On the hyperbolicity of projective plane with lacunary curves

By Yukinobu ADACHI

(Received Aug. 17, 1992)

Introduction.

1°. Let X be a complex manifold of dim=n, and, M, a dense subdomain of X. Denote by $d_M(p, q)$ be the intrinsic pseudodistance of two points p and q of M introduced by Kobayashi [5]. In [2], we extended d_M onto X as follows. For p, q of X, we define

$$d_M(p, q) = \lim_{p' \to \overline{p}, \overline{q'} \to q} d_M(p', q'), \qquad p', q' \in M.$$

It is clear that $0 \leq d_M(p, q) \leq \infty$ and $d_M(p, r) \leq d_M(p, q) + d_M(q, r)$ for p, q, r of X.

A point $p \in X$ is called a degeneracy point of d_M on X, if there exists a point $q \in X \setminus \{p\}$ such that $d_M(p, q) = 0$. We denote by $S_M(X)$ the set of all degeneracy points of d_M on X and call $S_M(X)$ the degeneracy locus of d_M in X.

Let S be an analytic subset of X. According to Kiernan-Kobayashi [4], M is hyperbolically imbedded modulo S in X, if every distinct points p, q of X such that $d_M(p, q)=0$ are contained in S. In this case, $S_M(X) \subset S$. M is hyperbolically imbedded in X if $S_M(X) = \emptyset$.

We showed in [2] that $S_M(X)$ is a pseudoconcave subset of order 1 in X and that, if $S_M(X)$ is not empty and is contained in an analytic subset of dimension 1 of X, then $S_M(X)$ is also an analytic subset of dimension 1 of X composed of irreducible components of genus ≤ 1 .

2°. Let X be a compact complex manifold of dim=2, and let A be a curve in X. An irreducible curve C in X will be called a nonhyperbolic curve with respect to A, if the following condition is satisfied: In case $C \oplus A$, the normalization of $C \setminus A$ is isomorphic to either a smooth elliptic curve, **P**, **C** or $C^*=C \setminus \{0\}$. In case $C \oplus A$, the normalization of $C \setminus A'$ is isomorphic to either a smooth elliptic curve, **P**, **C** or **C***, where A' is the union of the components of A except C. So if we set $M=X \setminus A$, then $C \oplus S_M(X)$ in case $C \oplus A$.

The main result of this paper is

THEOREM. Let A be a curve in \mathbf{P}^2 . Set $X = \mathbf{P}^2$ and $M = \mathbf{P}^2 \setminus A$. If $S_M(X)$ is a curve in X, then $S_M(X)$ is composed of nonhyperbolic curves with respect to A.

We obtain

COROLLARY. Let A be a curve with $l(l \ge 4)$ irreducible components in P^2 . Set $X=P^2$ and $M=P^2 \land A$.

(1) If the number of the nonhyperbolic curves in \mathbf{P}^2 with respect to A is finite (respectively zero), $S_M(X)$ consists of at most finite number of nonhyperbolic curves with respect to A (respectively, $S_M(X)$ is empty).

(2) If the number of the nonhyperbolic curves in P^2 with respect to A is infinite, then $S_M(X) = X$.

1. Regular exhaustion.

Let \overline{S} be a compact bordered Riemann surface with k real analytic simple closed curves $\alpha_1, \dots, \alpha_k (k \ge 1)$. We set $\partial S = \alpha_1 \cup \dots \cup \alpha_k$ and $S = \overline{S} \setminus \partial S$. Let ds^2 be a conformal metric on \overline{S} . Consider a sequence of discs $\Delta(R_j)$ $(j=1, 2, \dots)$ and an open subset D_j in each $\Delta(R_j)$ bounded by a finite number of real analytic arcs and curves. We set

$$\Gamma_j = \partial D_j \cap \Delta(R_j), \qquad L_j = \partial D_j \cap \partial \Delta(R_j).$$

Suppose that for each *j* there exists a nonconstant holomorphic mapping $\varphi_j : \overline{D}_j \rightarrow \overline{S}$ such that $\varphi_j(\Gamma_j) \subset \partial S$. We denote by $\varphi_j^* ds^2 = h_j(z) |dz|^2$ the pull back of ds^2 by φ_j on D_j . We set

$$|D_j| = \int_{D_j} h_j(z) \frac{i}{2} dz \wedge d\bar{z}, \qquad |L_j| = \int_{L_j} \sqrt{h_j(z)} |dz|.$$

For each $0 < r < R_j$, set

$$D_{j}(r) = D_{j} \cap \mathcal{\Delta}(r), \qquad L_{j}(r) = D_{j} \cap \partial \mathcal{\Delta}(r),$$
$$|D_{j}(r)| = \int_{D_{j}(r)} h_{j}(z) \frac{i}{2} dz \wedge d\bar{z}, \qquad |L_{j}(r)| = \int_{L_{j}(r)} \sqrt{h_{j}(z)} |dz|.$$

DEFINITION 1. We call the sequence of the pairs (D_j, φ_j) a regular exhaustion of (S, ds), if $\lim_{j\to\infty} (|L_j|/|D_j|)=0$.

We shall say that φ_j converges uniformly to a holomorphic mapping φ : $\Delta(r) \rightarrow S$, if there exists a positive integer j_0 such that $\Delta(r) \subset D_j$ for all $j \ge j_0$ and $\{\varphi_j\}_{j \ge j_0}$ converges uniformly to φ on $\Delta(r)$.

LEMMA 1. Assume that each D_j contains the origin 0 and that the following three conditions are satisfied:

(i) $\lim_{j\to\infty} R_j = \infty$, (ii) $\{\varphi_j(0)\}$ converges to a point p of S, (iii) $\{\varphi_j\}$ has no subsequence which converges uniformly to the constant $\varphi(z) \equiv p$ on $\Delta(=\Delta(1))$.

Then, there exist a subsequence $\{j_{\lambda}\}_{\lambda=1,2,\dots}$ of $\{j\}$ and a sequence of positive

186

numbers $r_{j_{\lambda}} < R_{j_{\lambda}}$ such that the sequence of the pairs $(D_{j_{\lambda}}(r_{j_{\lambda}}), \varphi_{j_{\lambda}})$ is a regular exhaustion of (S, ds).

PROOF. 1°. Let R > 1. We first prove that $|D_j(R)|$ is bounded from below by a positive constant. Take j_0 such that $R_j > R$ for all $j \ge j_0$, and consider the graph G_j in $\Delta(R) \times S$:

$$G_j = \{(z, w) \in \Delta(R) \times S; w = \varphi_j(z), z \in D_j(R)\}.$$

Then each G_j $(j \ge j_0)$ is a closed analytic subset of dimension 1 in $\Delta(R) \times S$ and the area $|G_j|$ of G_j measured by $d\sigma^2 = |dz|^2 + ds^2$ is given by

$$|G_{j}| = \int_{D_{j}(R)} (1+h_{j}(z)) \frac{i}{2} dz \wedge d\overline{z} \leq \pi R^{2} + |D_{j}(R)|.$$

It follows by the Oka [8]-Nishino [6]-Bishop [3] theorem that, if the sequence $\{|D_j(R)|\}$ has a bounded subsequence, then there exists a subsequence $\{G_{j_\lambda}\}$ which converges uniformly to a closed analytic subset of dimension 1 on each compact subset of $\Delta(R) \times S$. Hence, if we assume that $\lim_{j_\lambda \to \infty} |D_{j_\lambda}(1)| = 0$, then we can choose a subsequence of φ_{j_λ} which converges uniformly to the constant $\varphi(z) \equiv p$ on $\Delta(1)$. This contradicts (iii). Thus 1° is proved, namely there exists a positive constant A such that $|D_j(R)| > A$ for all $j \ge j_0$.

2°. For $\varepsilon > 0$, set $E_j(\varepsilon) = \{r \in [R, R_j); |L_j(r)| \ge \varepsilon \cdot |D_j(r)|\}$. Define $h_j(z)$ to be zero on $\Delta(R_j) \setminus D_j$. Then by the Schwarz inequality,

$$|L_{j}(r)|^{2} = \left| \int_{0}^{2\pi} \sqrt{h_{j}(re^{i\theta})} r d\theta \right|^{2}$$
$$\leq 2\pi r \int_{0}^{2\pi} h_{j}(re^{i\theta}) r d\theta = 2\pi r \frac{d |D_{j}(r)|}{dr}.$$

Therefore,

$$\int_{E_j(\varepsilon)} \frac{dr}{2\pi r} \leq \int_{E_j(\varepsilon)} \frac{d|D_j(r)|}{|L_j(r)|^2} < \frac{1}{\varepsilon^2} \int_{E_j(\varepsilon)} \frac{d|D_j(r)|}{|D_j(r)|^2}$$
$$\leq \frac{1}{\varepsilon^2} \left(\frac{1}{|D_j(R)|} - \frac{1}{|D_j(R_j)|} \right) \leq \frac{1}{A\varepsilon^2}.$$

Let $\{\varepsilon_{\lambda}\}$ be a sequence of positive numbers tending to zero. By (i), for each λ we can take j_{λ} such that

$$\frac{1}{A\varepsilon_{\lambda}^{2}} < \frac{1}{2\pi} (\log R_{j\lambda} - \log R) = \int_{R}^{R_{j\lambda}} \frac{dr}{2\pi r},$$

so that $[R, R_{j_{\lambda}}) \setminus E_{j_{\lambda}}(\varepsilon_{\lambda}) \neq \emptyset$. If we choose, for $\lambda = 1, 2, \dots$, an $r_{j_{\lambda}} \in [R, R_{j_{\lambda}})$ $E_{j_{\lambda}}(\varepsilon_{\lambda})$, then

$$\lim_{\lambda \to \infty} \frac{|L_{j_{\lambda}}(r_{j_{\lambda}})|}{|D_{j_{\lambda}}(r_{j_{\lambda}})|} \leq \lim_{\lambda \to \infty} \varepsilon_{\lambda} = 0. \qquad \text{Q.E.D.}$$

Y. Adachi

Now, for each boundary component $\alpha_i (1 \leq i \leq k)$ of *S*, denote by $N_i(j)$ the number of the closed curves on $\varphi_j^{-1}(\alpha_i) \cap \mathcal{A}(R_j)$ and by $m_i(j)$ the minimum of the degree of φ_j on these closed curves. If $\varphi_j^{-1}(\alpha_i) \cap \mathcal{A}(R_j)$ contains no closed curve, we set $m_i(j) = \infty$. Thus $1 \leq m_i(j) \leq \infty$.

DEFINITION 2. Setting

$$m_i = \lim_{i \to \infty} m_i(j),$$

we say that the sequence $\{(D_j, \varphi_j)\}$ ramifies at least m_i -ply along α_i .

LEMMA 2. Assume that the sequence $\{(D_j, \varphi_j)\}$ is a regular exhaustion of (S, ds) and ramifies at least m_i -ply along α_i $(i=1, \dots, k)$. Then we have

(1)
$$\sum_{i=1}^{k} \left(1 - \frac{1}{m_i}\right) \leq 2 - 2g(S),$$

where g(S) is the genus of S. In particular, $g(S) \leq 1$.

PROOF. (Cf. [9] Chap. VI, [7] n°6.) The area and the length with respect to ds or $\varphi_j^* ds$ are denoted by $|\cdot|$. Let D_j have l(j) connected components $D_j^1, \dots, D_j^{l(j)}$ and let the border of D_j^* consist of q_j^* contours $(1 \le \nu \le l(j))$. First, we note that

$$\sum_{\nu=1}^{l(j)} (q_{j}^{\nu}-2) \leq \sum_{i=1}^{k} N_{i}(j) - l(j) \text{ and } q_{j}^{\nu}-2 \geq -1.$$

Hence, we have

(2)
$$\sum_{\nu=1}^{l(j)} \max\{q_j^{\nu}-2, 0\} \leq \sum_{i=1}^k N_i(j).$$

Next, by Ahlfors' second covering theorem ([9], p. 141), there exists a positive constant h_1 depending only on (S, ds) such that

$$\left|\frac{|D_j|}{|S|} - \frac{|\varphi_j^{-1}(\alpha_i)|}{|\alpha_i|}\right| \leq h_1 |L_j|.$$

This yields

(3)
$$N_i(j) \leq \frac{|\varphi_j^{-1}(\alpha_i)|}{|\alpha_i| \cdot m_i(j)} \leq \frac{|D_j|}{|S| \cdot m_i(j)} + h_1 |L_j|.$$

On the other hand, by Ahlfors' main theorem ([9], p. 148), there exists a positive constant h_2 depending only on (S, ds) such that

(4)
$$\max\{q_j^{\nu}-2, 0\} \ge \frac{|D_j^{\nu}|}{|S|} (2g(S)+k-2)-h_2|L_j^{\nu}|.$$

From (2), (3) and (4), it follows that

$$\sum_{i=1}^{k} \frac{|D_j|}{|S| \cdot m_i(j)} \ge \frac{|D_j|}{|S|} (2g(S) + k - 2) - (kh_1 + h_2) |L_j|,$$

188

namely,

$$\sum_{i=1}^{k} \left(1 - \frac{1}{m_i(j)} \right) \leq 2 - 2g(S) + \frac{(kh_1 + h_2)|S| \cdot |L_j|}{|D_j|}.$$

On letting $j \rightarrow \infty$ in this inequality, we obtain (1).

2. Application of the regular exhaustion.

Let X be a complex manifold of $\dim = n$ and, M, a dense subdomain of X. In [2], we proved

LEMMA 3. For any point p of $S_M(X)$ and any compact subset K of $X \setminus S_M(X)$, there exists a sequence of holomorphic mappings $f_j: \overline{\mathcal{A}(R_j)} \to M$ such that

(i) $\lim_{j\to\infty} R_j = \infty$, (ii) $\lim_{j\to\infty} f_j(0) = p$, (iii) $||f_j'(0)|| = 1$ and (iv) $f_j(\overline{\mathcal{A}(R_j)}) \cap K = \emptyset$ for all j, where $f_j'(0) = df((d/dz)|_{z=0})$ and ||*|| is the norm of the vector * with respect to a fixed hermitian metric on X.

Let A be a curve in P^2 and set $X = P^2$ and $M = P^2 \setminus A$. Assume that $S_M(X)$ is a curve in X. We denote by $\operatorname{Sing}(S_M(X))$ the singular points of $S_M(X)$. Let Σ be any irreducible component of $S_M(X)$. We take a closed subdomain \overline{S} of Σ such that

1) $\overline{S} \cap \operatorname{Sing}(S_M(X)) = \emptyset$,

2) S is bordered by k real analytic simple closed curves $\alpha_1, \dots, \alpha_t, \alpha_{t+1}, \dots, \alpha_k$ where t is determined as follows:

Case I. $\Sigma \subset A$. We set

$$\begin{split} \Sigma \cap A &= \{p_1, \cdots, p_m\}; \\ \Sigma \cap (\operatorname{Sing}(S_M(X)) \setminus A) &= \{p_{m+1}, \cdots, p_n\} \end{split}$$

For each $p_l (1 \le l \le n)$, we take a small neighborhood U_l of p_l such that

1) $U_i \cap U_j = \emptyset$ for $i \neq j$; $1 \leq i, j \leq n$.

2) If we denote by $\{\Sigma_{l_1}, \dots, \Sigma_{l_{\nu_l}}\}$ the set of irreducible components of $\Sigma \cap U_l$, then each $\Sigma_{l_i}(1 \le i \le \nu_l)$ contains p_l and is irreducible at p_l . On each $\Sigma_{l_k}(1 \le l \le n; 1 \le k \le \nu_l)$ we draw a real analytic simple closed curve α_{l_k} around p_l . We remember

$$\alpha_{11}, \alpha_{12}, \cdots, \alpha_{m\nu_m} = \alpha_1, \cdots, \alpha_t,$$

$$\alpha_{m+11}, \alpha_{m+12}, \cdots, \alpha_{n\nu_m} = \alpha_{t+1}, \cdots, \alpha_k$$

Case II. $\Sigma \subset A$. Let A' be the union of the components of A except Σ . We set

$$\begin{split} \Sigma \cap A' &= \{p_1, \cdots, p_m\};\\ \Sigma \cap (\operatorname{Sing}(S_M(X)) \setminus A') &= \{p_{m+1}, \cdots, p_n\}. \end{split}$$

Q.E.D.

For each $p_l (1 \le l \le n)$, we take a small neighborhood U_l of p_l and draw $\alpha_1, \dots, \alpha_l, \alpha_{l+1}, \dots, \alpha_k$ by the same manner as above Case I.

By Lemma 1 of Nishino-Suzuki [7], there exists a relatively compact subdomain V of X and a holomorphic mapping $\pi: \overline{V} \to \overline{S}$ such that

- 1) $\overline{V} \cap S_M(X) = \overline{S}$,
- 2) $\pi|_{\bar{s}} = \mathrm{id.},$

3) $\overline{V} \xrightarrow{\pi} \overline{S}$ is topologically a locally trivial fiber bundle with fibers homeomorphic to the real 2-dimensional closed disk.

By reading the proof of the lemma carefully, we conclude the following: for any sufficiently small $\varepsilon > 0$ we can take \overline{V} such that $d(p, q) \leq \varepsilon$ for any $p \in \overline{S}$ and any $q \in \pi^{-1}(p)$, where d is the distance defined from a hermitian metric of X. So

4) for any $p \in S$ there exists a neighborhood $U(p) \subset S$ such that $\pi^{-1}(U)$ is contained in a local coordinate neighborhood of X,

5) $\pi^{-1}(\alpha_i) \subset U_i$, $\pi^{-1}(\alpha_i) \cap A = \emptyset$ in case $\Sigma \subset A$ and $\pi^{-1}(\alpha_i) \cap A' = \emptyset$ in case $\Sigma \subset A$.

From Lemma 3, for any point $p \in S$, there exists a sequence of holomorphic mappings $f_j: \overline{\mathcal{A}(R_j)} \to M$ such that

(i) $\lim_{j\to\infty} R_j = \infty$, (ii) $\lim_{j\to\infty} f_j(0) = p$, (iii) $||f_j'(0)|| = 1$ and (iv) $f_j(\overline{\mathcal{A}(R_j)}) \cap \bigcup_{q \in \overline{S}} \partial \pi^{-1}(q) = \emptyset$.

Set $\varphi_j = \pi \circ f_j$, $D_j = f_j^{-1}(V)$ and $\Gamma_j = \partial D_j \cap \mathcal{A}(R_j)$. Then $\varphi_j(\Gamma_j) \subset \partial S$ and we may assume that each D_j contains the origin 0.

LEMMA 4. $\{\varphi_j\}$ has no subsequence which converges uniformly to the constant $\varphi(z) \equiv p$ on Δ .

PROOF. Assume $\varphi_{j_{\lambda}}$ converges uniformly to φ on Δ . Then $\{f_{j_{\lambda}}\}$ is a normal family since the image $f_{j_{\lambda}}(\Delta)$ is contained in a local coordinate neighborhood of X for every sufficiently large j_{λ} . By renumbering $\{j_{\lambda}\}$, we may assume $f_{j_{\lambda}} \rightarrow f$ on Δ , where f is a holomorphic mapping of Δ to X. Obviously f(0)=p. Let f(a)=q for any $a \in \Delta^*$ where $\Delta^*=\Delta \setminus \{0\}$. Then $q \in \pi^{-1}(p)$.

By distance decreasing property,

$$d_{M}(p, q) = d_{M}(f(0), f(a))$$

$$\leq d_{M}(f(0), f_{j_{\lambda}}(0)) + d_{M}(f_{j_{\lambda}}(0), f_{j_{\lambda}}(a)) + d_{M}(f_{j_{\lambda}}(a), f(a))$$

$$\leq d_{M}(f(0), f_{j_{\lambda}}(0)) + d_{\mathcal{A}(R_{j_{\lambda}})}(0, a) + d_{M}(f_{j_{\lambda}}(a), f(a))$$

$$\longrightarrow 0 (j_{\lambda} \longrightarrow \infty).$$

Since $q \in S_M(X)$, then $q \in \overline{S}$. As $\pi|_{\overline{s}} = id.$, so p = q, and thus $f \equiv p$. It is a contradiction to ||f'(0)|| = 1. Q.E.D.

190

From Lemma 1 and Lemma 4, we can replace the sequence $\{(D_j, \varphi_j)\}$ by its subsequence and shift the values of R_j 's so that $\{(D_j, \varphi_j)\}$ turns into a regular exhaustion of (S, ds). Then, by Lemma 2, if the sequence $\{(D_j, \varphi_j)\}$ ramifies at least m_i -ply along α_i , we have

$$\sum_{i=1}^{k} \left(1 - \frac{1}{m_i}\right) \leq 2 - 2g(S),$$

where g(S) is the genus of S. In particular, $g(S) \leq 1$.

3. Lemma A and B.

Let A be a curve in P^2 and set $X = P^2$ and $M = P^2 \setminus A$. We assume that $S_M(X)$ is a curve in X. Let Σ be any irreducible component of $S_M(X)$ and S, α_i , p_i and U_i are same notations as in the section 2. Let V be a relatively compact subdomain of X and π be a holomorphic mapping from \overline{V} to \overline{S} which satisfy conditions 1) \sim 5) in the section 2.

LEMMA A. If δ be a simply connected domain in C, there is no holomorphic mapping $f: \bar{\delta} \to M$ such that $f(\partial \delta) \subset \pi^{-1}(\alpha_i) \subset U_i$ and $\pi \circ f(\partial \delta) = \alpha_i$ for some $i(1 \leq i \leq t)$.

PROOF. Suppose that there is a holomorphic mapping which satisfies above condition. Let A_0 be an irreducible component of A except Σ which passes through p_i . There exists a rational function F of X where the set of zeros is exactly A_0 and the set of poles in U_i is empty. From Rouché's theorem

$$0 \geq \frac{1}{2\pi i} \int_{\partial \delta} d \log(F \circ f) = \frac{1}{2\pi i} \int_{\pi \circ f(\partial \delta)} d \log(F),$$

since $\pi^{-1}(\alpha_i) \cap A_0 = \emptyset$. And

$$\frac{1}{2\pi i} \int_{\pi \circ f(\partial \delta)} d\log F = \frac{1}{2\pi i} \int_{\pi \circ f(\partial \delta)} d\log(F \mid \Sigma) > 0.$$

It is absurd.

LEMMA B. Let R be a domain of **P** bounded with q real analytic simple closed curves $(q \ge 1)$, and S be a compact bordered Riemann surface with k real analytic simple closed curves. If $f: \overline{R} \rightarrow \overline{S}$ be a nonconstant holomorphic mapping such that $f(\partial R) \subset \partial S$, then g(S) = 0.

PROOF. Let n be a degree of f and χ be the Euler characteristic. By the Hurwitz formula,

$$2-q = \boldsymbol{\lambda}(R) \leq n \cdot \boldsymbol{\lambda}(S) = n(2-k-2g(S)).$$

Since $q \leq n \cdot k$, then $g(S) \leq (n-1)/n < 1$.

Q.E.D.

4. Proof of Theorem.

Let Σ be any irreducible component of $S_M(X)$ and S, α_i , p_l , U_l , V, f_j and φ_j are same notations as in the section 2.

If g(S)=0 we want to show that $t \leq 2$. This will follow from the estimate

$$\sum_{i=1}^{t} \left(1 - \frac{1}{m_i}\right) \leq \sum_{i=1}^{k} \left(1 - \frac{1}{m_i}\right) \leq 2$$

if we can show that $m_i = \infty$ for $1 \le i \le t$ if $t \ge 2$. So, we assume $m_i \ne \infty$ for some $i \ (1 \le i \le t, t \ge 2)$. Then there exists a closed curve on $\varphi_{j_{\lambda}}^{-1}(\alpha_i) \cap \mathcal{A}(R_{j_{\lambda}})$ for infinite $\{j_{\lambda}\}$. If for almost all $\{j_{\lambda}\}$, such curve surrounds a connected component of $D_{j_{\lambda}}$ as the outside boundary, there exists a closed curve on $\varphi_{j_{\lambda}}^{-1}(\alpha_{i'}) \cap \mathcal{A}(R_{j_{\lambda}})$ $(i' \ne i, 1 \le i' \le t)$ which is not the outside boundary of such connected component of $D_{j_{\lambda}}$ for an infinite subsequence of $\{j_{\lambda}\}$ since $t\ge 2$. By renumbering $\{j_{\lambda}\}$, we may assume that for each j_{λ} there exists a closed curve on $\varphi_{j_{\lambda}}^{-1}(\alpha_i) \cap \mathcal{A}(R_{j_{\lambda}})$ which is not the outside boundary of a connected component of $D_{j_{\lambda}}$ for some $i \ (1 \le i \le t)$. It is absurd from Lemma A. So $m_i = \infty$ for every $i \ (1 \le i \le t)$ if $t\ge 2$.

In case g(S)=1, we assume that $m_i \neq \infty$ for some $i \ (1 \leq i \leq t)$. Then, there exists a closed curve on $\varphi_{j_{\lambda}}^{-1}(\alpha_i) \cap \mathcal{A}(R_{j_{\lambda}})$ for infinite $\{j_{\lambda}\}$. By Lemma B such curve does not surround a connected component of $D_{j_{\lambda}}$ as the outside boundary. It is absurd from Lemma A. Since $\sum_{i=1}^{k} (1-m_i^{-1}) \leq 0$, then t=0. Q.E.D.

5. Proof of Corollary.

If the number of the nonhyperbolic curves in P^2 with respect to A is at most finite, then $S_M(X)$ is contained in some curve from Theorem 3 in [1]. So, $S_M(X)$ is a curve or empty by Theorem 2 in [2]. If $S_M(X)$ is a curve, then $S_M(X)$ is composed of nonhyperbolic curves with respect to A from Theorem in this paper.

If the number of the nonhyperbolic curves in P^2 with respect to A is infinite, then there exists a regular rational function f on $P^2 \setminus A$ such that all the irreducible components of the level curves $f^{-1}(a)$ in $P^2 \setminus A$ ($a \in P^1$) are isomorphic to either C or C* from Theorem 3 in [1]. So, it is easy to see that $S_M(X)=X$. Q.E.D.

References

- [1] Y. Adachi and M. Suzuki, On the family of holomorphic mappings into projective space with lacunary hypersurfaces, J. Math. Kyoto Univ., 30 (1990), 451-458.
- [2] Y. Adachi and M. Suzuki, Degeneracy points of the Kobayashi pseudodistances on complex manifolds, Proc. Sympos. Pure Math., 52 (1991), Part 2, 41-51.
- [3] E. Bishop, Conditions for the analyticity of certain sets, Michigan Math. J., 11

(1964), 289-304.

- [4] P. Kiernan and S. Kobayashi, Holomorphic mappings into projective space with lacunary hyperplanes, Nagoya Math. J., 50 (1973), 199-216.
- [5] S. Kobayashi, Invariant distances on complex manifolds and holomorphic mappings, J. Math. Soc. Japan, 19 (1967), 460-480.
- [6] T. Nishino, Sur les familles de surfaces analytiques, J. Math. Kyoto Univ., 1 (1962), 357-377.
- [7] T. Nishino and M. Suzuki, Sur les singularités essentielles et isolées des applications holomorphes à valeurs dans une surface complexe, Publ. Res. Inst. Math. Sci., Kyoto Univ., 16 (1980), 461-497.
- [8] K. Oka, Note sur les familles de fonctions analytiques multiformes etc., J. Sci. Hiroshima Univ., 4 (1934), 93-98.
- [9] L. Sario and K. Noshiro, Value distribution theory, D. Van Nostrand, Princeton, New Jersey, 1966.

Yukinobu Adachi

Himeji Gakuin Women's Junior College Fukuzakichyo, Kanzakigun Hyogo 679-22 Japan