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\S 0. Introduction.

An ideal point will be a limit of representations of a fundamental group
$\Gamma$ of a three manifold in $PSL_{2}C$ . In [6] Culler and Shalen constructed in-
compressible surfaces of a three manifold from ideal points via Serre’s tree.
However, it is hard to understand Serre’s tree from topological viewpoint
because its definition is purely algebraic.

In this paper we construct Serre’s trees concretely for two-bridge knot
complements. We regard Serre’s tree as the way how the geodesics in $H^{a}$

fixed by 7 $(\in\Gamma)$ converge, as in Lemma 3.1. With this observation we can
guess a rough shape of Serre’s tree by describing geodesic in $H^{3}$ with com-
puter graphics for representations near an ideal point. This observation is also
useful in determining shapes of trees with fine prospects. However, to give a
precise proof we cannot use Lemma 3.1 and we need to construct trees step by
step using $\Gamma- tree’ s$ arguments. As the results, we classify the ideal points for
two-bridge knot complements, and determine the complete correspondence be-
tween the ideal points and incompressible surfaces which are classified in [7].

In \S 1 we show that PS $L_{2}C$ representation space of a two-bridge knot group
is a punctured Riemann surface, as is studied by Riley in [9]. We use here
the method of Burde [2], in which $SO(3)$ representation spaces are discussed.
Section 2 recalls the definition of Serre’s tree and the classification of incom-
pressible surfaces of a two-bridge knot complement. In sections 3 and 4 we
examine Serre’s trees for the ideal points of a two-bridge knot complement.
In \S 5 we summarize the main results. We apply the results to obtain a new
proof of the fact that two-bridge knots have property $P$ , which was proved by
Takahashi [12] in 1981 and by Burde [2] in 1987. In \S 6 we give proofs of
lemmas used in \S 4.
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\S 1. $PSL_{2}C$ representation space.

Let $K$ be a two-bridge knot of type $(\alpha, \beta)$ where a and $\beta$ are co-prime odd
integers and $0<\beta<\alpha$ . We denote by $R$ the union of $\dim_{C}\geqq 4$ components of
the variety of all the representations of $\Gamma=\pi_{1}(S^{3}-K)$ in $PSL{}_{z}C$ . Since the
space of abelian representations is three dimensional, each component of $R$

contains an irreducible representation. The space of irreducible representations
is Zariski open in $R$ .

We shall study the space $X$ which is defined as the set of conjugacy classes
of representations in R. $\Gamma$ is expressed by two generators and one relation,
that is,

$\Gamma=\langle u, v|wu=vw\rangle$

with $w=u^{\epsilon_{1}}v^{\epsilon_{2}}\cdots u^{\epsilon_{a-2}}v^{\epsilon_{\alpha-1}},$ $\epsilon_{j}=(-1)^{[j\beta/a]}$ . This suggests that an element $[\rho]$

of $X$ is identified with a pair of an eigenvalue of $\rho(u)$ and ’co-relation’ of $U=$

$\rho(u)$ and $V=\rho(v)$ . We mean by the co-relation the complex distance defined
below.

Let $U,$ $V\in PSL_{2}C$ be conjugate to each other and suppose that eigenvalues

are not equal to $+1,$ $\pm\sqrt{-1}$ . There are conjugate lifts $O,$ $V\in SL_{2}C$ , and they
can be expressed as

$\tilde{U}=c+sP$

$V=c+sQ$

with matrices $P,$ $Q\in SL_{2}C$ such that $traceP=traceQ=0$ and with scalars
$c=(\tilde{\mu}+\tilde{\mu}^{-1})/2,$ $s=(\tilde{\mu}-\tilde{\mu}^{-1})/(2\sqrt{-1})$ where $\tilde{\mu}$ is an eigenvalue of $\tilde{U}$ .

DEFINITION 1.1. The complex distance $\tau$ between $U$ and $V$ is defined by
$\tau=-(1/2)tracePQ$ .

Though $P$ and $Q$ have the ambiguity of sign $\pm 1$ , the complex distance $\tau$

depends only on $U$ and V. $\tau$ is also characterized by $\tau=(1/2)(traceg)^{2}-1$

where $g$ is a matrix such that $V=gUg^{-1}$ and the geodesic fixed by $g$ in $H^{3}$

is vertical to the geodesics fixed by $U$ and $V$ . Therefore, $\tau$ decides the mutual
position of $U$ and $V$ .

Some calculations prove the following lemma.

LEMMA 1.2.
(i) $P^{2}=Q^{2}=-1$

(ii) $PQ+QP=-2\tau$

(iii) $PQP=-2\tau P+Q$ , $QPQ=-2\tau Q+P$

(iv) $c^{2}+s^{2}=1$

(v) $\tilde{U}^{-1}=c-sP$, $V^{-1}=c-sQ$
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PROOF. (i) is concluded by the fact that $traceP=traceQ=0$ and $P,$ $Q\in$

$SL_{2}C$ . In a similar way we have

$(PQ)^{2}+2\tau PQ+1=0$

because $tracePQ=-2\tau$ and $PQ\in SL_{2}C$ . Using (i) we obtain (ii) and (iii). The
other formulas are easily checked. $\blacksquare$

$X$ is identified with the set

$\{(U, V)\in PSL_{2}C\cross PSL_{2}C|WU=VW\}/conj$

with $W=U^{\epsilon_{1}}V^{\epsilon_{2}}\cdots U^{\epsilon_{\alpha-2}}V^{\epsilon_{\alpha-1}}$ , and this set is parametrized by the pair of $\xi=$

$-2/((traceU)^{2}-4)$ and the complex distance $\tau$ between $U$ and $V$ . We want to
know the relation between $\tau$ and $\xi$ coming from the equation $WU=VW$ . The
calculation can be done by the method of Burde [2] who calculated $SU(2)$

representation spaces of two-bridge knot complements.
Next lemma will be sufficient for the purpose.

LEMMA 1.3 ([2]). Put $\tilde{W}=\tilde{U}^{\epsilon_{1}}\tilde{V}^{\epsilon_{2}}\cdots O^{\epsilon_{\alpha-2}}\hat{V}^{\epsilon_{a-1}},$ $k=(\alpha-1)/2$ then

$\tilde{W}\tilde{U}-\tilde{V}\tilde{W}=s^{\alpha}z(\tau, \xi)(P-Q)$

with
$z(\tau, \xi)=(2\xi)^{k}+a_{1}(\tau)(2\xi)^{k-1}+\cdots+a_{k}(\tau)$

$a_{j}(\tau)\in Z[\tau]$ , $\deg a_{j}(\tau)\leqq j$ , $\deg a_{k}(\tau)=k$ .
PROOF. From the definition of $\tilde{W}$ ,

$\overline{W}=s^{\alpha-1}(\gamma+\epsilon_{1}P)(\gamma+\epsilon_{2}Q)\cdots(\gamma+\epsilon_{\alpha-1}Q)$

with $\gamma=c/s$ . Since $\tilde{w}0=\tilde{V}\tilde{W}=s(\pi P-Q\pi)$ , it is sufficient to show $LP-QL=$
$z(\tau, \xi)(P-Q)$ with $L=(\gamma+\epsilon_{1}P)(\gamma+\epsilon_{2}Q)$ $(\gamma+\epsilon_{\alpha-1}Q)$ . Using Lemma 1.2(i), $LP$

is expanded to the sum of the form $\pm\gamma^{\alpha-1-r}\epsilon_{i_{1}}\cdots\epsilon_{i_{r}}(PQ)^{f}P\cdot P$ (resp. $\pm\gamma^{\alpha-1-r}\epsilon_{i_{1}}\cdots$

$\epsilon_{i_{r}}(PQ)^{j}P)$ for $r$ odd (resp. even). To these there are corresponding terms of
$QL:\pm\gamma^{\alpha-1-r}\epsilon_{a-i_{1}}\cdots\epsilon_{a-i_{\gamma}}Q(QP)^{j}Q$ (resp. $\pm\gamma^{\alpha-1-r}\epsilon_{\alpha-i_{1}}\cdots\epsilon_{\alpha-i_{\gamma}}Q(QP)^{j}$ ). Symmetry
$\epsilon_{j}=\epsilon_{a-j}$ shows that the terms for $r$ odd cancel. Since $\gamma^{2}=2\xi-1$ , LP–QL is
expressed by the sum of $(PQ)^{j}P-Q(PQ)^{j}$ with polynomial coefficients in $2\xi$ .
Using Lemma 1.2(iii) inductively, $(PQ)^{j}P-Q(PQ)^{j}$ becomes $P-Q$ with poly-
nomial coefficient in $\tau$ . Hence $LP-QL=z(\tau, \xi)(P-Q)$ is shown, and by some
more consideration, additional conditions are confirmed. $\blacksquare$

REMARK 1.4. When a is even, $K$ is a two-bridge link, and in general the
space of conjugacy classes of representations is not a Riemann surface. However,
consider only representations for which $\rho(u)$ is conjugate to $\rho(v)$ , and with
slight changes Lemma 1.3 remains valid for $X$ which is defined to be the set
of such representations in the same way as $\alpha$ odd.



54 T. OHTSUKI

Looking over the proof of Lemma 1.3, $\Gamma$ is replaced by $\Gamma=\langle u, v|wu=uw\rangle$

with $w=\iota)^{\epsilon_{1}}u^{\epsilon_{2}}\cdots u^{\epsilon_{\alpha-2}}v^{\epsilon_{\alpha-1}},$ $\epsilon_{j}=(-1)^{[j\beta/a]}$ . Hence LP–PL is expressed by the
sum of $(PQ)^{j}-(QP)^{j}$ with polynomial coefficients in $2\xi$ . Therefore

$\tilde{W}\tilde{U}-\tilde{U}\tilde{W}=s^{\alpha}z(\tau, \xi)(PQ-QP)$

and remaining statements is also valid for $k=(\alpha-2)/2$ . $\blacksquare$

For each $(p, q)\in Z\cross Z$ , there is a regular function $I_{p.q}$ : $Xarrow C$ defined by
$I_{p,q}([\rho])=\{tracep(m^{p}l^{q})\}^{2}$ 4 where $m$ is meridian and 1 is longitude of $K$.
Since $X$ is a Riemann surface defined by $z(\tau, \xi)=0$ , the degree of $I_{p,q}$ is defined.
We denote this degree by $\Phi(p, q)$ .

After [4], we call elements of $\overline{X}-X$ ideal points, and denote by $\phi_{x}(P, q)$

the order of the pole of $I_{p,q}$ at $x$ . Then $\Phi(p, q)=\Sigma_{x}\phi_{x}(p, q)$ , and as a result
of Lemma 1.3, $\Phi(1,0)=(\alpha-1)/2$ .

\S 2. Serre’s trees and incompressible surfaces.

AS in [11] we shall define Serre’s tree $T$. Let $F$ be a field with a valuation
$v:F^{*}arrow Z$ . In this paper we assume that $F$ is complete with respect to $v$ .

Let $O$ denote the valuation ring of $F,$ $\mathfrak{m}$ the maximal ideal, and $\mathfrak{k}$ the residue
field. We define a lattice to be any rank 2 $\mathcal{O}$-submodule of $F\oplus F$. $F^{*}$ acts on
the set of lattices. Define the vertex set of $T$ to be the orbit space of this
action. Two vertices $\Lambda,$ $\Lambda’$ are joined by an edge if and only if there exist
lattices $L$ and $L’$ in $\Lambda$ and $\Lambda’$ such that $L’\subset L$ and $L/L’\approx f$ . Let a length of
each edge be one.

Since some argument shows connectedness and simply connectedness of $T$ ,
$T$ is a tree. The natural $GL_{2}(F)$ action on $T$ is transitive. We call $O\oplus O$ the
origin of $T$ where $\mathcal{O}\oplus O$ is the standard lattice of $F\oplus F$. The stabilizer of
$GL_{2}(F)$ action at the origin is $GL_{2}(O)$ .

Next we study the shape of $T$ in more detail. Let $\mathcal{L}_{n}$ be the set of vertices
the distance to which from the origin is equal to $n$ . We construct a $GL_{2}(O)$

equivariant bijection from $\mathcal{L}_{n}$ to $P^{1}(O/\mathfrak{m}^{n})$ : the set of direct factors of $O/\mathfrak{m}\oplus$

$O/\mathfrak{m}$ of rank 1, as follows. Let $\Lambda$ be an element of $X_{n}$ . We can choose a
lattice $L$ in $\Lambda$ such that $(O\oplus O)/L=O/\mathfrak{m}^{n}$ . The image of $L$ by the projection
$\psi:O\oplus Oarrow O/\mathfrak{m}^{n}\oplus O/\mathfrak{m}^{n}$ is an element of $P^{1}(O/\mathfrak{m}^{n})$ . Conversely, given an ele-
ment of $P^{1}(O/\mathfrak{m}^{n})$ , we can obtain a vertex in $\mathcal{L}_{n}$ by pulling back of the ele-
ment by $\psi$ .

The path from a vertex in $\mathcal{L}_{n}$ to the origin is obtained by natural map

$P^{1}(O/\mathfrak{m}^{n})arrow P^{1}(O/\mathfrak{m}^{n-1})arrow$ $arrow P^{1}(O/\mathfrak{m})$ .

It follows that an end of $T$ ( $i$ . $e$ . an infinite path from the origin) corresponds
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to an element of $\varliminf P^{1}(O/\mathfrak{m}^{n})=P^{1}(O)$ .
NOW, let $s$ be a holomorphic local section of $Rarrow X$ in a neighbourhood of

an ideal point $x$ . We denote by $\delta$ a local coordinate around $x$ such that $\delta=0$

at $x$ . By lifting $s$ and $\delta$ , we obtain a local section $g$ of $Hom(\Gamma, SL_{2}C)arrow$

$Hom(\Gamma, SL_{2}C)/conj$ and a coordinate $\tilde{\delta}$ in $Hom(\Gamma, SL_{2}C)/conj$ sucb that $\tilde{\delta}^{2}=\delta$ .
Put $\rho_{\dot{\delta}}=s\sim(\tilde{\delta})$ , then $\rho_{-\tilde{\delta}}(\gamma)=\pm\rho_{\tilde{\delta}}(\gamma)$ holds for each $\gamma\in\Gamma$. Therefore, either $\rho_{\tilde{\delta}}$

or $\tilde{\delta}\cdot\rho_{\tilde{\delta}}(\gamma)$ belongs to $GL_{2}(F)$ where $F=C((\delta))$ . Regarding them as elements
of $PGL_{2}(F)$ , we obtain the canonical representation $\Gammaarrow PGL_{2}(F)$ .

A valuation is determined by the order of zero at the ideal point. The
tree $T$ is constructed as above. Since the action of $F^{*}$ is trivial, the group
$PGL_{2}(F)$ acts on $T$ . Composing the above tautological representation, we
obtain an action of $\Gamma$ on $T$ .

Through this action, Culler and Shalen [6] constructs an incompressible
surface of $S^{3}-K$ as follows. To begin with, if the action has an inversion
( $i$ . $e$ . there exists an invariant edge which change its orientation), we reform
$T$ , changing the midpoints of all edges to vertices. Then we may assume that
there exists a subtree $T’$ which contains exactly one edge from each orbit of
the action of $\Gamma$ on the edges of $T$ . Given an edge $e$ of $T/\Gamma$, there exists the
edge $\tilde{e}$ of $T’$ which projects to $e$ under the quotient map. For each edge $e$ ,

let $X_{e}$ be the space of type $K(\Gamma_{\tilde{e}}, 1)$ where $\Gamma_{\tilde{e}}$ is the stabilizer of $e\sim$ . For each
vertex $v$ , we choose a vertex $\tilde{v}$ of $T’$ which projects to $v$, and let $X_{v}$ be the
space of type $K(\Gamma_{\overline{v}}, 1)$ . Consider all the spaces $X_{e}\cross[0,1]$ and $X_{v}$ . If a is an
edge with vertex $\gamma\tilde{v}$ , we embed $\Gamma_{\partial}$ into $\Gamma_{\overline{v}}$ by sending $x$ to $\gamma x\gamma^{-1}$ , and attach
$X_{e}\cross\{0\}$ (or {1}) to $X_{v}$ by the induced map. We denote by $K_{T}$ the resulting
space. The natural isomorphism $\Gammaarrow\pi_{1}(K_{T})$ is called the spliliing of $\Gamma$. A
stabilizer of an edge (resp. vertex) is called an edge group (resp. a vertex
group). The splitting will be non-trivial if all the vertex groups are proper
subgroups.

When there exists a non-trivial splitting of $\Gamma=\pi_{1}(S^{3}-K)$ , we can construct
$a_{-}^{\tau}nonempty$ system $\Sigma=\Sigma_{1}\cup\Sigma_{2}\cup\cdots\cup\Sigma_{m}$ of incompressible surfaces in $S^{3}-K$ by
pulling back midpoints of the edges by a map $S^{3}-Karrow K_{T}$ , such that $im(\pi_{1}(\Sigma_{j})$

$arrow\Gamma)$ is contained in an edge group for $j=1$ , , $m$ and $im(\pi_{1}(C)arrow\Gamma)$ is con-
tained in a vertex group for each component $C$ of $(S^{3}-K)-\Sigma$ .

Hatcher and Thurston [7] classified incompressible surfaces in two-bridge
knot complements. In order to state their result, we shall give some notations.

We express a continued fraction expansion of $\beta/\alpha$ as
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$\frac{\beta}{\alpha}=r+[n_{1}, n_{2}, \cdots n_{N}]=r+\frac{1}{n_{1}+\frac{1}{n_{2}+}}$
, $r,$ $n_{j}\in Z$ .

.
$.+ \frac{1}{n_{N}}$

In this paper we consider only a continued fraction expansion with $|n_{j}|\geqq 2$ ,
$(]=1, \cdot.. , N)$ . AS is well-known, the two-bridge knot $K$ of type $(\alpha, \beta)$ is the
boundary of the surface obtained by plumbing together $N$ bands as shown in
Fig. 2.1.

$n$ half twist

$(-n_{2})$ half twist

$n_{*}$ half twist

Fig. 2.1.

NOW we shall define the surface labelled $S_{n}(m_{1}, \cdots , m_{N-1})$ , where $n\geqq 1$ and
$0\leqq m_{j}\leqq n$ . Let $S_{n}(m_{1}, \cdots , m_{N-1})$ be a surface which consists of $n$ parallel sheets
running close to the vertical portions of each band and bifurcates into $m_{j}$ outer
sheets and $n-m_{j}$ inner sheets at j-th plumbing square as shown in Fig. 2.2.

We regard $S^{s}$ as the two points compactification of $S^{2}\cross R$ with the spheres
$S^{2}\cross\{*\}$ being horizontal, and the outer sheets will be compactified at infinity.

THEOREM 2.1 (weak form of [7]).

(i) Each $S_{n}(m_{1}, \cdots m_{N-1})$ is incomPresstble.
(ii) Any onentable incomPresszble surface in $S^{3}-K$ is isotopic to either one

of the surfaces $S_{n}(m_{1}, \cdots m_{N-1})$ or a $\partial$-Parallel annulus.
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Fig. 2.2.

REMARK 2.2. For two-bridge links, Theorem 2.1 applies to those surfaces
meeting both components of the link in the same number of sheets.

Each boundary slope of a surface $S_{n}(m_{1}, \cdots , m_{N-1})$ is $m^{N_{[n_{j}]}}l$ with meridian
$m$ and longitude 1. Function $N_{[n_{j}]}$ is given by

$N_{\ddagger n_{j^{\underline{\urcorner}}}}=2\{(n^{+}-n^{-})-(n_{0}^{+}-n_{0}^{-})\}$

where $n^{+}=\#\{(-1)^{j+1}n_{j}>0\},$ $n^{-}=\#\{(-1)^{j+1}n_{j}<0\}$ and $n_{0}^{+}$ and $n_{0}^{-}$ are the cor-
responding numbers for the unique continued fraction expansion $\beta/\alpha=r’+$

[n\’i, $\cdot$ .. , $n_{N’}’$ ] with each $n_{j}’$ even.

\S 3. Trees of two-bridge knot comPlements.

In \S 2, we have Serre’s tree $T$ on which $\Gamma$ acts. As is known in the
theory of $\Gamma$-trees, if $||\gamma||>0$ then we can find unique invariant axis $C_{\gamma}$ in $T$ ,
where translation function $||\gamma||$ is defined by

$|| \gamma||=\inf_{x\in T}dist(x, \gamma x)$

with $\gamma\in\Gamma$. The axis $C_{\gamma}$ is unique invariant set of 7 which is homeomorphic
to $R$ . Further in \S 2 we have a family of representations $\rho_{\tilde{\delta}}$ of $\Gamma$ into $SL_{2}C$ ,

such that $\rho_{-\tilde{\delta}}(\gamma)=\pm\rho_{\tilde{\delta}}(\gamma)$ for each $\gamma\in\Gamma$.
If $||\gamma||>0$ , matrix $\rho_{\tilde{\delta}}(\gamma)$ has eigenvalues $\tilde{\delta}^{n}$ and $\tilde{\delta}^{-n}$ with $n=||\gamma||$ . Hence for

sufficiently small fixed $\tilde{\delta},$

$\rho_{\tilde{\delta}}(7)$ is hyperbolic in $SL_{2}C$ and has unique geodesic
in the three dimensional hyperbolic space $H^{3}$ . We denote by $\rho_{\tilde{\delta}}(\gamma)^{+}$ and $\rho_{\tilde{\delta}}(\uparrow)^{-}$

ends of this geodesic in $P^{1}(C)$ . Since $\rho-\tilde{\delta}(\gamma)=\pm\rho_{\tilde{\delta}}(\gamma)$ , these ends dePend on
$\delta=\tilde{\delta}^{2}$ and these are regarded as in $P^{1}(C[[\delta]])$ .

By definition of the action of $\Gamma$ on Serre’s tree $T$ , we naturally have the
next lemma.

LEMMA 3.1. The following formulas hold.

$\gamma^{+}=\rho_{\dot{\delta}}(\gamma)^{+}$
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$\gamma^{-}=\rho_{\dot{\delta}}(\gamma)^{-}$

PROOF. Matrix $\rho s(r)$ has a fixed point $[f, g]$ in $P^{1}(C[[\delta]])$ . For fixed $\delta$ ,
this is $[f_{\delta}, g_{\delta}]$ in $P^{1}(C)$ . These are equal to 7‘ and $p_{\tilde{\delta}}(7)^{\pm}$ respectively by
definition. Further both $\gamma^{+}$ and $\rho_{\tilde{\delta}}(7)^{+}$ are corresponding to the greater eigen-
value of $p_{\delta}(r)$ . So we obtain this lemma. $\blacksquare$

NOW we consider the case $\beta=1i$ . $e$ . the case of $(\alpha, 1)$ two-bridge knot
complement, before discussing the general case. In this case $K$ is the torus
knot of type $(\alpha, 2)$ , and we can construct concrete representations in a neigh-
bourhood of an ideal point.

Fig. 3.1.

TO begin with, we give a tree parametrized by complex number $\nu$ in $H^{3}$ ,
as shown in Fig. 3.1. Each edge is geodesic of length $|\nu|$ . $\alpha$ edges meet at

Fig. 3.2. Fig. 3.3.
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each vertex, $\alpha$ tangent vectors of which belong to the same plane in the
tangent space of the vertex and any two adjoining vectors make an angle
$2\pi/\alpha$ . When $\nu\in R$ , this tree is contained in $H^{2}$ , and for general $\nu$ , any two
tangent spaces at adjoining vertices make an angle equal to the argument of $\nu$ .

Let generators $t_{i}$ of $\Gamma$ be as illustrated in Fig. 3.2. There exist $(\alpha-1)/2$

actions of $\Gamma$ on the tree shown in Fig. 3.3, where $C_{\iota_{i}}$ is the invariant axis
of $t_{i}$ . Each $C_{\iota_{i}}$ bends at each vertex with an angle $2k\pi/\alpha$ . Each of these
actions on the tree induces isometries on a neighbourhood of the tree and
extends to the action on $H^{3}$ . Finally, depending on $k$ , we obtain $(\alpha-1)/2$

families of representations parametrized by $\nu$ . Further each ideal point is a
simple pole $i$ . $e$ . $\phi(1,0)=1$ . Because an eigenvalue of $\rho(m)$ has a pole which
has the same order as $\sqrt{\nu}$ and $\phi(1,0)$ is an order of $I_{1.0}=(trace\rho(m))^{2}-4$ .
Since we have $\Phi(1,0)=(\alpha-1)/2$ in \S 1, all the ideal points are obtained above.

Put a coordinate $\delta=\nu^{-1}$ in a neighbourhood of an ideal point, then the ends
of $C_{\iota_{i}}$ are in $\partial H^{3}=P^{1}(C)$ depending on $\delta$ . Regarding these as elements of
$P^{1}(C[[\delta]])$ , above trees are just Serre’s trees obtained from the ideal points.

NOW we consider the general case. With Lemma 3.1 we can guess a rough
shape of $T$ by calculating concrete representations near an ideal point. However,
to give a precise proof we need to proceed using $\Gamma- tree’ s$ argument. Let $a_{j}$ ,
$b_{j},$

$c_{j},$ $d_{j}(\in\Gamma)$ be as illustrated in Fig. 3.4, which shows a plumbing representa-
tion of the two-bridge knot of type $(\alpha, \beta)$ . We call j-th twisting part $T_{j}$ .

We shall search for the ideal points which produce incompressible surfaces
of this plumbing representation. As is shown in Fig. 3.5, $b_{j}a_{j}$ and $b_{1}d_{j-\perp}$ do
not cross incompressible surfaces. Therefore, when an incompressible surface
associated with $[n_{j}]$ is constructed from $\Gamma$-tree, $b_{j}a_{j}$ and $b_{1}d_{j-1}$ belong to the
vertex group.

Here, in a similar way for the proof of Lemma 2.6 in [5], we have the
following lemma.

LEMMA 3.2. If $||\gamma_{1}||=||\gamma_{2}||>0$ and $||\gamma_{1}\gamma_{2}^{-1}||=0$ , then $|C_{\gamma_{1}}\cap C_{\gamma_{2}}|\geqq||\gamma_{1}||$ where
we denote by . $|$ the length of the segment.

PROOF. Suppose both $||\gamma_{1}||=||\gamma_{2}||>0$ and $|C_{\gamma_{1}}\cap C_{\gamma_{2}}|<||\gamma_{1}||$ . By pursuing the
images of $C_{\gamma_{1}}\cap C_{\gamma_{2}}$ by $(\gamma_{1}\gamma_{2}^{-1})^{n}$ as shown in Fig. 3.6, we obtain $||\gamma_{1}\gamma_{2}^{-1}||=2(||\gamma_{1}||-$

$|C_{\gamma_{1}}\cap C_{\gamma_{2}}|)>0$ . $\blacksquare$

In the present case, meridian $m$ satisfies $||m||>0$ . This is because if $m$ has
a fixed point in $T$ , replacing it by its conj\"ugation if necessary, we can assume
the fixed point is the standard lattice $\mathcal{O}\oplus \mathcal{O}$ , then $\{trace\rho(m)\}^{2}$ does not have
a pole at the ideal point and $\tau$ can be obtained as in \S 1. This contradicts for
the definition of ideal points.
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$n$ half twist
$\}T_{1}$

$-n_{g}$ half twist
$\}T_{a}$

$(-1)^{f\star 1}n_{J}$ half twist

Fig. 3.4. Fig. 3.5.

Fig. 3.6.
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Since a pair $b_{j}$ and $a_{j}^{-1}$ satisfies the assumptions of Lemma 3.2, $C_{a_{j}}$ and
$C_{b_{j}}$ have an intersection of length $\geqq||m||$ . Furthermore we have the following
lemma.

LEMMA 3.3. Let $\tau$ be the complex distance between $\rho(a)$ and $\rho(b)$ . If $\tau-$ IE
$O(\delta^{n})$ and $\not\in o(\delta^{n})i$ . $e$ . $v(\tau-1)=n$ , then $|C_{a}\cap C_{b}|=n$ where $\delta$ is the coordinate
around the ideal point.

TO prove Lemma 3.3 we prepare the next lemma.

LEMMA 3.4. Let $\tau$ be the complex distance between $\rho(a)$ and $p(b)$ . Then the
following formulas hold, where we regard an end as power series in $\delta$ through
a map $\varphi:C[[\delta]]arrow P^{1}(C[[\delta]])$ which maps $f$ to $[f, 1]$ .

$(a^{+}-a^{-})(b^{+}-b^{-}) \frac{\tau+1}{2}=-(a^{+}-b^{-})(a^{-}-b^{+})$

$(a^{+}-a^{-})(b^{+}-b^{-}) \frac{-\tau+1}{2}=-(a^{+}-b^{+})(a^{-}-b^{-})$

PROOF.

$P= \frac{\sqrt{-1}}{a^{+}-a^{-}}(\begin{array}{l}a^{+}1\end{array})(1-a^{-})-\frac{\sqrt{-1}}{a^{+}-a^{-}}(\begin{array}{l}a^{-}1\end{array})(1-a^{+})$

is the matrix with eigenvalues $\pm$A and its fixed geodesic in $H^{3}$ has ends
$a^{+},$ $a^{-}$ . About $b^{+},$ $b^{-}$ , the following matrix plays a role similar to $P$.

$Q= \frac{\sqrt{-1}}{b^{+}-b^{-}}(\begin{array}{l}b^{+}1\end{array})(1-b^{-})-\frac{\sqrt{}\overline{-1}}{b^{+}-b^{-}}(\begin{array}{l}b^{-}1\end{array})(1-b^{+})$

By definition, $\tau=-(tracePQ)/2$ . These give the required formulas. $\blacksquare$

PROOF OF LEMMA 3.3. We may assume $a^{+}$ is different from each of $a^{-}$ ,
$b^{+}$ and $b^{-}$ in the link of the origin $0=[O\oplus O]i$ . $e$ . in the image of the projec-
tion $P^{1}(C[[\delta]])arrow P^{1}(C)$ (which corresponds the projection $C[[\delta]]arrow C$ through $\varphi$).

This is because, if necessary, we can take conjugation in $GL_{2}(F)$ such that $a^{+}$

is close to $0$ .
Then we have $v(a^{+}-a^{-})=v(a^{+}-b^{+})=0$ . Hence by the second formula of

Lemma 3.4 we obtain

$v(a^{-}-b^{-})-v(b^{+}-b^{-})=v(\tau-1)=n$ .
Here, $v(a^{-}-b^{-})$ is equal to the distance between $O$ and a branch point of $a^{-}$

and $b^{-}$ , and similar for $v(b^{+}-b^{-})$ . Therefore we have $|C_{a}\cap C_{b}|=n$ . $\blacksquare$

When $t_{j.k}’ s$ are as in illustrated in Fig. 3.7, $t_{j,0}$ and $t_{j.2}$ are conjugate by
$t_{j.1}$ , and so $\rho(t_{j.1})$ maps the fixed geodesic by $\rho(t_{j.0})$ in $H^{3}$ to that of $\rho(t_{j,2})$ .
Hence the mutual position between two geodesics fixed by $\rho(t_{j.0})$ and $\rho(t_{j,1})$ are
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equal to the mutual position between two geodesics fixed by $\rho(t_{j,1})$ and $\rho(t_{j,2})$ .
Therefore complex distance between $\rho(t_{j.0})$ and $\rho(t_{j,1}),$ $p(t_{j,1})$ and $\rho(t_{j,2})$ are
equal to each other and so we have $|C_{t_{j\cdot 0}}\cap C_{c_{j}}$ . , $|=|C_{t_{j,1}}\cap C_{c_{j,2}}|$ . $By_{L}^{r}the$ same
argument we obtain $|C_{c_{j,0}}\cap C_{\iota_{j,1}}|=|C_{t_{j\cdot 1}}\cap C_{t_{j,2}}|=|C_{\iota_{j2}}\cap C_{\iota_{j\cdot s}}|=\cdots$ .

(a) (b)

Fig. 3.8.

(a) (b)

Fig. 3.7. Fig. 3.9.

It follows that the arrangement of $C_{\alpha_{j}},$ $C_{b_{j}},$ $C_{c_{j}},$ $C_{a_{j}}$ is as shown in Fig. 3.8
(resp. Fig. 3.9) for $n_{j}>0$ (resp. $n_{j}<0$). In the case (a) of these figures (i. e.
the case $|C_{a_{j}}\cap C_{b_{j}}|=||m||$ ), we call $T_{j}$ being of parasol type, and (b) (i. e. the
case $|C_{a_{j}}\cap C_{b_{j}}|>||m||$ ), being of broom type, respectively. We let a center of
$T_{j}$ be a center of the parasol or a midpoint of the broomstick.
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$b_{j}^{+}$

Fig. 3.10.

For some time, we assume Proposition 3.5 (i) below, and define some nota-
tions. When $j$ odd (resp. even), the arrangement of axes is as shown in Fig.
3.10 where we denote by $a_{j}^{+},$ $a_{j}^{-}$ the ends of $C_{a_{j}}$ such that the action of $a_{j}$ is
a translation from $a_{j}^{-}$ to $a_{j}^{+}$ , as is the same with $b_{j}^{+},$ $b_{j}^{-}$ , . We denote by $\delta$

a coordinate around the ideal point. Each end can be regarded as an element
of $P^{1}(C[[\delta]])$ depending on a choice of standard lattice $O\oplus O$ in \S 2 $i$ . $e$ . we
have an ambiguity of a choice of the canonical representation of $\Gamma$ into $PGL_{2}(F)$

by taking conjugation in $PGL_{2}(F)$ . Put $\epsilon=\sqrt{-1}\mu^{-1}$ with an eigenvalue $\mu$ of
$p(m)$ , and we express each end by power series of $\epsilon$ instead of $\delta$ , that is, each
end belongs to $P^{1}(C[[\epsilon^{2/n}]])$ where $v((tracep(m))^{2})=-n$ .

We take coordinates of $P^{1}(C[[\epsilon^{2/n}]])$ as follows.

$C[[\epsilon^{2/n}]]arrow P^{1}(C[[\epsilon^{2/n}]])$

the first coordinate $f$ – $[f, 1]$

the second coordinate $f$ – $[1, f]$

From now on, we express $a_{j}^{+},$ $b_{j}^{-},$ $c_{j}^{+},$ $d_{j}^{-}$ by the first coordinate with origin $O_{1}$

(resp. $O_{2}$ ) and $a_{j}^{+},$ $b_{j}^{-},$ $c_{f}^{+},$ $d_{j}^{-}$ by the second coordinate, such that in the link of
origin: $P^{1}(C),$ $O_{2}$ (resp. $O_{1}$ ) indicates zero of the second coordinate. Since

$a_{j}=c_{f-1}^{-1}$ , $b_{j}=d_{j-2}$ , $c_{j}=a_{j+1}^{-1}$ , $d_{j}=b_{j+2}$ ,

we obtain
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$a_{j}^{+}=\epsilon c_{j-1}^{-}$ , $b_{j}^{+}=d_{j-2}^{+}$ , $c_{j}^{+}=\epsilon a_{j+1}^{-}$ , $d_{j}^{+}=b_{j+2}^{+}$ ,

$a_{j}^{-}=\epsilon^{-1}c_{j-1}^{+}$ , $b_{j}^{-}=d_{j-2}^{-}$ , $c_{j}^{-}=\epsilon^{-1}a_{j+1}^{+}$ , $d_{j}^{-}=b_{j+2}^{-}$ ,

remarking that the coordinate is multiplied by $\epsilon$ when origin slides by a length
$||m||/2$ .

By Fig. 3.10, if $T_{j}$ is of parasol type, then

$b_{j}^{+}-a_{j}^{-}\in O(\epsilon^{0})$ , $\not\in o(\epsilon^{0})$ ,

$b_{j}^{-}-a_{j}^{+}\in O(\epsilon^{2})$ , $\not\in o(\epsilon^{2})$ .

Hence we can define non-zero complex numbers $A_{j},$ $B_{j}$ by

$b_{j}^{+}-a_{j}^{-}=A_{j}+o(\epsilon^{0})$ ,

$b_{j}^{-}-a_{j}^{+}=B_{j}\epsilon^{2}+o(\epsilon^{2})$ .

When $T_{j}$ is of broom type, we put $A_{j}=B_{j}=0$ .
Here is Proposition 3.5, whose proof is in the next section.

PROPOSITION 3.5. $(i)$ Let $O_{1}$ (resp. $O_{2}$) be the center of $T_{1}$ (resp. $T_{2}$).

Then the center of $T_{j}$ corresponds to $O_{1}$ (resp. $O_{2}$) for $j$ odd (resp. even), and
$|O_{1}O_{2}|=||m||/2$ . Further each of $C_{a_{j}},$ $C_{b_{j}},$ $C_{c_{j}},$ $C_{a_{j}}$ includes the segment $O_{1}O_{2}$

such that $O_{2}$ (resp. $O_{1}$ ) and each of $a_{j}^{-},$ $b_{j}^{+},$ $c_{j}^{-},$ $d_{j}^{+}$ are located in the opposite
direction about $O_{1}$ (resp. $O_{2}$ ).

(ii)

$A_{j}=\{$

$2 \nu\cos\frac{k_{j}\pi}{n_{j}}$ , for 7 odd

$2 \nu^{-1}\cos\frac{k_{j}\pi}{n_{j}}$ , for $j$ even

$B_{j}=\{$

$-2 \nu^{-1}\cos\frac{k_{j}\pi}{n_{j}}$ , for $j$ odd

$-2 \nu\cos\frac{k_{j}\pi}{n_{j}}$ , for $j$ even

wzth some $k_{j}\in Z/(n_{j}),$ $k_{j}\neq 0$ and some non-zero comPlex constant $\nu$ .
(iii) Given $\{k_{j}\}_{1\leq j\leq N}$ of (ii). If there exists $i$ such that $k_{j}\neq n_{j}/2$ , then there

exists an ideal $p\alpha nt$ realizing these $\{k_{j}\}$ .

\S 4. Proof of Proposition 3.5.

The whole of this section is devoted to the proof of Proposition 3.5. Pro-
position 3.5 is also valid in the case of two-bridge links. Their representation
spaces have been defined in Remark 1.4.
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Let $[n_{1}, n_{2}, \cdots , n_{N}]$ be a continued fraction expansion of $\beta/\alpha$ . We prove
this proposition by induction on $\alpha$ , and so we can assume this proposition holds
good for $[n_{1}, , n_{N’}](N’<N)$ , which has smaller $\alpha$ . Moreover we can as-
sume $N\geqq 2$ because the claim is valid when $N=1$ i. e. $\beta=1$ as discussed
previously.

In the following Steps 1\sim 4, we fix $\alpha,$
$\beta$ and $[n_{1}, \cdots , n_{N}]$ , and prove (i)(ii),

constructing trees of $T_{j}’ s$ in order, $i$ . $e$ . we determine mutual positions of axes
$C_{a_{j}},$ $C_{b_{j}},$ $C_{c_{j}},$ $C_{a_{j}}$ for $j=1,2,$ $\cdots$ , $N$ in order.

Step 1. We consider the case that there are parasol types in succession
from $T_{1}$ to $T_{\iota}$ . We shall show these $T_{j}’ s$ satisfy (i) (ii) in this step. This
step is rather long. Firstly it will be proved that ( i) and (ii) hold for $T_{1}$ ,
secondly, for all $T_{j}’ s$ by induction.

Since $b_{2}a_{2}$ belongs to vertex group and $T_{2}$ is of parasol type, $|C_{a_{2}}\cap C_{b_{2}}|=$

$|m||$ . Hence $|C_{a_{1}}\cap C_{c_{1}}|=||m||$ because $a_{1}=b_{2},$ $c_{1}=a_{2}^{-1}$ . Since $|C_{a_{1}}\cap C_{c_{1}}|=||m||$ ,
the arrangement of axes of $T_{1}$ is as shown in Fig. 4.1 where each length be-
tween two adjacent vertices is $||m||/2$ .

Fig. 4.1.

We can apply the next lemma for $j=1$ .

LEMMA 4.1. If $T_{j}$ is of parasol tyPe and $C_{a_{j}}$ and $C_{c_{j}}$ have a common part
of length less than or equal to $2||m||$ . Then the arrangement of axes is as shown
in Fig. 4.2 (a) with $|OX_{1}|=|OX_{2}|=|OX_{3}|$ .

PROOF. Since $T_{j}$ is of parasol type, we obtain Fig. 4.2 (b) and (c) with
$t_{j.k}’ s$ defined in Fig. 3.7.

Moreover we have
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(a) (b) (c)

Fig. 4.2.

$|C_{a_{j}}\cap C_{\iota_{j,n-1}}|=|C_{b_{j}}\cap C_{C}J|=|C_{c_{j\cdot 2}}\cap C_{d_{j}}|$ ,

because the complex distances between $p(a_{j})$ and $p(t_{j.n-1})$ , between $\rho(b_{j})$ and
$\rho(c_{j})$ , and between $p(t_{j.2})$ and $p(d_{j})$ are equal to each other, and a length of
common part of two axes depends on a complex distance by Lemma 3.3. Hence
the lemma is proved. $\blacksquare$

By Lemma 3.3 the complex distance between $\rho(a_{1})$ and $\rho(c_{1})$ has the form
$1+O(\epsilon^{2})$ . Hence the complex distance $\tau_{1}$ between $\rho(a_{1})$ and $\rho(b_{1})$ satisfies

$( \tau+1)\frac{\epsilon^{-2}}{2}-2(\cos\frac{2k_{1}\pi}{n_{1}}+1)\in O(\epsilon^{2})$

for some $k_{1}\in Z/(n_{1})$ by Lemma 6.1, which will be shown in \S 6 (note that $\xi^{-1}$

$=\epsilon^{-2}/2+O(\epsilon^{0})$ and $\tau_{1}+1\in o(\epsilon^{0}))$ .
We can express a complex distance in terms of ends by Lemma 3.4. Noting

that we express $a_{1}^{-},$
$b_{1}^{+}$ by the first coordinate and $a_{1}^{+},$ $b_{1}^{-}$ by the second coor-

dinate which is the inverse of the first coordinate, we apply the first formula
of Lemma 3.4 for $a^{-}=a_{1}^{-},$ $b^{+}=b_{1}^{+},$ $a^{+}=1/a_{1}^{+},$ $b^{-}=1/b_{1}^{-}$ . Then we have

(1– at $a_{1}^{-}$ ) $(1-b_{1}^{+}b_{1}^{-}) \frac{\tau_{1}+1}{2}=-(b_{1}^{-}-a_{1}^{+})(b_{1}^{+}-a_{1}^{-})$ .

We can put $b_{1}^{+}-a_{1}^{-}=A_{1}+o(\epsilon^{0})$ with some complex number $A_{1}$ . Since a tran-
slation by a length $||m||$ corresponds to a multiplication by $\epsilon^{2}$ in the coor-
dinate, we can put $b_{1}^{-}-a_{1}^{+}=B_{1}\epsilon^{2}+o(\epsilon^{2})$ . Further we have $a_{1}^{+},$ $b_{1}^{-}\in o(\epsilon^{0})$ because
we defined the second coordinate such that the downward path from $O_{1}$ in-
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dicates zero. Substituting these to the above formula, we have

$\frac{\tau_{1}+1}{2}=-A_{1}B_{1}\epsilon^{2}+o(\epsilon^{2})$ .

Hence we obtain

$A_{1}B_{1}=-2( \cos\frac{2k_{1}\pi}{n_{1}}+1)=-4\cos^{2}\frac{k_{1}\pi}{n_{1}}$ ,

and

$A_{1}=2 \nu\cos\frac{k_{1}\pi}{n_{1}}$ , $B_{1}=-2 \nu^{-1}\cos\frac{k_{1}\pi}{n_{1}}$ ,

for some $\nu$ . Furthermore $|O_{1}O_{2}|=||m||/2$ , because the location of $O_{2}$ is de-
termined in Fig. 4.1 (note that $a_{2}=c_{1}^{-1},$ $b_{2}=a_{1}$).

NOW, about $a_{j-1},$ $b_{j-1},$ $d_{j-2},$ $b_{1}$ which are at the junction of $T_{j-2}$ and $T_{j-1}$ ,

we assume the arrangement of the axes is as shown in Fig. 4.3 where each
length between two adjoining vertices is $||m||/2$ .

$b_{1}^{+}$ (resp. $b_{1}^{-}$ )

Fig. 4.3. Fig. 4.4.

Since $T_{j}$ is of parasol type, $C_{a_{j}}$ and $C_{b_{j}}$ have a common part of length
$||m||$ . By Lemma 4.1 on $T_{j-1}$ , the midpoint of a common part is $O_{2}$ , and similarly
for $C_{a_{j-1}}$ and $C_{b_{1}}$ . Moreover, since $T_{j-1}$ is of parasol type, $C_{a_{j}}$ and $C_{a_{j-1}}$ have
a common part of length $||m||$ , which has $O_{2}$ at an end, and similarly for $C_{b_{f}}$

and $C_{b_{1}}$ because $d_{j-1}a_{f}^{-1}=b_{1}^{-1}b_{j}$ . Therefore, the arrangement of the axes is as
shown in Fig. 4.4 where the elements of $\Gamma$ are at the junction of $T_{j-1}$ and $T_{j}$ .
AS above, (i) is proved inductively.

Since $C_{a_{j+1}}$ and $C_{b_{j+1}}$ have an intersection, we obtain

$A_{j}B_{j}=-4 \cos^{2}\frac{k_{j}\pi}{n_{j}}$
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with some $k_{j}\in Z/(n_{j})$ in the similar way to the case of $T_{1}$ .
TO prove (ii), we need some lemmas which give relations between $A_{j}’s$ and

$B_{j}’s$ . Our aim is to obtain Lemma 4.5. We omit the subscript $j$ in Lemmas
4.2 and 4.3.

LEMMA 4.2. Under the assumption of Lemma 4.1 and $|OX_{1}|=(1/2)||m||$ , then

$c^{-}-a^{-}=d^{+}-b^{+}+o(\epsilon)$

$b^{-}-a^{+}=d^{-}-c^{+}+o(\epsilon^{2})$ .

PROOF. Let $\tau$ be the complex distance between $p(a)$ and $\rho(b)$ , which is
equal to the complex distance between $p(c)$ and $\rho(d)$ .

Noting that the coordinate of $a^{-},$ $b^{+},$ $c^{-},$
$d^{+}$ is reciprocal to that of $a^{+},$ $b^{-}$ ,

$c^{+},$ $d^{-}$ respectively, we apply Lemma 3.4, to obtain

$(1-a^{+}a^{-})(1-b^{+}b^{-}) \frac{\tau+1}{2}=(b^{-}-a^{+})(a^{-}-b^{+})$

$(1-c^{+}c^{-})(1-d^{+}d^{-}) \frac{\tau+1}{2}=(d^{-}-c^{+})(c^{-}-d^{+})$ .

Further, we have
$b^{-}-a^{+}$ , $d^{-}-c^{+}\in O(\epsilon^{2})$

$a^{-}-b^{+}$ , $c^{-}-d^{+}\in O(\epsilon^{0})$

$a^{-}-b^{+}=c^{-}-d^{+}+o(\epsilon^{0})$ .
Comparing the leading coefficients, we have

$b^{-}-a^{+}=d^{-}-c^{+}+o(\text{\’{e}}^{2})$ .
Similarly, we can obtain

$c^{-}-a^{-}=d^{+}-b^{+}+o(\epsilon)$

from the fact that the complex distances between $\rho(a)$ and $\rho(c)$ and between
$\rho(b)$ and $\rho(d)$ are the same. $\blacksquare$

LEMMA 4.3. Under the assumption of Lemma 4.2, the next formula holds.

$A(c^{+}-a^{+})=B(c^{-}-a^{-})+o(\epsilon)$ ,

with complex numbers $A,$ $B$ defined in \S 3, which satisfy

$b^{+}-a^{-}=A+o(\epsilon^{0})$

$b^{-}-a^{+}=B\epsilon^{2}+o(\epsilon^{2})$ .

PROOF. Let $\sigma$ be the complex distance of $p(a)$ and $\rho(t_{n-1})$ , which is equal
to the complex distance of $\rho(b)$ and $p(c)$ , where $t_{n-1}$ is as in Fig. 3.7 (we omit
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Fig. 4.5.

the subscript $j$ now). The arrangement of axes is as shown in Fig. 4.5.
By Lemma 3.4,

$(1-a^{+}a^{-})(t_{n-1}^{+}-t_{n-1}^{-}) \frac{\sigma+1}{2}=(1-a^{+}t_{n-1}^{-})(a^{-}-t_{n-1}^{+})$

$(1-b^{+}b^{-})(1-c^{+}c^{-}) \frac{\sigma+1}{2}=(b^{+}-c^{-})(c^{+}-b^{-})$ .

Hence

$(*)$ $(t_{n-1}^{+}-t_{n-\iota}^{-})(b^{+}-c^{-})(c^{+}-b^{-})=a^{-}-t_{n-1}^{+}$ .

Since $c$ translates $t_{n-1}^{-}$ to $d^{-}$ , by Lemma 4.4 below we obtaln

$\epsilon^{-2}(c^{-}-t_{n-1}^{-})(d^{-}-c^{+})=(1-t_{n-1}^{-}c^{+})(1-d^{-}c^{-})$ .

Moreover, $c^{-}=t_{n-1}^{+}+o(\epsilon^{0})$ and by Lemma 4.2 $d^{-}-c^{+}=B\epsilon^{2}+o(\epsilon^{2})$ . Thus

$B(t_{n-1}^{+}-t_{n-1}^{-})=1+o(\epsilon^{0})$ .

Furthermore, $b^{+}-c^{-}=A+o(\epsilon^{0}),$ $c^{+}-b^{-}=c^{+}-a^{-}+o(\epsilon)$ and $a^{-}-t_{n-1}^{+}=a^{-}-c^{-}+o(\epsilon)$ .
Substituting these to $(*)$ , we obtain the required formula. $\blacksquare$

In the proof of Lemma 4.3 we use the next lemma.

LEMMA 4.4. If meridian $m$ translates an end $e_{1}^{+}$ to $e_{2}^{-}$ , then

$-\epsilon^{-2}(e_{1}^{+}-m^{+})(e_{2}^{+}-m^{-})=(e_{1}^{+}-m^{-})(e_{2}^{+}-m^{-})$ .

PROOF. Matrix $\rho(m)$ is expressed as



70 T. OHTSUKI

$\rho_{\backslash }^{(}m)=\frac{\mu}{m^{+}-m^{-}}(\begin{array}{l}m^{+}1\end{array})(1-m^{-})+\frac{\mu^{-1}}{m^{+}-m^{-}}(\begin{array}{l}m^{-}1\end{array})(1-m^{+})$ .

Since $\rho(m)$ translates $\{\begin{array}{l}e_{1}^{+}1\end{array}\}$ to $\{\begin{array}{l}e_{2}^{+}1\end{array}\}$ ,

$(\begin{array}{l}e_{2}^{+}1\end{array})$ and $\mu\cdot\frac{e_{1}^{+}-m^{-}}{m^{+}-m^{-}}(\begin{array}{l}m^{+}1\end{array})+\mu^{-1}\cdot\frac{e_{1}^{+}-m^{+}}{m^{+}-m^{-}}(\begin{array}{l}m^{-}1\end{array})$

are llnearly dependent. Hence

$e_{2}^{+}\{\mu(e_{1}^{+}-m^{-})+\mu^{-1}(e_{1}^{+}-m^{+})\}=\mu(e_{1}^{+}-m^{-})m^{+}+\mu^{-1}(e_{1}^{+}-m^{+})m^{-}$

By the definition of $\epsilon,$
$\epsilon=\sqrt{-1}\mu^{-1}$ , and so we obtain the required formula. $\blacksquare$

NOW we can obtain relations between $A_{j}’s$ and $B_{J}’s$ .

LEMMMA 4.5. If all of $T_{j-1},$ $T_{j},$ $T_{j+1}$ are of parasol type, then

$(A_{j-1}-A_{j+1})A_{j}=(B_{j-1}-B_{j+1})B_{j}$ .

PROOF.

Fig. 4.6.

AS is shown in Fig. 4.6, we have the arrangement of axes for the elements
of $T_{j- 1},$ $T_{j}$ and $T_{j+1}$ . Here $c_{j}^{+}-a_{j}^{+}$ is deformed as follows.

$c_{j}^{+}-a_{j}^{+}=\epsilon(a_{j+1}^{-}-c_{j+1}^{-})$

$=\epsilon((b_{j+1}^{+}-A_{j+1})-(d_{j-1}^{+}-A_{j-1}))+o(\epsilon)$

$=\epsilon(A_{j- 1}-A_{j+1})+o(\epsilon)$

Similarly we obtain,
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$c_{j}^{-}-a_{j}^{-}=\epsilon(B_{j-1}-B_{j+1})+o(\epsilon)$ .
Moreover by Lemma 4.3 we have

$A_{j}(c_{j}^{+}-a_{j}^{+})=B_{j}(c_{j}^{-}-a_{j}^{-})+o(e)$ .

These give the required formula. $\blacksquare$

By similar arguments we obtain the following lemma.

LEMMA 4.6. If both $T_{1}$ and $T_{2}$ are of parasol type, then

$A_{1}A_{2}=B_{1}B_{2}$ .
By Lemmas 4.5 and 4.6, we have $A_{j}A_{j+1}=B_{j}B_{j+1}(j=1, 2, )$ . Further we

have $A_{j}B_{j}=-4\cos^{2}(k_{j}\pi/n_{j})$ before. Noting that $A_{j}\neq 0,$ $B_{j}\neq 0$ when $T_{j}$ is of
parasol tyPe, we can obtain (ii) inductively.

Step 2. We consider the case that some broom types continue from $T_{1}$ to
$T_{t}$ and $T_{l+1}$ is of parasol type.

Axes $C_{a_{1}}$ and $C_{b_{1}}$ have a common part of finite length. If otherwise, $a_{1}$

and $b_{1}$ fixes a common end, and so does $\Gamma$, because $a_{1}$ and $b_{1}$ generate $\Gamma$ .
This is a contradiction to irreducibility of representation.

Hence the arrangement of axes is as shown in Fig. 4.7. It satisfies assump-
tions of the next lemma for $j=1$ , i. e. for $b_{1},$ $d_{0}(=a_{1}),$ $c_{1},$

$d_{2}$ and $X^{+}=Y^{+},$ $X^{-}$

$=Y^{-}$ .

$b_{1}^{+}$ (resp. $b_{1}^{-}$ )

Fig. 4.7.

$j$ : odd (resp. even)

Fig. 4.8.
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LEMMA 4.7. If the arrangement of axes is as shown in Fig. 4.8 for elements
$b_{1},$ $d_{j-1},$ $c_{j-1},$ $d_{j}$ of $\Gamma at$ the junction of $T_{j}$ and $T_{j+1}$ (see Fig. 3.4) and $0\leqq|X^{+}Y^{+}|$

$<||m||,$ $0\leqq|X^{-}Y^{-}|<||m||$ , then $|Y^{+}Y^{-}|/||m||=l$ is a natural number. Furthermore
$l$ broom types continue from $T_{j}$ to $T_{j+t-1}$ and $T_{J+l}$ is of parasol type.

PROOF. We have $|Y^{+}Y^{-}|\geqq||m||$ because $Y^{+}Y^{-}$ is a common part of $C_{b_{1}}$

and $C_{d_{j}}$ .
If $|Y^{+}1^{\nearrow-}|=||m||,$ $T_{f}$ is of parasol type and the lemma holds.
If $|Y^{+}Y^{-}|>||m||$ , with $a_{j+1}=c_{j}^{-},$ $b_{j+1}=d_{j-1}$ we have the arrangement of axes

as illustrated in Fig. 4.9.
Fig. 4.9 shows $|X_{1}^{+}Y_{1}^{+}|=|X_{1}^{-}Y_{1}^{-}|=0$ for elements at the junction of $T_{j+1}$

and $T_{j+2}$ , which satisfy the assumption of Lemma 4.7 again. Repeating the
same argument, we see that broom types continue and $|Y^{+}Y^{-}|$ become shorter
by length 1 $m||$ . Finally we have a parasol type $T_{j+l}$ , where $l=|Y^{+}Y^{-}|/||m||$

is a natural number, because $Y^{+}Y^{-}$ cannot have length $|Y^{+}Y^{-}|<||m||$ by the
remark at the beginning of this proof. $\blacksquare$

Similarly we obtain the next lemma.

LEMMA 4.8. If the arrangement of axes is as shown in Fig. 4.10 for the
elements of $\Gamma$ at the junction of $T_{j}$ and $T_{j-1}$ , and $|X^{+}Y^{+}|<||m||,$ $|X^{-}Y^{-}|<||m||$ ,

then $|Y^{+}Y^{-}|/||m||=l$ is a natural number. Furthermore $l$ broom types continue

$b_{1}^{+}$ (resp. $b_{1}^{-}$ )

Fig. 4.9. Fig. 4.10.
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from $T_{j}$ back to $T_{j-l+1}$ and $T_{j-l}$ is of parasol type.

If all of $T_{1},$ $\cdots$ , $T_{N}$ are of broom type, Lemma 4.7 means the broomstick
of $T_{1}$ is longest. On the other hand Lemma 4.8 shows that the broomstick of
$T_{N}$ is longest. This is a contradiction.

Therefore we can suppose there is a parasol type $T_{l+1}$ after series of
broom types.

By Lemma 4.7 the broomstick of $T_{1}$ is of length $l||m||$ . Condition (i) is
proved along the construction of the tree in the proof of Lemma 4.7. Fur-
thermore, since $n_{j}$ is even for broom type, put $k_{j}=n_{j}/2$ , and (ii) holds good.

Step 3. We consider the case that there are some broom types in succes-
sion from $T_{l}$ , after parasol type $T_{l-1}$ . When these broom types continue to
the end $T_{N},$ $(i)$ is proved by Lemma 4.8, and (ii) holds good, putting $k_{j}=n_{j}/2$ .

In the following, we consider the case that there is a parasol type again
after these series of broom types.

Fig. 4.11 shows the arrangement of the axes at the junction of $T_{l-2}$ and
$T_{l-1}$ . We discuss the location of the axes of $c_{l-1}$ and $d_{l-1}$ (see Fig. 4.12).

$l$ : odd (resP. even) $b_{1}^{-}$ (resp. $b_{1}^{+}$ )

Fig. 4.11. Fig. 4.12.

If $X_{1}^{+}Y_{1}^{+}$ and $X_{1}^{-}Y_{1}^{-}$ satisfy the assumption of Lemma 4.7 (both $|X_{1}^{+}Y_{1}^{+}|<$

$||m||$ and XTYT $|<||m||$ ), broom types do not continue. Hence we must put $Y_{1}^{+}$

and YT in Fig. 4.12 such that the assumption is not satisfied. Now, the next
claim holds.

CLAIM. $|X_{1}^{+}Y_{1}^{+}|=|X_{1}^{-}Y_{1}^{-}|$

PROOF. We denote by $T_{1}’,$ $\cdots$ $T_{\iota-1}’$ trees which has the same $[n_{1}, \cdots , n_{l-1}]$
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and $\{k_{j}\}$ as the tree discussed now, and also express other corresponding no-
tations with a prime. Such tree exists uniquely, because of the assumption of
induction and Step 5 in this section which shows the uniqueness. Using Pro-
position 6.5, we take small perturbation from $T_{1}’,$ $\cdots$ $T_{\iota-1}’$ to obtain a tree we
need.

Put formally $a_{l}’=(c_{l-1}’)^{-1},$ $b_{l}’=d_{l-2}’$ and $\Delta a_{1}^{+}=a_{1}-a_{1}’,$ $\Delta b_{1}^{+}=b_{1}-b_{1}’$ , -. We see
the order of $\Delta b_{\iota}^{+}-\Delta a_{l}^{-}$ and $\epsilon^{-2}(\Delta b_{l}-\Delta a_{l}^{+})$ are equal to each other by applying
Proposition 6.5, taking conjugation such that the corresponding axes lie on
another as close as possible. It follows that the order of $c_{\iota-1}^{+}-d_{\iota-2}^{+}$ and $c_{l-1^{-}}$

$d_{l-2}^{-}$ are equal to each other. This completes the proof of the claim. $\blacksquare$

After all we obtain $|X_{1}^{+}Y_{1}^{+}|=|X_{1}^{-}Y_{1}^{-}|=||m||$ in order that the assumption
of Lemma 4.7 is not satisfied. Therefore Fig. 4.13 holds about the arrangement
of the axes at the junction of $T_{l-1}$ and $T_{\iota}$ .

$b_{1}^{+}$ (resp. $b_{1}^{-}$ )

$b_{1}^{-}$ (resp. $b_{1}^{+}$ ) $b_{1}^{-}$ (resp. $b_{1}^{+}$ )

Fig. 4.13. Fig. 4.14. Fig. 4.15.

Repeat the process of obtaining Fig. 4.13 from Fig. 4.11, and we see
$|X_{2}^{+}Y_{2}^{+}|=|X_{2}^{-}Y_{2}^{-}|=||m||$ in Fig. 4.14 and obtain Fig. 4.15 about the arrangement
of axes at the junction of $T_{l}$ and $T_{l+1}$ . Repeating the same discussion, we see
the broomsticks grow longer by $||m||$ and these $T_{j}’ s$ satisfy (i).

NOW, we come up to the middle in the line of broom types. When the
number of broom types is odd, $X^{+}=Y^{+}$ and $X^{-}=Y^{-}$ for the middle broom type.
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When the number of broom types is even, $|X^{+}Y^{+}|=|X^{-}Y^{-}|=||m||/2$ for the
former of the two middle ones. As shown in the proof of Lemma 4.7, the rest
broomsticks become shorter by $||m||$ , and we find a parasol type at last. These
construction of trees shows (i). For broom types (ii) holds automatically.

Step 4. We consider a parasol type $T_{l}$ after series of broom types. If this
is the first Parasol type, there is no problem about values $A_{l},$ $B_{l}$ . We shall
show that (ii) holds on $T_{\iota}$ using the same $\nu$ as the previous parasol type. For
simplicity, we may let the previous $\nu$ be equal to 1, taking conjugation if
necessary.

We proceed in the same way as in the proof of Claim in Step 3. We define
$T_{1}’,$ $\cdots$ , $T_{l-1}’$ , put formally $a_{l}’=(c_{l-1}’)^{-1},$ $b_{\iota}’=d_{l-2}’$ , and apply Proposition 6.5 with
Remark 6.6, to obtain

$b_{l}^{+}-a_{\overline{\iota}}=-(b_{l}^{-}-a_{l}^{+})\epsilon^{-2}+o(\epsilon^{0})$ .
This shows $A_{\iota}=-B_{l}$ . We deal with the remainder of the proof as in Step 1,
and obtain

$A_{\iota}= \cos\frac{k_{l}\pi}{n_{l}}$ , $B_{\iota}=- \cos\frac{k_{l}\pi}{n_{l}}$

for some $k_{l}\in Z/(n_{l})$ . Thus the claim of Step 4 is proved.
The last three steps are devoted to the proof of (iii).

Step 5. We show the uniqueness of the ideal point which has the same
$\{k_{j}\}_{1\leqq j\leq N}$ .

We suppose there exist two ideal points which have the same $\{k_{j}\}_{1\leq j\not\leqq N}$ .
Let $\Delta\tau_{1}$ be the difference of $\tau_{1}$ . If $\Delta\tau_{1}\not\in o(\epsilon^{N})$ , taking conjugate if necessary,
we apply Proposition 6.5, to obtain $\Delta\tau_{N-l}\not\in o(\epsilon)$ where $\tau_{j}$ is the complex distance
of $p(a_{j})$ and $\rho(b_{j})$ and $l$ is the number of continued broom types from $T_{1}$ ; in
particular $l=0$ if $T_{1}$ is of parasol type (note that when $1>0,$ $\Delta a_{1}^{+},$ $\Delta aT,$ $\Delta b_{1}^{+},$ $\Delta b_{1}^{-}$

are smaller by $\epsilon^{l}$ than the case $1=0$ corresponding to the same $\Delta\tau_{1}$ ). However,
this contradicts the fact that $\tau_{N-l}$ is determined by $k_{N-l}$ in $o(\epsilon)$ order.

Hence $\Delta\tau_{1}\in o(\epsilon^{N})$ . Moreover reversing up and down of the plumbing re-
presentation of the two-bridge knot, we repeat the above argument, to obtain
$\Delta\tau_{N}\in o(\epsilon^{2N})$ . In a similar way, it follows that $\Delta\tau_{1}\in o(\epsilon^{3N}),$ $\Delta\tau_{N}\in o(\epsilon^{4N}),$ $\cdots$ .
Therefore $\Delta\tau_{1}=0$ . Since $\tau_{1}$ determines the conjugacy class of the ideal point,
we have shown the claim of Step 5.

Step6. We determine the value of $\phi_{x}(1,0)$ defined in \S 1 where $x$ is an
ideal point corresponding to $\{k_{j}\}_{1\leq j\leq N}$ .

When there exists a parasol type $T_{j}$ both for some odd $j$ and for some
even $j,$

$\tau_{1}$ is expressed by power series in $\epsilon$ . Because, suppose there is a term
in the expansion of $\tau_{1}$ which has an index of fraction. We put $\tau_{1}’$ to be power
series in $\epsilon$ which is obtained from $\tau_{1}$ by eliminating terms with fraction indices.
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Then Lemma 4.9 below shows $\tau_{1}’$ is expressed by power series in $\epsilon$ (note that
$\xi$ is expressed by power series in $\epsilon^{2}$ ). We compare $\tau_{j}$ and $\tau_{1}’$ by Proposition
6.5, to obtain there exists $\tau_{j}$ which has a term of fraction index as the lowest
term. This is a contradiction to the fact that $\tau_{j}$ has the lowest two terms
with integer indices determined by $k_{j}$ .

LEMMA 4.9. $\tau_{j}$ is expressed as a polynomial in $\tau_{1},$
$\xi$ and $\xi^{-1}$ where $\tau_{j}$ is the

complex distance between $p(a_{j})$ and $\rho(b_{j})$ .

PROOF.

Fig. 4.16.

Any meridian $w$ is obtained from $u,$ $v,$
$u^{-1}$ or $v^{-1}$ by taking conjugation

some times by $u,$ $v,$
$u^{-1}$ or $v^{-1}$ where $u,$ $v$ are the standard two generators of $\Gamma$.

By a similar calculation as in \S 1, $\tau_{j}$ is expressed as the trace of polynomial
in $P,$ $Q,$ $r$ and $s$ . When taking its trace, the surviving terms are of even degree
with respect to $P,$ $Q$ . Thus 7, $s$ are replaced by $\xi,$ $\xi^{-1}$ . Further, trace of
product of even $P,$ $Q’ s$ is expressed as a polynomial in $\tau_{1}$ . The lemma is
proved. $\blacksquare$

Therefore, in this case the representation space $X$ is locally parametrized
by $\epsilon$ . Hence $\phi_{x}(1,0)=2$ . We define these ideal points to be of type2.

Next, we consider the case when there are parasol types $T_{j}’ s$ only for
odd j’s or only for even $j’ s$ . In this case there is no branch at $O_{2}$ (or at $O_{1}$ )

and each segment between two adjacent branch points has Iength $||m||=2|O_{1}O_{2}|$ .
We can see $\tau_{1}$ is expressed by a power series of $\epsilon^{2}$ , in a similar argument as
above. Hence $\phi_{x}(1,0)=1$ . We define these ideal points to be of tyPe 1.

Step 7. Assuming there exists an ideal point $x$ corresponding to each
$\{k_{j}\}_{1\leq j\leq N}$ , we calculate $\Sigma_{x}\phi_{x}(1,0)$ . Lemma 1.3 and Remark 1.4 show
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$\sum_{x}\phi_{x}(1,0)=\{$

$\frac{\alpha-1}{2}$ for $\alpha$ odd

$\frac{\alpha-2}{2}$ for $\alpha$ even.

If the result of the calculation is equal to this, we can conclude the existence
of an ideal point corresponding to each $\{k_{j}\}_{1\leq j\leq N}$ .

We denote two $\{k_{j}\}s$ are equivalent if they determine the same ideal point.
The equivalence relation is generated by $\{k_{j}\}\sim\{-k_{j}\}$ and $\{k_{j}\}\sim\{(-1)^{j}k_{j}\}$ .
Firstly $\{k_{j}\}\sim\{-k_{j}\}$ derives from replacing $\nu$ by $\sqrt{-1}\nu$ in the statement of (ii).

Secondly $\{k_{j}\}\sim\{(-1)^{j}k_{j}\}$ , because $\epsilon$ has an ambiguity of sign as a function on
the representation space $X$ .

NOW, given a continued fraction expansion $[n_{j}]$ , we count the number of
the ideal points which produce incompressible surfaces associated with $[n_{j}]$ .

(a): the case that there exists odd $i$ such that $n_{i}$ odd and there exists even
$j$ such that $n_{j}$ odd.

There exist ideal points only of type 2, because $T_{j}$ is necessarily of parasol
type if $n_{j}$ odd. Thus the number of ideal points of type 2 is

$\#(\{(k_{1}, \cdots , k_{N})|k_{j}\in Z/(n_{j}), k_{j}\neq 0\}/\sim)=\frac{1}{4}\prod_{j}(|n_{j}|-1)$ .

(b): the case that there exists oddi such that $n_{i}$ odd and $n_{j}$ is even for
each even $j$ .

We obtain ideal points of type1 when $T_{j}$ is of broom type for each even
$j$ . The number of ideal points of type 1 is

$\#$ ( $\{(k_{1},$ $\cdots$ , $k_{N})|k_{i}\in Z/(n_{i}),$ $k_{i}\neq 0$ , for odd $i,$ $k_{j}= \frac{n_{j}}{2}$ , for even $j\}/\sim$ )

$= \frac{1}{2}\prod_{i:odd}(|n_{i}|-1)$ .

Since the rest is of tyPe 2, the number is

$\frac{1}{4}\prod_{i:odd}(|n_{i}|-1)\{\prod_{j:even}(|n_{j}|-1)-1\}$ .

By a similar calculation, we obtain the number of ideal points as follows.
(c): the case that $n_{i}$ is even for each odd $i$ and there exists even $j$ such

that $n_{j}$ odd.

type 1 $\frac{1}{2}\prod_{j:even}(|n_{j}|-1)$

type 2 $\frac{1}{4}\prod_{j:even}(|n_{f}|-1)$ $\{ \prod_{i:odd}(|n_{i}|-1)-1\}$
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(d): the case that $n_{i}$ is even for each $i$ .

type 1 $\frac{1}{2}\prod_{i.odd}(|n_{i}|-1)+\frac{1}{2}\prod_{j:even}(|n_{j}|-1)-1$

type 2 $\frac{1}{4}\{\prod_{i:odd}(|n_{\iota}|-1)-1\}\{\prod_{j:even}(|n_{f}|-1)-1\}$

Next, we calculate $\sum\phi_{x}(1,0)$ . Noting that $\phi_{x}(1,0)=1$ (resp. 2) for tvpe
1 (resp. type2), we obtain $\sum\phi_{x}(1,0)$ is equal to

$\frac{1}{2}$ II$(|n_{j}|-1)$ in the case (a), (b) or (c)

$\frac{1}{2}$ II$(|n_{j}|-1)- \frac{1}{2}$ in the case (d)

where the sum is taken over the ideal points which correspond to the fixed
continued fraction expansion $[n_{j}]$ . Since just one (resp. two) continued fraction
expansion of $\beta/\alpha$ satisfies the condition of (d) for $\alpha$ odd (resp. $\alpha$ even), the
sum about all ideal points is as follows.

$\sum_{x}\phi_{x}(1,0)=\{$

$\frac{1}{2}\sum_{[n_{j}]}F^{(}|n_{j}|-1)-\frac{1}{2}$ , for $\alpha$ odd

$\frac{1}{2}\sum_{[n_{j}]}\prod_{j}(|n_{j}|-1)-1$ , for $\alpha$ even.

This result meets our expectation, because $\sum_{\mathfrak{c}n_{j^{I}}}\Pi_{j}(|n_{j}|-1)=\alpha$ by Lemma 6.7.
This completes the proof. $\blacksquare$

\S 5. Main results.

Summarizing the proof of Proposition 3.5, we obtain the following.

THEOREM 5.1. There is $a$ 1 to 1 correspondence between the ideal points for
the two-bndge knot of type $(\alpha, \beta)$ and the elements of the set:

$\bigcup_{[n_{j}]}(\{(k_{1}, \cdots, k_{N})|k_{j}\in Z/(n_{j}),$ $k_{j}\neq 0,$ $\exists i$ such that $k_{i} \neq\frac{n_{i}}{2}\}/\sim)$

where the union is taken over all continued fraction expansions of $\beta/\alpha$ and the
equivalence relation is generated by $(k_{j})\sim(-k_{j})$ and $(k_{j})\sim((-1)^{j}k_{j})$ .

We use type 1 or 2 as the same meaning in the previous section. Since
the peripheral subgroup is abelian, the order of pole: $cb_{x}(p, q)$ is of the form
$|N_{1}p-1^{\backslash }V_{2}^{\vee}q|$ with some integers $N_{1},$ $N_{2}$ . We obtain $\phi_{x}(N_{[n_{j}]}, 1)=0$ because

$m^{N_{[n_{j}]}}l$ is the boundary slope of the incompressible surface and so $m^{N_{[n_{j}]}}l$

belongs to an edge group. Moreover considering the definition of types 1, 2,
$\phi_{x}(p, q)$ must be as follows.
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$\phi_{x}(p, q)=\{$

$|p-N_{[n_{j}]}q|$ , type 1

$2|p-N_{[n_{j}]}q|$ , type 2.

Since $\Phi(p, q)=\Sigma_{x}\phi_{x}(p, q)$ (see \S 1) and the number of ideal points of each
type is given in the previous section, we obtain the next formula.

PROPOSITION 5.2.

$\Phi(p, q)=\sum_{[n_{f}]}|p-N_{[n_{j}]}q|\cdot[\frac{1}{2}\prod_{j}(|n_{j}|-1)]$

COROLLARY 5.3. Every $two- br\iota dge$ knot has property $P$.

PROOF. We denote by $lV_{\max}$ (resp. $N_{\min}$ ) the maximal (resp. minimal) $N_{[n_{j}]}$

for fixed $\alpha,$
$\beta$ . Some calculation shows that $(N_{\max}+N_{\min})/2-1$ is equal to the

number of subtractions which are necessary when $\{1, 0\}$ is obtained from
$\{\alpha, \beta\}$ by Euclidean algorithm: the method of mutual subtraction. Therefore
$N_{\max}-N_{\min}\geqq 6$ . Since each $N_{[n_{j}]}$ is even, there exists some $N_{[n_{j}]}$ such that
$|N_{[n_{j}]}|\geqq 4$ . Hence by Proposition 5.2, $\Phi(1, q)>\Phi(1,0)$ for any nonzero $q$ .

The following argument is in [4]. Since the degree of $I_{1,q}$ is bigger than
tbat of $I_{1,0}$ , there exists $x_{0}$ in $X$ such that $v(I_{1.q})>v(I_{1.0})$ , with the valuation $v$

at $x_{0}$ . Taking a section $s$ of $Rarrow X$ in a neighbourhood of $x_{0}$ , we consider
representations $\rho$ parametrized by elements in the neighbourhood of $x_{0}$ . In
particular, we put $\rho_{0}=s(x_{0})$ . We can set

$\rho(m)=\pm(\begin{array}{ll}\mu \eta 0 \mu^{-1}\end{array})$ ,

taking conjugate if necessary. Then

$\rho(ml^{q})=\pm(\begin{array}{ll}\lambda \zeta 0 \lambda^{-1}\end{array})$ ,

$I_{1.0}=(\mu+\mu^{-1})^{2}-4=\mu^{-2}(\mu^{2}-1)^{2}$

$I_{1.q}=(\lambda+\lambda^{-1})^{2}-4=\lambda^{-2}(\lambda^{2}-1)^{2}$ .

Since $v(\mu^{2})=v(\lambda^{2})=0$ , with $v(I_{1,q})>v(I_{1.0})$ we obtain

$v(\lambda^{2}-1)>v(\mu^{2}-1)$ .

In particular $v(\lambda^{2}-1)>0$, and so $\lambda|_{x_{0}}=\pm 1$ . Moreover, since $\rho(m)$ and $p(ml^{q})$

commute, we have $\mu\zeta+\lambda^{-1}\eta=\lambda\eta+\mu^{-1}\zeta$ . Hence

$\mu^{-2}(\mu^{2}-1)^{2}\zeta^{2}=\lambda^{-2}(\lambda^{2}-1)^{2}\eta^{2}$ .
This means

$2v(\mu^{2}-1)+v(\zeta^{2})=2v(\lambda^{2}-1)+v(\eta^{2})$ .

With $v(\lambda^{2}-1)>v(\mu^{2}-1)$ we have $v(\zeta^{2})>0$ . Hence $\zeta|_{x_{0}}=0$ . Therefore $\rho_{0}(ml^{q})=$

$\pm 1$ in $PSL_{2}C$ .
Next, we show $\rho_{0}$ is not an abelian representation. If $\rho_{0}$ is abelian, then
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$p_{0}(l)=\pm 1$ because 1 is the identity element in the abelianization of $\Gamma$. With
$\rho_{0}(ml^{q})=\pm 1$ , we have $p_{0}(m)=\pm 1$ . Hence $p_{0}$ is the trivial representation.
However, we cannot obtain any irreducible representations by infinitesimal de-
formation from the trivial representation. This is a contradiction.

We have found $p_{0}$ such that $\rho_{0}(ml^{q})=\pm 1$ and $\rho(\Gamma)$ is not an abelian group.
Hence $\Gamma/(ml^{q})$ is a nontrivial group for any nonzero integer $q$ . Therefore $K$

has property P. $\blacksquare$

NOW, we study the correspondence between the ideal points and the in-
compressible surfaces. By Theorem 5.1 the ideal points are identified with
$\{k_{j}\}s$ . We use the notations of incompressible surfaces defined in \S 2.

THEOREM 5.4. Give an ideal poinl $\{k_{j}\}$ associaled with a continued fraction
expansion $[n_{j}]$ .

If each $n_{i}$ is even and $k_{j}=n_{j}/2$ either for each even $j$ or for each odd $j$,
then the incompresstble surfaces which can be obtained from the ideal pmnt by
the method of \S 2 are of the type $S_{1}(m_{1}, m_{2}, , m_{N-1})$ where $m_{1}$ , $\cdot$ . , $m_{N-1}$ satisfy
the following condition: there exist integers $M_{1},$ $M_{2},$ $\cdots$ $M_{N}$ such that

$M_{j+1}=M_{j}+(-1)^{j}m_{j}$

for $j=1,2,$ $\cdots$ $N-1$ and when $T_{j}$ is of parasol type, $M_{j}=1$ (resp. $0$) for $j$ odd
(resp. even).

Otherwzse, the incompressible surfaces wluch can be obtained from the ideal
point are of the type $S_{2}(m_{1}, m_{2}, , m_{N-1})$ where $m_{1},$

$\cdots$ $m_{N-1}$ satisfy the follow-
ing condition: there exisl $M_{1},$ $M_{2},$ $\cdots$ , $M_{N}\in\{0,1\}$ such that

$M_{j+1}=\{$

$M_{j}$ , $i$ $m_{j}=0,2$

$1-M_{j}$ if $m_{j}=1$

for $j=1,2$, , $N-1$ and when $T_{j}$ is of Parasol tyPe, $M_{f}=1$ (resp. $0$) for $j$ odd
(resp. even).

PROOF. When constructing an incompressible surface from $\Gamma$-tree $T$ , we
may replace $T$ by $\prime T=\cup C_{\gamma}$ where the union is taken over 7 which is conjugate
to meridian. Because for any vertex of $\tau-T$ , its vertex group is a subgroup
of a vertex group of some vertex in $f^{1}$ .

The first case of the theorem corresponds to the type 1 of (d) in the proof
of Proposition 3.5. In this case $7’/\Gamma$ is a loop with one edge and one vertex.
AS in \S 2 we have a map $\phi$ : $(S^{S}-K)arrow 7’/\Gamma$ which induces an incompressible

surface. Then we can take its infinite cyclic covering $\phi:S^{\theta}-Karrow\hat{T}/\Gamma$. The
value of $M_{j}$ indicates the image of the component around $T_{j}$ which has a path
to the base point along $b_{j}a_{j}^{-1}$ . If $T_{j}$ is of parasol type, the vertex of the image
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is uniquely given by the construction of the tree in the proof of Proposition 3.5.
It follows the condition of $M_{j}’ s$ . Conversely if the condition of $M_{j}’ s$ is satisfied,
we can find $\phi$ concretely.

In the second case, $\hat{T}/\Gamma$ is an interval with one edge and two vertices.
By similar argument, we obtain the condition of $M_{j}’ s$ .

The theorem is proved. $\blacksquare$

In [2], by concrete calculation Burde remarks reducibility of representation
space when $(\alpha, \beta)=(15,11),$ $(21,13),$ $(33,23)$ which are the first three cases of
the following proposition.

PROPOSITION 5.5. If $\beta^{2}\equiv 1mod \alpha,$ $\beta\neq\pm 1$ , then the representation space
conststs of at least two componenls.

PROOF. Under the assumption of the proposition, there exists an inversion
on $(S^{3}, K)$ which turns upside down of plumbing representation. This inversion
induces an inversion on representation space which transfers an ideal point
$\{k_{j}\}$ of $[n_{j}]$ to an ideal point $\{k_{N-j+1}\}$ of $[(-1)^{N+1}n_{N-j+1}]$ . Hence there exists
a component on which the action of the inversion is non-trivial.

On the other hand, when $\beta\neq\pm 1,$ $K$ is a hyperbolic knot, that is, $S^{3}-K$

admits the complete hyperbolic structure. Since the inversion preserves an
orientation of $S^{3}-K$, it fixes the representation which gives the hyperbolic
structure. Moreover it also fixes representations in a neighbourhood of the re-
presentation because representations near a parabolic representation are decided
by the images of peripheral subgroup and the inversion preserves them. There-
fore there exists a component which is fixed by the inversion. The proposition
is proved. $\blacksquare$

REMARK 5.6. In addition to the above case, there are two more cases that
the representation space of two-bridge knot group is reducible. These are
discussed in detail by R. Riley [10].

\S 6. Remaining lemmas.

In \S 4 we use some lemmas without proof. This section is devoted to the
proof of those lemmas.

LEMMA 6.1. Let a, $b,$ $c,$ $d(\in\Gamma)$ be as illustrated in Fig. 3.7. (We omit sub-
script $j.$ ) Then the complex distance $\sigma_{n}$ between $\rho(a)$ and $\rho(c)$ is expressed by
the complex distance $\tau$ between $\rho(a)$ and $\rho(b)$ as the following formula.

$\sigma_{n}-1=(\tau-1)\prod_{0<l<n}(\frac{\tau+1}{\xi}-2(1+\cos\frac{2l\pi}{n}))$ , for $n=1,2,$ $\cdots$

where $\xi=-2/((trace\rho(a))^{2}-4)$ as defined in \S 1.
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PROOF. Using $t_{i}=t_{i-1}t_{i-2}t_{i-1}^{-1}$ inductively, we obtain

$t_{n}=\{$

$(t_{1}t_{0})^{\langle n-1)/2}t_{1}(t_{0}^{-1}t_{1}^{-1})^{(n-1)/2}$ , $n$ : odd

$(t_{1}t_{0})^{(n-2)/2}t_{1}t_{0}t_{1}^{-1}(t_{0}^{-1}t_{1}^{-1})^{(n-2)/2}$ , $n$ : even.

Putting $\rho(t_{\iota})=s(\gamma+P_{i})$ , we can express $P_{n}$ by $P_{0}$ and $P_{1}$ . $P_{n}$ is calculated ln-

ductively as
$P_{n}=s(\gamma+P_{1})\cdot P_{n-1}’\cdot s(\gamma-P_{1})$

where $P_{n-1}’$ is obtained from $P_{n-1}$ by interchanging $P_{0}$ and $P_{1}$ . Hence we have

$P_{n}=f_{n}P_{0}+g_{n}P_{1}+\gamma h_{n}(P_{0}P_{1}-P_{1}P_{0})$

where $f.,$ $g_{n}$ and $h_{n}$ are polynomials in $\tau$ and $\xi^{-1}$ , characterized by the follow-
ing recursive formulas

$f_{n}=(1- \frac{1}{\xi})g_{n- 1}+(4-\frac{2}{\xi})h_{n-1}$ ,

$g_{n}=f_{n-1}+ \frac{\tau}{\xi}g_{n-1}-(4-\frac{2}{\xi})\tau h_{n- 1}$ ,

$h_{n}= \frac{1}{2_{B}^{\beta}}g_{n-1}-(1-\frac{1}{\xi})h_{n-1}$ .

Considering the matrix which represents the above formulas, we have

$f_{n}+g_{n}+2(1-\tau)h_{n}=f_{n-1}+g_{n-1}+2(1-\tau)h_{n-1}$

as She eigenvector with an eigenvalue 1. Since the value at $n=0$ is 1, we have
$f_{n}+g_{n}+2(1-\tau)h_{n}=1$ . With the above recursive formulas, we calculate, to
obtain a recursive formula of $\sigma_{n}$ :

$\sigma_{n}=2(\frac{\tau+1}{2\xi}-1)\sigma_{n-1}-\sigma_{n-2}+(1+\tau)(2-\frac{1}{\xi})$ , $\sigma_{0}=1$ , $\sigma_{1}=\tau$

where $\sigma_{n}=-1/2traceP_{0}P_{n}=f_{n}+\tau g_{n}$ by definition.
NOW, we define a family of polynomials $\varphi_{n}(t)$ by $\varphi_{n}(\cos\theta)=\cos n\theta$ for $n=$

$0,1,2,$ $\cdots$ Some argument shows that $\varphi_{n}(t)s$ are characterized by the next
recursive formula

$\varphi_{n}(t)=2t\varphi_{n-1}(t)-\varphi_{n-2}(t)$ , $\varphi_{0}(t)=1$ , $\varphi_{1}(t)=t$

and moreover satisfy the following.

$\varphi_{n}(t)-1=(t-1)\prod_{<0<}2(t-\cos\frac{2l\pi}{n})$ .

Comparing the recursive formulas of the series $\{(a.-1)/(\tau-1)\}$ and
$\{(\varphi_{n}(t)-1)/(t-1)\}$ , we obtain the formula of Lemma 6.1. $\blacksquare$
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Our next aim is to prove Proposition 6.5, which describe tbe way how
small perturbations of $a_{1}^{+},$ $a_{1}^{-},$ $b_{1}^{+},$ $b_{1}^{-}$ give rise to small perturbations of $a_{l}^{+},$ $a_{l}$ ,
$b_{l}^{+},$ $b_{l}$ (note that $\Gamma$ is generated by $a_{1}$ and $b_{1}$ ). We express differentials of
$a_{j}^{+},$ $a_{j}^{-}$ , $\cdot$ by $\Delta a_{j}^{+},$ $\Delta a_{j}^{-}$ , . Subscript $j$ is often omitted in Lemmas 6.2, 6.3
and 6.4.

LEMMA 6.2. If $\Delta a^{+},$ $\Delta a^{-},$ $\Delta b^{+},$ $\Delta b^{-}\in O(\epsilon^{q})$ and $\Delta a^{+}-\Delta b^{-}\in O(\epsilon^{q+2})$ , then $\Delta c^{+}$ ,
$\Delta c^{-},$ $\Delta d^{+},$ $O(\epsilon^{q})$ , where $q$ is a non-negative rational number.

PROOF. In Fig. 3.7, $c$ and $d$ are expressed only by $a$ and $b$ . Taking small
perturbation of its formula, we obtain this lemma. $\blacksquare$

LEMMA 6.3. Under the assumption of Lemma 6.2, we further assume $a^{+},$ $b^{-}$ ,
$b^{+}\in o(\epsilon^{0})$ . Then $\Delta\tau\in O(\epsilon^{q+2})$ and the next formula holds.

$\frac{\Delta\tau}{2}=-A(\Delta b^{-}-\Delta a^{+})-B\epsilon^{2}(\Delta b^{+}-\Delta a^{-})+A^{2}B\epsilon^{2}\Delta a^{+}+o(\epsilon^{q+2})$

PROOF. By Lemma 3.4 we have

$(1-a^{+}a^{-})(1-b^{+}b^{-}) \frac{\tau+1}{2}=-(b^{+}-a^{-})(b^{-}-a^{+})$ .

Taking small perturbation of this, we obtain the required formula. $\blacksquare$

LEMMA 6.4. Under the assumption of Lemma 6.2, we assume $AB=2(1+$
$\cos(2k\pi/n))$ . Then the following formulas hold.

When $T$ is of parasol $type$ ,

$\Delta c^{+}-\Delta a^{+}=\Delta d^{-}-\Delta b^{-}+o(\epsilon^{q})=-\frac{n}{8A}\epsilon^{-2}\Delta\tau[cosec]^{2}\frac{k\pi}{n}+o(\epsilon^{q})$

$\Delta c^{-}-\Delta a^{-}=\Delta d^{+}-\Delta b^{+}+o(\epsilon^{q})=-\frac{n}{8B}\epsilon^{-2}\Delta\tau[cosec]^{2}\frac{k\pi}{n}+o(\epsilon^{q})$ .

When $T$ is of broom type,

$\Delta c^{+}-\Delta a^{+}=\Delta d^{-}-\Delta b^{-}+o(\epsilon^{q})=\frac{n}{2}(\Delta b^{-}-\Delta a^{+})\epsilon^{-2}+o(\epsilon^{q})$

$\Delta c^{-}-\Delta a^{-}=\Delta d^{+}-\Delta b^{+}+o(\epsilon^{q})=\frac{n}{2}(\Delta b^{+}-\Delta a^{-})+o(\epsilon^{q})$ .

PROOF. Since the case $n<0$ is regarded as the “mirror image” of the case
$n>0$ , we can assume $n>0$ . $t_{i}’ s$ will be as shown in Fig. 3.7.

When $T$ is of parasol type, we let $\sigma$ be the complex distance between $\rho(b)$

and $\rho(c)$ , which is equal to the complex distance between $\rho(a)$ and $\rho(t_{n-1}),$ $\rho(t_{2})$

and $\rho(d)$ . By Lemma 3.4 we have,

$(1-b^{+}b^{-})(1-c^{+}c^{-}) \frac{\sigma+1}{2}=-(b^{+}-c^{-})(b^{-}-c^{+})$
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$(1-a^{+}a^{-})(t_{n-1}^{+}-t_{n-1}^{-}) \frac{\sigma+1}{2}=-(1-a^{+}t_{n-1}^{-})(a^{-}-t_{n-1}^{+})$

$(1-d^{+}d^{-})(t_{2}^{-}-t_{2}^{+}) \frac{\sigma+1}{2}=-(1-d^{-}t_{2}^{+})(d^{+}-t_{2}^{-})$ .

Moreover, we have
$t_{n-1}^{+}-t_{n-1}^{-}=B^{-1}+o(\epsilon^{0})$

$t_{2}^{+}-t_{2}^{-}=B^{-1}+o(\epsilon^{0})$

because the complex distances between $\rho(a)$ and $\rho(b)$ , between $\rho(b)$ and $\rho(t_{2})$ ,
between $\rho(t_{n-1})$ and $\rho(c)$ are equal to each other. Therefore we obtain

$\frac{\Delta\sigma}{2}=A(\Delta c^{+}-\Delta a^{+})+o(\epsilon^{q})=A(\Delta d^{-}-\Delta b^{-})+o(\epsilon^{q})$

$\frac{\Delta\sigma}{2}=B(\Delta c^{-}-\Delta a^{-})+o(\epsilon^{q})=B(\Delta d^{+}-\Delta b^{+})+o(\epsilon^{q})$ .

It remains to calculate the ratio of $\Delta\sigma$ and $\Delta\tau$ . We take small perturbation of
the formula of Lemma 6.1, to obtain

$\Delta a=\Delta\sigma_{n-1}=-2\xi^{-1}\Delta\tau\sum_{j0<\iota_{l\neq j}}\prod_{<n-1}2(\cos\frac{2k\pi}{n}-\cos\frac{2l\pi}{n-1})+o(\epsilon^{q})$ .

Further we have

$\sum_{j}0\prod_{l\neq j}2(\cos\frac{2k\pi}{n}-\cos\frac{2l\pi}{n-1})+o(\epsilon^{q})=\frac{n}{4}[cosec]^{2}\frac{k\pi}{n}$

by calculating $\varphi_{n}’(\cos(2k\pi/n))$ in two ways, where $\varphi_{n}$ is in the proof of Lemma
6.1. Thus we obtain

$\Delta\sigma=-\frac{n}{4}\epsilon^{-2}\Delta\tau[cosec]^{2}\frac{k\pi}{n}+o(\epsilon^{q})$ .

In thls case the lemma is proved.
When $T$ is of broom tyPe, by Lemma 4.4 aPplied the relations of $t_{i}’ s$ we

have,

$-\epsilon^{-2}(1-t_{t}^{+}\iota-1)(t7_{-2}-t_{i-1}^{-})=(r_{i}-t_{t-1}^{-)(1-f_{i-2}t_{i-1}^{+})}$

$-\epsilon^{-2}(t_{i}^{-}-t_{t-1}^{+})(1-t_{i-2}^{-}t_{i-1}^{-})=(1-t_{i}^{-}t_{i-1}^{-})(t_{i-2}^{-}f_{i-1})$ .

Taking small perturbation of these, we obtain the following, inductively.

$\Delta t_{i+2}^{-}-\Delta t_{t}^{-}=\{$

$\Delta b^{+}-\Delta a^{-}+o(\epsilon^{q})$ , $i$ : even
$(\Delta b^{-}-\Delta a^{+})\epsilon^{-2}+o(\epsilon^{q})$ , $i$ : odd.

Hence we have,
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$\Delta c^{+}-\Delta a^{+}=\sum_{0<i<n}(\Delta t_{i+2}^{-}-\Delta t_{i}^{-})+o(\epsilon^{q})=\frac{n}{2}(\Delta b^{-}-\Delta a^{+})\epsilon^{-2}+o(\epsilon^{q})$ ,

$\Delta c^{-}-\Delta a^{-}=$
$\sum_{0\leq i<n,i.even}(\Delta t_{i+2}^{-}-\Delta t_{i}^{-})+o(\epsilon^{q})=\frac{n}{2}(\Delta b^{+}-\Delta a^{-})\epsilon^{-2}+o(\epsilon^{q})$ .

Since $\Delta d^{+}-\Delta c^{-}=\Delta b^{+}-\Delta a^{-}+o(\epsilon^{q})$ and $\Delta d^{-}-\Delta c^{+},$ $\Delta b^{-}-\Delta a^{+}\in O(\epsilon^{q+2})$ , we obtain
the required formula. $\blacksquare$

The next Proposition shows when take small perturbation of $\tau_{1}$ as power
series in $\epsilon$ (note that $\tau_{1}$ determine the whole tree), this perturbation affects
$b_{\iota}^{+}-a_{l}^{-}$ and $b_{l}^{-}-a_{\iota}^{+}$ such that $\Delta b_{l}^{+}-\Delta a_{l}$ and $\Delta b_{l}^{-}-\Delta a_{l}^{+}$ have the same ratio as
$A_{j}$ and $B_{j}(]<l)$ .

PROPOSITION 6.5. If $\Delta a_{1}^{+},$ $\Delta a_{1}^{-},$ $\Delta b_{1}^{+},$ $\Delta b_{1}^{-}\in O(\epsilon^{q}),$ $\Delta b_{1}^{+}-\Delta a_{1}^{-},$ $(\Delta b_{1}^{-}-\Delta a_{1}^{+})\epsilon^{-2}\in$

$O(\epsilon^{q}),$ $\not\in o(\epsilon^{q})$ and

$\Delta b_{1}^{+}-\Delta a_{1}^{-}=-\nu^{2}(\Delta bT-\Delta a_{1}^{+})\epsilon^{-2}+o(\epsilon^{q})$

$A_{j}=\{$

$-\nu^{2}B_{j}$ , $j$ : odd

$-\nu^{-2}B_{j}$ , $j$ : even

for some nonzero complex number $\nu$ and $j=1,2,$ $\cdots$ , $l-1$ , then $\Delta b_{l}^{+}-\Delta a_{l},$ $(\Delta b_{l}^{-}-$

$\Delta a_{l}^{+})\epsilon^{-2}\in O(\epsilon^{q-l+1}),$ $\not\in o(\epsilon^{q-l+1})$ and

$\Delta b_{l}^{+}-\Delta a_{l}^{-}=\{$

$-\nu^{2}(\Delta b_{l}^{-}-\Delta a_{l}^{+})\epsilon^{-2}+o(\epsilon^{q-l+1})$ , $l$ : odd
$-\nu^{-2}(\Delta b_{l}^{-}-\Delta a_{l}^{+})\epsilon^{-2}+o(\epsilon^{q-l+1})$ , 1: even.

PROOF. We proceed by induction on $l$ . For simplicity we can put $\nu=1$ .
By Lemma 6.2 we obtain $\Delta a_{j}^{+},$ $\Delta a_{j}^{-}$, $\cdot$ .. , $\Delta d_{j}^{+},$ $\Delta d_{j}^{-}\in O(\epsilon^{q-j+1})$ inductively.

Hence some argument shows

$\Delta b_{l}^{+}-\Delta a_{l}^{-}=-(\Delta c_{l-1}^{+}-\Delta a_{l-1}^{+})\epsilon^{-1}+o(\epsilon^{q-l+1})$

$(\Delta b_{l}^{-}-\Delta a_{\iota}^{+})\epsilon^{-2}=-(\Delta c_{l-1}^{-}-\Delta a_{l-1})\epsilon^{-1}+o(\epsilon^{q-t+1})$

by checking the relation in $\Gamma$.
Therefore the next claim is sufficient to complete the proof.

CLAIM.

$\Delta c_{\iota-1}^{+}-\Delta af_{-1}=\frac{n_{\iota-1}}{2}[cosec]^{2}\frac{k_{l-1}\pi}{n_{l-1}}(\Delta b_{\overline{l}-1}-\Delta a_{\iota-1}^{+})\epsilon^{-2}+o(\epsilon^{q-l+1})$

$\Delta c_{l-1}^{-}-\Delta a_{\overline{l}-1}=\frac{n_{l-1}}{2}[cosec]^{2}\frac{k_{l-1}\pi}{n_{l-1}}(\Delta b_{l-1}^{+}-\Delta a_{l-1}^{-})+o(\epsilon^{q-l+1})$

When $T_{l-1}$ is of parasol type, by Lemma 6.3 with $A_{\iota-1}=-B_{l-1},$ $\Delta a_{t-1}^{+}\in$

$o(e^{q-l})$ we have
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$\epsilon^{-2}\Delta\tau_{l-1}=-4A_{l-1}(\Delta b_{l-1}^{-}-\Delta a_{l-1}^{+})\epsilon^{-2}+o(\epsilon^{q-l+2})$

$=-4A_{l-1}(\Delta bt_{-1}-\Delta a_{l-1})+o(\epsilon^{q-l+2})$

noting that $\Delta b_{l-1}^{+}-\Delta a_{l-1}^{-}=-(\Delta b_{l-1}-\Delta a_{l-1}^{+})\epsilon^{-2}+o(\epsilon^{q-l+2})$ which is the assumption
of induction. With the formulas of Lemma 6.4 we obtain the required formulas.

When $T_{l-1}$ is of broom type, just the formulas of Lemma 6.4 mean the
required formulas with $k_{l-1}=n_{1-1}/2$ . $\blacksquare$

REMARK 6.6. In the statement of Proposition 6.5, the assumption $\Delta b_{1}^{+}-$

$\Delta a_{1}^{-}=-\nu^{2}(\Delta b_{1}^{-}-\Delta a_{1}^{+})\epsilon^{-2}+o(\epsilon^{q})$ is not necessary if there exist a broom type
among $T_{1},$ $T_{2},$ $\cdots$ $T_{l-1}$ .

At the end we prove the next lemma, which counts the number of ideal
points.

LEMMA 6.7. For any co-prime integers $\alpha,$ $\beta$ such that $0<\beta<\alpha$ , we have

$\Sigma\Pi(|n_{j}|-1)=\alpha$

$[n_{j}]j$

where the sum is taken over all continued fraction expansion $[n_{f}]s$ of $\beta/\alpha$ .

PROOF. We put $m_{a.\beta}= \sum\Pi_{j}(|n_{j}|-1)$ where the sum is taken over continued
fraction expansion $[n_{j}]s$ which have the form

$\frac{\alpha}{\beta}=\frac{1}{1}$ , with $|n_{j}|$ ) 2.

$n_{1}+_{\overline{n_{2}+}}$

.
$+ \frac{1}{n_{N}}$

By definition, the left side of the required formula is $m_{\alpha,\beta}+m_{\alpha,a-\beta}$ . We shall
show that this is equal to $\alpha$ .

We can assume $2\beta<\alpha$ , replacing $\beta$ by $\alpha-\beta$ if necessary. Let $n,$ $r$ be as in

$\alpha=n\beta+r$ with $n\geqq 2$ , $0\leqq r<\beta$ .
We obtain

$m_{\alpha.\beta}=(n-1)m_{\beta.r}+nm_{\beta.\beta-r}$

$m_{a-\beta.\beta}=(n-2)m_{\beta,r}+(n-1)m_{\beta.\beta-r}$

$m_{a.\alpha-\beta}=m_{\alpha-\beta.a-2\beta}$

because $\beta/\alpha,$ $\beta/(\alpha-\beta)$ and $(\alpha-\beta)/\alpha$ have continued fractions as follows,

$\frac{\beta}{\alpha}=\frac{1}{n+(r/\beta)}=\frac{1}{n+1-(\beta-r)/\beta}$
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$\frac{\beta}{\alpha-\beta}=\frac{1}{n-1+(r/\beta)}=\frac{1}{n-(\beta-r)/\beta}$

$\frac{\alpha-\beta}{\alpha}=\frac{1}{2-(\alpha-2\beta)/(\alpha-\beta)}$ .

Therefore we have,

$m_{\alpha,\beta}+m_{\alpha.a-\beta}=(m_{\alpha-\beta.\beta}+m_{a-\beta.\alpha-2\beta})+(m_{\beta.r}+m_{\beta.\beta-r})$ .
We proceed by induction on $\alpha$ , to obtain $m_{\alpha,\beta}+m_{\alpha,\alpha-\beta}=\alpha$ . $\blacksquare$
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