.12), (3.13), and (3.14) 
follow from Ionescu Tulcea and Marinescu Theorem [9] and Proposition 3.1 

(see also [7], [10], [15], and [24]). To prove (3.12) and (3.13), we first show 
that f ELk(m) for all k>_1. Since LT=L(0, 1) is a positive operator which 

                                                              1 1 

preserves the value of the integration, we have I f I kdm= LT(f k)dm. On 
                                                              A 0
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the other hand LT( f I k)=~T~,.x T y -1 logA(y) I k BV in virtue of the estimate 
in the proof of (2.11) and (2.12) in Lemma 2.1. Thus f L k (m) for all k >_ 1. 

   For the sake of simplicity we may assume f d p=O. For t so that t+to~ 

0 V(1, to) we have 

         l
exp(~/-1tSn f )d~c = lexp(~/-1tSn f )hodm 

              0 0 

1 

                       = 2(1 , to)-n eXp (tip 4(t0+t)Snf )hodm 

0 

                       = 2(1, t0)_n 1 LT(eXp(/-1(t0+t)Snf )h0)dm 

0 1 

                        = 2(1, t0)_n L(l, to+t)nhodm. 

0 In the above we have used the fact exp('/ 4t0Sn f)=2(1, t0)n which is a con-

sequence of Proposition 3.2. In virtue of the spectral decomposition (3.11) and 

the above equation, we have 

(3.15) lexp(~/-1tSn f )d p = 2(1, to)_n 1 L(1, to+t)nhodm 
              0 0 

                        = 2(1, t0)-nA(1, to+t)n E1(1, to+t)hodm 

0 

                          +2(l, t0)_n S(1, t0+t)nhodm 

0 

                       = pn(t)+rn(t) 

Thus we have 

(3.16) d lexp ~/-lt Snf dp = d pn(tn-1) + drn(tn-1)          dt o n t=o dt t=a dt t=o 

and 

(3.17) d2 lexp ~/-lt Snf d = d2pn(tn_"2) + d2rn(tn-"2)          dt2 0 ~/n ~ t=o dt2 t=o dt2 two 

We note that the second terms in (3.16) and (3.17) go to 0 exponentially fast 
since the operator S(1, t)n can be expressed by the Dunford integral as S(1, t)n 

=(1/2) zn(z-L(1, t))-idz with r<1 for any n>_1. The left hand side 
                     Izl=r 

of (3.16) goes to 0 by the ergodic theorem. Using the Taylor expansion of pn, 
we can show that the right hand side goes to 2(1, to)-1(dA(1, t)/dt) I t=to as n 

goes to oo. The left hand side of (3.17) equals -(1/n)1(Snf )2dp. On the 

0 other hand, it is not hard to show that the right hand side goes to 2(1, to)-i 
d22(1, t)/dt2I t=t0 as n goes to oo in the same manner as (3.16). The proof of
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(3.12) and (3.13) is now complete. 
   Finally, using the fact exp(~/-1t0Sn f)=2(1, to)n again, we obtain 

    l
gdm = 1 A(1, to)_n exp (v/--1t0Snf )gdm = ~l(1, to)_n 1 L(1, to)ngdm 

      0 0 0 

                 1 1 1 

         = E1(1, to)gdm+A(1, to)_n S(1, to)ngdm -- E1(1, to)gdm (n-~~). 
                 0 0 0 

Thus E1(1, to)gdm = lgdm and 1S(1, to)' gdm=0 for n>_1, getting (3.14). // 

l 

        0 0 0 

   4. Classification of F0(T). 

   In this section we prove the non-degeneracy of the limiting variance given 

by (0.3) or (3.13) for a non-constant element in EF(T). Furthermore we classify 

the elements in F(T) in terms of the spectral properties of the transfer operator 

L(1, t). As before, we assume T is an L-Y map in E satisfying the mixing 

condition (M). Without loss of generality we may restrict ourselves to the 

1 subspace a(T)= f E F(T) f d p=0 . For f E EF0(T), we introduce the sets 

0 (4.1) AT(f) = {t R I the transfer operator 

                 L(1, t) has an eigenvalue with modulus 1}, 

and 

(4.2) GT(f) = {~ E S1 I L(1, t)ho = Aho for some t E AT(f)}. 

In other words, GT(f) is the totality of numbers which are realized as eigen-

values of L(1, t) with modulus 1 for some tSR. Before classifying T0(T) we 

show : 

   THEOREM 4.1. For f T (T ), the limiting variance V=V(f)=0 i f and only 

i f f is a constant function. 

   PROOF. It suffices to show that if V(f)=0 for f Fo(T), then f =0 m-a.e.. 

If V(f)=0, then there is a real valued function gE L2(p) such that f =goT -g 

by the Leonov's result (see [8, Ch. 18]). Then we have exp(V'TtgoT) = 

exp (fit f )exp (/'Ttg) for any tSR. In virtue of Proposition 3.2 and the 

assertion (2) of Proposition 3.3, we conclude that exp (~/-lt f)=1 for any to R. 

Therefore we have f=0 m-a.e.. // 

    Next we prove 

   LEMMA 4.1. For f E Fo(T), Ar(f) and GT(f) are closed subgroups of R and 

S1, respectively. 

   PROOF. By using Proposition 3.2, it is easy to see that Ar(f) and GT(f )
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are subgroups of R and S1, respectively. It remains to show the closedness. 

Assume tnEAT(f) converges to L. From Proposition 3.2, we have exp(/-1tn f ) 
=An m-a.e.. We may assume An converges to 2ES1 as n-~oo. Consequently , 
we have exp (/ L f)=2 m-a.e.. Proposition 3.2 implies that L(1, L)ho=2ho. 
Therefore Ar(f) is closed in R. Gr(f) is closed in S1 by the same reason. 

                                          // 

   Before stating the classification theorem we put 

(4.3) F1(T) = { f E F0(T)1 f = a+ j3K for some non-constant integer valued 
                       function K and real numbers a and jSr0} 

and 

(4.4) F2(T) = F0(T)--( F1(T )u {O}). 

   THEOREM 4.2. The elements in £E0(T) are classified as follows : 

  (1) f =0 in L1(m) if and only if AT(f)=R and Gr(f)={1}. 
   (2) f E F1(T) i f and only i f Ar(f)=aZ and Gr(f)= {1, A, •, 2'-'} for 0< 

a < oo and a primitive k-th root 2 of 1 with L(1, a)ho=2ho• 

  (3) f E'2(T) if and only if Ar(f)-{0}, and Gr(f)={1}. 

   PROOF. (1) If f *0 in L1(p), V(f)>0 by Theorem 4.1. Therefore 2(1, 0) 
=1, d2(1, t)/dt j c=o=0, and d22(1, t)/dt2 I z=0=-V(f) < 0 from the assertions in 

Proposition 3.3. Thus X2(1, t)J <1 for small t*0. This implies 

(4.5) a = inf {t > 0 l t E AT(f )} >0. 

Here we regard a as oo if the set above is empty. We have proved that if 

f *0 in L1(p), then Ar(f )*R. Hence Ar(f)=R implies f =0 in L1(1i) and 
consequently Gr(f )_ {1}. The converse is trivial. 

   (2) If f E'1(T ), that is, f =a+/SK as in (4.3), then we have exp (/427r f //3) 
= exp (V42ira//3). From Proposition 3.2, we have L(1, 22r//3)ho = 

exp (Vii27ra/ j3)ho m-a.e.. Combining this and (4.5) we have a < oo. Since 
Ar(f) is closed in R, we conclude that Ar(f)=aZ. Let 2 satisfy L(1, a)ho= 
2h0. We have Gr(f) = {2n I n E Z} . Since Gr(f) is closed in S1, GT(f) = {1, 2, 

  , 2k-1} and 2 must be a primitive k-th root of unity. Conversely, if Ar(f )= 
aZ, we obtain L(1, a)ho = 2h0 for some 2 S1. Proposition 3.2 implies that 
exp (tea f )_2. Therefore f must be in F1(T). 

   (3) If f *0 in L1(14, and f F1(T), then we have a=oo. Therefore A(f) 
= {0}, and Gr(f) = {1}. Conversely, a can not be oo if f =0 in L1(p) or f 

F1(T). Now we have completed the proof. // 

   REMARK 4.1. If we can label the elements of the defining partition for T 
so that
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                    ess sups .1 T' I (P
) 0 <hm jp < °° for some p >1, 

we say that T satisfies the polynomial growth condition (for T'). In this case, 
any element f in E'0(T) for which 

           lim ess su A > 0 exists and lim V IJA = 0                - . (F.4) -. Ij p T' j-~~ ess infljA             .i 

is always contained in E'2(T), where A = exp (f). In particular, log 1 T' I -
'
log I T' I dpE F2(T). This is verified as follows : Applying the strong Renyi 

condition to the inequality (1.1) instead of the Renyi condition, we have 

        T'x ess sup, T" 1 (4
.6) -1 < , , 1-a ess inf I T' I x - y less inf ( T' I -~        T 

y - IT ylessinf,lT I J J 

               <_C essJnfIT'I-SIx-yI 

for any x, y E J ~~. (4.6) implies that log IT' I satisfies (F.4). On the other 

hand, there are finitely many j such that ess supljl T' I <_K for given K>0 in 

virtue of the inequality (1.3). Therefore we can change the labeling so that 
ess sups] I T' I <_ ess sup I1+11 T' I for j =1, 2, • • without breaking the condition 

(P). It is easy to see that the labeling yields lim j~,. (ess sups1+1 I T' I /ess sups] I T' I ) 
=1. Combining this fact with (4.6), we obtain 

(4.7) lim sup ,x =1.                                 j_.oo xEI j+1, yEI1 T y 

   The first condition in (F.4) and (4.7) implies 

(4.8) lim sup I f (x)- f(y) I = lim sup log A(x) = 0.             J-.o o xEI j+1' yElj XEIj+1yEI J A(y) 

The second condition in (F.4) yields 

(4.9) lim sup I f (x)- f (y) I <_ lim V f <_ lim V'I .A =0.                  J-.oo x, yEI J - ,.goo I J - j-.~ ess infl1A 

Therefore if f is in F1(T), f and consequently, A must be constant on U;=1011 

for sufficiently large j0 from (4.8) and (4.9). This contradicts the first condi-
tion in (F.4). 

   Example 1.1, and Example 1.2 satisfy the condition (P) but Example 1.3 

                                                     

1 N 

does not. In fact, the function log I #'' I -clog 1 T' I dp=(~n.1 nX[Ek_12-k,Ek 12'k) 
-2) log2 belongs to E'1(?). 

   5. Limit theorems. 

   In the following three sections we give our answers to the problems (I)
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and (II) by using the results in Section 3, and 4. The present section is mainly 

devoted to the proof of Theorem 0.1 in Introduction. For any L-Y map T~ r 
and f E io(T)- {0}, we employ the following convention : 

                            aZ if a<oo, 

                        I {O} if a=°°, 
(5.1) 

                                   {1, A, ..., Ak-1} if a < Co.             G
T(f) = <A> =                            {1} 

if a = co, 

where a=min(AT(f )- {0}) as in the previous section and A is a primitive k-th 
root of unity with L(1, a)ho=Aha (if a < oo) and A=1 (if a= oo). The (integral) 
central limit theorem for the sum Sn f =~k o f ~T k is stated as follows : 

   THEOREM 5.1. Let T be a map in if satisfying the mixing condition (M). 
Let f be an element in if o(T )-- {0}. Then there exist positive numbers A1, A2i 
As, A4, and 0<r<1 depending only on T and f such that 

(5.2) o l exp t Sf(x) g(x)m(d x)_ Ag(k 1 x)m(d x)exp_ V(f)t2               1~n n o 2 

                                       2 3 

                 eXA - t Alt +A2 tI +As I t rm IlgIJBv 

holds for any g BV and for any k E Z whenever I t I <_ A4.,/i(i f a = oo, we 

consider only the case k =O). Here V (f) is the limiting variance defined by (0.3). 
In particular, for any probability measure mg with density g E BV([0,1] --~ R), 

we have 

                                                       t t2 (5.3) sup mg {x [0, 1]I J=Sf(x) n_< z} - 121 exp -- )dt        zER ~n ~~V (f) -~ 2V (f ) 

         A6 
/ng II By 

~ for some positive number A5 independent of g (c.f. [10], [15], and [22]). 

   PROOF. From Proposition 3.3, we have 

     lexp4 tSf (x) g(x)m(dx) o = 1L 1, t )flg(x)m(dx)      o ~n o ~n 
= A (1, J==)' El (1, t ng(x)m(dx)-~- 1S (i, t ng(x)m(dx).                  n o ~n o 

Comparing the first few terms of the Taylor expansion of the both sides, we 

obtain the estimate (5.2). The second assertion follows directly from the 

Berry-Esseen inequality which asserts that
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         sup I F(z)-G(z) I s 2 t h(u) d u+ 24 Sup I G'(z) I, 
               ZER 1t 0 u ?tt ZER 

where F(z)=v1((-- Qo, z]), and G(z)=v2((- oo, z]) are distribution functions for 

probability measures vi and v2 on R respectively, G is assumed to be differen-

tiable, and h(u) = exp(/-luz)(vl-v2)(dz) (see [8]). // 

   REMARK 5.1. The estimate (5.3) is remarkable in the probability theoretical 

point of view, because the convergence rate of the central limit theorem is very 
near to that of the independent and identically distributed random sequence. 
Philipp [18] obtained more general results for mixing sequences but the con-

vergence rate is not so good in his general setting. 

   In the sequel, S(R) denotes the space of rapidly decreasing functions on 

R and u(t)= a-' tV u(y )d y is the Fourier transform of u. 

   Now we are ready to prove the main theorem in this section. 

   THEOREM 5.2 (Local limit theorem). Let T be a map in Er an f Ero(T)-

{0}. AT(f) = <a> and GT(f) = <2> are in (5.1) and V = V (f) is the limiting 
variance. Then for any u 8(R) and any g~ BV, we have 

(5.4) lim sup ~/n 1 u(Sn f (x)+a)g(x)m(dx) 
               n-•oo aER 0 

2 

          -u(t)P , na(dt) lg(x)m(dx) 1 Vexp - a V = 0, 

where a} n, a is a bounded family of Radon measures on R, represented as 

            u( k~~u(ka) exp(~l-1(k(nb+aa))) (5.5) Ltt)= 
with 2=exp (/4b). In addition, the Radon measure ~Yn, a has the following 

descriptions : 

    I f a = co, n, a is the Lebesgue measure for each n and a : 

                 u(Lt,dt) )~na(= Lutdt.                                     ()

If a<oo, ~n,a is the counting measure on the lattice (2n/a)Z+(bn/a)+a: 

                uCt)~n, a(dt) = u 2nk + bn +a . 

   PROOF. It suffices to prove the theorem for gEBV with g>_0 and gdm 

=1. Assume first that u ((--r, r)) for some r>0, where cD(K) denotes the 

totality of smooth functions with support in KCR. Then we have
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           ~/n 1 u(Sn f (x)+a)g(x)m(dx) 

0 

                = u t t exp (~/--lat)dt                   2
n _~ ()~n() 

                              v n oo a/2                 = J u(ka+t)cn(ka+t)e~_11acka+t)dt,                             2
i k= -a/2 

where an(t)= exp(tSnf )gdm. Fix k~Z for a while. Now 
                        _oo 

2 

(5.6) ~n al2 u(ka+t)~ ~Z n(ka+t)e~-lacka+t)dt-u(ka)2kn 1 exp_ a --)       2~c -a/2 ~V 2nV 

    = R1(k, n)+R2(k, n)+R3(k, n)+R4(k, n) with V = V(f ), 

where 

     Rkn = ~n u(ka t ka t e~-lacka+t)dt (5.7) 1(, ) 2
2r EnSltlsa/2 ~' )~n( +) ~ 

(5.8) R2(k, n) = 1 _(u(ka+t/)                   2ir Itl<En/n 

              -u(ka))~ n(ka+t/fin )e~=1acka+t/~n)dt, 

(5.9) R3(k, n) = 1 _( n(ka+t/ )                   2~c ~t~<FnJn 

                _2kn exp(-Vt2/2))e~-1a(ka+tl''A)dt u(ka) , 
and 

5.10) R4(k, n) _ - 1 _exp (-Vt2/2+~/-la/~/n )dtiknu(ka)e~-laka (                        22r 
Itl>endn 

The number En in the above will be determined later. 
   From the equations (3.12) and (3.13), we have d2(1, t)/dt t=ka = 0, and 

d22(1, t)/dt2 i t=ka = --2(1, ka)V =-2kV. On the other hand, the spectral radius 
of L(1, ka+t) is less than 1 for En <_ I t i <a/2, in virtue of the assertion (4.a) in 
Proposition 3.3. Combining these facts with the spectral decomposition (3.11) 
we obtain 

        Rkn <~n L(1kan dtsu u (5.11) 11(' )I 22c En~ItI~a/2 11, ) IlavligllaV pl 

               <- C1 (1-Vt2/4)ndt~IlgllBYsupIuI, 
                                 en~ItI5a12 

where C1 is a positive constant independent of g and u. It is easy to see that 

(5.12) 1 R2(k, n) I ~n~n I II BV su du                          - 2~c g p dt ' 

In virtue of the central limit theorem (5.2) we obtain
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(5.13) I R3(k, n) I ((A1 I t 13/+A2I t l l~n )e-Vt2/4 

                             

it i(en+'n 

               +A3( I t i l~)rn)II g BV sup I Ii 

                 C2CEnn312+~nnll2) gIIBV Supl u I, 

where C2 is the constant depending only on r. Clearly we have 

(5.14) I R4(k, n) I _< 1 _exp(-Vt2/2)dtJ g BV sup I u I                          - 2ir Itl>en'n 

   Choosing ~n so that 

(5.15) ~n 0, 8nn"2 T 00, and 4n312 j 0 (n -~ cc), 

we have 

(5.16) I1( Rk, n)+R2(k, n)+R3(k, n)+R4(k, n) 
                         k =-oo 

           < C rrn SUp I u I +SUp u g t )IlIIBv 

d where the number Cr depends only on r and rn is a sequence with rn 0 (n T oo). 

   Combining (5.16) with the fact I ~k _oo (ka)2kneV-laka I ~2[r/a] sup (u I, we 
obtain 

        v °° u(t)On(t)e~-latdt C r sup I u I +sup u IgIIBV                   -~ dt 

with a positive number C r depending only on r. This implies that 

              a is a bounded family in the distribution space D((-r, r))'. 
Since each is a distribution of positive type, the family 

              n, a turns out to be a bounded family in the space .J(R)' of 
the bounded distributions (see Schwartz [25, p. 276 in Ch. VII]). 

   Next we take a sequence {pj};.1 of probability measures on R which con-

verges to 80 (the unit mass at 0) weakly as j--> oo so that o; CD(R) for every 

j. Write /i1u(Sn f +a)gdm= u(t),un, a(dt) for convenience. Choose any 
                        o -~ 

u E s(R) and fix it for a while. 

(5.17) u(t)(pj*pn, a)(dt)- u(t)p, a(dt) 

                  Itl(apj(ds) -~(u(t+s)-u(t))pn,a(dt) 

                   Bpj(ds) (u(t+S)-u(t))pn,a(dt)                                      -~                                   Iti~ -oo 

              = In+IIn
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   Since {pn, «(• )='v ~ (• )eJ' a} n, « is a bounded set in ~(R)' and u E8(R)C 
.(R), we have 

(5.18) sup u(t+s) n, a(dt) = sup 1 u(t) ~l nan(t)e~-1t ca+s>dt <_ C1(u).           sER -~ sER 2r-

Since Since the set {vs(•)=s-1(u(• +s)-u(•))}0<111 S 5is bounded in 8(R), it is bounded 
in .B (R). Therefore we have 

(5.19) sup sup v3(t)p, a(dt) <_ C2(u) 
                             aER IsIS1 -oo 

In the above, C1(u) and C2(u) are positive numbers which depend on u but do 
not depend on n and a. Now we obtain 

(5.20) In l <_ I c I<~p,(ds) I s l -~vs(t)IJn, a(dt) C2(u)o, 

and 

(5.21) ( II, J pj(i s I >_ o)2C1(u). 

Thus we have shown that 

(5.22) IIn+ILl C C3(u)o 

if j is large, where C3(u) is a positive number which does not depend on n, a, 
and o. On the other hand, for fixed j, we have 

                                            1 a2 (5
.23) up -~u(t)(pj*pn,a)(dt)- k~~(uP~)(ka)e~-1kaa~kn ~l2nV exp 2~cV 

                                 ->0 (n --+ oo) 

in virtue of the estimate (5.16). In addition we have 

(5.24) (u(ka)-(u ~)(ka))e~=lkaa~kn 1 exp _ a2               k=-~ '°' ~12~V 2~V 

          <_ I u(ka)C, (ka)-1) <_ o 
                        k=-oo 

if j is large. If we choose j so that (5.22) and (5.24) are satisfied, then we 

obtain by (5.23) that 

   lira sup sup ~/n 1 u(Sn f H-a)gdm- (u)(ka)eJ=lkaaAkn 1 exp - a2         n-~~ aER o k=-oo J2~V 2~V -) 
   <_ (C3(u)-F1)o. 

Since 8>0 is arbitrary, we complete the proof of (5.4). //
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   6. Zeta functions. 

   Let T be an L-Y map satisfying the mixing condition (M). For f E EE(T ), 

we consider the zeta function defined formally as 

(6.1) ~(s, t) = exp 1 IT I T'(Tkx) -sA(Tkx)/=1t 
                                n=1 n Tnx=x k=o 

             = exp - exp (Sn(--s log I T' +1/-1 t f)(x)) . 
                              n=1 n Tnx=x 

Here the sum ~T n x=x is taken over all fixed points of T n contained in the 

interior of some elements of the defining partition for T n. The following as-

sertions are proved by Pollicott [21] and Haydn [6] with the dynamical system 

T being replaced by a mixing subshift of finite type and log I T' I and f being 

replaced by appropriate Holder continuous functions on the shift space. 

   THEOREM 6.1. For any (so, to) with Re s>_1 and to~R, let 8 and U(so, to) 

be the same as in Proposition 3.1. Choose any B>0 with 1>B>8 so that 

L(so, to) has no eigenvalues with modulus t. Then the function ~li(s, t) = 

              t))rank EJ(s, c)~(s, t) is realized as a nonvanishing analytic function 
in an open neighbourhood W(so, to)CU(so, to) of (so, to). ~(s, t) can be extended 
meromorphically to a neighborhood of the set {(s, t)IRe s?1 and tEEER} in CXC. 

   REMARK 6.1. Our proof of this theorem is based on the method in [1] 

which is also used to relate the eigenvalues of transfer operators to the poles 
of Ruelle zeta functions ([23]) for piecewise monotonic transformations. The 

results in [1] can be directly applied to an L-Y map with finite defining parti-

tion (generating partition in terms of [1]). In such a case we do not need the 

Markov property of T, because we use the Markov extension T instead of T. 

But we have to estimate the difference of the original zeta function for T and 

the zeta function for T by using the number of the intervals in the defining 

partition for T. This causes a technical difficulty in dealing with an L-Y map 
with infinite defining partition. We expect that the Markov property can be 

removed from the assumption in Theorem 6.1. 

   PROOF OF THEOREM 6.1. First of all we recall Proposition 3.1. In the 

neighborhood U(so, to) of (so, to), we can write 

(6.2) L(s, t) = M(s, t)+R(s, t) = L(s, t)P1(s, t)+L(s, t)P2(s, t), 

where P1(s, t) and P2(s, t) are the projection operators defined by the Dunford 

integrals in (3.9) and (3.10). Since P1(s, t) and P2(s, t) depend analytically on 

(s, t) in U(so, to), we have
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(6.3) sup II P1(s, t) II By <_ C 1                                   (S, t)EU(S0, t0) 

and 

(6.4) sup 11P2(s, t)n I By <_ C28n for any n>_1, 
                     (S, t)EU(S0, t0) 

where C1 and CZ are positive numbers. Put 

                                             n(s, t, B) , , (6.5) e(s, t) = II (1-A,(s, t))rankEi(st) 
                                            j=1 

The decomposition M(s, t)=L(s, t)P1(s, t)=~; i;'t' B' A;(s, t)E;(s, t)(E;(s, t)+N;(s, t)) 

in (3.2) is the Jordan decomposition of the operator M(s, t) acting on 

the finite dimensional space P1(s, t)BV. Therefore trace (L(s, t)nPl(s, t)) _ 

trace (L(s, t)nP1(s, t)1 P1(s, t)Bv) is well-defined and 

                                                   n(s, t, B) 
(6.6) trace (L(s, t)nP1(s, t)) _ A;(s, t)n rank E;(s, t). 

                                                      j=1 

   From the general theory in [11] and [21] we can see that (s, t) and 

trace (L(s, t)nP1(s, t)) are analytic in U(s0, t0), although each A;(s, t) is not neces-
sarily analytic. Put 

(6.7) ~n(s, t) = Gn(s, t), 
                                               Tnx=x 

where G(s, t)= I T'(•) I -3A(. )J-1 t and 

           Gn(s, t)(x)=G(s, t)(x)G(s, t)(Tx) G(s, t)(Tn-1x). 

If we can show that 

(6.8) sup t)-trace(L(s, t)nP1(s, t))I <_ C3Bnn 
                   (S, t)EW (s0, t0) 

in some neighborhood W(s0, t0) of (s0, t0) in U(s0i t0), then exp {LJn=1((s, t)-

trace(L(s, t)TP1(s, t)))/n} is analytic and non-vanishing in W(s0, t0). This implies 

 (s, t)=C(s, t)(s, t) has an analytic continuation to W(s0i t0). Consequently, 

~(s, t) can be extended meromorphically to W(s0, t0). 
   It remains to prove the estimate (6.8). For the sake of the notational sim-

plicity, we may drop (s, t) if there occurs no confusion. For example, L(s, t) 
=L, P;(s, t)=Pj, E1(s, t)=Ej, and G(s , t)=G and so forth. In addition, we 
always consider the right continuous version for an element in BV to avoid 

the unexpected ambiguity of equations. For each n and for each element J of 

the defining partition E'n for Tn, we choose a point x,EInt J so that xJ is a 
fixed point of T n if T n J ~Int J. Since the condition (L-Y.2) guarantees the 

uniqueness of a fixed point in J with T n J ~Int J, we have



             Local limit theorem and distribution of periodic orbits 335 

(6.9) bn - Gn(xJ)XJ(xJ) = (LnXJ)(xJ), 
                          T nJDJ JE~n 

where XJ denotes the indicator function of the interval J. We note that we 
have used the fact LnX J(x J)=0 if m(T n Jn J)=0 in (6.9). For the finite dimen-

sional space P1BV, we can choose a basis ek=ek(s, t) and ek=ek(s, t)~BV', 

k=1, 2, ••., d=dim P1BV, with the following properties : 

(6.10) ek(el)=akl (Kronecker's delta), Ilek BV=1, and ek I Bvf<<2d 

             k=1, 2, ••• , d. 

Note that d=dim P1BV is independent of (s, t)EU(so, to). We explain briefly 

how to choose O k'5 and e k's. Since P1 BV is finite dimensional, we can choose 
a basis ek with IekIIBV=1, and min { ek-x!I BVI XE[e1, e2, , ek_1]}=1 in virtue 

of the finite dimensional Riesz' lemma. Thus the functionals e;, e2, , e d with 
ek(es)=Uki satisfy IIekIIP1BV'We can extend each ek to a functional ek on 

BV with Ilek IBV'= I ek I P1BV' in virtue of the Hahn Banach theorem. 

   Combining (6.2), (6.9) and (6.10), we can write 

(6.11) ~n = (P1L'XJ)(xj)+ (P2L'XJ)(xj) 
                       JE~n JE~n 

d 
             _ ek(PlLnXJ)ek(XJ)+ J (ELTXJ)(xJ), 

                        JE~P n k=1 JE~n 

where E(s, t)=P2(s, t) in terms of Proposition 3.1. On the other hand, since 

P1Ln=LnP1i we have 

                                d d 
(6.12) trace(L'P1) _ ek(L'zP1ek) _ ek(P1Ln(XJek))• 

                                      k=1 JEPn k=1 

It follows that 

(6.13) ~n-trace(LnPI) 

d 

        = (ek(PlL' XJ)ek(xJ)-ek(PiL' (XJek)))+ (ELnXJ)(xJ) 
                k=1 JE~n JE f n 

       =1+11. 

For each k, we obtain 

      lek(P1LnXJ)ek(xJ)-ek(P1Lr(XJek))I = ek(PlL'(XJ(ek(xJ)-ek))) I 

                                 2"CiII LT (XJ(ek(xJ)-ek))II BV , 

where C 1 is the constant in the inequality (6.3). Therefore we have 

d (6.14) LI <_ E 2dC11 Ln(XJ(ek(xJ)-ek))II BV 
                                    k=1
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We can show that 

(6.15) I Ln(XJ(f (xJ)--f ))IIBV < V f (4 ess sup I Gn I +VGn) 
             JE~n JEc? J J J 

in the same manner as Lemma 2.6 in [1]. If we choose the neighborhood 
W(s9i to)CU(so, to) of (so, to) so that 

(6.16) sup ess sup I Gn I < CJ' 
                                  (S, t)EW (Sp, t0) 

and 

(6.17) sup sup VG n < C58n                                  JE ?r5 (S, t)EW (Sp, tp) J 

hold for some positive numbers C4 and C5, we conclude that 

(6.18) sup ( II < C6Bn 
                                      (S, t)EW (Sp, t0) 

in virtue of the estimates (6.14) and (6.15). 

   It remains to estimate sup(S, t)EW(so, (o) I Ill. For each J~5k, choose a point 

yJ Int J and define 

                       LkXJ_G(yj)Lk-1XTJ (k?2) 
(6.19) YJ =                      L

X,, (k=1) . 

As in (5.2) in Baladi and Keller [1], we can show 

(6.20) II YJ I ! BV VG (4 ess sup ( Gk-1 -1- V G4). 
                                J TJ 

Thus we have 

(6.21) IIYJI BV < C7 VG 6k 
                              JEcP k 

holds with a positive constant C, independent of (s, t)EW(so, to) and the choice 

of yJ in virtue of (6.16) and (6.17). As yJ, we employ xJ which was chosen 

before. Observe 

(6.22) LnXJ =LnXJ-G(xJ)Ln-1XTJ~ G(xJ)Ln-1XTJ-G(xJ)G(TxJ)Ln-2YT2J-f-

                         ...+G(xJ)G(TxJ) ... G(Tn-1x,)LXTn -1,, 

                         n-i 

                Gk(xJ)YTkJ 
                         k =O 

On the other hand, the Markov property of T implies that TJ~c?k if J~ ?4+3 

(k>_1). Therefore we can estimate II as follows: 

       IIII = I E (ELnXJ)(xJ) = Gk(xJ)EYTkJ(xJ) 
                       JE ~n JEcPn k=o 

                                              TnJDJ
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                          n-1 n-i 

          _ J Gk(xJ)EYJ'(xJ) _ (LkEYJ')(T kxJ) 
                        k=o J'E?n-k JE~n k=0 J'En-k 

                                   T k J=J' 

                    

II RkYJ' II By < C8 B k II YJ' I BV C9nB n , 

                       k=o J'E~?n-k k=o J'En-k 

in virtue of the estimate (6.21), where C8 and C9 are positive constants inde-

pendent of (s, t) in W(so, to). The absolute convergence of the series in the 
second line is guaranteed as follows : 

      n-1 n-1 

    J : I Gk(xJ)EYJ'(xJ)I = LIGI k(IEYJ' I)(T kxJ)      k=0 J'En-k J fn k=o J'E~n-k 
                    Tk=J 

                                                               n-1 

                            C C10 ~ I YJ' II BV C11                                                   J'E 1 GN                                                                             n-k 8 

by the estimate (6.21), where Cl0 and C11 are positive numbers independent of 

(s, t) in W(s0, to). This completes the proof of the estimate (6.8). The proof 
of the theorem is completed. // 

   7. Asymptotic distribution of periodic orbits. 

   In this section we apply the results of Parry [16] to the zeta function 

~(s, t) and prove the limit theorems concerning the asymptotic distribution of 

periodic orbits of T ~ r. Let ~'_ {x, Tx, ..., TP(r)'lx} be a prime periodic orbit 
of T with period P(r), that is, x, Tx, ..., TP(r'-lx are distinct and TP(T)x=x. 

From the Markov property of T, there are at most a finite number of prime 

periodic orbits which contain a division point of a defining partition. The con-
tribution of such a periodic orbit does not influence the asymptotic distribution 

of the prime periodic orbits. Therefore we may ignore it. For a prime periodic 

orbit r with period P(r) and a function f in F(T), we define a norm N(f, r) by 

(7.1) N(f, 7) = se(r)f (x) = f (x)+ f (Tx)+ ... -}- f (TPCr>-ix), 

where x is any element in r. The ri-function ri(f, s) is defined by 

(7.2) ~(f, s) _ N(f, 7) exp (-snN(f0, r)), 
                                           n=1 r 

where f0= log T' . As a consequence of Proposition 3.3 and Theorem 6.1, we 
obtain 

   THEOREM 7.1. Assume that T r satisfies the mixing condition (M) and the 

polynomial growth condition (P). I f f belongs to f2(T), then (f, s) is analytic 
in the domain with Re s>1 and can be extended meromor phicall y to the neighbor-

hood of the axis Re s=1. Moreover, s=1 is a unique pole of ri(f, s) on the axis
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and it is a simple pole with residue 

               i
fd,~ 1loglT'I4= ~fdphu(T), 

                          0 0 0 

where h(T) denotes the metrical entropy of T with respect to p. 

   PROOF. Consider the zeta function ~(s, t) given in (6.1). If Re s0>1 and 

t0ER, then ~(s, t) is well-defined, non-vanishing and analytic in some neighbor-
hood of (so, to) in C X C. Since T satisfies the condition (P), the function f o-

 o f odp = f o-h(T) belongs to F2(T) by Remark 4.1 and the classification theorem 

(Theorem 4.2). Therefore the transfer operator L(s, t) with s=1+v' iv, tER, 
'r R can not have an eigenvalue with modulus 1 except the case (so, to)=(1, 0). 
Combining this fact, Theorem 6.1 and Proposition 3.3, we can see the following : 

   (1) ~(s, t) is non-vanishing and analytic in some neighborhood of (so, to) 
with Re so=1, Im so*0, and t0ER. 

   (2) ~(s, t) can be expressed in some neighborhood D of (1, 0) as 

(7.3) c(s, t) = ~b(s, t)(1-2(s, t))"i 

where cb(s, t) and 2(s, t) are analytic functions in D with the following properties. 

   (2.a) cb(s, t) is non-vanishing in D. 
   (2.b) A(1, 0)=1 

   (2.c) A(s, t) coincides with the simple eigenvalue of L(s, t) with the maxi-
mal modulus. 

    (2.d) - = ~/-1 1 d and - = f                                                         1 o d .                  Ut (s, t)=(1. o) of as (s, t)=(1, 0) p 

   From the definition (6.1) of ~(s, t), we can rewrite 

        C(s, t) = exp - exp(-snN(f o, r)+~--1tnN(f, r)) 
                         n r 

Thus by taking the logarithmic derivative of ~(s, t) at t=0, we have 

(7.4) s 0 = N(f, r) exp (-snN(f o, r)) 

                   = 4-1 rI(f, s). 

On the other hand, the left hand side of (7.4) can be expressed as 

                  Ct(s, 0) _ A1(s, 0) +t(5 S~, 0) 
                  (s, 0) 1-A(s, 0) ~li(s, 0) 

in virtue of the equation (7.3). 
Therefore i(f, s) is analytic in Re s>1 and can be extended meromorphically
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to a neighborhood of { s E C I Re s >_ 1}. In addition, s =1 is a unique pole on the 

axis Re s=1 and it is simple. By using the equalities in (2.d) above, we can 
conclude that 

   lira (f, s)(s-1) = lim /-1(s-1)At(s, 0) _ -~'--1Z(1, 0) _ 1 d 1 d 

Hence we obtain the theorem. // 

   We can write 

(7.5) ~(f, s) = lx-sdFf(x), 

where Ff(x)= Eexp (,IN(fo,r))<x N(f, r). Ikehara's Tauberian theorem implies 

(7.6) lim f (~) = f d f od                                    s-.1 x o ~ o ~ 

in virtue of Theorem 7.1. If we put 

(7.7) ~1(f, s) _ N(f, r) eXp (-sN(f o, r)) , 

r it is not hard to see that Theorem 7.1 is valid for 1(f, s). Thus if we put 
F f(x)=.G.rexp (N(f o,rf<x N(f, r), we obtain by Ikehara's Tauberian theorem that 

(7.8) lim f(x) _ f d/J o 1 f od                       s-. i x o /J

Hence we can show the following theorem in the same manner as in [16] and 

[17]. 

   THEOREM 7.2. Assume T r satisfies the conditions (M) and (P). I f f 
belongs to E'2(T), then we have 

                          N(f, ,1') ~, e` 1 f d (7.9) 
N(fo,r)st N(fo, ) th (T) o r 

and 

(7.10) N(f, r) e` 1 f d .                      N(fo,r<t h (T) o 

   8. Applications. 

   First we consider the Gauss transformation 

                        1 1 (8
.1) Tcx = x - x , 

where [x] denotes the integral part of x. Clearly TG satisfies the mixing con-
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dition (M) and the polynomial growth condition (P). Since TGx=-1/x2, the 

function log x-7r2/(12 log 2)E EF2(TG) by the Remark 4.1. Consider the simple 

continued fraction expansion of an irrational x~(0, 1) : 

(8.2) x = 1 
                    a1(x) +a
2(x) +

where an(x)'s are positive integers with an+l(x)=an(TGx), n=1, 2, •••. The 

n-th order convergent of x is written as 

         pn(x) - 1 = a x a (x)••. a(x)~ (8.3) 
n x) 1 [ 1( )~ 2~ , ~ n ~        9 ( al(x)+

a(x)+;                                  2

1                             +
an(x) 

where p(x)/q(x) is the reduced fraction. It is well-known that 

                                                   n-1 

(8.4) log q n (x) + log T k x <_ 2 
                                                    k=0 

and 

(8.5) (a1(x)a2(x) ... an(x))1l n --- II (i+ 1 (log k)/(log 2)                                                                2 m-a. e. (n--goo)                                  k=1 k+k 

(see [4, Chapter 7]). Therefore the central limit theorem applied to log x and 
log a1(x)=0 X(1/(k+1),1/k] log k reads : 

   THEOREM 8.1. There are positive constants V1, V2, C 1 and C2 such that 

(8.6) sup m {x E (0, 1) 1 exp(a +~r2n/12 log 2) qn(x) 
              a, bER 

            a <l, 

         <_ exp (b~ln+n2n/12 log 2)} - 1 bexp(-t2/(2V1))dt <_ C1 1 
                                    ~/2~rV1 a ~/n 

and 

(8.7) asb p m {x (0, 1)lexp a~n+H(1+1/(k2+k))(IoSk)/(lo82)n 
             a <l 

            a1(x)a2(x) ... an(x) exp b~/n + II (1+1/(k2+k))clag k)/(lo 2)n 
                                                                    k=1 

b 

                2rcV2a eXp (--t2/(2V 2))dt <_ C2 1 . 

   This theorem gives an improvement of the results in [19, p. 37, Theorem 
2.1.2]. If we apply the local limit theorem Theorem 5.2 to the same functions, 
we obtain :
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   THEOREM 8.2. For a<b, we have 

(8.8) lim s/nm {x (0,1) j exp (a ~/n+7r2/(12 log 2)+a) q(x) 
                 n-.oo 

              _<- exp(b~/n+n2/(12 log 2)+a)}_(b_a). - r 
                                         ~l2nV 1 

                 

• eXp _ (a--(7t2n)/(12 log 2))2 - 0 
                           2V1n 

locally uniformly in a and 

(8.9) urn sup s./m x E (0,1)lexp a / I II(1-I-1/(k2+.k))(bogk)/(loe2)+a 

           a1(x)a2(x) ... a, (x) exp b~/n-- lI (1-I-1/(k2+k))c~og k>>(1o~2)+a 

                                 1 a2                               --(b-a) 
~12~V2 exp -ZVZn =0. 

   If~~we apply Theorem 7.2 to T G, we have : 

   THEOREM 8.3. For any f F(TG), we obtain 

8.10) N(f, r) ti bet 1 f (x)                                 dm ( Ncfor)stN(f o, r) 7r t ..o l+x' 

and 

                                 1' ti bet 1 f (x) (8.11) N(f,) dm                            N(1'o,r)st ~2 0+1--x ' 

   Next we show a limit theorem on the digits a1(x), a2(x), ••• by using the 
transformation T s (s>1) in Example 1.2. If x E (0, 1) is a periodic point of T G 
with period p, we write x=[a1(x), a2(x), •••]=[a1(x), a2(x), , a(x)J. The 

periodic points of T G and those of Ts are under the one to one correspondence 
so that the T,-periodic point y corresponding to [a1(x), a2(x), ••• , a(x)] satisfies 

 (T ~)'(y) I =~R(s)'°(a1(x)a2(x) ... a (x))'. Let ={x, T 0x, ... , T Gcr)-lx} be a prime 
periodic orbit of TG. Then y can be regarded as a GL(2, Z)-orbit equivalence 
class of reduced quadratic irrationals. Put M(y)=a1(x)a2(x) •• apC7)(x). Then 
Theorem 7.2 applied to Ts gives : 

   THEOREM 8.4. 

            #{ri Cx(s)PCT)r'M(r) < t} s Iog t for s>1. 

   In the sequel, we explain briefly the relation between Pollicott's paper [20] 
and our results. Consider the geodesic flow Sot on the unit tangent bundle T1M 
over the modular surface M=H/PSL(2, Z), where H denotes the complex upper
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half plane. Its closed orbits naturally correspond to the periodic orbits of the 

Gauss transformation T0. For example, a cD1-closed orbit which corresponds to 

a TG-periodic orbit { [a 2, a21, , a2,, , d]}1 i-1has the least period 
-2 log [a1 , ai+1, ••• , a2n, ••• , ai-1]• For details, one can consult [20] and 

[26]. Pollicott uses the Mayer's results in [13] on the zeta function which are 
based on the study of the transfer operator acting not on BV but on a class 

of holomorphic functions. Any way most results in [20] can be reduced to the 

study of the analytic properties of the n-function defined by 

                     1 2n (8
.12) i (s, f) = -- f([a1, a11, ... , a2n, •.. , a2-1]) 

                                         n=1 n a1,...,a2n =1 

                            2n 

                         

• IT [a1 , a11, ..., a2n, ..., a11]21 

                          =1 

Noting that log I (T)' I =(x • T Gx)-2, we can write 

        s, ) _ E 1 ~1(f +f °TG)(T c x) expilog I (T )'(x) n=1 ?Z TGx=x k=0 k=1 

           = ~1(f +f °TG, s) 

in our notation if we employ TG as T in the equation (7.2) or (0.9). Thus we 
can apply the results in Section 7 to f F(TG) without approximating it by 
suitable analytic functions because it is easy to see that TG is also in T and 
satisfies the conditions (M) and (P). For example, take log x as f we can 
prove Sarnak-Woo Theorem which asserts # {r I exp (l(r)) <t{ 't/(log t) (t--; oo), 
where r denotes a prime closed orbit of ~ and l(r) denotes its hyperbolic 
length.
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