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0. Introduction.

TWO compact Riemannian manifolds are said to be isospectral if their asso-
ciated Laplace-Beltrami operators have the same spectra. In 1964 J. Milnor
[15] first gave an example of a pair of isospectral 16-dimensional flat tori
which are not isometric to each other. Later, other examples of pairs of iso-
spectral but not isometric Riemannian manifolds were given by several authors.
(See, $e$ . $g.$ , the review paper [2].) In particular, T. Sunada [17] gave a general
technique for constructing pairs of isospectral manifolds with a common finite
Riemannian covering. In 1984 C. S. Gordon and E. Wilson [9] exhibited for the
first time continuous one-parameter families of nonisometric, isospectral metrics
(isospectral deformations of metrics). Their examples are constructed on solv-
manifolds or nilmanifolds, $i$ . $e.$ , manifolds whose universal Riemannian coverings
are solvable or nilpotent Lie groups with left-invariant metrics. Their idea was
further developed, involving Sunada’s method, in the subsequent articles [4], [5].

In this Paper we analyze the isospectral deformations on nilmanifolds con-
structed by Gordon, Wilson and DeTurck from the viewpoint of dynamical
systems: classical Hamiltonian systems (geodesic flows) and quantized systems
(Laplace-Beltrami operators). A key to our consideration is the reduction proce-
dure of (classical) Hamiltonian systems formulated by Marsden and Weinstein
[14] and its analog for differential operators (quantum systems). We decom-
pose the system of geodesic flow and its quantization (the Laplace-Beltrami
operator) into families of classical and quantum reduced systems, respectively.
Another key point is the notion of $(pseudo-)restricted$-inner transformations of
a Lie algebra, which is motivated by the notion of almost-inner derivations by
Gordon and Wilson [9]. We make clear what occurs in the reduced systems
under the deformations of Riemannian metrics generated by a (pseudo-)restricted-
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inner transformation.
Section 1 is devoted to reviewing a formulation of dynamical systems on

Lie groups with left-invariant metrics. In Section 2 we consider the Hamil-
tonian system (the system of geodesic flow) on the cotangent bundle over a
nilmanifold. We obtain a family of reduced Hamiltonian systems of it by means
of the momentum mapping associated to the symplectic action by the center of
the nilpotent Lie group. The symplectic forms of the reduced phase spaces are
represented in terms of the curvature form of a connection suitably defined on
a principal torus bundle over the reduced configuration space. Corresponding
to a subfamily of these reduced Hamiltonian systems, we introduce in Section
3 the $Schr6dinger$ oPerators (reduced quantum systems), which are defined by
the connection on the principal torus bundle considered in \S 2. It is found that
the sPectrum of the Laplace-Beltrami oPerator on the original nilmanifold con-
sists of the union of the spectra of these Schr\"odinger operators on the reduced
spaces. In Section 4 we introduce the notion of pseudo-restricted-inner trans-
formations of a Lie algebra. This notion is, in a sense, a generalization of
almost-inner derivations, which play a key role in Gordon-Wilson-DeTurck [4],
[7], [9] to construct isospectral deformations of metrics. Next in Section 5
we show that each reduced system considered in \S \S 2 and 3 is left invariant
under the deformation of metric generated by a (pseudo-)restricted-inner trans-
formation (Theorem 5.1 and Proposition 5.4). Finally, as an application of our
discussions we give in \S 6 an example of non-trivial isospectral deformation of
connection on a line bundle over a Riemannian manifold.

1. Dynamical systems on Lie groups.

Let $G$ be a Lie group endowed with a left invariant Riemannian metric.
Consider the Hamiltonian dynamical system or the geodesic flow on the cotan-
gent bundle $T^{*}G$ with the Hamiltonian function defined by the Riemannian
metric.

For an element $g$ of $G$ , let $L_{g}(R_{g})$ denote the left (right) translation on $G$ ,
and set $I_{g}=L_{g}\circ R_{g-1}$ (the inner automorphism of $G$ ). As the differentials and
their dual operators of these diffeomorphisms we define the following linear
isomorphisms of the tangent and the cotangent spaces for each $h\in G$ :

$L_{g*}:$ $T_{h}Garrow T_{g\hslash}G$ , $R_{g*}:$ $T_{\hslash}Garrow T_{hg}G$ ,

$L_{g}^{*}\cdot T_{gh}^{*}Garrow T_{h}^{*}G$ , $R_{g}^{*}:T_{hg}^{*}Garrow T_{h}^{*}G$ ,

Ad $(g)=(I_{g*})_{e}$ : $\mathfrak{g}arrow \mathfrak{g}$ , $Ad^{*}(g)=(I_{g}^{*})_{e}$ : $\mathfrak{g}^{*}arrow \mathfrak{g}^{*}$ ,

where $\mathfrak{g}=T_{e}G$ is the Lie algebra of $G$ and $g^{*}$ is the dual space of 9.



Spectra and geodesic flows 121

NOW, we consider the cotangent bundle $T^{*}G$ , and we have a bundle iso-
morphism $l:T^{*}Garrow Gx\mathfrak{g}^{*}$ given by

$T_{\hslash}^{*}G\ni\xi\mapsto(h, L_{h}^{*}\xi)\in G\cross g^{*}$ .
Then,

(1.1) $l\circ L_{g}^{*}\circ l^{-1}(h, \mu)=(g^{-1}h, \mu)$ , $l\circ R_{g}^{*}\circ l^{-1}(h, \mu)=(hg^{-1}, Ad^{*}(g^{-1})\mu)$ ,

holds for $(h, \mu)\in Gxg^{*}$ , and we denote these mappings on $Gxg^{*}$ by the same
notations $L_{g}^{*}$ and $R_{g}^{*}$ . Let $\theta_{0}$ be the canonical one form on the cotangent bundle
$T^{*}G$ , and set $\omega_{0}=-d\theta_{0}$ . The two form $\omega_{0}$ is the natural symplectic structure
on $T^{*}G$ . By virtue of the isomorphism $l$ we define the forms $\theta=(l^{-1})^{*}\theta_{0}$ and
$\omega=(l^{-1})^{*}\omega_{0}$ on $cxg^{*}$ . Thus we have the symplectic manifold $(G\cross \mathfrak{g}^{*}, \omega)$ . We
call $\omega$ the standard symplectic form on $G\cross g^{*}$ .

PROPOSITION 1.1 (cf. [1, p. 315]). Let $(g, \mu)\in G\cross 9^{*}$ , and $(v, \rho),$ $(w, \sigma)\in$

$T_{(g,p)}(G\cross g^{*})=T_{g}G\cross g^{*}$ . Then,
(1) $\theta(g, \mu)(\iota)\rho)=\mu(L_{g-1*}v)$ .
(2) $\omega(g, \mu)((v, \rho),$ $(w, \sigma))=-\rho(L_{g-1*}w)+\sigma(L_{g-1*}v)+\mu([L_{g^{-1*}}\iota)L_{g-1*}w])$ .

Let $G\ni g\mapsto\langle, \rangle_{g}$ be a left-invariant Riemannian metric on $G$ , which is unl-

quely defined by the inner product $\langle, \rangle=\langle, \rangle_{e}$ in $\mathfrak{g}$ . Over each $g\in G$ we corre-
spond $\xi\in T_{g}^{*}G$ to such $\xi^{\#}\in T_{g}G$ that $\xi(v)=\langle\xi^{\#}, v\rangle_{g}$ holds for every $v\in T_{g}G$ .
The function $H_{0}(\xi)_{-}\langle\xi^{*}, \xi^{\#}\rangle_{g}/2(\xi\in T_{g}^{*}G)$ on $(T^{*}G, \omega_{0})$ defines the Hamiltonian
dynamical system whose flow is the geodesic flow. It is obvious that the func-
tion $H_{0}$ is invariant under the left translation $L_{g}^{*}$ for every $g\in G$ . DePne the
function $H=(l^{-1})^{*}H_{0}$ on $G\cross g^{*}$ . Then we have

(1.2) $H(g, \mu)=\frac{1}{2}\langle\mu, \mu\rangle^{*}:$ $= \frac{1}{2}\langle\mu^{\#}, \mu^{g}\rangle$

by means of (1.1). Let $X_{H}$ is the Hamiltonian vector field on $(G\cross \mathfrak{g}^{*}, \omega)$ defined
by $H,$ $i$ . $e$ . $i_{X_{H}}\omega=dH$ ( $i_{X}$ : the interior product with respect to $X$).

PROPOSITION 1.2. Let $(g, \mu)\in G\chi \mathfrak{g}^{*}$ . Then,

$X_{H}(g, \mu)=(L_{g*}(\mu^{\#}), ad^{*}(\mu^{\#})\mu)\in T_{g}G\cross \mathfrak{g}^{*}$ ,

where $ad^{*}(\mu^{\#})$ is the dual operator of $ad(\mu^{\#})$ : g– $g;w-[\mu^{\#}, w]$ .

PROOF. Direct calculation using Proposition 1.1 and (1.2). $\blacksquare$

Note in the above proposition that the $\mathfrak{g}^{*}$-component of $X_{H}$ is independent
of $g\in G$ .

DYNAMICAL SYSTEMS ON $\Gamma\backslash G$ . Suppose $G$ has a uniform discrete subgroup
$\Gamma$. A left-invariant Riemannian metric on $G$ induces a metric on the compact
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manifold $M=\Gamma\backslash G$ . Corresponding to the isomorphism $T^{*}G\cong G\cross g^{*}$ , the iso-
morphism $T^{*}M\cong M\cross \mathfrak{g}^{*}$ by left translations by $G$ is induced, and the objects $\omega$ ,
$H$ and $X_{H}$ on $G\cross g^{*}$ are identified with those on $M\cross \mathfrak{g}^{*}$ because they are in-
variant under any left translation by $\gamma\in\Gamma$ .

2. Reductions of the Hamiltonian systems on nilmanifolds.

Let $g$ be an $n$ -dimensional nilpotent Lie algebra and $G=\exp g$ the corre-
sponding Lie group, which is diffeomorphic to $R^{n}$ . Suppose $G$ has a uniform
discrete subgroup $\Gamma$, that is equivalent to the existence of a basis of $\mathfrak{g}$ relative
to which the structure constants are rational (cf. [3]). We consider the Rie-
mannian manifold $(M=\Gamma\backslash G, \langle, \rangle)$ , where $\langle, \rangle$ is induced from a left invariant
metric, also denoted by $\langle, \rangle$ , on $G$ , and the associated Hamiltonian system $\mathcal{H}=$

$(T^{*}M\cong M\cross g^{*}, \omega, H)$ .
The group $G$ has the non-empty center $Z=\exp 3,3$ being the center of $\mathfrak{g}$ .

We put $r=\dim Z$ . Let $G_{1}$ be the quotient group $G/Z$ with the natural projec-
tion $\pi:Garrow G_{1}=G/Z$ . Then we have the following.

LEMMA 2.1. (1) $G_{1}$ is a connected and simply connected nilpotent Lie group.
(2) $Z\cap\Gamma$ is a uniform discrete subgroup of $Z$ , and $T=Z\cap\Gamma\backslash Z$ is iso-

morphc with the $r$-dimensional torus $S^{1}\cross\cdots\cross S^{1}=\{(e^{it_{1}}, \cdots , e^{tt_{r}});0\leqq f_{j}<2\pi(]^{=}$

$1,$ $\cdots$ $r)\}$ .
(3) $\Gamma_{1}=\pi(\Gamma)$ is a uniform discrete subgroup of $G_{1}$ .
PROOF. (1) is obvious. (2) We denote the inverse of $\exp$ by $log:Garrow \mathfrak{g}$ .

For $u,$ $v\in 3\cap\log\Gamma$, we have
$u-\iota)\in \mathfrak{z}\cap\log\Gamma$

by the Campbell-Baker-Hausdorff formula. Hence, $3\cap\log\Gamma$ is a cocompact
lattice in $\mathfrak{z}$ , and we have the assertion. (3) This follows from the fact that
$Z\cap\Gamma$ is a uniform discrete subgroup of $Z$ (cf. [3, Lemma 5.1.4]). $\blacksquare$

By virtue of the above lemma we have a principal torus bundle

(2.1) $\hat{\pi}:M=\Gamma\backslash Garrow M_{1}=\Gamma_{1}\backslash G_{1}$

with the fiber $T$ corresponding to $\pi:Garrow G_{1}=G/Z$ .
NOW we consider the Hamiltonian system $\mathcal{H}$ and its reduction following

Marsden-Weinstein [14]. Let $\Phi$ : $Z\cross(M\cross g^{*})arrow Mxg^{*}$ be the action of $Z$ on
$M\cross \mathfrak{g}^{*}$ defined by

$\Phi_{k}([g], \mu)=L_{k-1}^{*}([g], \mu)=([kg], \mu)$ ,

for $k\in Z,$ $[g]\in M=\Gamma\backslash G$ with $g\in G$ , and $\mu\in g^{*}$ . Here we recall that $kg=gk$

for every $k\in Z$ and $g\in G$ . It is easily shown that the action $\Phi$ is symplectic,



Spectra and geodesic flows 123

$i$ . $e.$ , $\Phi_{k}^{*}\omega=\omega$ holds. Let $\hat{\delta}^{*}$ be the dual space of the center 3. Both $\mathfrak{z}$ and 3*
are isomorphic with $R^{r}$ .

LEMMA 2.2. An $Ad^{*}$-equivariant momentum mapping $J:M\cross \mathfrak{g}^{*}arrow\partial^{*}$ for the
symplectic action $\Phi$ is given by

$J([g], \mu)(v)=\mu(Ad(g^{-1})v)=\mu(v)$

for $v\in_{3}\subset g$ .

PROOF. For each $v\in\partial$ let $v^{*}$ denote the corresponding vector field on $M\chi g^{*}$

relative to the action $\Phi$ . Let $\hat{J}$ is the dual map from 3 to the space of smooth
functions on $M\cross g^{*}$ . Then

$d(\hat{J}(v))=i_{v*}\omega$ $(\iota)\in \mathfrak{z})$ ,

$J\circ\Phi_{k}=Ad^{*}(k^{-1})\circ J$ $(k\in Z)$

must hold. This is easily checked by straightforward calculations. $\blacksquare$

We construct the family of reduced phase spaces corresponding to the
momentum mapping $J$ . We notice that every $\kappa\in\partial^{*}$ is a regular value of $J$ ,
and consider the submanifold

$J^{-1}(\kappa)=$ { $([g],$ $\mu)\in M\cross \mathfrak{g}^{*};$ $\mu(v)=\kappa(v)$ for all $v\in \mathfrak{z}$ }

$=\{([g], \mu_{0}+\mu_{1})\in M\cross g^{*} ; \mu_{1}\in \mathfrak{z}^{\perp}\}$ ,

where $\mu_{0}$ is a fixed vector in $\mathfrak{g}^{*}$ such that $\mu_{0}(v)=\kappa(v)$ for all $u\in \mathfrak{z}$ , and

$\mathfrak{z}^{\perp}=$ { $\mu_{1}\in g^{*};$ $\mu_{1}(v)=0$ for all $\backslash lJ\in_{\partial}$ }.

The isotropy group $Z_{\kappa}=\{k\in Z;Ad^{*}(k)\kappa=\kappa\}$ is nothing but $Z$ , and the reduced
phase space $P.=J^{-1}(\kappa)/Z_{\kappa}$ is given by

(2.2) $P$. $=\{([g_{1}], \mu_{0}+\mu_{1});[g_{1}]\in M_{1}=\Gamma_{1}\backslash G_{1}, \mu_{1}\in \mathfrak{z}^{\perp}\}$ .

The symplectic form $\omega_{\kappa}$ on P. is defined as a unique two form which
satisfies

$p_{\kappa}^{*}\omega_{\kappa}=i_{\kappa}^{*}\omega$ ,

where $p_{\kappa}$ : $J^{-1}(\kappa)arrow P_{\kappa}$ is the natural projection and $i_{\kappa}$ : $J^{-1}(\kappa)arrow M\cross \mathfrak{g}^{*}$ is the inclu-
sion map. Noticing that $T_{([g_{1}].\mu)}P_{\kappa}\cong T_{[g_{1}]}M_{1}\cross \mathfrak{z}^{\perp}=T_{g_{1}}G_{1}\cross \mathfrak{z}^{\perp}(\mu=\mu_{0}+\mu_{1})$ , we
take its two elements $\rho=(L_{g_{1}*}v_{1}, \nu)$ and $\sigma=(L_{g_{1^{*}}}w_{1}, \tau)$ with $v_{1},$ $w_{1}\in \mathfrak{g}_{1}$ (the Lie
algebra of $G_{1}$ ). Then we obtain from Proposition 1.1

(2.3) $\omega,([g_{1}], \mu)(\rho, \sigma)=-v(w)+\tau(v)+\mu([v, w])$ ,

where $v$ and $w$ are elements in $\mathfrak{g}$ satisfying $\pi_{*}(v)=v_{1}$ and $\pi_{*}(w)=w_{1}$ , respec-
tively. Recall that $\omega_{\kappa}$ given by (2.3) is well-defined without depending on the
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choice of $v$ and $w$ .
The Hamiltonian $H$, conserved under the action of $Z$ , induces the Hamil-

tonian H. on $P_{\kappa}$ as

(2.4) $H_{\kappa}([g_{1}], \mu)=\frac{1}{2}\langle\mu, \mu\rangle^{*}$ .

Next, let us take the direct sum decomposition of $\mathfrak{g}$ :

(2.5) $\mathfrak{g}=\mathfrak{z}\oplus W$

as vector spaces such that the subspaces $\mathfrak{z}$ and $W$ are orthogonal to each other
with respect to the inner product $\langle$ , $\rangle$ in $\mathfrak{g}$ . Each vector $v\in g$ is written as
$v=v_{\partial}+v_{W}$ with $v_{\partial}\in \mathfrak{z},$

$\iota)_{W}\in W$ . Corresponding to this decomposition we have
a decomposition of $\mathfrak{g}^{*}:$

$g^{*}=\mathfrak{z}^{\perp}\oplus W^{\perp}$

Noticing that $\mathfrak{z}^{*}\cong \mathfrak{g}^{*}/\mathfrak{z}^{\perp}$ , we identify $\mathfrak{z}^{*}$ with the subspace $W^{\perp}$ of $g^{*}$ and have

$g^{*}=\mathfrak{z}^{\perp}\oplus \mathfrak{z}^{*}$

Put $\mu_{0}=\kappa\in \mathfrak{z}^{*}(=W^{\perp})$ , and we have

$P_{\kappa}=\{([g_{1}], \kappa+\mu_{1})\in M_{1}\cross g^{*} ; \mu_{1}\in \mathfrak{z}^{\perp}\}$ .

From the projection $\pi$ : $Garrow G_{1}=G/Z$ we have isomorphisms of vector spaces,
$\pi^{*}:$ $g_{1}^{*}arrow \mathfrak{z}^{\perp}\subset \mathfrak{g}^{*}$ and $\pi_{*}|_{W}$ : $Warrow g_{1}$ . Thus we have a diffeomorphism

(2.6) $\Psi_{\kappa}$ : $P_{\kappa}arrow T^{*}M_{1}\cong M_{1}\cross g_{1}^{*}$ ; $([g_{1}], \kappa+\mu_{1})-([g_{1}], \mu_{1})$ .

The decomposition (2.5) defines a connection fi on the principal torus bundle
(2.1) by giving the distribution of horizontal spaces Hor $([g])=L_{g*}(W)(g\in G)$ .
Then, we have the following (see, $e$ . $g$ . $[10]$ ).

LEMMA 2.3. (1) The connection form a of $\tilde{\nabla}$ is a $\partial$-valued one form on $M$

given by

a $([g])(X)=(L_{g}-1*X)_{\mathfrak{z}}= \sum_{k=1}^{r}\langle L_{g- 1*}X, v_{k}\rangle v_{k}$ ,

where $X\in T_{[g]}M$ and $\{v_{k} ; 1\leqq k\leqq r\}$ is an orthonormal basts of $\partial$ .
(2) The curvature form $\Theta$ of $\tilde{\nabla}$ is a $\partial$-valued two form on $M$ given by

$\tilde{\Theta}([g])(L_{g*}v, L_{g*}w)=-[v_{W}, w_{W}]_{\mathfrak{z}}=-[v, w]_{\mathfrak{z}}$

for $v,$ $w\in g$ .

REMARK. If $\mathfrak{g}$ is two-step nilpotent, $i$ . $e.,$ $[g, \mathfrak{g}]\subset\int$ , then the curvature $\tilde{\Theta}$

is determined only by the Lie algebra structure not depending on the inner
product of $\mathfrak{g}$ .
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Take a local section $s$ of the bundle (2.1), and put $\Theta=s^{*}\tilde{\Theta}$ , which is a 3-
valued two form on an open set of $M_{1}$ . Then, it is easy to see that $\Theta$ is given
independently on $s$ by

$\Theta([g_{1}])(L_{g_{1^{*}}}v_{1}, L_{g_{1^{*}}}w_{1})=-[v, w]_{\mathfrak{z}}$

for $v_{1},$ $w_{1}\in \mathfrak{g}_{1}$ , where $v$ and $w$ are vectors in $\mathfrak{g}$ such that $\pi_{*}(v)=v_{1}$ and $\pi_{*}(w)$

$=w_{1}$ , respectively. Thus $\Theta$ is a two form globally defined on $M_{1}$ , and we call
it also the curvature form of V.

Let $\hat{\Theta}$ be the pull-back of $\Theta$ to $M_{1}\cross \mathfrak{g}_{1}^{*}$ by the projection $M_{1}\cross g_{1}^{*}arrow M_{1}$ . The
formula (2.3) is rewritten as

$\omega_{\kappa}([g_{1}], \mu)(\rho, \sigma)=-v(w)+\tau(v)+\kappa([v, w]_{\mathfrak{z}})+\mu_{1}([v, w]_{W})$ ,

where $\mu=\kappa+\mu_{1}$ Hence, the symplectic form $\omega_{\kappa}$ on $P_{\kappa}$ is transformed by (2.6)

to the two form $\Omega_{\kappa^{1)}}^{(}$ on $M_{1}\cross \mathfrak{g}_{1}^{*}$ given by

$\langle 2.\eta$
$\Omega_{\kappa}^{(1)}=\omega^{(1)}-\kappa\hat{\Theta}$ ,

where $\omega^{(1)}$ is the standard symplectic form on $M_{1}\cross g_{1}^{*}$ . The term $\kappa\hat{\Theta}$ induces
a “magnetic field” term in the equations of motion on $M_{1}$ (see, $e$ . $g$ . $[16]$ ).

Let us introduce the inner product $\langle, \rangle_{1}$ in $\mathfrak{g}_{1}$ such that $\pi_{*}|_{W}$ : $Warrow \mathfrak{g}_{1}$ is an
isometry. Then the Hamiltonian $H_{\kappa}$ on $P_{\kappa}$ is transformed to $H_{\kappa}^{(1)}$ on $M_{1}\cross g_{1}^{*}$ as

$\langle$2.8) $H_{K}^{(1)}([g_{1}], \mu_{1})=\frac{1}{2}\langle\mu_{1}, \mu_{1}\rangle_{1}^{*}+\frac{1}{2}\langle\kappa, \kappa\rangle^{*}$ ,

where $\langle, \rangle_{1}^{*}$ is the inner product in $\mathfrak{g}_{1}^{*}$ naturally introduced from $\langle, \rangle_{1}$ in $\mathfrak{g}_{1}$ .
AS a consequence we have the following.

PROPOSITION 2.4. The reduced Hamiltonian system $(P_{\kappa}, \omega_{\kappa}, H_{\kappa})(\kappa\in \mathfrak{z}^{*})$ is iso-
morPhic with $\mathcal{H}_{\kappa}^{(1)}=(M_{1}\cross g_{1}^{*}, \Omega_{\kappa}^{(1)}, H_{\kappa}^{(1)})$ .

REMARK. $\mathcal{H}_{0}^{(1)}$ is just the standard Hamiltonian system (the system of
geodesic flow) over the Riemannian manifold $(M_{1}, \langle\rangle_{1})$ .

3. Reductions of the Laplacian on nilmanifolds.

The quantum object corresponding to the Hamiltonian system $\mathcal{H}=(M\cross \mathfrak{g}^{*}$ ,
$\omega,$ $H)$ is the Laplace-Beltrami operator $\Delta$ on the Riemannian manifold $(M, \langle, \rangle)$ .
AS a quantum version of the Marsden-Weinstein reduction of $\mathcal{H}$ , we consider
a “reduction” of the Laplacian on $(M, \langle, \rangle)$ to the Schr\"odinger operators which
are associated with the reduced classical Hamiltonian systems.

We introduce the line bundles associated with the principal torus bundle
(2.1). Let $\Lambda^{*}$ be the lattice in 3* dual to $\Lambda=\mathfrak{z}\cap\log\Gamma$, i. e.,
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$\Lambda^{*}=$ { $\lambda\in\partial^{*};$ $\lambda(v)/2\pi\in Z$ for any $v\in\Lambda$ }.

For each $\lambda\in\Lambda^{*}$ let $\rho_{\lambda}$ : $Tarrow C^{*}=C\backslash \{0\}$ be the representation of $T=Z\cap\Gamma\backslash Z$

on $C$ defined by
$\rho_{\lambda}(t)=e^{i\lambda(v)}$ ,

where $t=[\exp v]\in T$ with $v\in \mathfrak{z}$ . Let $\pi_{\lambda}$ : $E_{\lambda}arrow M_{1}$ be the complex line bundle
associated with the principal torus bundle (2.1) by the representation $\rho_{\lambda}$ , that
is, the quotient manifold of $M\cross C$ with respect to the equivalence relation

$([g], z)\sim([gk]\lambda\rho_{\lambda}(-[k])z)$
$(k\in Z, z\in C)$ .

For each $[g]\in M$ , define $x_{[g]}$ : $Carrow\pi_{\lambda}^{-1}(\pi([g]))\subset E_{\lambda}$ by $zarrow[([g], z)]_{\lambda}$ , and $\chi_{[g]}$ is
a $C$-linear isomorphism. Each fibre $\pi_{\lambda}^{-1}([g_{1}])([g_{1}]\in M_{1})$ of $E_{\lambda}$ is endowed
with the metric such that $x_{[g]}$ : $Carrow\pi_{\lambda}^{-1}([g_{1}])$ is an isometry for $[g]\in M$ with
$\#([g])=[g_{1}]$ . Thus, $E_{\lambda}$ is a Hermitian line bundle. Let $C_{\lambda}^{\infty}(M)$ denote the
set consisting of every $C^{\infty}$ function $f$ on $M$ such that

(3.1) $f([gk])=\rho_{\lambda}([k])f([g])$

for every $[k]\in T$ , which is called an equivariant function with respect to $\rho_{\lambda}$ .
For $s\in C^{\infty}(E_{\lambda})$ (the space of $C^{\infty}$ sections of $E_{\lambda}$ ), define a $C^{\infty}$ function $s\sim=x_{\lambda}(s)$

on $M$ by $s\sim([g])=x_{[g]}^{-1}(s(\pi([g])))$ . Then $g$ belongs to $C_{\lambda}^{\infty}(M)$ and $\chi_{\lambda}$ gives a one-
to-one correspondence between $C^{\infty}(E_{\lambda})$ and $C_{\lambda}^{\infty}(M)$ .

The connection V on the principal bundle (2.1) induces the linear connec-
tion $\tilde{\nabla}^{(\lambda)}$ on $E_{\lambda}$ which is defined as the covariant derivative:

$\tilde{\nabla}_{x^{\lambda)}}^{(}s=x_{\lambda}^{-1}(\tilde{x}_{S}^{\sim})$ ,

$s\in C^{\infty}(E_{\lambda}),$ $X$ being a vector field on $M_{1}$ and $\tilde{X}$ the horizontal lift of $X$ to $M$ .
Let us take a local trivialization of the bundle (2.1): $jt^{-1}(U)\cong U\cross T,$ $U$ being an
open set of $M_{1}$ . Let $F_{0}$ be the local section defined by

$F_{0}(x_{1})=(x_{1}, e)$ $(x_{1}\in U)$ ,

$e$ being the identity of $T$ , and let $s_{0}$ be the local section of $\mathcal{L}_{\lambda}$ defined by

$s_{0}(x_{1})=[(F_{0}(x_{1}), 1)]_{\lambda}$ .

Let $\tilde{\theta}$ and $\Theta$ be the connection and the curvature forms of V, respectively (see

\S 2). Then the following is easy to check.

LEMMA 3.1. (1) The connection form $\theta^{(\lambda)}$ of $\nabla^{(\lambda)}$ with respect to the section
$s_{0},$

$i$ . $e.,\tilde{\nabla}_{X}^{(\lambda)}s_{0}=\theta^{(\lambda)}(X)s_{0}$ holds, is given by

$\theta^{(\lambda)}=\rho_{\lambda*}F_{0}^{*}\tilde{\theta}=i\lambda F_{0}^{*}\tilde{\theta}$ .
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(2) The curvature form, $\Theta^{(\lambda)}(X, Y)=[\tilde{\nabla}_{X}^{(\lambda)},\tilde{\nabla}_{Y}^{(\lambda)}]-\tilde{\nabla}$ E2, $Y1$ , of $\tilde{\nabla}^{(\lambda)}$ is given by

$\Theta^{(\lambda)}=i\lambda\Theta$ .
(3) The connection $\tilde{\nabla}^{(\lambda)}$ is compatible with the Hermitian structure in $E_{\lambda}$ .

From the connection $\tilde{\nabla}^{(\lambda)}$ on $E_{\lambda}$ and the Riemannian metric $m_{1}=\langle, \rangle_{1}$ on
$M_{1}$ we can naturally define a differential operator $L^{(\lambda)}$ called the Bochner-
Laplacian, which is a second order, non-negative, formally self-adjoint elliptic
operator acting on $C^{\infty}(E_{\lambda})$ (see, $e$ . $g.,$ $[11]$ ). A local expression of $L^{(\lambda)}$ is
given by

$L^{(\lambda)}=- \sum_{j.k}m_{1}^{jk}(\nabla_{j}+ia_{J^{\lambda)}}^{(})(\nabla_{k}+ia_{k}^{(\lambda)})$ ,

where $\nabla$ is the Levi-Civita connection defined by $m_{1}$ , and $\theta^{(\lambda)}=i\Sigma a_{j}^{(\lambda)}dx^{j}$ . As
the quantum object corresponding to the reduced Hamiltonian system $\mathcal{H}_{\lambda^{1)}}^{(}=$

$(M_{1}\cross \mathfrak{g}_{1}^{*}, \Omega_{\lambda^{1}}^{(}‘, H_{\lambda^{1)}}^{(})$ we take the differential operator $D^{(\lambda)}$ on $E_{\lambda}$ (the Schr\"od-
inger operator with a “magnetic” vector potential) given by

$D^{(\lambda)}=L^{(\lambda)}+|\lambda|^{2}$

Note that $D^{(0)}$ is just the Laplace-Beltrami operator on $(M_{1}, \langle, \rangle_{1})$ .
We pay attention to the spectrum of the Laplace-Beltrami operator $\Delta$ on

$(M, \langle, \rangle)$ (denoted by $Spec(\Delta)$) and that of $D^{(\lambda)}$ on $E_{\lambda}$ (denoted by $Spec(D^{(\lambda)})$).

Take a set of $C^{\infty}$ vector fields $\{X_{1}, \cdots X_{p}\}(p=\dim M_{1})$ defined on a neighbor-
hood of $x_{1}\in M_{1}$ such that $\langle X_{j}, X_{k}\rangle_{1}(x_{1})=\delta_{jk}$ . Then,

$(L^{(\lambda)}s)(x_{1})=-[ \sum_{j=1}^{p}(\tilde{\nabla}_{x_{j}}^{(\lambda)})^{2}s](x_{1})=-[\sum_{f=1}^{p}\chi_{\lambda}^{-1}(\tilde{X}_{J^{S}}^{2\sim})](x_{1})$

for $s\in C^{\infty}(E_{\lambda})$ with $\chi_{\lambda}(s)=s\sim\in C_{\lambda}^{\infty}(M)$ . If we set $\tilde{L}^{(\lambda)}=x_{\lambda}\circ L^{(\lambda)}\circ\chi_{\lambda}^{-1}\tilde{L}^{(\lambda)}$ is a
differential operator acting on $C_{\lambda}^{\infty}(M)$ and

$\tilde{L}^{(\lambda)}=-\sum_{j=1}^{p}\tilde{X}_{j}^{2}=\Delta+\sum_{k=1}^{r}Z_{k}^{2}$ ,

where $\{Z_{k} ; 1\leqq k\leqq r\}$ is an orthonormal system of vector fields on $M$ defmed
by $Z_{k}([g])=L_{g*}v_{k}(g\in G)$ with $\{v_{k} ; 1\leqq k\leqq r\}$ being an orthonormal basis of 3.
For $S\in C_{\lambda}^{\infty}(M)$ we have from (3.1)

$Z_{k^{S}}^{\sim}=i\lambda(v_{k})S$ ,

hence,

$\tilde{L}^{(\lambda)}s\sim=\Delta s\sim-\sum_{k=1}^{r}\{\lambda(v_{k})\}_{S}^{2\sim}=\Delta_{S}^{\sim}-|\lambda|_{S}^{2\sim}$ .

Noticing that $\chi_{\lambda}$ : $C^{\infty}(E_{\lambda})arrow C_{\lambda}^{\infty}(M)$ is $C$-linear isomorphism, we get the following.

LEMMA 3.2. The equation $D^{(\lambda)}s=cs(c\in C)$ holds for $s\in C^{\infty}(E_{\lambda})$ if and only
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if $\Delta g_{=}cg$ holds for $s\sim=x_{\lambda}(s)\in C_{\lambda}^{\infty}(M)$ .

The spaces $C^{\infty}(M)$ and $C^{\infty}(E_{\lambda})$ are naturally endowed with inner products,
and we denote their completions by $L^{2}(M)$ and $L^{2}(E_{\lambda})$ , respectively. Then,

LEMMA 3.3. (1) The map $\chi_{\lambda}$ : $C^{\infty}(E_{\lambda})arrow C_{\lambda}^{\infty}(M)$ is $h$ -continuous.
(2) The set $\oplus_{\lambda\in\Lambda}*C_{\lambda}^{\infty}(M)$ is dense in $L^{2}(M)$ .

PROOF. (1) is obvious. (2) follows directly from the theory of Fourier
series. $\blacksquare$

By means of Lemmas 3.2 and 3.3 we have the following.

PROPOSITION 3.4. $Spec(\Delta)=\bigcup_{\lambda\in\Lambda^{*}}Spec(D^{(\lambda)})$ .

4. Pseudo-restricted-inner transformations of Lie algebras.

Let $G,$ $\Gamma,$ $Z,$ $\mathfrak{g},$ $\mathfrak{z},$

$\cdots$ etc. be same as in \S \S 2 and 3. For each $\kappa\in \mathfrak{z}^{*}(\cong \mathfrak{g}^{*}/\partial^{\perp})$

$Cg^{*}$ , we set

$\mathfrak{z}_{\kappa}^{\perp}=\{$

$\{\kappa+\nu;\nu\in \mathfrak{z}^{\perp}\}$ $(\kappa\neq 0)$

$\mathfrak{z}^{\perp}\backslash \{0\}$ $(\kappa=0)$

which is a subset of $\mathfrak{g}^{*}$ .

DEFINITIONS AND NOTATION. A linear transformation $\emptyset$ of $\mathfrak{g}$ , $i$ . $e.,$ $\emptyset\in$

$\mathfrak{g}I(\mathfrak{g})$ , is called a pseudo-restricted-inner transformation of $\mathfrak{g}$ relative to $\kappa\in \mathfrak{z}^{*}$ if
there exists a smooth map $Y_{\iota}$ : $\mathfrak{z}_{\kappa}^{\perp}arrow \mathfrak{g}$ which satisfies

(4.1) $\phi^{*}\mu=ad^{*}(Y_{\kappa}(\mu))\mu$ $(\mu\in \mathfrak{z}_{\kappa}^{\perp})$

for the dual operator $\phi^{*}:$ $\mathfrak{g}^{*}arrow \mathfrak{g}^{*}$ of $\phi$ , and

(4.2) $v\{\tau(Y.(\mu))\}-\tau\{v(Y.(\mu))\}=0$

for every constant vector field $\nu,$
$\tau:\mathfrak{z}_{\kappa}^{\perp}arrow \mathfrak{z}^{\perp};$ $\nu(\mu)=\nu,$ $\tau(\mu)=\tau$ . If, in particular,

the map Y. can be taken to be constant on $\int_{\kappa}^{\perp}$ , we call $\phi$ a restricted-inner
transformation of $\mathfrak{g}$ relative to $\kappa$ .

We denote by PRIT $(g;\kappa)$ (resp. RIT $(\mathfrak{g};\kappa)$) the set of all pseudo-restricted-
inner (resp. restricted-inner) transformations of $\mathfrak{g}$ relative to $\kappa$ . Furthermore,
for a subset $S$ of $\partial^{*}$ we set

PRIT $(g;S)= \bigcap_{\kappa\in S}PRIT(g;\kappa)$ , RIT $(g;S)= \bigcap_{\kappa\in S}$ RIT $(\mathfrak{g};\kappa)$ ,

each element of which we call a pseudo-resiricted-inner transformation and a
restricted-inner transformaiion, respectively, of $\mathfrak{g}$ relative to $S$ . In particular,
put PRIT $(\mathfrak{g})=PRlT(\mathfrak{g};3^{*})$ (resp. RIT $(\mathfrak{g})=RIT(g;\mathfrak{z}^{*})$), which is called the set of
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pseudo-restricted-inner (resp. restricted-inner) transformations of $\mathfrak{g}$ .
Gordon-Wilson [9] and Gordon [7] introduced the notion of almost-inner

derivations: An derivation $\phi$ of $\mathfrak{g}$ is called an almost-inner derivation relative
to $\Gamma$ if $\phi(X)\in[\mathfrak{g}, X]$ for any $X\in\log\Gamma$. We denote by AID $(\mathfrak{g};\Gamma)$ the set of
all almost-inner derivations of $g$ relative to $\Gamma$, which is a Lie subalgebra of the
Lie algebra consisting of all derivations of $\mathfrak{g}$ . In particular, put AID $(\mathfrak{g})=$

AID $(g;G)$ , each element of which we call an almost-inner derivation of $\mathfrak{g}$ .

Concerning the notions above, we have the following. The assertion (1)

was pointed out by C. Gordon.

LEMMA 4.1. (1) PRIT $(g;O)=RIT(g;0)$ .
(2) If $\phi$ belongs to PRIT $(\mathfrak{g};\Lambda^{*})$ , then $\phi(\mathfrak{z})=\{0\}$ holds.
(3) If $g$ is a two-step nilpotent Lie algebra, then we have

RIT $(g)=PRIT(g)=AID(g)$ ,

and
RIT $(g;\Lambda^{*})=PRIT(g;\Lambda^{*})=AID(g;\Gamma)$ .

PROOF. (1) Suppose $\phi$ belongs to PRIT $(\mathfrak{g};0)$ , and $\phi^{*}\mu=ad^{*}(Y(\mu))\mu$ holds.
Since 9 $:=[g, g]\neq g$ , we can take $\mu_{0^{E}}s^{\perp}\backslash \{0\}$ such that $\mu_{0}(\mathfrak{g}^{(1)})=0$ . Then,
$ad^{*}(Y)\mu_{0}=0$ for V $Y\in g$ and $\emptyset^{*}\mu_{0}=0$ hold. Put $Y_{0}=Y(\mu_{0})$ . We show $\phi^{*}\mu=$

$ad^{*}(Y_{0})\mu$ for any $\mu\in \mathfrak{z}^{\perp}$ . It is obvious for $\mu=c\mu_{0}(c\in R)$ . Choose a vector
space complement $V$ of $R\mu_{0}$ in $\mathfrak{z}^{\perp}$ . Define

$\overline{Y}$ : $Varrow \mathfrak{g};\overline{Y}(\nu)=Y(\mu_{0}+\nu)$ .

Note that $\overline{Y}$ is continuous on $V$ and $\overline{Y}(0)=Y_{0}$ . We have for every $v\in V$

$ad^{*}(\overline{Y}(\nu))\nu=ad^{*}(\overline{Y}(\nu))(\mu_{0}+\nu)=\phi^{*}(\mu_{0}+\nu)=\phi^{*}\nu$ .

Replacing $\nu$ with $c\nu$ in the formula above, we have $\phi^{*}(c\nu)=ad^{*}(\overline{Y}(c\nu))(c\nu)$ .
Hence, we get

$\phi^{*}\nu=ad^{*}(\overline{Y}(c\nu))\nu$ , for $\forall c\neq 0$ .
Let $carrow 0$ in this, and we have $\phi^{*}\nu=ad^{*}(Y_{0})\nu$ for any $\nu\in V$ . Therefore, notic-
ing the linearity, we have $\phi^{*}\mu=ad^{*}(Y_{0})\mu$ for any $\mu ES^{\perp}$ .

(2) For any $w\in s$ and any $\mu\in\bigcup_{\lambda\in\Lambda^{*}3_{\lambda}^{\perp}}$ , we have

$\mu(\phi(w))=(\phi^{*}\mu)(w)=\mu([Y(\mu), w])=0$ .

This leads $\phi(w)=0$ because we can choose a basis of $g^{*}$ consisting of vectors
in $\bigcup_{\lambda\in\Lambda}*\mathfrak{z}_{\lambda}^{\perp}$

(3) First we show that if $g$ is two-step nilpotent, each $\phi$ in PRIT $(\mathfrak{g};\Lambda^{*})$

is a derivation. Note that
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(4.3) $\phi^{*}\mu_{1}=0$ for $\forall\mu_{1}\in \mathfrak{z}^{\perp}$

In fact, we have $(\phi^{*}\mu_{1})(v)=\mu_{1}([Y(\mu_{1}), v])=0$ for any $v\in g$ , because $[Y(\mu_{1}), v]$ is
contained in $\mathfrak{z}$ . It follows from (4.3) that $\phi(\mathfrak{g})\subset\S$ . Noticing this fact and (2) of
this Lemma, we easily see that $\emptyset$ is a derivation. Next, suppose $\phi\in AID(\mathfrak{g};\Gamma)$

satisfies $\phi^{*}\mu_{0}=ad^{*}(Y_{0})\mu_{0}(Y_{0}\in g)$ for $\mu_{0}\in \mathfrak{z}_{\kappa}^{\perp}$ . Then, we show that $\phi^{*}\mu=ad^{*}(Y_{0})\mu$

holds for any $\mu\in \mathfrak{z}_{\kappa}^{\perp}$ . In fact, for $\mu=\mu_{0}+\mu_{1}(\mu_{1}\in \mathfrak{z}^{\perp})$ we have

$\phi^{*}\mu=\phi^{*}\mu_{0}=ad^{*}(Y_{0})\mu_{0}=ad^{*}(Y_{0})(\mu_{0}+\mu_{1})=ad^{*}(Y_{0})\mu$ .

Thus the first assertion is proved. Finally, let $X$ be the lattice in $\mathfrak{g}$ generated
by $\log\Gamma$ and set

$X^{*}=$ { $\mu\in g^{*};$ $\mu(v)/2\pi\in Z$ for any $v\in \mathcal{L}$ }.

Then, $\phi$ belongs to AID $(\mathfrak{g}, \Gamma)$ if and only if for any $\mu\in \mathcal{L}^{*}$ there exists } $‘=Y(\mu)$

$\in \mathfrak{g}$ such that $\phi^{*}\mu=ad^{*}(Y)\mu([7])$ . Obviously the set $\Lambda^{*}(cs^{*})$ is equal to $\mathcal{L}^{*}$

$(\subset \mathfrak{g}^{*})$ with the operation to be restricted to 3. This shows the second asser-
tion. $\blacksquare$

EXAMPLE 4.2 (see [4], for details). Let $\mathfrak{g}$ be the six-dimensional Lie alge-
bra with basis $B=\{u_{1}, u_{2}, v_{1}, v_{2}, w_{1}, w_{2}\}$ and

$[u_{1}, v_{1}]=[u_{2}, v_{2}]=w_{1}$ , $[u_{1}, v_{2}]=w_{2}$ ,

all other brackets being zero. This is a two-step nilpotent Lie algebra with
the center 3 being generated by $\{w_{1}, w_{2}\}$ . One way to realize it as a matrix
algebra is to let $\Sigma_{i=1}^{2}(x_{t}u_{i}+y_{i}v_{i}+z_{i}w_{i})$ correspond to the $7\cross 7$ matrix

Let $\phi$ : $\mathfrak{g}arrow \mathfrak{g}$ be the derivation defined by

$\phi(v_{2})=w_{2}$ ,

with zero on the remaining elements of S. Tben, $\phi$ belongs to RIT (g) and
AID (g). In fact, using the basis $B^{*}=\{u_{1}^{*}, n_{2}^{*}, t)_{1}^{*}v_{2}^{*}, w_{1}^{*}, w_{2}^{*}\}$ of $\mathfrak{g}^{*}$ dual to $B$ ,

we have, for $\mu=\kappa_{1}w_{1}^{*}+\kappa_{2}w_{2}^{*}+\mu_{1}(\mu_{1}\in \mathfrak{z}^{\perp})$ ,
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$\phi^{*}\mu=\{$

$ad^{*}(u_{1})\mu$ $(\kappa_{1}=0)$

$ad^{*}(\frac{\kappa_{2}}{\kappa_{1}}u_{2})\mu$ $(\kappa_{1}\neq 0)$ .

EXAMPLE 4.3. Let $g$ be the $(n+3)$-dimensional $(n\geqq 2)$ Lie algebra with the
basis $\ovalbox{\tt\small REJECT}=\{u_{1}, u_{2}, v_{j}, w;1\leqq j\leqq n\}$ satisfying

$[u_{1}, v_{j}]=v_{j+1}(1\leqq_{J}\leqq n-1)$ , $[u_{1}, v_{n}]=w$ , $[u_{1}, w]=[u_{1}, u_{2}]=0$ ,

$[u_{2}, I)_{j}]=[u_{1}, [u_{1}, v_{j}]]=v_{j+2}$ $(1\leqq_{J}\leqq n-2)$ ,

$[u_{2}, v_{n-1}]=w$ , $[u_{2}, U_{n}]=[u_{2}, w]=0$ ,

$[v_{j}, v_{k}]=0$ $(1\leqq j, k\leqq n)$ .

This is an $(n+1)$-step nilpotent Lie algebra with the one dimensional center
generated by $w$ . One realization as a matrix algebra is obtained by letting
$\sum_{i=1}^{2}x_{\ell}u_{i}+\sum_{j=1}^{n}y_{j}v_{j}+zw$ correspond to the $(n+2)\cross(n+2)$ matrix

( $00x_{1}0$

$x_{1}x_{2}$

.
$|x_{2}.\cdot.00..\cdot o_{2}x_{1}x_{0}$

$y_{2}y_{n}y_{3}y_{1}z0$ ).
Let $\phi$ be the derivation of $g$ defined by

$\emptyset(u_{2})=w$

with zero on the remaining elements of 9. Let $B^{*}=\{u_{1}^{*}, u_{2}^{*}, v_{j}^{*}, w^{*}\}$ be the
basis of $\mathfrak{g}^{*}$ dual to S. For $\mu=\kappa w^{*}+\mu_{11}u^{*}+\mu_{z^{u_{2}^{*}}}+\sum_{j=1}^{n}\nu_{j}v_{j}^{*}$ , we have

$\phi^{*}\mu=\{$

$ad^{*}(Cl)_{n})\mu$ $(\kappa=0)$

$ad^{*}(-v_{n-1}+\frac{\nu_{n}}{\kappa}v_{n})\mu$ $(\kappa\neq 0)$

$c$ being constant. Thus, $\emptyset$ belongs to AID (g), PRIT (g) and RIT $(\mathfrak{g};0)$ , but does
not belong to RIT $(\mathfrak{g};\kappa)(\kappa\neq 0)$ .

EXAMPLE 4.4 (cf. [6]). Let $\mathfrak{g}$ be the six-dimensional Lie algebra with the
basis $B=\{u_{1}, \cdots u_{5}, w\}$ which satisfies that

$[u_{1}, u_{2}]=u_{3}$ , $[u_{1}, u_{3}]=u_{4}$ ,

$[u_{1}, u_{4}]=u_{5}$ , $[u_{2}, u_{3}]=u_{5}$ ,
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$[u_{5}, u_{2}]=w$ , $[u_{3}, u_{4}]=w$ ,

and all other brackets are zero. This is a five-step nilpotent Lie algebra with
the one dimensional center generated by $w$ . Let $\phi$ be the derivation of $\mathfrak{g}$ de-
fined by

$\phi(u_{2})=u_{5}$

with zero on the remaining elements of $B$ . Let $Y(\mu)$ be a vector in 9 satisfy-
ing $\phi^{*}\mu=ad^{*}(Y(\mu))\mu$ . We put $\mu=\kappa w^{*}+\Sigma_{i=1}^{6}\mu_{i}u_{i}^{*}$ using the basis $B^{*}-\{u_{1}^{*},$ $\cdots$

$u_{5}^{*},$ $w^{*}\}$ of $\mathfrak{g}^{*}$ dual to 9. If $\kappa\neq 0$ , then we can take

$Y( \mu)=(\frac{\mu_{5}}{\kappa})u_{6}$ .

If $\kappa=0$ , then we can take

$Y(\mu)=\{$

$-u_{\theta}+(\mu_{4}/\mu_{5})_{\mathcal{U}_{4}}$ $(\mu_{5}\neq 0)$

$c_{4}u_{4}+c_{5}u_{5}$ $(\mu_{5}=0)$

where $c_{4}$ and $c_{5}$ are constants. Thus, $\emptyset$ belongs to AID (g) and PRIT $(\mathfrak{g};\kappa)$ for
every $\kappa\neq 0$, but does not belong to PRIT $(g;0)$ .

We conclude this section with the following question, which is interesting
in connection with Theorem 5.1 below and Remark (2) following after it.

QUESTION. Does every almost-inner derivation of a nilpotent Lie algebra $\mathfrak{g}$

belong to PRIT $(\mathfrak{g};\kappa)$ for $\forall\kappa\in \mathfrak{z}^{*}\backslash \{0\}^{\rho}$

5. Deformations of classical and quantum systems.

Let $\Phi_{t}=\exp(t\phi)(t\in R)$ be a one parameter subgroup of linear isomorphisms
of $\mathfrak{g}$ . Then, we have the one parameter family

$\langle v, w\rangle_{t}=\langle\Phi_{t}v, \Phi_{t}w\rangle$ $(v, w\in g)$

of inner products of $g$ . Let us consider a one parameter family of Riemannian
metrics on $M=\Gamma\backslash G$ induced from the left-invariant metrics on $G$ defined by
$\langle, \rangle_{t}$ . Corresponding to the metrics $\langle, \rangle_{t}$ we have one parameter families of
classical Hamiltonian systems, $\mathcal{H}_{t}=(M\cross \mathfrak{g}^{*}, \omega, H_{t})$ and YC., $t^{=(P_{\kappa}},$

$\omega_{\kappa}$ , H., $t$ ) $(\kappa\in 3^{*})$ ,

and one parameter families of quantum systems, $\Delta_{t}$ and $D_{t}^{(\lambda)}$ on $E_{\lambda}$ .
Concerning the classical systems $\mathcal{H}_{\kappa.t}$ we have the following.

THEOREM 5.1. Suppose $\Phi_{t}=\exp(t\phi)$ with $\phi$ belonging to PRIT $(g;\kappa)(\kappa\in \mathfrak{z}^{*})$ .
Then $\mathcal{H}_{\kappa.t}\cong \mathcal{H}_{\kappa.0}$ as Hamiltonian systems for every $t$ , that is, there exists $a$ one
parameter family $\psi_{t}$ : $P_{\kappa}arrow P_{K}$ of diffeomorphisms such that

(5.1) $\psi_{t}^{*}\omega_{\kappa}=\omega_{\kappa}$ ,
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and

(5.2) $\psi_{t}^{*}H_{\kappa,0}=H_{\kappa.t}$ .

PROOF. For the transformation $\phi$ belonging to PRIT $(g, \kappa)$ , there exists
$Y:\mathfrak{z}_{\kappa}^{\perp}arrow \mathfrak{g}$ satisfying $-\phi^{*}\mu=ad^{*}(Y(\mu))\mu$ for $\mu\in \mathfrak{z}_{\iota}^{\perp}$ . Put $Y^{(1)}=\pi_{*}\circ Y:\mathfrak{z}_{\kappa}^{\perp}arrow \mathfrak{g}_{1}=g/\mathfrak{z}$ ,

and let $V$ be a smooth vector field on $P_{\kappa}$ defined by

$V([g_{1}], \mu)=(L_{q_{1^{*}}}(Y^{(1)}(\mu)), -\phi^{*}\mu)$ .

Here we note that $-\phi^{*}\mu$ belongs to $\mathfrak{z}^{\perp}$ For the vector field $V$ we show that

(5.3) $L.\omega$. $=0$ ,

$L$ being the Lie derivative, and

(5.4) $VH_{\kappa.t}=H_{\kappa,t}’(= \frac{d}{dt}H_{\kappa.t})$ .

In fact, for $\rho=(L_{g_{1}*}v_{1}, \nu),$ $\sigma=(L_{g_{1}*}w_{1}, \tau)\in T_{[g_{1}]}M_{1}\cross \mathfrak{z}^{\perp}(v_{1}, w_{1}\in g_{1})$ we have

$(L_{V}\omega_{\kappa})([g_{1}], \mu)(\rho, \sigma)$

$=d(\iota_{V}\omega_{\kappa})([g_{1}], \mu)(\rho, \sigma)$

$=\rho\{\omega_{\kappa}([g_{1}], \mu)(V, \sigma)\}-\sigma\{\omega_{\kappa}([g_{1}], \mu)(V, \rho)\}-\omega_{\kappa}([g_{1}], \mu)(V, [\rho, \sigma])$ ,

where we regard in the last line $\rho$ and $\sigma$ as the vector fields $\rho([h_{1}], \zeta)=$

$(L_{h_{1}*}v_{1}, \nu)$ and $\sigma([h_{1}], \zeta)=(L_{h_{1}*}w_{1}, \tau)$ respectively, on $P_{\kappa}\cong M_{1}\cross \mathfrak{z}^{\perp}$ . Note that
$[\rho, \sigma]_{([g_{1}],\mu)}=(L_{g_{1}*}[v_{1}, w_{1}], 0)$ . By means of the formula (2.3) and the condi-
tions for PRIT the above turns out to be

$\rho\{\phi^{*}\mu(w)+\tau(Y(\mu))+\mu([Y(\mu), w])\}-\sigma\{\phi^{*}\mu(v)+\nu(Y(\mu))+\mu([Y(\mu), v])\}$

$-\phi^{*}\mu([v, w])-\mu([Y(\mu), [v, w]])=0$ .

Thus (5.3) is shown. As to (5.4) we have

$H_{\kappa.t}’([g_{1}], \mu)=\frac{1}{2}\langle\mu^{\#}, \mu^{\#}\rangle_{t}’+\langle(\mu^{\#})’, \mu^{\#}\rangle_{t}$ .

Differentiate the equation $\langle\mu^{\#}, v\rangle_{t}=\mu(v)(v\in g)$ with respect to $t$ , and we get
$\langle(\mu^{*})’, v\rangle_{t}=-\langle\mu^{\#}, \iota)\rangle_{t}’$ . On the other hand,

$\langle v, v\rangle_{t}’=\frac{d}{dt}\langle\Phi_{t*}v, \Phi_{t*v}\rangle=2\langle\phi(v), v\rangle_{t}$

holds. Therefore we get
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$H_{\kappa,t}’([g_{1}], \mu)=-\frac{1}{2}\langle\mu^{\#}, \mu^{*}\rangle_{t}’=-\langle\phi(\mu^{\#}), \mu^{\#}\rangle_{t}=-\mu(\phi(\mu^{\#}))$

$=-\phi^{*}\mu(\mu^{\#})=-\langle\phi^{*}\mu, \mu\rangle_{t}^{*}$

$=(VH_{\kappa.t})([g_{1}], \mu)$ .
Finally, let $\psi_{t}$ be the diffeomorphisms satisfying the equation

$\frac{d}{dt}\psi_{t}=V\circ\psi_{t}$ , $\psi_{0}=identity$ .

Then $\psi_{t}$ satisfies the conditions (5.1) and (5.2). $\blacksquare$

COROLLARY 5.2. If $d$ belongs to PRIT (g), then $\mathcal{H}_{\kappa.t}\cong \mathcal{H}_{\kappa,0}$ holds for every
$\kappa\in \mathfrak{z}^{*}$

REMARKS. (1) If $\phi$ is an inner derivation, then $\mathcal{H}_{t}\cong \mathcal{H}_{0}$ holds. In fact, if
$\phi=ad(Y)(Y\in \mathfrak{g})$ , then the right translation $R_{\exp(tY)}$ on $G$ induces an isomor-
phism between $\mathcal{H}_{t}$ and $\mathcal{H}_{0}$ . If $\emptyset\in PRIT(g)$ is not inner, $\mathcal{H}_{t}\cong \mathcal{H}_{0}$ does not hold,
in general. C. Gordon [8] pointed out for $\phi$ in Example 4.2 that the geodesic
flows of $\mathcal{H}_{t}(t\in R)$ are not conjugate under any continuous family of homeo-
morphisms of $M\cross(\mathfrak{g}^{*}\backslash \{0\})$ .

(2) In the case of the derivation $\phi$ in Example 4.4, we have not $\mathcal{H}_{0.\iota}\cong \mathcal{H}_{0,0}$ .
The system $\mathcal{H}_{0}$ isomorphic with $\mathcal{H}_{0}^{(1)}=(M_{1}\cross \mathfrak{g}_{1}^{*}, \omega^{(1)}, H^{(1)})$ , where the quotient
Lie algebra $\mathfrak{g}_{1}=\mathfrak{g}/3$ is spanned by $9_{1}=\{\overline{u}_{1}$ , $\cdot$ .. , $\overline{u}_{5}\}$ with

$[\overline{u}_{1},\overline{u}_{2}]=\overline{u}_{3}$ , $[\overline{u}_{1},\overline{u}_{3}]=\overline{u}_{4}$ ,

$[\overline{u}_{1},\overline{u}_{4}]=\overline{u}_{5}$ , $[\overline{u}_{2},\overline{u}_{3}]=\overline{u}_{5}$ ,

and all other brackets being zero. Note that $\mathfrak{g}_{1}$ is a nilpotent Lie algebra with
the center $\mathfrak{z}_{1}=span\{\overline{u}_{5}\}$ . We can apply the procedure of reduction to the system
$\mathcal{H}_{0}^{(1)}$ , and obtain the family, $\mathcal{H}_{0.\kappa_{1}}^{(1)}(\kappa_{1}\in \mathfrak{z}_{1}^{*})$ , of reduced systems of $\mathcal{H}_{0}^{(1)}$ . The
derivation $\phi$ induces the derivation $\overline{\phi}$ of $\mathfrak{g}_{1}$ given by

$\overline{\prime_{\varphi}’}(\overline{u}_{2})=\overline{u}_{5}$ ,

with zero on the remaining elements of $B_{1}$ . Then we can see that $\overline{\emptyset}$ belongs
to PRIT $(g_{1})$ . Hence, we have $\mathcal{H}_{0.\kappa_{1}.t}^{(1)}\cong \mathcal{H}_{0.\kappa_{1},0}^{(1)}$ for every $\kappa_{1}\in\hat{\mathfrak{z}}_{1}^{*}$ .

Next, we consider the differential operators $D_{t}^{(\lambda)}$ on $E_{\lambda}$ . The operator
$D_{t}^{(\lambda)}$ corresponds to the geometric object $Q_{\lambda.t}=(M_{1}, \langle, \rangle_{1} ; E_{\lambda},\tilde{\nabla}_{t}^{(\lambda)})$ . It is natural
for us to say that $Q=(M_{1}, \langle, \rangle_{1} ; E,\tilde{\nabla})$ and $Q’=(M_{1}, \langle, \rangle_{1}’ ; E,\tilde{\nabla}’)$ on a Hermitian
line bundle $Earrow M_{1}$ are isomorphic to each other (denoted by $Q\cong Q’$ ) if there
exists an automorphism of vector bundle, $\varphi:Earrow E$ , such that (i) $\varphi$ preserves
the Hermitian structure, (ii) the associated diffeomorphism $\overline{\varphi}$ of $M_{1}$ satisfies
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$\langle, \rangle_{1}’=\overline{\varphi}^{*}\langle, \rangle_{1}$ , and (iii) V’ $=\varphi^{*}\tilde{\nabla},$ $i$ . $e.,\tilde{\nabla}_{\acute{X}’}s’=\varphi^{*}(\tilde{\nabla}_{X}s)$ holds for $s,$ $s’\in C^{\infty}(E)$ and
the vector fields $X,$ $X’$ on $M_{1}$ such that $s’=\varphi^{*}s$ and $X=\overline{\varphi}_{*}(X’)$ , where

$(\varphi^{*}s)(x_{1}):=\varphi^{-1}(s(\overline{\varphi}(x_{1})))$ $(x_{1}\in M_{1})$ .
The following is immediately obtained.

LEMMA 5.3. Let $L$ and $L’$ be the Bochner-Laplacians associated with $Q$ and
$Q’$ , respectively. If $Q\cong Q’$ , then $Spec(L)=Spec(L’)$ holds.

For $\lambda\in\Lambda^{*}$ , let $\mathfrak{z}_{\lambda}=ker(\lambda)$ , which is an ideal of 3, and let $Z_{\lambda}$ be the corre-
sponding connected subgroup of $Z$ . Set $G_{\lambda}=G/Z_{\lambda}$ . Since $\lambda$ belongs to $\Lambda^{*}$ ,
$Z_{\lambda}\cap\Gamma\backslash Z_{\lambda}$ is compact and the projection of $G$ onto $G_{\lambda}$ carries $\Gamma$ to a uniform
discrete subgroup $\Gamma_{\lambda}$ of $G_{\lambda}$ . Then, $M_{\lambda}:=\Gamma_{\lambda}\backslash G_{\lambda}$ is a principal circle bundle
over $M_{1}$ . The functional $\lambda$ , viewed on $\partial/\mathfrak{z}_{\lambda}$ defines a faithful unitary representa-
tion of the circle, and the associated line bundle is equivalent to $E_{\lambda}$ . The
inner product on $\mathfrak{g}$ induces an inner product on $\mathfrak{g}_{\lambda}:=\mathfrak{g}/\mathfrak{z}_{\lambda}$ like as that on $\mathfrak{g}_{1}$

considered in \S 2. Moreover, we have the corresponding connection on the
principal circle bundle $M_{\lambda}arrow M_{1}$ . It is not hard to see that the associated con-
nection and the Bochner-Laplacian on the associated line bundle $E_{\lambda}$ are equi-
valent to those we introduced formerly in \S 3.

On the basis of the discussions above, we have the following.

PROPOSITION 5.4. Suppose $\Phi_{t}=\exp(t\phi)$ with $\phi belon\ovalbox{\tt\small REJECT} ng$ to RIT $(g;\lambda)(\lambda\in\Lambda^{*})$

and $\phi(\mathfrak{z})=\{0\}$ holds. Then $Q_{\lambda.t}\cong Q_{\lambda.0}$ holds for every $t$ .
PROOF. Since $\emptyset(\partial)=\{0\}$ , g5 induces the linear transformation $\phi_{\lambda}$ of $g_{R}$ . If

we can show that $\phi_{\lambda}$ is an inner derivation of $\mathfrak{g}_{\lambda}$ , the proof is completed. In
fact, for $\phi_{\lambda}=ad(Y)(Y\in \mathfrak{g}_{\lambda})$ , we have the right translation $R_{\exp(tY)}$ on $G_{\lambda}$ . It
induces an isometry between the metrics of $M_{\lambda}$ for $t=t$ and $t=0$ , which, more-
over, is commutative with the translations by $Z/Z_{\lambda}$ . Thus we have an iso-
morphism between $Q_{\lambda.t}$ and $Q_{\lambda.0}$ .

Note that $(g_{\lambda})^{*}\cong(\mathfrak{z}_{\lambda})^{\perp}\subset \mathfrak{g}^{*}$ , and we identify the dual of $\phi_{\lambda}$ with the operator
$\phi^{*}$ restricted on $(\mathfrak{z}_{\lambda})^{\perp}$ . Obviously we have $(\mathfrak{z}_{\lambda})^{\perp}=\mathfrak{z}^{\perp}\oplus R\lambda$ . It is easy to see that
if $\phi$ belongs to RIT $(\mathfrak{g};\lambda)$ , then there exists $Y\in g$ such that $\phi^{*}\mu=ad(Y)\mu$ for
any $\mu\in(\mathfrak{z}_{\lambda})^{\perp}$ . Thus $\delta_{\lambda}$ is an inner derivation. $\blacksquare$

Recalling Lemma 4.1 (2), we have the following.

COROLLARY 5.5. If g5 belongs to RIT $(\mathfrak{g};\Lambda^{*})$ , then $Q_{\lambda.t}\cong Q_{\lambda,0}$ for every
$\lambda\in\Lambda^{*}$ , and accordingly, $Spec(\Delta_{t})=Spec(\Delta_{0})$ holds.

REMARK. It was shown that a derivation in AID $(\mathfrak{g};\Gamma)$ induces a (non-
trivial) isospectral deformation of metric on $M=\Gamma\backslash G$ by Gordon-Wilson [9] on
the basis of the Kirillov theory and by DeTurck-Gordon [5] on the basis of the
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trace formula. Our arguments for isospectrality in this section correspond to
their research for the two-step nilmanifolds developed in [4], where the iso-
spectrality is shown by constructing explicitly the unitary operators associated
with the geometric transformations. Recently, Marhuenda [13] found that
these intertwining operators belong to the space of Fourier integral operators
associated with various pairwise intersecting Lagrangians (see also [18]).

6. Isospectral deformations of connections on line bundles.

In [12] we constructed on some fixed line bundle a pair of distinct connec-
tions with the same spectrum of the associated Bochner-Laplacians. The dis-
cussions in the preceding sections permit us to construct a non-trivial deforma-
tion of connection on a line bundle over a fixed Riemannian manifold. We
recall that a deformation $\tilde{\nabla}_{t}$ of connection on the line bundle $Earrow M_{1}$ said to be
trivial if there is a one parameter family $\varphi_{t}$ of automorphisms of $E$ such that
the associated diffeomorphisms $\overline{\varphi}_{t}$ : $M_{1}arrow M_{1}$ are isometries, and $\tilde{\nabla}_{t}=\varphi_{t}^{*}\tilde{\nabla}_{0}$ holds.

Given a one parameter family $\Phi_{t}=\exp(t\phi)$ of linear isomorphisms of $\mathfrak{g}$ with
$\emptyset$ belonging to AID $(\mathfrak{g};\Gamma)$ . Then, $\Phi_{t}$ induces a (non-trivial) isospectral defor-
mation of the Laplacian on $M=\Gamma\backslash G$ , and moreover $Spec(L_{t}^{(\lambda)})=Spec(L_{0}^{(\lambda)})$ for
the Bochner-Laplacian $L_{t}^{(\lambda)}$ on the line bundle $(E_{R},\tilde{\nabla}_{t}^{(\lambda)})(\lambda\in A^{*})$ over $M_{1}=\Gamma_{1}\backslash G_{1}$ .
This follows from Proposition 3.4 and the continuous dependence of the eigen-
values under the deformation of the operators. If di does not belong to
RIT $(\mathfrak{g};\lambda)$ for some $\lambda\neq 0$ in $\Lambda^{*}$ , then $(M_{1}, \langle, \rangle_{1.t} ; E_{\lambda},\tilde{\nabla}_{c^{\lambda)}}^{(})\cong(M_{1}, \langle, \rangle_{1,0} ; E_{\lambda},\tilde{\nabla}_{0}^{(\lambda)})$

does not necessarily hold. On the other hand, if $\phi$ belongs to RIT $(\mathfrak{g};0)$ , then
we have $(M_{1}, \langle, \rangle_{1.t})\cong(M_{1}, \langle, \rangle_{1.0})$ as Riemannian manifolds. Thus, we can
expect to construct a non-trivial deformation of connection on the line bundle
$E_{\lambda}$ over $M_{1}=\Gamma_{1}\backslash G_{1}$ by finding a nilpotent Lie algebra $\mathfrak{g}$ and a linear trans-
formation $\phi$ of $\mathfrak{g}$ which satisfy the following properties:

(i) $\phi$ belongs to AID $(g;\Gamma)$ ,
(ii) $\phi$ belongs to RIT $(\mathfrak{g};0)$ , and
(iii) $\phi$ does not belong to RIT $(\mathfrak{g};\lambda)$ for some $\lambda\neq 0$ in $\Lambda^{*}$ .
EXAMPLE 6.1. The Lie algebra $\mathfrak{g}$ and the derivation $\phi$ of Example 4.3

satisfy the above condition (i), (ii) and (iii) for every $\lambda\neq 0$ in $\Lambda^{*}$ . Thus we
have an isospectral deformation of connection on the line bundle $E_{\lambda}$ over the
Riemannian manifold $(M_{1}, \langle, \rangle_{1})$ . We need to check it to be non-trivial. We
recall that the connection on the principal bundle $M$ is uniquely determined by
the Riemannian metric on $M$ . It follows from Lemma 3.1 that there is a one-
to-one correspondence between the sets of connections on $M$ and those on $E_{\lambda}$

$(\lambda\neq 0)$ because the fibre of $M$ is $S^{1}$ . Therefore, if there is a one parameter
family $\varphi_{t}$ of automorphisms of $E_{\lambda}$ which are isomorphisms between $Q_{\lambda.0}$ and
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$Q_{\lambda,t}$ , then it induces a one parameter family $\tilde{\varphi}_{t}$ of diffeomorphisms of $M$ such
that $\tilde{\varphi}_{t}^{*}\langle, \rangle_{0}=\langle, \rangle_{t}$ , that is, $\langle, \rangle_{t}$ is a trivial deformation of metric on $M$ . How-
ever, this is impossible by virtue of Proposition 5.2 of [9], which asserts that
any trivial deformation is induced from an inner derivation.
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