On the hyperbolicity of projective plane with lacunary curves

By Yukinobu ADACHI

(Received Aug. 17, 1992)

Introduction.

1°. Let X be a complex manifold of $\operatorname{dim}=n$, and, M, a dense subdomain of X. Denote by $d_{M}(p, q)$ be the intrinsic pseudodistance of two points p and q of M introduced by Kobayashi [5]. In [2], we extended d_{M} onto X as follows. For p, q of X, we define

$$
d_{M}(p, q)=\lim _{p^{\prime}-\frac{p, q^{\prime} \rightarrow q}{}} d_{M}\left(p^{\prime}, q^{\prime}\right), \quad p^{\prime}, q^{\prime} \in M
$$

It is clear that $0 \leqq d_{M}(p, q) \leqq \infty$ and $d_{M}(p, r) \leqq d_{M}(p, q)+d_{M}(q, r)$ for p, q, r of X.

A point $p \in X$ is called a degeneracy point of d_{M} on X, if there exists a point $q \in X \backslash\{p\}$ such that $d_{M}(p, q)=0$. We denote by $S_{M}(X)$ the set of all degeneracy points of d_{M} on X and call $S_{M}(X)$ the degeneracy locus of d_{M} in X.

Let S be an analytic subset of X. According to Kiernan-Kobayashi [4], M is hyperbolically imbedded modulo S in X, if every distinct points p, q of X such that $d_{M}(p, q)=0$ are contained in S. In this case, $S_{M}(X) \subset S . M$ is hyperbolically imbedded in X if $S_{M}(X)=\varnothing$.

We showed in [2] that $S_{M}(X)$ is a pseudoconcave subset of order 1 in X and that, if $S_{M}(X)$ is not empty and is contained in an analytic subset of dimension 1 of X, then $S_{M}(X)$ is also an analytic subset of dimension 1 of X composed of irreducible components of genus $\leqq 1$.
2°. Let X be a compact complex manifold of $\operatorname{dim}=2$, and let A be a curve in X. An irreducible curve C in X will be called a nonhyperbolic curve with respect to A, if the following condition is satisfied: In case $C \nsubseteq A$, the normalization of $C \backslash A$ is isomorphic to either a smooth elliptic curve, $\boldsymbol{P}, \boldsymbol{C}$ or $\boldsymbol{C}^{*}=\boldsymbol{C} \backslash\{0\}$. In case $C \subset A$, the normalization of $C \backslash A^{\prime}$ is isomorphic to either a smooth elliptic curve, $\boldsymbol{P}, \boldsymbol{C}$ or \boldsymbol{C}^{*}, where A^{\prime} is the union of the components of A except C. So if we set $M=X \backslash A$, then $C \subset S_{M}(X)$ in case $C \nsubseteq A$.

The main result of this paper is
Theorem. Let A be a curve in \boldsymbol{P}^{2}. Set $X=\boldsymbol{P}^{2}$ and $M=\boldsymbol{P}^{2} \backslash A$. If $S_{M}(X)$ is a curve in X, then $S_{M}(X)$ is composed of nonhyperbolic curves with respect to A.

We obtain
COROLLARY. Let A be a curve with $l(l \geqq 4)$ irreducible components in \boldsymbol{P}^{2}. Set $X=\boldsymbol{P}^{2}$ and $M=\boldsymbol{P}^{2} \backslash A$.
(1) If the number of the nonhyperbolic curves in \boldsymbol{P}^{2} with respect to A is finite (respectively zero), $S_{M}(X)$ consists of at most finite number of nonhyperbolic curves with respect to A (respectively, $S_{M}(X)$ is empty).
(2) If the number of the nonhyperbolic curves in \boldsymbol{P}^{2} with respect to A is infinite, then $S_{M}(X)=X$.

1. Regular exhaustion.

Let \bar{S} be a compact bordered Riemann surface with k real analytic simple closed curves $\alpha_{1}, \cdots, \alpha_{k}(k \geqq 1)$. We set $\hat{\partial} S=\alpha_{1} \cup \cdots \cup \alpha_{k}$ and $S=\bar{S} \backslash \hat{\partial} S$. Let $d s^{2}$ be a conformal metric on \bar{S}. Consider a sequence of discs $\Delta\left(R_{j}\right)(j=1,2, \cdots)$ and an open subset D_{j} in each $\Delta\left(R_{j}\right)$ bounded by a finite number of real analytic arcs and curves. We set

$$
\Gamma_{j}=\partial D_{j} \cap \Delta\left(R_{j}\right), \quad L_{j}=\partial D_{j} \cap \partial \Delta\left(R_{j}\right) .
$$

Suppose that for each j there exists a nonconstant holomorphic mapping $\varphi_{j}: \bar{D}_{j} \rightarrow \bar{S}$ such that $\varphi_{j}\left(\Gamma_{j}\right) \subset \partial S$. We denote by $\varphi_{j}^{*} d s^{2}=h_{j}(z)|d z|^{2}$ the pull back of $d s^{2}$ by φ_{j} on D_{j}. We set

$$
\left|D_{j}\right|=\int_{D_{j}} h_{j}(z) \frac{i}{2} d z \wedge d \bar{z}, \quad\left|L_{j}\right|=\int_{L_{j}} \sqrt{h_{j}(z)}|d z| .
$$

For each $0<r<R_{j}$, set

$$
\begin{aligned}
& D_{j}(r)=D_{j} \cap \Delta(r), \quad L_{j}(r)=D_{j} \cap \partial \Delta(r), \\
& \left|D_{j}(r)\right|=\int_{D_{j}(r)} h_{j}(z) \frac{i}{2} d z \wedge d \bar{z}, \quad\left|L_{j}(r)\right|=\int_{L_{j}(r)} \sqrt{h_{j}(z)}|d z| .
\end{aligned}
$$

Definition 1. We call the sequence of the pairs $\left(D_{j}, \varphi_{j}\right)$ a regular exhaustion of $(S, d s)$, if $\underline{\lim }_{j \rightarrow \infty}\left(\left|L_{j}\right| /\left|D_{j}\right|\right)=0$.

We shall say that φ_{j} converges uniformly to a holomorphic mapping φ : $\Delta(r) \rightarrow S$, if there exists a positive integer j_{0} such that $\Delta(r) \subset D_{j}$ for all $j \geqq j_{0}$ and $\left\{\varphi_{j}\right\}_{j \geq j_{0}}$ converges uniformly to φ on $\Delta(r)$.

Lemma 1. Assume that each D_{j} contains the origin 0 and that the following three conditions are satisfied:
(i) $\lim _{j \rightarrow \infty} R_{j}=\infty$, (ii) $\left\{\varphi_{j}(0)\right\}$ converges to a point p of S, (iii) $\left\{\varphi_{j}\right\}$ has no subsequence which converges uniformly to the constant $\varphi(z) \equiv p$ on $\Delta(=\Delta(1))$.

Then, there exist a subsequence $\left\{j_{\lambda}\right\}_{\lambda=1,2, \ldots}$ of $\{j\}$ and a sequence of positive
numbers $r_{j_{\lambda}}<R_{j_{\lambda}}$ such that the sequence of the pairs $\left(D_{j_{\lambda}}\left(r_{j_{\lambda}}\right), \varphi_{j_{\lambda}}\right)$ is a regular exhaustion of ($S, d s$).

Proof. 1°. Let $R>1$. We first prove that $\left|D_{j}(R)\right|$ is bounded from below by a positive constant. Take j_{0} such that $R_{j}>R$ for all $j \geqq j_{0}$, and consider the graph G_{j} in $\Delta(R) \times S$:

$$
G_{j}=\left\{(z, w) \in \Delta(R) \times S ; w=\varphi_{j}(z), z \in D_{j}(R)\right\} .
$$

Then each $G_{j}\left(j \geqq j_{0}\right)$ is a closed analytic subset of dimension 1 in $\Delta(R) \times S$ and the area $\left|G_{j}\right|$ of G_{j} measured by $d \sigma^{2}=|d z|^{2}+d s^{2}$ is given by

$$
\left|G_{j}\right|=\int_{D_{j}(R)}\left(1+h_{j}(z)\right) \frac{i}{2} d z \wedge d \bar{z} \leqq \pi R^{2}+\left|D_{j}(R)\right| .
$$

It follows by the Oka [8]-Nishino [6]-Bishop [3] theorem that, if the sequence $\left\{\left|D_{j}(R)\right|\right\}$ has a bounded subsequence, then there exists a subsequence $\left\{G_{j_{2}}\right\}$ which converges uniformly to a closed analytic subset of dimension 1 on each compact subset of $\Delta(R) \times S$. Hence, if we assume that $\lim _{j_{\lambda \rightarrow \infty}\left|D_{j_{\lambda}}(1)\right|=0 \text {, then }}$ we can choose a subsequence of $\varphi_{j_{2}}$ which converges uniformly to the constant $\varphi(z) \equiv p$ on $\Delta(1)$. This contradicts (iii). Thus 1° is proved, namely there exists a positive constant A such that $\left|D_{j}(R)\right|>A$ for all $j \geqq j_{0}$.
2°. For $\varepsilon>0$, set $E_{j}(\varepsilon)=\left\{r \in\left[R, R_{j}\right) ;\left|L_{j}(r)\right| \geqq \varepsilon \cdot\left|D_{j}(r)\right|\right\}$. Define $h_{j}(z)$ to be zero on $\Delta\left(R_{j}\right) \backslash D_{j}$. Then by the Schwarz inequality,

$$
\begin{aligned}
\left|L_{j}(r)\right|^{2} & =\left|\int_{0}^{2 \pi} \sqrt{h_{j}\left(r e^{i \theta}\right)} r d \theta\right|^{2} \\
& \leqq 2 \pi r \int_{0}^{2 \pi} h_{j}\left(r e^{i \theta}\right) r d \theta=2 \pi r \frac{d\left|D_{j}(r)\right|}{d r} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\int_{E_{j}(\varepsilon)} \frac{d r}{2 \pi r} & \leqq \int_{E_{j}(\varepsilon)} \frac{d\left|D_{j}(r)\right|}{\left|L_{j}(r)\right|^{2}}<\frac{1}{\varepsilon^{2}} \int_{E_{j}(\varepsilon)} \frac{d\left|D_{j}(r)\right|}{\left|D_{j}(r)\right|^{2}} \\
& \leqq \frac{1}{\varepsilon^{2}}\left(\frac{1}{\left|D_{j}(R)\right|}-\frac{1}{\left|D_{j}\left(R_{j}\right)\right|}\right) \leqq \frac{1}{A \varepsilon^{2}} .
\end{aligned}
$$

Let $\left\{\varepsilon_{\lambda}\right\}$ be a sequence of positive numbers tending to zero. By (i), for each λ we can take j_{λ} such that

$$
\frac{1}{A \varepsilon_{\lambda}^{2}}<\frac{1}{2 \pi}\left(\log R_{j_{\lambda}}-\log R\right)=\int_{R}^{R j_{\lambda}} \frac{d r}{2 \pi r},
$$

so that $\left[R, R_{j_{\lambda}}\right) \backslash E_{j_{\lambda}}\left(\varepsilon_{\lambda}\right) \neq \varnothing$. If we choose, for $\lambda=1,2, \cdots$, an $r_{j_{\lambda}} \in\left[R, R_{j_{\lambda}}\right)$ $E_{j_{\lambda}}\left(\varepsilon_{\lambda}\right)$, then

$$
\lim _{\lambda \rightarrow \infty} \frac{\left|L_{j_{\lambda}}\left(r_{j_{\lambda}}\right)\right|}{\left|D_{j_{\lambda}}\left(r_{j_{\lambda}}\right)\right|} \leqq \lim _{\lambda \rightarrow \infty} \varepsilon_{\lambda}=0 .
$$

Now, for each boundary component $\alpha_{i}(1 \leqq i \leqq k)$ of S, denote by $N_{i}(j)$ the number of the closed curves on $\varphi_{j}^{-1}\left(\alpha_{i}\right) \cap \Delta\left(R_{j}\right)$ and by $m_{i}(j)$ the minimum of the degree of φ_{j} on these closed curves. If $\varphi_{j}^{-1}\left(\alpha_{i}\right) \cap \Delta\left(R_{j}\right)$ contains no closed curve, we set $m_{i}(j)=\infty$. Thus $1 \leqq m_{i}(j) \leqq \infty$.

Definition 2. Setting

$$
m_{i}=\lim _{j \rightarrow \infty} m_{i}(j)
$$

we say that the sequence $\left\{\left(D_{j}, \varphi_{j}\right)\right\}$ ramifies at least m_{i}-ply along α_{i}.
Lemma 2. Assume that the sequence $\left\{\left(D_{j}, \varphi_{j}\right)\right\}$ is a regular exhaustion of ($S, d s$) and ramifies at least m_{i}-ply along $\alpha_{i}(i=1, \cdots, k)$. Then we have
(1) $\sum_{i=1}^{k}\left(1-\frac{1}{m_{i}}\right) \leqq 2-2 g(S)$,
where $g(S)$ is the genus of S. In particular, $g(S) \leqq 1$.
Proof. (Cf. [9] Chap. VI, [7] n ${ }^{\circ}$ 6.) The area and the length with respect to $d s$ or $\varphi_{j}^{*} d s$ are denoted by $|\cdot|$. Let D_{j} have $l(j)$ connected components $D_{j}^{1}, \cdots, D_{j}^{L(j)}$ and let the border of D_{j}^{ν} consist of q_{j}^{μ} contours ($1 \leqq \nu \leqq l(j)$). First, we note that

$$
\sum_{\nu=1}^{l(j)}\left(q_{j}^{\nu}-2\right) \leqq \sum_{i=1}^{k} N_{i}(j)-l(j) \quad \text { and } \quad q_{j}^{\nu}-2 \geqq-1
$$

Hence, we have
(2) $\sum_{\nu=1}^{l(j)} \max \left\{q_{j}^{\nu}-2,0\right\} \leqq \sum_{i=1}^{k} N_{i}(j)$.

Next, by Ahlfors' second covering theorem ([9], p. 141), there exists a positive constant h_{1} depending only on ($S, d s$) such that

$$
\left|\frac{\left|D_{j}\right|}{|S|}-\frac{\left|\varphi_{j}^{-1}\left(\alpha_{i}\right)\right|}{\left|\alpha_{i}\right|}\right| \leqq h_{1}\left|L_{j}\right| .
$$

This yields
(3) $\quad N_{i}(j) \leqq \frac{\left|\varphi_{j}^{-1}\left(\alpha_{i}\right)\right|}{\left|\alpha_{i}\right| \cdot m_{i}(j)} \leqq \frac{\left|D_{j}\right|}{|S| \cdot m_{i}(j)}+h_{1}\left|L_{j}\right|$.

On the other hand, by Ahlfors' main theorem ([9], p. 148), there exists a positive constant h_{2} depending only on ($S, d s$) such that
(4) $\max \left\{q_{j}^{\mu}-2,0\right\} \geqq \frac{\left|D_{j}^{\nu}\right|}{|S|}(2 g(S)+k-2)-h_{2}\left|L_{j}^{\nu}\right|$.

From (2), (3) and (4), it follows that

$$
\sum_{i=1}^{k} \frac{\left|D_{j}\right|}{|S| \cdot m_{i}(j)} \geqq \frac{\left|D_{j}\right|}{|S|}(2 g(S)+k-2)-\left(k h_{1}+h_{2}\right)\left|L_{j}\right|
$$

namely,

$$
\sum_{i=1}^{k}\left(1-\frac{1}{m_{i}(j)}\right) \leqq 2-2 g(S)+\frac{\left(k h_{1}+h_{2}\right)|S| \cdot\left|L_{j}\right|}{\left|D_{j}\right|} .
$$

On letting $j \rightarrow \infty$ in this inequality, we obtain (1).
Q.E.D.

2. Application of the regular exhaustion.

Let X be a complex manifold of $\operatorname{dim}=n$ and, M, a dense subdomain of X. In [2], we proved

Lemma 3. For any point p of $S_{\boldsymbol{M}}(X)$ and any compact subset K of $X \backslash S_{M}(X)$, there exists a sequence of holomorphic mappings $f_{j}: \overline{\square\left(R_{j}\right)} \rightarrow M$ such that
(i) $\lim _{j \rightarrow \infty} R_{j}=\infty$, (ii) $\lim _{j \rightarrow \infty} f_{j}(0)=p$, (iii) $\left\|f_{j}{ }^{\prime}(0)\right\|=1$ and (iv) $f_{j}\left(\overline{\left(\overline{R_{j}}\right)}\right) \cap$ $K=\varnothing$ for all j, where $f_{j}^{\prime}(0)=d f\left(\left.(d / d z)\right|_{z=0}\right)$ and $\|*\|$ is the norm of the vector $*$ with respect to a fixed hermitian metric on X.

Let A be a curve in \boldsymbol{P}^{2} and set $X=\boldsymbol{P}^{2}$ and $M=\boldsymbol{P}^{2} \backslash A$. Assume that $S_{M}(X)$ is a curve in X. We denote by $\operatorname{Sing}\left(S_{M}(X)\right)$ the singular points of $S_{M}(X)$. Let Σ be any irreducible component of $S_{M}(X)$. We take a closed subdomain \bar{S} of Σ such that

1) $\bar{S} \cap \operatorname{Sing}\left(S_{M}(X)\right)=\varnothing$,
2) S is bordered by k real analytic simple closed curves $\alpha_{1}, \cdots, \alpha_{t}, \alpha_{t+1}$, \cdots, α_{k} where t is determined as follows:

Case I. $\Sigma \not \subset A$. We set

$$
\begin{aligned}
& \Sigma \cap A=\left\{p_{1}, \cdots, p_{m}\right\} \\
& \Sigma \cap\left(\operatorname{Sing}\left(S_{M}(X)\right) \backslash A\right)=\left\{p_{m+1}, \cdots, p_{n}\right\}
\end{aligned}
$$

For each $p_{l}(1 \leqq l \leqq n)$, we take a small neighborhood U_{l} of p_{l} such that

1) $U_{i} \cap U_{j}=\varnothing$ for $i \neq j ; 1 \leqq i, j \leqq n$.
2) If we denote by $\left\{\Sigma_{l_{1}}, \cdots, \Sigma_{l_{\nu}}\right\}$ the set of irreducible components of $\Sigma \cap U_{l}$, then each $\Sigma_{l_{i}}\left(1 \leqq i \leqq \nu_{l}\right)$ contains p_{l} and is irreducible at p_{l}. On each $\Sigma_{l_{k}}\left(1 \leqq l \leqq n ; 1 \leqq k \leqq \nu_{l}\right)$ we draw a real analytic simple closed curve $\alpha_{l_{k}}$ around p_{l}. We remember

$$
\begin{aligned}
& \alpha_{11}, \alpha_{12}, \cdots, \alpha_{m \nu_{m}}=\alpha_{1}, \cdots, \alpha_{t} \\
& \alpha_{m+11}, \alpha_{m+12}, \cdots, \alpha_{n \nu_{m}}=\alpha_{t+1}, \cdots, \alpha_{k}
\end{aligned}
$$

Case II. $\Sigma \subset A$. Let A^{\prime} be the union of the components of A except Σ. We set

$$
\begin{aligned}
& \Sigma \cap A^{\prime}=\left\{p_{1}, \cdots, p_{m}\right\} \\
& \Sigma \cap\left(\operatorname{Sing}\left(S_{M}(X)\right) \backslash A^{\prime}\right)=\left\{p_{m+1}, \cdots, p_{n}\right\} .
\end{aligned}
$$

For each $p_{l}(1 \leqq l \leqq n)$, we take a small neighborhood U_{l} of p_{l} and draw α_{1}, \cdots, $\alpha_{t}, \alpha_{t+1}, \cdots, \alpha_{k}$ by the same manner as above Case I.

By Lemma 1 of Nishino-Suzuki [7], there exists a relatively compact subdomain V of X and a holomorphic mapping $\pi: \bar{V} \rightarrow \bar{S}$ such that

1) $\bar{V} \cap S_{M}(X)=\bar{S}$,
2) $\left.\pi\right|_{\bar{s}}=\mathrm{id}$.,
3) $\bar{V} \xrightarrow{\pi} \bar{S}$ is topologically a locally trivial fiber bundle with fibers homeomorphic to the real 2 -dimensional closed disk.

By reading the proof of the lemma carefully, we conclude the following: for any sufficiently small $\varepsilon>0$ we can take \bar{V} such that $d(p, q) \leqq \varepsilon$ for any $p \in \bar{S}$ and any $q \in \pi^{-1}(p)$, where d is the distance defined from a hermitian metric of X. So
4) for any $p \in S$ there exists a neighborhood $U(p) \subset S$ such that $\pi^{-1}(U)$ is contained in a local coordinate neighborhood of X,
5) $\pi^{-1}\left(\alpha_{i}\right) \subset U_{l}, \pi^{-1}\left(\alpha_{i}\right) \cap A=\varnothing$ in case $\Sigma \nsubseteq A$ and $\pi^{-1}\left(\alpha_{i}\right) \cap A^{\prime}=\varnothing$ in case $\Sigma \subset A$.

From Lemma 3, for any point $p \in S$, there exists a sequence of holomorphic mappings $f_{j}: \overline{\Delta\left(R_{j}\right)} \rightarrow M$ such that
(i) $\lim _{j \rightarrow \infty} R_{j}=\infty$, (ii) $\lim _{j \rightarrow \infty} f_{j}(0)=p$, (iii) $\left\|f_{j}^{\prime}(0)\right\|=1$ and (iv) $f_{j}\left(\overline{\Delta\left(R_{j}\right)}\right) \cap$ $\cup_{q \in \bar{S}} \partial \pi^{-1}(q)=\varnothing$.

Set $\varphi_{j}=\pi \circ f_{j}, D_{j}=f_{j}^{-1}(V)$ and $\Gamma_{j}=\partial D_{j} \cap \Delta\left(R_{j}\right)$. Then $\varphi_{j}\left(\Gamma_{j}\right) \subset \partial S$ and we may assume that each D_{j} contains the origin 0 .

Lemma 4. $\left\{\varphi_{j}\right\}$ has no subsequence which converges uniformly to the constant $\varphi(z) \equiv p$ on Δ.

Proof. Assume $\varphi_{j_{\lambda}}$ converges uniformly to φ on Δ. Then $\left\{f_{j_{\lambda}}\right\}$ is a normal family since the image $f_{j_{2}}(\Delta)$ is contained in a local coordinate neighborhood of X for every sufficiently large j_{λ}. By renumbering $\left\{j_{\lambda}\right\}$, we may assume $f_{j_{2} \rightarrow f}$ on Δ, where f is a holomorphic mapping of Δ to X. Obviously $f(0)=p$. Let $f(a)=q$ for any $a \in \Delta^{*}$ where $\Delta^{*}=\Delta \backslash\{0\}$. Then $q \in \pi^{-1}(p)$.

By distance decreasing property,

$$
\begin{aligned}
d_{M}(p, q) & =d_{M}(f(0), f(a)) \\
& \leqq d_{M}\left(f(0), f_{j_{\lambda}}(0)\right)+d_{M}\left(f_{j_{\lambda}}(0), f_{j_{\lambda}}(a)\right)+d_{M}\left(f_{j_{\lambda}}(a), f(a)\right) \\
& \leqq d_{M}\left(f(0), f_{j_{\lambda}}(0)\right)+d_{\Delta\left(R_{j_{\lambda}}\right)}(0, a)+d_{M}\left(f_{j_{\lambda}}(a), f(a)\right) \\
& \longrightarrow 0\left(j_{\lambda} \longrightarrow \infty\right) .
\end{aligned}
$$

Since $q \in S_{M}(X)$, then $q \in \bar{S}$. As $\left.\pi\right|_{\bar{s}}=\mathrm{id}$., so $p=q$, and thus $f \equiv p$. It is a contradiction to $\left\|f^{\prime}(0)\right\|=1$.
Q.E.D.

From Lemma 1 and Lemma 4, we can replace the sequence $\left\{\left(D_{j}, \varphi_{j}\right)\right\}$ by its subsequence and shift the values of R_{j} 's so that $\left\{\left(D_{j}, \varphi_{j}\right)\right\}$ turns into a regular exhaustion of $(S, d s)$. Then, by Lemma 2, if the sequence $\left\{\left(D_{j}, \varphi_{j}\right)\right\}$ ramifies at least m_{i}-ply along α_{i}, we have

$$
\sum_{i=1}^{k}\left(1-\frac{1}{m_{i}}\right) \leqq 2-2 g(S)
$$

where $g(S)$ is the genus of S. In particular, $g(S) \leqq 1$.

3. Lemma A and B.

Let A be a curve in \boldsymbol{P}^{2} and set $X=\boldsymbol{P}^{2}$ and $M=\boldsymbol{P}^{2} \backslash A$. We assume that $S_{M}(X)$ is a curve in X. Let Σ be any irreducible component of $S_{M}(X)$ and S, α_{i}, p_{l} and U_{l} are same notations as in the section 2. Let V be a relatively compact subdomain of X and π be a holomorphic mapping from \bar{V} to \bar{S} which satisfy conditions 1$) \sim 5$) in the section 2.

Lemma A. If δ be a simply connected domain in \boldsymbol{C}, there is no holomorphic mapping $f: \bar{\delta} \rightarrow M$ such that $f(\partial \delta) \subset \pi^{-1}\left(\alpha_{i}\right) \subset U_{l}$ and $\pi \circ f(\partial \delta)=\alpha_{i}$ for some $i(1 \leqq i \leqq t)$.

Proof. Suppose that there is a holomorphic mapping which satisfies above condition. Let A_{0} be an irreducible component of A except Σ which passes through p_{l}. There exists a rational function F of X where the set of zeros is exactly A_{0} and the set of poles in U_{l} is empty. From Rouche's theorem

$$
0 \geqq \frac{1}{2 \pi i} \int_{\partial \delta} d \log (F \circ f)=\frac{1}{2 \pi i} \int_{\pi \circ f(\partial \delta)} d \log (F),
$$

since $\pi^{-1}\left(\alpha_{i}\right) \cap A_{0}=\varnothing$. And

$$
\frac{1}{2 \pi i} \int_{\pi \circ f(\partial \delta)} d \log F=\frac{1}{2 \pi i} \int_{\pi \circ f(\partial \delta)} d \log (F \mid \Sigma)>0 .
$$

It is absurd.
Q.E.D.

Lemma B. Let R be a domain of \boldsymbol{P} bounded with q real analytic simple closed curves ($q \geqq 1$), and S be a compact bordered Riemann surface with k real analytic simple closed curves. If $f: \bar{R} \rightarrow \bar{S}$ be a nonconstant holomorphic mapping such that $f(\partial R) \subset \partial S$, then $g(S)=0$.

Proof. Let n be a degree of f and χ be the Euler characteristic. By the Hurwitz formula,

$$
2-q=\chi(R) \leqq n \cdot \chi(S)=n(2-k-2 g(S)) .
$$

Since $q \leqq n \cdot k$, then $g(S) \leqq(n-1) / n<1$.
Q.E.D.

4. Proof of Theorem.

Let Σ be any irreducible component of $S_{M}(X)$ and $S, \alpha_{i}, p_{l}, U_{l}, V, f_{j}$ and φ_{j} are same notations as in the section 2.

If $g(S)=0$ we want to show that $t \leqq 2$. This will follow from the estimate

$$
\sum_{i=1}^{t}\left(1-\frac{1}{m_{i}}\right) \leqq \sum_{i=1}^{k}\left(1-\frac{1}{m_{i}}\right) \leqq 2
$$

if we can show that $m_{i}=\infty$ for $1 \leqq i \leqq t$ if $t \geqq 2$. So, we assume $m_{i} \neq \infty$ for some $i(1 \leqq i \leqq t, t \geqq 2)$. Then there exists a closed curve on $\varphi_{j_{\lambda}}^{-1}\left(\alpha_{i}\right) \cap \Delta\left(R_{j_{\lambda}}\right)$ for infinite $\left\{j_{\lambda}\right\}$. If for almost all $\left\{j_{\lambda}\right\}$, such curve surrounds a connected component of $D_{j_{\lambda}}$ as the outside boundary, there exists a closed curve on $\varphi_{j_{\lambda}}^{-1}\left(\alpha_{i^{\prime}}\right) \cap \Delta\left(R_{j_{\lambda}}\right)$ ($i^{\prime} \neq i, 1 \leqq i^{\prime} \leqq t$) which is not the outside boundary of such connected component of $D_{j_{\lambda}}$ for an infinite subsequence of $\left\{j_{\lambda}\right\}$ since $t \geqq 2$. By renumbering $\left\{j_{\lambda}\right\}$, we may assume that for each j_{λ} there exists a closed curve on $\varphi_{j_{\lambda}}^{-1}\left(\alpha_{i}\right) \cap \Delta\left(R_{j_{\lambda}}\right)$ which is not the outside boundary of a connected component of $D_{j_{\lambda}}$ for some $i(1 \leqq i \leqq t)$. It is absurd from Lemma A. So $m_{i}=\infty$ for every $i(1 \leqq i \leqq t)$ if $t \geqq 2$.

In case $g(S)=1$, we assume that $m_{i} \neq \infty$ for some $i(1 \leqq i \leqq t)$. Then, there exists a closed curve on $\varphi_{j_{\lambda}}^{-1}\left(\alpha_{i}\right) \cap \Delta\left(R_{j_{\lambda}}\right)$ for infinite $\left\{j_{\lambda}\right\}$. By Lemma B such curve does not surround a connected component of $D_{j_{\lambda}}$ as the outside boundary. It is absurd from Lemma A. Since $\sum_{i=1}^{k}\left(1-m_{i}^{-1}\right) \leqq 0$, then $t=0$. Q.E.D.

5. Proof of Corollary.

If the number of the nonhyperbolic curves in \boldsymbol{P}^{2} with respect to A is at most finite, then $S_{M}(X)$ is contained in some curve from Theorem 3 in [1]. So, $S_{M}(X)$ is a curve or empty by Theorem 2 in [2]. If $S_{M}(X)$ is a curve, then $S_{M}(X)$ is composed of nonhyperbolic curves with respect to A from Theorem in this paper.

If the number of the nonhyperbolic curves in \boldsymbol{P}^{2} with respect to A is infinite, then there exists a regular rational function f on $\boldsymbol{P}^{2} \backslash A$ such that all the irreducible components of the level curves $f^{-1}(a)$ in $\boldsymbol{P}^{2} \backslash A\left(a \in \boldsymbol{P}^{1}\right)$ are isomorphic to either \boldsymbol{C} or \boldsymbol{C}^{*} from Theorem 3 in [1]. So, it is easy to see that $S_{M}(X)=X$.
Q.E.D.

References

[1] Y. Adachi and M. Suzuki, On the family of holomorphic mappings into projective space with lacunary hypersurfaces, J. Math. Kyoto Univ., 30 (1990), 451-458.
[2] Y. Adachi and M. Suzuki, Degeneracy points of the Kobayashi pseudodistances on complex manifolds, Proc. Sympos. Pure Math., 52 (1991), Part 2, 41-51.
[3] E. Bishop, Conditions for the analyticity of certain sets, Michigan Math. J., 11
(1964), 289-304.
[4] P. Kiernan and S. Kobayashi, Holomorphic mappings into projective space with lacunary hyperplanes, Nagoya Math. J., 50 (1973), 199-216.
[5] S. Kobayashi, Invariant distances on complex manifolds and holomorphic mappings, J. Math. Soc. Japan, 19 (1967), 460-480.
[6] T. Nishino, Sur les familles de surfaces analytiques, J. Math. Kyoto Univ., 1 (1962), 357-377.
[7] T. Nishino and M. Suzuki, Sur les singularités essentielles et isolées des applications holomorphes à valeurs dans une surface complexe, Publ. Res. Inst. Math. Sci., Kyoto Univ., 16 (1980), 461-497.
[8] K. Oka, Note sur les familles de fonctions analytiques multiformes etc., J. Sci. Hiroshima Univ., 4 (1934), 93-98.
[9] L. Sario and K. Noshiro, Value distribution theory, D. Van Nostrand, Princeton, New Jersey, 1966.

Yukinobu ADACHI
Himeji Gakuin Women's Junior College
Fukuzakichyo, Kanzakigun
Hyogo 679-22
Japan

