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Spectrum of the Laplacian on a complete
Riemannian manifold with nonnegative
Ricci curvature which possess a pole
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Let M be a complete noncompact Riemannian manifold of dimension n.
The Laplacian of M is denoted by A. The spectrum of A has been studied by
many authors. Especially Donnelly [D] showed that the Laplacian of a con-
stant negative curvature (—£%?% space form has purely continuous spectrum
g(A)=(—c0, 0]. Donnelly and Li and Chen and author observed
that changing the metric of a constant negative curvature space form on a
compact domain we can obtain a complete manifold with a rotational invariant
metric of strongly negatively sectional curvature on which A has discrete spec-
trum. Escobar proved that if M is a complete manifold with a rotational
invariant metric of nonnegative curvature then g¢,(A)=(—co, 0].

In this paper we prove the following theorem.

THEOREM. Let M be an n-dimensional complete noncompact Riemannian
manifold with nonnegative Ricci curvature. If M possess a pole then A has essential
spectrum @ ,s5(A)=(— oo, 0].

A pole is by definition a point x,& M such that the exponential map
€xpz,: M. —M is a diffeomorphism.

If x, is a pole in M, »(x)=dist(x, x,) which is the geodesic distance from
X to x, is clearly differentiable. Let C,={x&M|r(x)=t}. We claim that n(x)
=lim,.. (—dist(x, C,))=r(x).

In fact, for ¢t>r(x) we have r(x)-+dist(x, C,)=dist(x,, C;)=t, and so t—
dist(x, C;)<r(x). On the other hand since x, is a pole g=€exp., s(eXpz5x)/7(x)]s=
eC,; and thus r(x)+dist (x, g)=t, we therefore have ¢—dist(x, C;)=r(x) for
t>r(x). The claim follows.

By A in we know that if the Ricci curvature of M is non-
negative then Ar(x)=0. The laplacian comparison theorem yields the
following lemma.

LEMMA. Suppose M satisfies the hypotheses in Theorem. If x, is a pole in
M then
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n—1
0 é A?’()C) § ‘r(T). (1)
PROOF OF THEOREM. Let x, be a pole in M. r(x)=dist(x, x,), B:(R)=
{xeM|r(x)<R}, V. (R)=Vol(B,(R)) which is the volume of B,(R). By
comparison theorem [C-G-T] one has

Vs o(R) < (R>n for R=zr>0 @

Vo) = \7r

VR o (R—20)
Velr) — R*"—(R—2r)"

We choose ¢(r)=C7(M) satisfying

1 a, 2r<h,
Pr) = 4)
0 ¥ = Cn, r=zdy,

for R=2r>0. (3)

0<¢d(N<Z1, || <A, [P"(r)| <A, where ¢,<a,<b,<d, are constants to be
fixed, A, depends on a,, b,, ¢, and d,.
For any 1=0, we consider the sequence of function

BH(x) = P 2(esr(x))et T & CM) (5)

where ¢, is a monotone sequence which tends to zero, 7, is a sequence to be
fixed.
Computing directly we have

V() = ni*¢/(esr)et T e, Nr+ink o/ 2d(esr)et T Vr ®6)
AGH(x) = el (exr)e 7+ 2imk VAeady (exr)et T

+ 9l (exr)et T Ar + ikt Ad(err)et T AY — 2K x).  (T)
So

| AGi(x)+294(x)| < nh/%e}| " (x7)| +294 % VAP (e47)]

+ i, | (ear) | Ar+ 93 VA Plesr) | Ar .
By one has
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We choose
dn ¢\t
Ne = [V:ro('e—k')_vxo(g;>] 8)
- then
lim | 1agix)+2gko)1dx = 0. ©)
Obviously
S |6k 2 x o Veba/ea)=Va(an/er) | Valba/er) Vazan/es)
- _ Vro(dn/sk) V.‘to(cn/ak) V:co(dn/ek) Vro(dn/ek).

Using (2) and (3) we have

[t 2 () = Fr Ol = 1 () (-5 )"

Choosing a, sufficiently small we have

[, 19k01%dx 2 an > 0.

So
lkim inf “¢;zz(x)”L2(M) =a,>0. (10)

(3) implies
V:co(dn/ek) > (dn—zcn)n
Vzo(cn/sk) = dz—(dn_zcn)n )

By choosing ¢, sufficiently small we have
Vaeldn/er) o
Vro(cn/sk) -

which implies Vi (da/es)—Vz(Ca/er)Z(Br—1)V s (Cn/er) —o0 as k—oo. We
therefore have

Zpa>1

¢i(x) —> 0 weakly in LA(M) as k—oo. (11)
9), imply —A€a.ss(A). This completes the proof of [Theoreml
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