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1. Introduction.

Let Q,={xR":a<|x|<a+1} with a>0and g: R—R is continuous. We
are concerned with the problem

—Au = Au+g(u) in 2,
u=0 on 02, (1
u>0 in Q..

It was known that any solution of (1) is radially symmetric in the case
that the domain £, is a disk instead of an annulus in Gidas, Ni and Nirenberg
[41.

On the other hand, the existence of nonradial solutions of (1) in an annulus
£, was first obtained when 2=0, g(t)=t? with p close to (N+2)/(N—2) and N>3
by Brezis and Nirenberg [2]. Later Coffman [3] showed the generation of
essentially infinitely many nonradial solutions as a—+c for A=—1 and g(f)=1t?,
where N=2 and 1< p<co. This result was generalized by Kawohl [7] and
Suzuki [11] in the case of N=2 and then by Li [9] when N>4. These argu-
ments can be applied only to the case of homogeneous nonlinearities or non-
linear eigenvalue problems because the Lagrangean multiplier principle played
a crucial role there.

In order to prove the existence of nonradial solutions of the problem (1)
with a general nonlinearity, Lin [10] used a spectral analysis for solutions pro-
duced by the Nehari variation and Suzuki [12] was based on estimates the
critical values obtained by the mountain pass lemma.

Our purpose of the present paper is to give a simple proof of the above
results. We make use of estimates of the Morse indices of the critical points
given by the mountain pass lemma, which was first employed to get a sequence
of subharmonic solutions of an elliptic equation on a strip-like domain in [5].
Our method enables us to weaken the growth condition of the nonlinearity g
of (1) because we do not need information about the order of critical values as
a—+o0.
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2. Case of N=2.

Throughout this paper, the following conditions are assumed on geCYR):
) g0)=g'(0)=0
ii) there are »>2 and C,, C,>0 such that

0 g/ () < CuP'+C,  for t>0

iii) there exists p>1 satisfying

pg®) < g'(he for t>0.

For AR and a>0, we denote by N;(a) the number of rotationally non-
equivalent solutions of the problem (1). Let ||-|4, | |z and <-, ->, be the norm
of H¥Q,) and L¥,) and the pairing between H}(£2,) and H-'(Q,), respectively.
For each nonnegative integer m, H% means the closed subspace of H¥(£,)
spanned by

{p*(r) sin (km@), ¢*(r) cos (kmb): k=0, p*=Hj(a, a+1)}.

In particular, H¢ is the subspace of all radially symmetric functions in Hi(Q,).
Define J.: Hi(2.)—R by
_ 1 . 1 . u(z)
Jolw) = ﬂgawu[ dx——z—ggalu dx—SQaSo ghdtdx

where g(1)=0 for t<0. Then J, satisfies the Palais-Smale condition on each
He. It is said for J, to have the Morse index %k at ue H}(R2,) provided that
the dimension of the maximal subspace on which J%(u) is negative definite is
equal to k.

We seek for a solution of the problem (1) as a critical point of J,.

THEOREM 1. Under the hypotheses i)-iii), if A<1, the number N;(a) diverges
to +o0 as a—-+oo.

Proor. First it holds
1
g < (1+2)lulz  for ueHYQW). @)
a
Indeed, from Holder’s inequality

2z(a+1
lu)% = So S u(r, 0Yrdrd®

STS:“(S:Z%@, 0)dp) rdrdo
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S0 Gt 0 paphiras

0 Ja a
< (1+7)iulz.

This implies that the first eigenvalue of —A in H}(Q,) is greater than A(<1)
for a>0 sufficiently large. According to the mountain pass lemma, for each
a>0 and meN there exists a nonzero critical point u4 €Hf, of Jaulge. Then
the Morse index of J olme at uf is less than or equal to 1 (see [6], [8]). It
was known that H(Q,) is generated by

{p5:(r) sin (mB), phi(r)cos (mb): meZ*, keN, phrsHi(a, a+1)}.
Since u% is a critical point of Jalug, we have
{—Aus—Aus—gus), v, =0 for veHE.
From g: H:—HE, it follows for any n#m and k€N

(—Aup—Aun—gun), er:(r) sin (n6)),

=[G o sin 0+ 55 ot sin (n0)

o Jo Udr or
—Augp%,(r) sin (n6)— g(uh)ps,(r) sin (nﬁ)}rd&dr
=0.
Similarly, we have
{—Aup—Aup—gun), ers(r)cos (n), =0.
Therefore u% is a critical point of J, in Hi(2,). Now, from (2), we get

N8 Yy & 5,a
limsup <]a(um)um; U <
Q- {u%l|a

0 &)

uniformly for meN. In fact,

n a a a
limsup {Jaupus, u%d,

@oso uglé

o {—Auf—Aum—g' (ug)unm, uhda
= limaup o
< limsup (—Auf—Aug—pg(uh), und,

v FEA

< (1_#)(1%%“ lumla —,2)

lu$ g

<0.
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uniformly for m. Let m, neN, satisfying m=+Fkn with £=3. It is obvious
that HiC H%. Suppose that u¢=HZ. Let v4=HZ be an eigenfunction corre-
sponding to the first eigenvalue of J#(u%) in HZ. By (3), it holds that
4 a a a
limsup Ji(uivg, vide <

o [v%18

0. 4)
Then

Jiug)vy, cos (nf), v cos (n6)),

- SMSGH{(;;(% cos (nﬁ))>2+rl2(%<v$’” cos (n6)))

0Ja

— 0% cos (n6))— g’ (us)vS cos (nﬂ))z}rdnw

= Sjg'[( agf" ) cosz(nli)Jrriz{%’jgi 08 (n0)+vi(—n sin ()}

—AW8)? cos*(n0)— g’ (W) (vS)? cos¥(n 0)]rdrd0

- %S“S““{( agfn )“+ riz< 361;% )z—l(v%;)z—g’(u%)(v%)z }(l—l—cos 2n@))rdrdd

0 Ja

—Soglrlvm%%m sin (2n0)rdrd 0

a

7(a 2
F3 I ot @oyrares

< LT, vat T vl

=7 a\¥n)/Um, VUm/a a? mla -
From (4), it follows that

J W u cos (nh), v& cos (n0)), <0
for a>0 sufficiently large. This contradicts that the Morse index of J,.|x« at
n

u% is less than or equal to 1 because v}, and v% cos (nf) are orthogonal. There-
fore we have u,¢& He if a>0 is sufficiently large. This completes the proof.

3. Case of N=3.

In this section, we show the existence of nonradial solutions of (1) with
N =3 by reducing the original problem to the case of N=2.

THEOREM 2. Under the assumptions i), ii) with 2< p<(N+2)/(N—2) and iii),
if 2<0, the problem (1) possesses a nonradial solution for a>0 sufficiently large.

PROOF. Similarly to the proof of Theorem 1, there exists a nonzero critical
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point u, of J, such that the Morse index of J, at u, is less than or equal to
1. The same way as the proof of (3) indicates

Ja(uu, uyq

luld

limsup sup{ : u is radial, j;(u):o} <0. ®)

a —oc
Suppose that u, is radially symmetric. Let v, be an eigenfunction correspond-
ing to the first eigenvalue of J%(u,) in the subspace of radial functions in
HY2,). From (5), it follows that

”
limsup <]a<u|av)vlaz, Vada
oo ala

<0. (6)

Write 2¢{=2,NR*. Putting Ikzgxlzlczoskﬁd(?, we easily see I, =((k—1)/k)I,-. for

k=2. In general, for any function f dependent only on p and xy, where p=
(Zisisv-1 xH)Y? and (%1, X2, =+, xN)ERN, we get

SQNf(P, xw)dxy - dxy

27
- S S'szv—lmrpmf(p’ xn)ridrid@dxs - dxy

0

= ZzSgg_lmrpo)f(P, xyridridxs - dxy

nl2

—n/zg-@{."‘zmrpo)

=27rg f(px xN)TE cos 0d}’2d0dx4...dxlv

flo, xn)ridredx, - dxy

QN 2~ (r5>0)

- ZnIIS

=2z1,1, - IN_3S flp, xn)p¥ *dpdxy

22A10>0)

nl2

=2z LI, [N_as'”lg sz(r cos @, r sin @)r¥-tcos ¥ 20d6dr.

Similarly, for we H{(2,) dependent only on p and xy, it holds that

(—Aw, wy, =2z LI, - IMSS”/{(%L})%}(%—? ‘b -tcos 20 dfdr.
Therefore we have
{JMugv, sin 0, vg sin 6%,
1

a+l(zn/2 a a\2 .
=2nhly Ins(. (7 {(52) sin®6-+ 508 costo

— 02 sin%0 — g’ (u vt sin’0}r”" cos¥-20dfdr
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<2z, JN_3S:”S’i’:ﬂ{(%%)z—zug—g'(ua)vg}rfv-l cos ¥-2040dr

—2x L], - IN_SSMSM {(%)Z—Zvﬁ—g’(ua)vé}r“"lcos”lidﬁdr

a J-z/2

a+l1

R A A I N e L

Iy
Iy,

< i, vodam 2 T HkaIve, vadart 5 vl

1 1
< /T - 2
=N <]a.(ua.)va, Ua>a.+ (l?'lva | a -

From the inequality (6), it follows that
{JMug)ve sin 8, v, sin 8, < 0

for a>0 sufficiently large. This contradicts that the Morse index of J, at u,
is less than or equal to 1 since v, and v, sin 6 are orthogonal. Consequently
u, is nonradial if a>0 is sufficiently large.

REMARK. As seen from the above proofs, it is sufficient to assume growth
conditions of g under which the functional J, is of class C? and satisfies the
Palais-Smale condition instead of the condition ii).
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