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   1. Introduction. 

   Let Qa= {X RN : a< I x <a+l} with a>0 and g : R--~R is continuous. We 
are concerned with the problem 

                     -du = ~u +g(u) in Qa 

                       u = 0 on aQ a (1) 

                       u > 0 in Q a . 

   It was known that any solution of (1) is radially symmetric in the case 
that the domain Q a is a disk instead of an annulus in Gidas, Ni and Nirenberg 

[4]. 
   On the other hand, the existence of nonradial solutions of (1) in an annulus 
Qa was first obtained when A=0, g(t)=t1' with fi close to (N+2)/(N-2) and N>_3 
by Brezis and Nirenberg [2]. Later Coffman [3] showed the generation of 
essentially infinitely many nonradial solutions as a-*+oo for A=--1 and g(t)=t, 
where N=2 and 1<p<oo. This result was generalized by Kawohl [7] and 
Suzuki [11] in the case of N=2 and then by Li [9] when N>_4. These argu-
ments can be applied only to the case of homogeneous nonlinearities or non-
linear eigenvalue problems because the Lagrangean multiplier principle played 
a crucial role there. 

   In order to prove the existence of nonradial solutions of the problem (1) 

with a general nonlinearity, Lin [10] used a spectral analysis for solutions pro-
duced by the Nehari variation and Suzuki [12] was based on estimates the 
critical values obtained by the mountain pass lemma. 

   Our purpose of the present paper is to give a simple proof of the above 
results. We make use of estimates of the Morse indices of the critical points 

given by the mountain pass lemma, which was first employed to get a sequence 
of subharmonic solutions of an elliptic equation on a strip-like domain in [5]. 

Our method enables us to weaken the growth condition of the nonlinearity g 
of (1) because we do not need information about the order of critical values as 
a-~+oo.
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   2. Case of N=2. 

   Throughout this paper, the following conditions are assumed on gE C '(R): 

    i) g(0)=g'(0)=0 
    ii) there are p>2 and C1i C2>0 such that 

                    0 < g'(t) _< Citp-1+C2 for t>0 

   iii) there exists p>1 satisfying 

                   pg(t) <_ g'(t)t for t>0. 

   For 2ER and a>0, we denote by NA(a) the number of rotationally non-

equivalent solutions of the problem (1). Let II . IIa, I . I a and <., .>a be the norm 

of Ho(Qa) and L2(Qa) and the pairing between Ho(Qa) and H-1(Qa), respectively. 

For each nonnegative integer m, Hm means the closed subspace of Ho(Q a) 

spanned by 

        {spa(r) sin (km8), cpa(r) cos (km8): k>_0, spaEHi(a, a+1)}. 

In particular, Ho is the subspace of all radially symmetric functions in Ho(Qa). 

Define Ja : Ho(Qa)-*R by 

                                                                         u(x) 

          Ja(u) 2 sp
a I Vu 12dx 2 ~adu2dx- spa 0 g(t)dtdx, 

where g(t)=0 for t<0. Then Ja satisfies the Palais-Smale condition on each 

H. It is said for J a to have the Morse index k at u E Ho(Q a) provided that 

the dimension of the maximal subspace on which Ja(u) is negative definite is 

equal to k. 

   We seek for a solution of the problem (1) as a critical point of Ja. 

   THEOREM 1. Under the hypotheses i)-iii), if 2<1, the number N2(a) diverges 

to + o as a- ++ oo. 

   PROOF. First it holds 

             u I a (i+ 1 I u I a for U Ho(Qa) . (2)                 - 
a 

Indeed, from Holder's inequality 

                                       tat a+1 

              

I u I a = u(r, 0)2rdrd8 

                                 0 a 

                            21c a+1 r au 
( 2                       - rdrd8                    O a (a' e)d                       ap p p



                            Nonradial solutions 113 

                                2r a+1 r a+1 du 2 

                   o a a a 0 (;-(P, 0) pdp drd8 
             < (i+iui.               1 a 

a 

This implies that the first eigenvalue of -d in Ho(Q a) is greater than 2(<1) 
for a >0 sufficiently large. According to the mountain pass lemma, for each 
a >0 and in N there exists a nonzero critical point u7 E Hm of JaI H m• Then 
the Morse index of JaI Hm at um is less than or equal to 1 (see [6], [8]). It 
was known that Ho(Qa) is generated by 

     {cp k(r) sin (me), cmk(r) cos (m8) : mEZ+, kEN, c keHO(a, a+1)}. 

Since um is a critical point of Ja Ham, we have 

              <-L~um-2um-g(um), U>a = 0 for UEH . 

From g : Hm ->Hm, it follows for any n =i=m and k E N 

        <-Qum-Aum-g(um), ~onk(r) sin (n8)>a 
                     a+1 2n a a                 um n

k(Y) sin (n8))+ 1 aum a ( nk(Y) sin (n8)            a o ar ar (~ y2 ae ae ~ ) 

          -Aumcpnk(r) sin (n8)-g(um)c k(r) sin (n8) rdOdr 

         =0. 

Similarly, we have 

             <-hum-Aum-g(um), conk(r) cos (n8)>a = 0. 

Therefore um is a critical point of Ja in Ho(Qa). Now, from (2), we get 

                   limsup \Ja(um)um, um /a a 2 < 0 (3) 1 
                                   a-. Urn a 

uniformly for mEN. In fact, 

                 \Ja(um)um, um >a                  limsup a 2 
                            a-oo Urn la 

                                                    a a i s a a 

                    = limsup-L~um- um-g (um)um, um>a 
                                   Iua 2                                                 a-.o m 

                 _< limsup C-~um-~um-~g(um), um>a 
                               a-+oo ( a 12                                       fpm a 

                                                   a 2 
                   (1-i) liminf um a -~                       - a 12                                              a-.oum a 

             <0.
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uniformly for m. Let m, n~N, satisfying m=kn with k>_3. It is obvious 

that H, c: Hn. Suppose that u n ~ Hm. Let vm ~ H be an eigenfunction corre-

sponding to the first eigenvalue of J(u) in Hm. By (3), it holds that 

                     limsup <JIa'(ua)ya va                             Ua m2 m a <0. (4)                                         a-~om I a 

Then 

    <Ja(un)vm cos (no), v cos (no)>a 

          2n a+1 a 2 1 3 2      - 0 a {(a-(v r~` cos (no)) '-r2 ao (vm cos (no)) 
        --A(vm cos (no))2--g'(un)(vm cos (n8))2 rdrd0 

          2n a+1 wm 2 aUm 2      - ar cos2(n o)+ r 4{- ao cos (n o)+vm(- n sin (n0)))              0 a 

       -A(v)2 cos2(no)-g'(u~)(vm)2 cos2(n0) ]rdrdO 
         1 2s a+1 avm a 1 aym 2      = 2 o a ar +r2 ao -'i(v )2-g'(un)(vm)2 }(1+cos(2n0))rdrde 

              2n a+1 n 8va        -I I O a Y2 v ad sin (2no)rdrdo 
              1 2R a+1 n2        + 

2 o a y2 (vm)2(1-cos (2no))rdrdo 

2 

      C 1 <J(u)v, vm>a+ n van I a         2 a2 

From (4), it follows that 

               (Ja(un)vm cos (no), v cos (no)>a < 0 

for a>0 sufficiently large. This contradicts that the Morse index of Ja I Ha at 

n un is less than or equal to 1 because vm and v cos (no) are orthogonal. There-

fore we have u n Hm if a>0 is sufficiently large. This completes the proof. 

   3. Case of N>_3. 

   In this section, we show the existence of nonradial solutions of (1) with 

N>_3 by reducing the original problem to the case of N=2. 

   THEOREM 2. Under the assumptions i), ii) with 2< p<(N+2)/(N-2) and iii), 

if A0, the problem (1) possesses a nonradial solution for a>0 sufficiently large. 

   PROOF. Similarly to the proof of Theorem 1, there exists a nonzero critical
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point u a of J a such that the Morse index of J a at u a is less than or equal to 
1. The same way as the proof of (3) indicates 

        limsup sup {< Ja(u)u' u>a : u is radial, J(u)=O} <0. (5) 
Suppose that ua is radially symmetric. Let va be an eigenfunction correspond-

ing to the first eigenvalue of Ja(ua) in the subspace of radial functions in 

Ho(Qa). From (5), it follows that 

                    limsup ~Ja(ua)ya, ya>a < 0. (6) 

2 

                                 a-i00 ~ va ~ a 

Write Qa=QanR1. Putting Ik= ~12coskOd8, we easily see Ik=((k-1)/k)Ik_2 for 

k >_ 2. In general, for any function f dependent only on p and x N, where p = 

(~15i5N-1 xi)"2 and (x1i x2, , xN)ERN, we get 

      QNf (p, XN)dxl ... dxN 

                  2n 

              0 Q N-1 f(p, xN)rldrldOdx3 ... dxN 
                        a (\{r1>0} 

            = 2~c 
~N_1n{r >0} f (p, xN)Y1drldxg .., dxN                           a 1 

                       rcl2 

            = 22r -r/2 QN-2(\tr2>0}f (p, xN)r2 cos 6dr2dOdx4 .., dxN 

            = 2~I1 
~N_2n{r2~0}f (p' xN)r2dr2dx4 ... dxN 

           = 2~cIiI2 ... IN-3 l{ f(p, XN)pN-2dpdXN                            Say p>o} 

                                       a+1 nl2 

           = 2n11I2 IN-3 f(r cos 6, r sin 0)rN`1 cos N-26dOdr. 
                                              a -a/2 

Similarly, for WEHo(Qa) dependent only on p and xN, it holds that 

                                a+1 r~2 alU 2 1 aw 2 , 
     <-ow, W>a = 2ir11I2 .,. IN_3 a -r/2 ar +r2 ae rN-1 cash -28d8dr. 

Therefore we have 

    <Ja(ua)va sin 0, va sin 6>a 

                            a+1 nl2 ava 2 

1 

      = 2ir11I2 I I -) sin20+ va cos2e 

                            a -n/2 aY r2 

          --Ava Sin20-g(ua)va sin28 YN`1 cosN`20d0dr
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         <_ 2zI1I2 ... IN-3 a+1 ~/2 ava 2-ova-g(ua)~~a YN-1 cos N-28dOdr 
                                   a -~r/2 O~Y 

            -2rrI1I2... IN-3 a+1 ,c/2 awa 2_~Ua--g(ua)va YN-1cosNBdOdr 
                                       a -a/2 OY 

                                          a+1 nl2 

             +a2.2rrI1I2 ... IN-3 a -n,2varN-1 coS N-2OdOdr 

         <Ja(ua)va, va>a- IN <Ja(ua)va, va>a+ 1 Iva i 

2 

                                      N-2 a 

      C 1 CJ¢(ua)va, va>a+ 1 l va ! a• 
         IV a2 

From the inequality (6), it follows that 

                    <Ja(ua)va Sln 0, va Sln e>a < 0 

for a>0 sufficiently large. This contradicts that the Morse index of Ja at ua 

is less than or equal to 1 since va and Va sin 0 are orthogonal. Consequently 

ua is nonradial if a>0 is sufficiently large. 

   REMARK. As seen from the above proofs, it is sufficient to assume growth 

conditions of g under which the functional Ja is of class C2 and satisfies the 

Palais-Smale condition instead of the condition ii). 
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