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§0. Introduction.

We consider the characteristic Cauchy problems for some non-Fuchsian
partial differential operators with real-analytic coefficients. We give some theo-
rems that are similar to the Cauchy-Kovalevskaya theorem and the Holmgren
theorem. As a corollary, we obtain some results on the non-existence of null-
solutions. ‘

First, we give the definition of (essentially) Fuchsian operators and null-solu-
tions. Consider a partial differential operator

P=t'7+ I a;.(t, x)0i0%,
J+lajsm,jm
where k2 is a non-negative integer and a; ., are smooth (that is, C* or holo-
morphic etc.) in a neighborhood of (0, 0)= R, <X R~.

DEFINITION 0.1. (1) A partial differential operator P is called Fuchsian
(with respect to the hypersurface X :={({¢, x); t=0}), if Pis written in the form

P=1t*07+an (x)t* 07+ - +am-p(x)07*
+ 3 3 t*®P0Pa, 4t x)08
p<m |Bism-p
with a(p, B)=max (0, k+p—m+1), where 0<k<m and aj, a, s are smooth
([1]). If P can be written as P=t"(Q), where @ is Fuchsian and £ is an integer,
then P is called essentially Fuchsian ([8]). Also, an operator P is called non-
Fuchsian (resp. essentially non-Fuchsian), if P is not Fuchsian (resp. not essentially
Fuchsian).
(2) A distribution u» in a neighborhood of (0, 0) is called a null-solution for
P at (0, 0) with respect to X (or rather X,={¢t>0}), if Pu=0 in a neighborhood
of (0, 0) and (0, 0)=supp uc {t=0}.

After a pioneering study by Y. Hasegawa ([4]), M.S. Baouendi and C.
Goulaouic ([1]) defined Fuchsian partial differential operators, and proved some
generalizations of the classical Cauchy-Kovalevskaya theorem and the Holmgren
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uniqueness theorem for Fuchsian operators. Especially, they proved that if P
is a Fuchsian operator with real-analytic coefficients, then there exist no suffici-
ently smooth null-solutions. On the other hand, for operators whose principal
parts are essentially non-Fuchsian, there are many results on the existence of
C> null-solutions. (We refer only and [9]. See the references of these
papers.)

In [8], the author considered essentially non-Fuchsian operators whose
principal parts are essentially Fuchsian under the assumption that the coeffici-
ents depend only on ¢. According to this result, there are some essentially
non-Fuchsian operators that have no sufficiently smooth null-solutions. This
suggests that there may exist a class of non-Fuchsian operators that have similar
properties to Fuchsian operators.

In this article, we consider the characteristic Cauchy problems for some
essentially non-Fuchsian operators whose principal parts are essentially Fuchsian.
Considering functions that are of C= class with respect to the variable ¢ and
holomorphic with respect to x, we give some theorems that are similar to the
Cauchy-Kovalevskaya theorem and the Holmgren uniqueness theorem (Theorems
5 and [.6). We also get some results on the non-existence of null-solutions
(Theorems [.7 and L.8).

NOTATION.

(i) The set of all integers (resp. nonnegative integers) is denoted by Z
(resp. N). For a real number a, put [¢]:=max{nsZ; n<a} (Gauss’s symbol).

(ii) Put 9:=19, and 9:=0,t="9+1.

(iii) For a bounded domain £ in C*?, we denote by @(2) the set of all
holomorphic functions on 2. This is a Fréchet space with the topology of
uniform convergence on the compact sets. Put E(f):={p<= C°(Q-);gp is holo-
morphic in 2}. This is a Banach space with the supremum norm. The closure
of the entire functions in E() is denoted by F(£). The dual space of E(Q)
(resp. F(Q)) is denoted by E’(£2) (resp. F'(2)).

(iv) For two locally convex topological vector spaces X and Y, we denote
by .£(X,Y) the space of all continuous linear operators from X to Y, endowed
with the topology of uniform convergence on the bounded sets. Put £(X):=
LX, X). '

§1. Statements of the main results.

Let £ be a bounded domain in C™ that contains the origin 0, and let T be
a positive real number. Consider a linear partial differential operator
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P = - t, j"t; ,
(].].) f"yggma]' ( x)a[‘o_

where a; ,=C>([—T, T];0(2)) and a,, t, x)=t"(kcN).

Let »(j, @) be the vanishing order of a; , on 2, that is

(1.2) r(j, @):=sup{reN;t"a; . =C([—-T, T]; 0(Q)},
and put
(1.3) dj o, x):=17T9Oq; ,(t, x).

(If »(j, a)=o0, then put &; (¢, x)=0.) Note that a; .=C([—T, T]; &LQ)).

Associating a weight o/, a):=r(j, a)—; to each differential monomial
aj «(t, x)0i02, we draw a Newton polygon 4(P) using the points (j+|a|, o(j, a))
(+]al<m) in (u, v)-plane as follows.

DEFINITION 1.1. (1) Put

APy:i=ch(, U_{w, v e R usjtlal,vzel, a}),

J+iajsm

where ch(A) denotes the convex hull of A. This is called the Newton polygon

of P ([6], (137, [11]). (Cf. Definition 2.1.) This is different from the Newton
polygon used in [8].

G+lial, o, @)
(G+lal, o(j, a))

~<\

h(P) lower sides

— Y

U

1

1

!

'

1
m

Figure 1. 4(P).
(2) Put
V= {(j, )eNxN"; (j+lal, o(j, a) is a vertex of A(P)}.

(3) Put
h(P):

It

min{w(/, @)ER; j+a| <m}

= min {veR; (u, v)=4(P) for some u=N}.
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This is the lowest weight of P and called the height of 4(P).

(4) The boundary of A(P)N\([0, «o)xR) is the union of two vertical half-
lines and a finite number of compact line segments with distinct slopes. Each
of these compact line segments is called a lower side of 4(P). The set of the
slopes of the lower sides of 4(P) is denoted by S. For p=S, the lower side
of A(P) with slope u is denoted by L,. Put

I.:={(J, )eNXN"; J+lal, o(j, @)= L,}.
(5) For p=S, >0, we put
CuA; x)i= T @;0, x)A7.

(¢ O)EI#

If 0=S, then we put

ColA; x):= 2 @60, x)AA—1) - (A—j+1).

U, el

If 0&S, then we put Cod; x)=d, 0, x). The polynomial £, is called the
indicial polynomial of P. (M. S. Baouendi and C. Goulaouic ([1]) called this poly-

nomial “the characteristic polynomial associated with P”, in the case of
Fuchsian operators.)

(6) If 0=S, then we put

A(P):=sup{ReA=R; C,(2; x)=0 for some x=2}.
If 0&£S, then we put A(P)=—oo.

By the use of these notions, Fuchsian operators are characterized as follows.

PROPOSITION 1.2. The operator P is Fuchsian if and only if h(P)<0, S={0},
and there exist no (j, a)ye I, such z‘hat a=+0.

Now, we assume the following conditions.

(A-1) For all yES there exist no (j, a)e/, such that a=+0.

(A-2) If (j, 0)=V, then a;,+0, 0)=0.

(A-3) If p=S and p>0, then all non-zero roots 2 of Cu(A; 0)=0 satisfy
Re 41<0.

(A-4) h(P)Z0.

(A-B) CoA;0)%0 for A=|h(P)|, |A(P)|+1, [A(P)]+2, -

REMARK 1.3. (1) The assumption (A-1) implies that the principal part Pn
of P is essentially Fuchsian.

@) Note that if (j, )V, then @;o0, x)3=0 under the assumption (A-1).
Thus, the condition (A-2) is a k'nd of non-degeneracy at x=0. For an arbi-
trarily fixed y= £, put :
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Py = Z aj:a(t, y)a{ag ’

J+iajsm

which is a differential operator with coefficients depending only on ¢. Then,
the condition (A-2) is equivalent to that 4(P,)=4(P) for any y in a neighbor-
hood of (0, 0).

(3) The condition (A-4) implies that C4(4; x)=0 for A1=0, 1, ---, |A(P)| —1.
In fact, if j<|h(P)|, then w(s, 0)=r(s, 0)—j>—|h(P)|=h(P) and hence (j, 0)
&I,. Further, if |A(P)|=1 then A(P)=|h(P)|—1.

4) If 0&S, then A(P)=0 and hence (A-4) means that A(P)=0. Further,
(A-5) follows from (A-2).

(b) We do not exclude Fuchsian operators. Fuchsian operators always
satisfy the conditions (A-1)-(A-4).

ExAaMPLE 1.4. Consider an operator
P = t0}—t"0%2+at?0,+b,

on R® where k, v, pEN, a, b=C. We assume that £>2p, p=1, and b+0. We
have
(A-) = v>r—2.

Under this condition (A-1), there holds that S={k—p—1, p—1}. The con-
ditions (A-2) and (A-4) are always satisfied. (Note that A(P)=0.) Further, we
have

(A-3) &= Rea>0 and if p>1 then Re(b/a)>0,

(A-5) &= If p=1 then b/ag {0, —1, =2, ---}.

Under the above assumptions, we have the following two theorems, which
are the main results of this article.

THEOREM 1.5. Assume the conditions (A-1)-(A-5). Then, there exist a posi-
tive Ty and a neighborhood 2, of 0 in C™ for which the following holds :

For any f=C>([0, T]; o)) and any g;=0(2) 0=j< | h(P)|—1), there exists
a unique us C={[0, T,]; 0(£,)) satisfying

Pu = f(, x) in [0, Tyl X 8Q,,

(CP) { .
0uli—g=g;(x)  on £y O/ |h(P)]—-1).

THEOREM 1.6. Assume the conditions (A-1)-(A-5). Let LN and L> A(P).
If usCL([0, T1; 9/(QNR"™), Pu=0 for t>0 in a neighborhood of (0, 0), and
ou)1—o=0 0| h(P)|—1) in a neighborhood of 0, then u=0 for t>0in a
neighborhood of (0, 0). ’

Immediately from we have the non-existence of sufficiently
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smooth null-solutions. We also have the following stronger results on the non-
existence of null-solutions, assuming only the conditions (A-1)-(A-3).

THEOREM 1.7. Assume the conditions (A-1)-(A-3). If NeN and N>A(P),
then there exist no C¥ null-solutions for P at (0, 0).

THEOREM 1.8. Assume the conditions (A-1)-(A-3). If O0&S, then any 9’
null-solution for P at (0, 0) has a support included in the initial surface 3= {t=0}
in a neighborhood of (0, 0). Further, if h(P)=0 in addition, then there exist no
D' null-solutions for P at (0, 0).

REMARK 1.9. (1) As is well-known, if P is non-Fuchsian, then the solution
u in is not necessarily holomorphic in (¢, x) even if f, g, and the
coefficients of P are all holomorphic in (¢, x). Also, we cannot replace [0, T]
and [0, T,] with [—T, T] and [—T,, T,].

(2) Consider the following condition, which is “opposite” to (A-3):

(A-3)* There exist p=S and 1=C such that >0, Re2>0, and C,(2; 0)=0.

The author believes that the following holds:

CONJECTURE. If P satisfies the conditions (A-1), (A-2), and (A-3)%, then
there exists a C*= null-solution for P at (0, 0).

If the coefficients a; , of P are independent of x, then this conjecture fol-
lows from Theorem A (1) in [8].

The assumptions (A-4) and (A-5) have a different nature from (A-1)-(A-3).
In [Theorem 1.5, the assumptions (A-4) and (A-5) are used only to show that
the formal Taylor expansion of the solution u with respect to ¢ is uniquely
determined from f and g;, as we shall see in Section 4. In other words, the
Cauchy problem (CP) is reduced to the flat Cauchy problem by the use of (A-4)
and (A-5), and the flat Cauchy problem is uniquely solvable under the assump-
tions (A-1)-(A-3). As for the situation is similar.

In Section 4, we shall give some extended results to the reduced problems
under the assumptions (A-1)-(A-3) (Theorems 4.3, 4.4, [4.6). From these extended
results, the four theorems above easily follow.

In order to give these extended results, we need to consider generalized
Newton polygons and some function spaces associated with generalized Newton
polygons. These are given in Sections 2 and 3. Our assumptions make it pos-
sible to treat the operator P as a kind of perturbation of an ordinary differential
operator. In Sections 5 and 6, we investigate ordinary differential operators.
Using the results in Section 6, we prove in Section 7. Theorems
and 4.6 are proved by the use of scales of Banach spaces. In Section 8,
we give the unique solvability of abstract equations in scales of Banach spaces.
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Finally, we prove Theorems and 4.6 in Section 9.

§2. Additive group of generalized Newton polygons.

In this section, we define an additive group extended from the Newton
polygons and show some basic properties of this group. We begin with a de-
finition of Newton polygons.

DEFINITION 2.1. (1) For a point (a, b)eNXR, put 4d(a, b):= (—oco, a]X
[b, «o)C R

(2) A subset 4 of R? is called a Newton polygon, if d=ch(\J¥L,4(a;, b))
for a finite number of points (a;, b)eNXR (j=1, ---, M). Note that 4(a, b) is
also a Newton polygon.

(3) For a Newton polygon 4, put s=s(4):= max{ucsN; (u, v)4 for some
veR} and h=h(4):= min {veR; (u, v)= 4 for some u=N}. We call s(d) the
size of 4 and h(4) the height of 4. Further, put L(;)=L,(j):= min{veR; (J, v)
4} for j=0,1, ---, s(4). This is called the side function of 4. A Newton
polygon 4 is uniquely determined by its size s(4) and side function L,. Note
that d=ch(\Js A(j, L4(7))) and that h(d)=L 40).

v
L

(a'i ’ bj)

(aj, by) :
J b y
0 1: s(A)
L(j)p--—--—

Figure 2. Newton polygon.

REMARK 2.2. Let L be the side function of a Newton polygon 4 with size
s. Put x;:=L(j)—L(G—-1) (=1, ---, s). Then, there hold

2.1) 0=m = =k,
2.2) L) = ;zqulé1 kg (=0, 1, -, s), where h=h(d)=L(0).
Conversely, let heR, s=N and let k,, ---, &, satisfy [2.I). If we define a func-

tion L on {0, 1, -, s} by [2.2), then there exists a Newton polygon 4 with
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size s and side function L.
Next, we define an addition of Newton polygons.
DEFINITION 2.3. For two subsets D; and D, of R? put

2.3) D+ D, = {(u,+u,, vi+v) € R?; (uy, v)) € Dy (=1, 2)}.

PROPOSITION 2.4. (Cf. [10, Definition 3.1].) For i=1, 2, let 4, be a Newton
polygon with size s; and side function L;. Put L,(j)=co for j>s; (=1, 2). Then,
the sum 4,44, is a Newton polygon with size s,+s, and side function L,DL,,
where

(2.4) (LEL)():= min{L(k)+ L,(j—k); keN, 0<k <1}
for jeN, 0<X7<s,+s,.

The unit element of this addition for Newton polygons is 40, 0)=(—o0, 0] X
[0, o).

PrOOF. Put £/ := L;(j)—L;(G—1) 1<j<s:;4=1, 2). Reorder £, ---, £V,
EP, -, k2 as 0=k < - Zkg4s,. It is easy to show that

2.5) (L®L)) = L1<o>+L2<o>+l:21 f (0= <si+ss).

Thus, there exists a Newton polygon 4 with size s,+s, and side function
L.®DL,, by Remark 2.2.

First, we show 4dc4,+4,. Take an arbitrary (u, v)ed. If <0, then
there holds trivially that (u, v)e4,+4,. Assume that u=0. Since d=ch{dN
(ZXR)) and since 4,+4, is convex, we may assume that ucN. We have
0<u<s,+ss v(LiDL)w)=L,(k)+L(u—k) for some k by [2.4). Put v,=
L.(k), vi=v—v,=Ly(u—£k). We have (k, v)Ed,, (u—*k, v,)ed,. Hence, we
have (u, v)ed,+4,.

Next, we show 4,+4,c4. Take an arbitrary (u, v)e4,+4,. If u<0, then
there holds trivially that (¥, v)4. Assume that u=0. We can write as (u, v)
=(u,+us, v,+vy), where z;:=(u,, v;)ed; (=1, 2). Since 4, is a Newton poly-
gon, there exist n{”4;\(IVXR) such that the point x; belongs to the compact
line segment connecting ={" and ={>. The point =,+x, belongs to the closed
parallelogram with the vertices ={*> (=1, 2). Since 4 is convex, if these four
vertices belong to 4, then r,+m, also belongs to 4. Thus, we have only to
show that (u, v)e4 under the assumption that u,=N (t=1, 2). In this case,
since 0<u;<s; and v,=>L,(u;) (¢(=1,2), we have v=v,4+v,=L (u))+ L,(u,)>
(LB L) (us+us)=(LPL)w). Thus, (u, v)ed. |

The following two propositions give basic meanings of this addition.
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PROPOSITION 2.5. Let 4 be a Newton polygon with size s and side function
L. Put kj:=L()—L(G—1) for 1£j<s. For a non-negative real number k, let
ATE] be a Newton polygon with size 1 and side function L[ k], where L[ k](0)=0
and L[E]1)=Fk. Then, there holds A=4(0, h)+A[k,]+ --- +4A[ks], where h is
the height of 4.

PRrROOF. It is trivial that if s=0 then 4=4(0, h) for some h<=R. Let s=1.
Put L'(j):=L(j) (0<;<s—1) and let 4’ be the Newton polygon with size s—1
and side function L’. We have (L’DL[k:DO0)=L'0)=L(0). For 1<;<s—1,
we have (L'OLLk:])(j) = min{L'(j), L’'G—D+ks} = min{L()), LG—1)+ks} =
L()), since L())—L(G—1DZL(s)—L(s—1)=k,. We also have (L’PL[k;])(s)=
L' (s—D+ks=L(s—1)+ks=L(s). Thus, we obtain L=L'"@®L[k;], and hence
A=4"+4[k;]. By iterating this argument, we get the desired result. [ ]

PROPOSITION 2.6. (Cf. [7].) If P, and P, are differential operators of the
form (1.1), then there holds A(P,P,)=A4(P,)+ A(P,).

PrROOF. Let D be a subset of R® satisfying that if (u, v)&D and v'=v,
then (u, v)eD. For a partial differential operator R, we say R=0(D) if R
can be written in the form:

(2.6 R = 2 t"’“ Da; .t x)t'0l03,

iy
(G+lal, vy, @) € D, ;. € C([~T, T1;08)) (G+lal<m).
It is easy to show that
2.7 1a@,(t, x)t/10{:051)(t*a.(t, x)t'20120%2)
= 170G, (t, X)dat, X IpfIegg e
+O0UG + et lartasl, vitv) NG+ ot lartasl, vitva)})

= O<A<]’1+.7.2+]ax+a2l, vi+12)) .

Thus, it is almost trivial that 4(P,Py)c4(P)+A(Py).

In order to show > part, we have only to show that all the vertices of
A(P)+4(P,) belong to A(P,P,).

LEMMA 2.7. If (u,v) is a vertex of A(P)+4(P,), then there exist unique
(uy, v)EA(P) =1, 2) such that (u, v)=(uy, v)+(Us, vs). Further, (u; vy) is a
vertex of A(P,) (i=1, 2).

PrOOF. Assume that (u,, vy), (ui, UQ)EA(Pi) (=1, 2) and (u, v)=(u,, v+
(g, vo)=(uy, v))+us, vy). We can represent u;=u,+p, Us=u,—p, vi=v,+0,
vi=v,—a. Hence, there holds (u+p, v+a)=d(P)+A4(P). Since (u,v) is a
vertex of A(P,)+A4(P,), this implies p=¢=0. Thus, (u;, v;) are unique.
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Assume that (u,, v,) is not a vertex of A4(P,). There exist p+#0 and ¢ such
that (u,+p, vi+=0)E4(P,). Since (u,, v,)E4(P,), we have (utp, vEa)sd(P)+
A(P,). This contradicts the assumption that (u, v) is a vertex of A(P,)+4(P,).
Thus, (u,, v,) is a vertex of A(P,).

Just the same way, we can show that (u,, v,) is a vertex of 4(P,). [ |

Now, we return to the proof of Proposition 2.6, Assume that (u, v) is a
vertex of A(P,)+4(P,) and take (u;, v;) in the lemma above. We decompose
the operator P; as

(2.8) P,= 3 a0, x)teloi+ X aii(t, x)P’0j02 = Pi+PY.

Jrira|=ug J+ia)#ug

By [2.7), we have

2.9) PiPi=1 3 (5 afet, 082, e, 0)1008

Jei@i=u\ji+1agi=u,
+0d(u, v)N{(u, V)}).
On the other hand, from P{=O(4(P)N{(u;, vi)}), we have
(2.10) PiP{+P{P;+P{P}{ = O((A(P)+ AP (u, v)}).
Since (u;, v;) is a vertex of A(P;), there exists (j;, a;) such that j,+|a;|

=u; and @;%,0, x)#0 (=1, 2). Hence, we have

2.11) 2 (LD a0, 98B, aa0, X)) )VE

Ji+iayi=uy

— 5 (1) ji1ga 5 (2) jgsa

= (11+|§l="1a“'a1(0’ x)AE 1)(j2+|%1=u2an'a2(0’ x)A’2& 2)
*0.

This implies that there exists (j, a) such that j+|a|=u and

2 370a,0, )@125,a-0,0, x) EO.

Jitiayi=u;

Thus, from P,P,=PP;+P;P{+PP;+ PPy, we have (u, v)€d(P,\P,). |

REMARK 2.8. For a complete locally convex topological vector space X,
put

(2.12) F([0, T]; X):= {veC«[0, T1; X); v(sheC=([0, T']; X)
for some g= N\ {0}}.

We can extend for the operators whose coefficients belong to
([0, T]; ©(2)). For such operators, the proposition above is also valid.
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Let 71 be the set of all Newton polygons, which is a commutative semigroup
with the addition above. By the following proposition, we can embed this
additive semigroup 77 in an additive group.

PROPOSITION 2.9. Let 4, 4,, 4; be three Newton polygons. If d,+Adcd,+4,
then 4,c4,. (The converse is trivially valid.) Especially, if 4,-+A4=4,+4, then
4,=4,. (This is called the cancellation law.)

PrOOF. By [Proposition 2.5, we have only to give a proof in the case of
A=4(0, h) or A=4[F]. In the case of 4(0, h), it is trivial.

Assume that 4,4+ 4[k]cd,+4[k], where % is a nonnegative real number.
Let s; (resp. L,) be the size (resp. side function) of 4, /=1, 2). By 4,4+ 4[k]
cd,+4d[ k], we have s,+1<s,+1, hence s,<s,. Further, we have

(2.13) (LyDLLED(G) =2 (LLDLLRDG) O=j=s:+1).

From this inequality for j=0, we have L,(0)=L,0). Now, assume that L,(j)
>L,(j) holds for 0<;<d (0<d<s,—1). From for j=d-+1, we have
L.(d+1) = min{L,(d+1), Lo(d)+Fk}. If L, (d+1)ZLs,(d)+k, then we have
L(d+1=L,(d+1). If L,(d+1)>L,(d)+k, then we obtain L,(d+2)>L,(d+1)
+k using [2.1). Hence, from for j=d+2, we have L ,(d+1)+k=L,(d+1)
+%. Thus, we have L,(d+1)=L,(d+1). By the induction, we get L,(/)= L,(7)
for 0<7<s,. [ ]

DEeFINITION 2.10. (1) By the cancellation law, the additive semigroup 92
can be embedded in an additive group J! so that the addition in 37 is preserved
in 7 and any 47 is a difference of two elements of J1: d=4—4'(4, 4’ =7).
This group 7 is uniquely determined by 3 up to isomorphism. An element of
91 is called a generalized Newton polygon. For 4,, 4, 4,, 4,3, there holds
4,—4i=4,—4; if and only if 4,+4;=4,+4;.

(2) For d=4—4'€7 (4, 4'=9), the integer s(d)=s(d)—s(d’) is called the
size of 4 and the real number A(d)=h(4d)—h(4’) is called the height of 4. It is
almost trivial that these are well-defined.

(3) For two elements 4,, 4, in 7, we say 4,cd,, if d,=4,—4} (=1, 2)
and 4,+4;cd,+4;, where 4,, ;e (=1, 2). It follows from [Proposition 2.9
that this is a well-defined order relation in 7.

§3. Function spaces associated with generalized Newton polygons.

In this section, we define some function spaces associated with generalized
Newton polygons and study some basic properties of these spaces. Let 7 be a
positive number and X be a complete locally convex topological vector space.

All the spaces in this section are considered as subspaces of 9/((0, T); X).
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Thus, for example, “usC%[0, T]; X)” means that u=C(0, T); X) and u is
continuously extendable onto [0, T].

DEFINITION 3.1. (1) Let 4 be a Newton polygon with size s and side
function L. Put

@) Fr[4: X]:= {ueC0, T1; X); t"* ¥ w)eC[0, T]; X) 0=,=9)}.
We can endow this space with a natural topology. Especially, if X is a Banach

space, then this space is also a Banach space with the norm

(3.2) lullg sx:= 3 sup EEOF @O x -

j=0 0stsT

(2) Let 4’ be another Newton polygon with size s’ and side function L’.
Put

(3.3) Feld, 4 X1:= (ue 2’0, T); X); u= S tX P9,
=0

for some v;eFr[4: X] 0=7<s")}.
Obviously, we have Fr[4, 400, 0): X]=Fy[4: X]. When X is a Banach space,
we define a norm |-z, 4,4, x by
s’ s’ R R
[wlr.a,0.x 3= it { 3 [0slr.a.x; v,SFeld: X1 0S5 S5, u= B0 O90,).
(When X is not a Banach space, we do not consider any topology for sim-
plicity, though we can.)

LEMMA 3.2. Assume that 4,, 4;, 4y, 5N and 4:=4,—4\=4,—4;.
€)) There_ holds that Fp[d,, 47: X1=Fr[4,, 4;: X]. Thus, we can define

(3.4) Fr[d: X]:= Fp[4,, 4;: X].

(2) If X is a Banach space, then the norms |ullz, 4, 4. x and lullz, 25 4y, x 17
the space Fp[d: X are equivalent to each other. Further, the spacer‘FT[A_ 1 X is
a Banach space with these equivalent norms.

To prove this lemma, we use a result on ordinary differential operators.
Hence, the proof is delayed until Section 5. -

ExaMPLE 3.3. (1) There holds C°[0, T1; X)=F;[4(0, 0): X]. Moreover,
if we put ’

(3.5) CHae([0, TT; X):= {usC¥([0, T]; X); 0lul==0 0Z/<N-1},
theﬂ there holds '

3.6) $1a:([0, T1; X) = Fr[A(N, —N): X].
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(2) The space Fr[4(l, 0): X] is equal to the space CX[0, 7], X) in [1].
The space Fr[—4(, 0): X] is equal to the space C%, ([0, T1, X) in [2].

REMARK 3.4. We can also define some function spaces similar to Fz[4: X],
based on other various spaces such as L, spaces instead of C°([0, T]; X). In
fact, J. Elschner ([3]) used weighted Sobolev spaces X% similar to Fy[4: C]
(4= 31), without referring to Newton polygons.

We give some properties of the spaces Fy[4: X] and Fr[4: X]. The first
two lemmas are almost trivial and those proofs are omitted.

LEMMA 3.5. Let 4 be a Newton polygon with size s and side function L.
For ue (0, T); X), the following nine conditions are equivalent to each other.

(1) usFp[4:X].

@) P (e (0, T1; X) (0</<5s).

) tE9Hel(w)e C([0, T1; X) 0=/<5s).

@) FPuyel ([0, T]; X) 0= =s).

6) FEPweC0, T1; X) 0</<s).

6) 9" Hu)yeC ([0, T]; X) (0=,<s).

(7) For any positive integer r, if 720 (0=i<r), ji+ - +7.<s and p,+ -
+po,=L3G+ - +75), then t91971 .- tor ()= C°([0, T]; X).

(8) For any positive integer r, if ;=0 (0=<i<r), ji+ - +7,<s and p,+ -
+po.,=2L{G A+ - +7.), then tergin ... Z‘pT19~jT(u)EC°([O, T7; X).

(9) For any positive integer v, if 7,20 (0<i<r), ji+ - +j.<s and p,+ -
+0. =L+ - +7) i+ iy, then tP10] - 170 (w)e C([0, T]; X).

Also for Fp[4, 4': X] (4, 4’ 9), we have a similar lemma, which we omit
to state.

LEMMA 3.6. If 4, 4.9 and 4,4, then Fp[4,: X12F[4,: X].

LemMMmA 3.7. If o= 9([0, T]; L(X, Y)) and ucsFy[1: X7, then pusFp[4:Y].
Especially, if h(d)=0 then ([0, T]; X)cFy[4: X].

ProOF. First, note that ()= ([0, T]; £(X,Y)) for any j. Hence, if
d=4=9, then the lemma is almost trivial. Let 4=4—4’, where 4, 4/7.
Let s’ (resp. L’) be the size (resp. side function) of 4’. Since ucsFr[4: X]=
Fr[d, 4': X1, we have u=33i_,t*" 9 (v;) for some vjeFT[A:X]. We prove
that pusFr[4, 4':Y] by the induction on s’.

If s’=0, then 4’=4(0, h) for some h=R. Hence, A A ={(u, v—h); (u, v)
edied and Fp[4, 4 : X]=F;[4—4": X]. Thus, it is already proved.

Assume that we have proved for s’—1. Put w/'=3351¢2" 9% (v;). Then,
by the induction hypothesis, we have pu’eFr[4, 4:Y]. Now, we have
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7

BT redeny = 2 (%) @90

s'=1sg’
= ot @9 @) +3 (5 )9 U@ Iy,

Since vy eFp[4:Y ], we have t2' ¢9" (pvy)eFp[d, 4:Y]. On the other hand,
by the induction hypothesis, we have 9~ '(@)t*' ¢ Y (vy)eFr[d, 4:Y] OIS
s’—1). Hence, by [3.7), we have ¢t*' ¢9" (vs)sFr[d, 4:Y]. Thus, we have
puskFrld, 4:Y]. |

LEMMA 3.8. For J=9 and a=R, there holds t*<Fp[d: X] if and only if
a=—h(d).

Proor. The if part is easy. We prove the only-if part. Suppose t*<
Fr[4, 4:X]. Put h=h(d), W"=h(4), and s’=s(4’). We may assume that a+
h’—h—1 without loss of generality. Since 4>4(0, h) and 4’'cA(s’, h’), we
have Fr[d, 4’': X1 F[40, h), 4(s’, h'): X]. Hence, we can write t*=
M 380 F(t*uy), where u;eC([0, T]; X). Using = (J—1+b), we get
- =318 Gy, where v;eC([0, T]; X). For any veC*([0, T]; X), there
exists weC%[0, T]; X) such that §(w):v. Hence, we get the equation ¢t*~*'**
=1§3'(v) for some veC%[0, T]; X). Solving this equation, we have v=
(a—h'+h4+1)-Ste- w2483 Cit *(log t)7 for some constants C; (0<7<s"'—1).
Since v=CY([0, T]; X), we have a—h’+h=0, that is a=—h(J). ]

Last, we define another function space.
DEFINITION 3.9. We put

GarX):i= U Fp[—4AN, a): X].
a>A, NeN

REMARK 3.10. For 47 and a<R, there holds the following:
(1) t*eg, p(X) if and only if a> 4,

(2) Fp[d: X]<g, r(X) if and only if A(D)<—A.

§4. Reduction of the problem and extended results.

In this section, we reduce the Cauchy problem considered in the main theo-
rems to the flat Cauchy problem or a similar problem using the assumptions
(A-1), (A-4) and (A-5). Further, we give some extended results to such prob-
lems under the assumptions (A-1)-(A-3).

Consider a partial differential operator P of the form (1.1) and assume the
condition (A-1). The operator P can be written as
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4.1) P=tr®P =P e (9 x)+iqt, x: 9, 82},

where ¢(t, x; 4, & is a polynomial of (4, & with C=([—T, T7]; ©(R)) coefficients.

Let u=337, u{x)t/, f=35%, f;(x)f be the formal Taylor expansions with
respect to . In the space of formal power series with respect to ¢, the equa-
tion Pu=/f is equivalent to the equation P(X;. npy ut)=f— PR ujt?),
and hence to the following infinite number of equations under the assumption
(A-4). (See Remark 1.3 (3). Also note that 9(t/)=7t'.)

j-1
4.2) Co(j? XUy = fjwh(P)i‘i‘lE Rj,l(x ; 02Uy
=0

G=1hP), |h(P)I+1, [R(P)|+2, --),

where R;, are some partial differential operators with respect to x with O(2)
coefficients. Now, we assume the condition (A-5). By reducing £ if necessary,
we may assume

(A-5) Co(A; x) 0 on 2, for A= |h(P)|, |A(P)|+1, |R(P)|+2, ---.
Then, u; (j=|h(P)]) are uniquely determined by wu,, u,, -+, Uircpyi-1, and f;
(=0, 1,2, --).

Take veC=[—T, T]; (L)) that has the formal Taylor expansion 35 ,u;(x)t.
If we set u=v+# and f=Py+f, then @ and f are flat on {t=0}, that is all
the derivatives vanish on {f=0}. Thus, has been reduced to the
following proposition.

PROPOSITION 4.1. Assume the conditions (A-1)-(A-3). Then, there exist a
positive T, and a neighborhood £2, of 0 in C™ for which the following holds:

For any feC=([0, T]; 0(Q)) that is flat on {t=0}, there exists a unique ucs
C=([0, Ty]; 0(82,) that is flat on {t=0} and satisfies

4.3) Pu=f(, x) in [0, Ty]x2,.
By a similar argument, is reduced to the following:

PROPOSITION 4.2. Assume the conditions (A-1)-(A-3). Let L>A(P). If
ucstI X CY[0, T]; 9"(2NR™) and Pu=0 for t>0 in a neighborhood of (0, 0),
then u=0 for t>0 in a neighborhood of (0, 0).

Now, we give some extensions of these propositions in the form of the
following three theorems. By the reduction argument made above, Theorems
and follow from these three theorems.

In the following, we assume that the coefficients of P belong to F([0, T];
o(2)). (See Remark 2.8.) We also assume the conditions (A-1), (A-2), and (A-3).

The first theorem is the unique solvability in the class &, 7(O(2)).
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THEOREM 4.3. There exist a positive T, and a neighborhood £, of 0 in C"
for which the following holds :

For any f€8 1wy inw, r(O(R2)), there exists a unique u< G 1cpy, 1,(0(20)) satisfy-
ing Pu=f on (0, Ty)X£2,.

The second theorem is the regularity of solutions with respect to .

THEOREM 4.4. There exists a neighborhood 2, of 0in C™ such that, for any
T'<(0, T] and any subdomain Q' of 8., the following holds:

Assume that uSg iy, r(OR)). If 43, h(d)<—(AP)+h(P)), and Puc
Fr[J:0(02)], then usFrp.[A+4(P): 0(2)].

Especially, if NN, N>AP)+h(P), and PusC¥,..([0, T']; 0(2")), then
usC¥q.([0, T']; 0(2), where N'=min{N, [N—h(P)]}.

REMARK 4.5. Note that the condition A(d)<—(A(P)+h(P)) means that
Fr [d4+A4(P): 0(2)]1< 8 1cpy, 7 (O(R7)).

The last theorem is the uniqueness in a wider space.

THEOREM 4.6. [If us g, r(9'(QNR™) and Pu=0 for t>0 in a neighbor-
hood of (0, 0), then u=0 for t>0 n a neighborhood of (0, 0).

easily follows from [Theorem 4.6. We now prove
1.8 from

ProoF OF THEOREM 1.8. Assume that 0&S. Also assume that ue
9'(—=T, T)X(QNR") satisfies Pu=0 in a neighborhood of (0, 0) and supp uc
{t=0}. Since u is a distribution of finite order in a smaller neighborhood of
(0, 0), we may assume that u,>,E8 . r(D'(2NR"). Since 0&S, we have
A(P)=—o0 and hence implies that ¥=0 in (0, T,)XU, for some
T.>0 and an open neighborhood U, of 0R™. Thus, supp un({(—T,, T)xU))
< {t=0}.

Now, assume A(P)=0 in addition. Since supp un(—T,;, T)xU,c {t=0},
the distribution u|cr, 7., can be written as u=33L, a;(x)0(t) for some
MeN and a;€9'(U,) (j=0,1, ---, M). From [4.I), the operator P can be
written as P=C,(3; x)+tqt, x;9, 0,). Since 0&S, the indicial polynomial
Co(d; x)=a(x) is independent of A and does not vanish in a neighborhood of
x=0 by the assumption (A-2). Thus, there holds

@8 e+, 15 9, 0H{ Ba s} =0 on (~T,, THxU,.
Jj=
By this equation and the facts that

(4.5) GHEP ) = (—j—DP®),
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. (=741 - (= =1V D@ (=1,
(4.6) oDt =
0 (<),
we can easily show that a¢;(x)=0 in a neighborhood of x=0 (;=0, 1, ---, M). =

In Sections 7 and 9, we shall prove the extended results given above.

§5. Ordinary differential operators 1.

In this section, we consider ordinary differential operators on function spaces
defined in Section 3 and prove Lemma 3.2.
We consider an ordinary differential operator

3

(5.1) P = Oaj<t> 1,

J

[}

where a;=5(0, T]; C) 0<Lj<m) and a,O)=t k=Q, £=0).

As is stated in Remark 2.8, we can define 4(%), v, h(®), S, I,, Cn, A(P) for £
by Definition 1.1. The conditions (A-1) and (A-2) are automatically satisfied.
The following is well-known. (Cf. [5], [3, Chapter 2].)

PropPOSITION 5.1. (1) The operator P can be decomposed as follows:
5.2) P = trtF1I—A, (1)) .-+ FFmI—2A,1)).

Here, h, ky, -, kneQ, k;20, ,€F([0, T];C), and if k;>0 then 2;0)%0
A=7=m).
(2) The numbers h, ky, -, km, 2,(0), -+, A,(0) are determined as follows:
Let I' be the side function of 4(P). Renumber B’s and 2’s as b1 <k,< - <kbo,.
Then, there holds

h=hne), k;=0I0G-IG-D Is/=m).

Especially, S={k,, ---, kn}. Further, if p=S and p>0, then the nonzero roots
of Cu(A)=0 are A;00) for j such that k;=p, with repetitions according to multi-
plicity. If 0=S, then the roots of Cy(A)=0 are A;0) for j such that k;=0, with
repetitions according to mulliplicity.

By this proposition, the condition (A-3) means that “if %,>0, then Re 4,(0)
<0” in [5.2). Further, by the definition of A(®), we have “if k,=0, then
Re 4;(0)< A(P)”.

REMARK 5.2. Even if a,eC*([0, T]; C), the functions 1; do not necessarily
belong to C=([0, T]; C). This is the reason why we consider ([0, T]; C)
from the beginning. :
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Now, we can prove the following proposition.

PROPOSITION 5.3. Assume the condition (A-3). Let T'(0, T] and let X be
a complete locally convex topological vector space.

(1) The operator P is a bijection from G cey. r(X) to Gaceyincey. 7 (X).

2) Let 43 and h(d)<—(A(P)+h(P)). Then, the operator P is a bijection
from Fp.[d+4(P): X] to Fp.[4: X].

(3) If X is a Banach space, then the operator @ in (2) is an isomorphism
and the operator norm of P~ can be estimated by a constant that is independent
of T' and X. (Tkis constant may depend on 4. In order to consider the operator
norm, we fix a decomposition A=A4—4" (4, ') and take the norms
Nz, g+aces, 2, x and | -lz. 4,47, x.)

Note that we have not yet proved Lemma 3.2. Hence, we prove this pro-
position for Frz[4, 4’: X] instead of Fy[4: X]. We prove after the
proof of this proposition. First, we consider a factor with %,;>0.

LEMMA 54. Let keQ, k>0, 290, T]; C), and Re A(0)<0. Consider
R=t*9—A). For any T'(0, T] and any complete locally convex topological
vector space X, there holds the following:

(1) If ueg_. ¢ (X) satisfies that Ru=0 on (0, T"), then u=0 on (0, T').

(ii) For any ac=R and f<t*xC*([0, T']; X), there exists a unique ust*x
CY[0, T']; X) satisfying Ru=/f on (0, T’). Further, for any seminorm ||-| of
X, there holds the estimate :

1 1
o lu@®l = Csup < lIf () O<t=T")
0Lsst S
with a constant C that is independent of T’, X, and |-|.

ProOF. We can take A9 ([0, T]; C) and b=C as

A A
(G +blogt) = 7.

Since A(0)=—21(0)/%, there holds Re A(0)>0.

(5.3)

PrOOF OF (i). Let u=G._ . (X)) and Ru=0 on (0, T’). It is easy to see
that u(t)=te1®1t*y, for some u,=X. Since Re 4(0)>0, the function Pet/t*
is not extendable to =0 as a distribution. Hence, we have u=0.

PROOF OF (ii). For fet*xC*([0, T']; X), put
(5.4) S[AI® = t”e”‘““kS:e'”“””s'b;f:lnf<s>ds .

Since Re A(0)>0, this is well-defined and S[f]1=C*((0, T’]; X). Further, it is
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easy to see that RS[f]®)=f(@®) on (0, T’). Put @(#)=Re A@)/t*. We want to
use the following estimate :

SUBLEMMA 5.5. For any peR, there exists a constant C, for which the
Sfollowing estimate holds:

5.5) e‘b(”S:e“D‘”s?"lds < C,i7t (te(, TT).
PooOF. Since @’(t)zgfk—f—l@ where i(t)=2A()—bt*, we have
o\’ -0esy p-1 — 0 t—dis___ ’ —1 D+k
(5.6) e%¢ )Xoe ®gP-ldg = ¢ “’Soe (@ (s))Rei(s)s ds

—1 t t 1 ’
— P ~Pe8)____ T Jp+k pIED) ol p+k
¢ ([e Rei(s)® ]0+Soe (Re).(s)s ) ds)

tp+k

¢
< @(t)g -0y p+k-1
S0 +Ce K S ds

in a neighborhood of t=0 for some constant C. Because
e?We 0 < 7 (0<s<t<T)
for some constant C’, we can get the desired estimate. |
Now, we return to the proof of Lemma5.4. Let |-| be an arbitrary semi-
norm of X. By and the sublemma above, we have
67 ISTA0] < Rere?of e-ows-res Ly £ ds
¢

1 1
< tRebemt)S e~ P®gRed_—_gsodssup — | f(s)]
0 S 0Lsst S

< Cto sup If()l (O<t=T")
0<sst S

for some constant C that is independent of 7/, X, and ||-]. Thus, if we
prove that lim,..,, ¢ 2S[f]{) exists in X, then the proof of (ii) is completed.

Since fet* X CY([0, T']; X), we can write f(t)=t*(g,+g()), where g,=X,
geC%[0, T]; X), and g(0)=0. As for g, by the estimate [5.7), we have
t-°S[t*g]@#)—0 (¢t—+0). On the other hand, by an integration by parts using
5.3), we can easily prove that

- ;z%go“*‘ks[l‘kﬂ(%)/go](t) .

By the estimate [5.7), t~* X S[t**1(t*/A(t))’ g,](t) converges to 0 as t—+0, and
hence we have ¢t 2S[t*g,J{t)——g./40) as t—-0. |

(5.8 S[t*golt) =
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COROLLARY 5.6. Let Ad=91. For any T'(0, T] and any complete locally
convex topological vector space X, the operator R in Lemma 5.4 is an isomorphism
from Fp.[44+4(R): X] to Fp.[4: X]. Further, if X is a Banach space, then the
operator norm of R~ can be estimated by a constant that is independent of T’
and X.

PROOF. Note that 4(R)=4[%k], which is defined in [Proposition 2.5 It is
almost trivial that ® is a continuous injective operator from Fr.[4+4[k]: X]
to Fp.[4: X]. Let s (resp. L) be the size (resp. side function) of 4. We
prove the surjectivity by the induction on s.

If s=0, then 4=4(0, h) for some h<R. Hence, Fpr[d4:X]=t""*X%X
C*[0, T']; X). By [Lemma 5.4, for any feit*xC°[0, T']; X), there exists
ust-"x C%[0, T’]; X) such that Ru=/f. By this equation and we
have t*9(u)ct-*x C°([0, T’]; X). This implies u< Fr.[4(0, h)4+4[k]: X], which
proves the case s=0.

We assume that the corollary holds for s—1 (s=1). Let feFp[4:X],
that is tZ@PY(F)e CU[0, T']; X) for 0<7<s. The condition usFp. [4+4[k]: X ]
means that

(5.9 tEDGi(y), tED+RGI+ () = C([0, T']; X)  for 0</<s.

By the induction hypothesis, we have

(5.10) tEDGi(w), tEP+rY () e CU[0, T']; X)  for 0</<s—1.
Now, put $(u)=v. From the equation Ru=/f, we have

(.11) Ru = f =9 )+IDu—kt*9(u).

It is easy to see that

(5.12) trangi(f) e C0, T'1; X) (0=/=:—1.

Put f(j):: L(j+1) (0<j<s—1). Let 4 be the Newton polygon with size s—1
and side function L. The condition [5.12] means that f=Fy[4: X]. From
Equation [5.11), we have veFp[d+4[k]: X] by the induction hypothesis. This
implies that

(5.13) tha=-ngs-10) pla-nrrgsy < C[0, T']; X),
and hence
(5.14) L3y, tE@®+rgseiy) = CU[0, T']; X).

The conditions [5.10) and (5.14) imply [5.9), that is usFr[4+4[k]: X].
The continuity of ®-! and the latter part of the corollary are clear from
the argument above. [ ]



Characteristic Cauchy problems 531

Next, we consider a factor with %;=0.

LEMMA 5.7. Let 2€9([0, T]; C). Consider R=9—At). For any T'<(0, T]
and any complete locally convex lopological vector space X, there holds the fol-
lowing :

(1) If uEGRre 1oy, 7 (X) satisfies that Ru=0 on (0, T"), then u=0 on (0, T").

(i) For any a>Re A(0) and f<t* x C([0, T']; X), there exists a unique u<
1% CY[0, T']; X) satisfying Ru=f on (0, T’). Further, for any seminorm ||
of X, there holds the estimate :

Lol = Csup 2 1£s)] 0<t=T")
t 0<8st S

with a constant C that is independent of T', X, and ||-].

PROOF. Put i(t):= A(t)—2(0) and take A= F ([0, T]; C) as A(0)=0 and A’(t)
={t)/t.

PrOOF OF (i). Let uE0Rre . r(X) and Ru=0 on (0, 77). It is easy to
see that u(t)=t*@ed®y, for some u,=X. Since t*@e!M&Gre ;. r(C), We
have u=0.

PROOF OF (ii). For feaxCY[0, T']: X) (a>Re A(0)), put
(5.15) S[F1E) = zA‘<°>e~1<f>S’e-A<S>s-2<°>>1f(s)ds .
0

This is well-defined and S[f]=C°(0, T']; X). Further, it is easy to see that
RS[fIH=f@®) on (0, T"). Put ¥@¢)=Re A@).
Let -] be an arbitrary seminorm of X. By [5.15), we have

1

t
[SLAID] < tRe “”C’S sTReA®=tragd s sup — | f(s)]l
0 08t S
_ 1 ,
= Ct*sup — (o)l O<t=T")
0<sst S
for some constants C’ and C that are independent of 7/, X, and [|-|. By a
similar argument to that in the proof of Lemma 5.4, we can prove ‘that
lim;..,t"2S[f]@) exists in X, and hence the proof of (ii) is completed. [ ]

COROLLARY 5.8. Let 491 and h(dH<—Re 2(0). For any T'<(0, T] and
any complete locally convex topological vector space X, the operator R in Lemma
5.7 is an isomorphism from Fp[Ad+A(R): X] to Fp.[4: X]. Further, if X is a
Banach space, then the operator norm of R~' can be estimated by a constant that
is independent of T’ and X.

Proor. Note that 4(R)=4(1, 0). It is almost trivial that R is a continuous
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injective operator from Fp.[4+4(1, 0): X] to Fr.[4: X]. Let s (resp. L) be
the size (resp. side function) of 4. We prove the surjectivity by the induction
on s.
If s=0, then 4=4(0, h) for some h<—Rea(0). Hence, Fr.[4: X]=t""X
C[0, T'1; X). By for any fet "X C%[0, T']; X), there exists
ucst-"x CY[0, T']; X) such that Ru=/f. By this equation and Lemma 3.7, we
have (u)et=*x C*([0, T’]; X). This implies us Fr-[4(0, h)+4(1, 0): X], which
proves the case s=0.

We assume that the corollary holds for s—1 (s=1). Let feFr.[4: X], that
is, tEOY(FHeCy[0, T']; X) for 0<j<s. The condition usFr. [444(1, 0): X]
means that

(5.16) tr®y = C([0, T']; X) and
tto-u9iw)y e CU[0, T']; X)  for 1<;<s+1.
By the induction hypothesis, we have
(5.17) tt®y = CY[0, T']; X) and
trO-bP(u)y e C[0, T]; X)  for 1</7<s.

Now, from the equation 3(u)=f-+A(t)u, we have
1 38 £ S §—
90w = 9N+ 3 ()99,
izo\ [
and hence by we have

(5.18) tregetu) € €0, 7715 X) .

The conditions [5.1I7) and [5.18) imply [5.16), that is usFr.[4+4(1, 0): X].
The continuity of ®-! and the latter part of the corollary are clear from
the argument above. [ |

At this stage, by [Proposition 5.1, we have proved [Proposition 5.3 (2), (3)
in the case of 4=4<3J. In order to prove the general case, we give the fol-
lowing lemma:

LEMMA 5.9. Let R=t*9—A(t) be the operator given in Lemma 5.4 (the case
of >0) or Lemma 5.7 (the case of k=0). Let 4, 4/'3. In the case of k=0,
assume h(4d)—h(4d')<—Re 2(0). For any T'€(0, T] and any complete locally
convex topological wvector space X, the operator R is a bijection from
Fr[4+4(R), 4': X] to Fp.[4, 4": X]. Further, if X is a Banach space, then
the operator R is an isomorphism and the operator norm of R~' can be estimated
by a constant that is independent of T’ and X.
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PROOF. It is easy to see that R is an injective operator from Fp.[4+
AR), 4: X] to Fr.[4, 4’: X]. In order to prove the surjectivity, we use the
following sublemma :

SUBLEMMA 5.10. Let p=R and jEN. If AR is taken sufficiently large,
then there exist a,, ---, aj, p=F([0, T]; C) such that

RIPQ = 1P(I—AY(R+p(0)),  where Q= 2 a, )9
=0
Further, p(0)=0 in the case of k>0 and p(0)=p in the case of k=0.

PROOF. Since Rt?=t?(R+ pt*), we may assume that p=0. If =0, then
this sublemma is trivial.
Let j=1 and put @Q=9+4v. The relation RQ=(F—A)(R-+y) means
thy = (k—AXt*+p,
(5.19) {
t*Iw)—Adv = —FA)+I ) —A(p—2).
These are equivalent to

p=1t—k+A4),
(5.20) {

(b= At*+ Dy = JA)+(k—A)t*—AX.

It is easy to see that, if A is sufficiently large, then (k—A)t*+2(#)+#0 on [0, T].

Thus, we can take p and v satisfying these conditions and there holds #(0)=0.
Let j=2. For p=Z([0, T]; C) such that p(0)=0, the operator R-+p also

satisfies the condition for ®. Hence, using the result for j=1, we get a series

of #’s and @Q’s as follows:

J RQ, = F-A)N(R+pu)

(6.21) (R+p)Q: = F—A)R+ps)

(R+p;-)Q; = F—ANR+p,).
From these, we get RQ, - Q;=F—AY(R+pu;). n

Now, we return to the proof of Lemma5.9. Let f€Fp[4, 4': X]. Let s’
be the size and L’ be the side function of 4’. Take a sufficiently large A< R.
We can write as

f= BOG-AYe), g < Frld: X 0=/55).

Consider Ru;=t>"D(@—A)(g;). Take Q and p in the sublemma above for
p=L’(j). Putting u;=t*"PQ(v;), we have only to solve (R+p)(v;)=g;. By
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or 5.8, there exists a solution v,=Fp[4+4(R): X]. Since u;=
1 DQ)EFp [A+AR), 4/ X1, we have u= 3P, u;SFp[d+AR), 4': X].
Thus, we get the surjectivity. We can also show the latter part of the lemma
by tracing the argument above with the consideration of norms. [ ]

From [Proposition 5.1 and [Lemma 5.9, [Proposition 5.3 (2) follows in the
sense that the operator & is a bijection from Fp[4d+4(P), 4':X] to
Fr.[4, 4 : X]. [Proposition 5.3 (3) also follows. [Proposition 5.4 (1) follows from
Proposition 5.3 (2) and Definition 3.9.

Last, we prove [Lemma 3.2.

ProOF OF LEMMA 3.2. (1) Let 4, 4], 4, 4,91 and Jd=4,—4i=4,—4;.
Let s; (resp. s}) be the size and L, (resp. L}) be the side function of 4; (resp.
4) =1, 2). Put h:= h(d,), kj:= Ly,(j)—L,(j—1), and

(5.22) @, i= 11 (14994 A)
Jj=1

where A is a sufficiently large real constant. As already proved, &, is a bijec-
tion from Fr[d,+4,: X] to Fp[4,: X] and satisfies 4(®,)=4,. Now, if ue
Fy[4,, 47: X7, then u:Efio tLiNQi(y;) for some v,=Frp[4,: X]. We can write
as v;=Py(w;) for some w;=Fr[4,+4,: X]. Since 4(P,)=4,, it is easy to see
that we can write as

st +s8

2
(5.23) u = 2 1S D G (R, hy & Felditds: X] (0<j<s\+ss).
2

This means that ucFp[4,+4,, 4i+4,: X].
Conversely, if ueFr[4,+4,, 4i+4,: X7, then u can be written as [5.23).
For any j, there exists [=I(;) such that (L{BL,)(/)=Li(j—0)+L,(). Hence,

FEIOLD DI ) = LG -Dplech Qi=191( ]y )
= tHID (G- L)) 109 (hy).

Since tLe DI hyeFr[d,: X], we have t(LleaL?’(f)&j(hj)EFT[AI, 41 X7.

Thus, we have proved that Fp[4,, 4: X]=Fp[4,+4,, 4;+4,: X]. By the
same way, we have Fp[d,, 45: X1=Frp[4,+4,, 4;+4,: X]. Since 4;+4d,=4;+4,,
there holds Fr[4,, 41: X1=F;[4,, 4;: X] as a set.

(2) Assume that X is a Banach space. As in (1), there exists an ordinary
differential operator 2] that is a bijection from Fp[4,+4;, 4;: X]to Fy[4,, 4;: X]
and satisfies 4(®})=4;. Since Fy[d,+4;, 4;: X]1=Fy[4,: X] as a set by (1),
we can define another norm |{ulls:= [P ullz, 4, x of Fr[4,, 4i: X]. Obviously,
the space Fr[4,, 4i: X] is a Banach space with this norm.

First, we prove that the norm |[-|x is equivalent to the norm [-|r, 4, 4, x-
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Let usFr[4,, 4i: X] and put w=2P;"'ucsF;[4,: X]. Since we can write as
@=1, 111D Y, for some a;=F([0, T1; C), we have u=3;1,t:D(q w).
Hence,
)
HuHT.dl,A’l.X = ng') ”ajw”T,Al,X = C”wlir.dl,x = Clulx

for some constant C.

On the other hand, assume that uZZJ-SZiOtL'l‘j)@f(v,-) where v;eFr[4,: X].
Since the operator @, 'tr:"9’ is a closed transform in the Banach space
Fr[4,: X1, this operator is bounded by the closed graph theorem, and hence
there exist w,eFr[4,: X] such that

DY) = Pi(wy) and  |wjlz, 4, x < Clvslr, 4, x

for some constant C. From u=@|(2;%, w,), we have
81 81 51
ullx = ”%} Wil 4. x = ]z;) lwillr, 4, x = Cj;) villr, 4, x -

By the definition of ||z, 4, 4; x, We have

lls < Cllelz. 2y, a1, x -

Thus, the norm -]« is equivalent to the norm |-z, 4, 4, x, and hence the
space Fp[d: X]=Fr[4,, 4;: X] is a Banach space with the norm I-llz, 4, 2, x-
By just the same way, the space Fr[4: X] is also a Banach space with the
norm ||+ ||z, 4, 45 x- Because these two norms define topologies finer than the
induced topology from 9((0, T); X), these two norms are equivalent to each
other, by the closed graph theorem.

§6. Ordinary differential operators 2.

In this section, we consider ordinary differential operators with the param-
eter x.

As in Section 1, let 2 be a bounded domain in C* containing the origin 0.
We consider an ordinary differential operator

®6.1) @ = 3ajt, 0o,
j=0

where a,29([0, T1; 0(2) 0<;j<m) and anlt, )=t (t=Q, £=0).

As is stated in Remark 2.8, we can define 4(<), 17, h®), S, 1,, C, A(P) for
% by [Definition 1.1. The condition (A-1) is automatically satisfied.
Let H(2) denote one of the two Banach spaces E(2) and F(Q).
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THEOREM 6.1. Assume the conditions (A-2) and (A-3).

(1) There exists an open neighborhood 2, of 0=C™ such that, for any sub-
domain ' of 2, and for any T'(0, T, the following holds:

1. The operator P is a bijection from G 4oy, r(H(R")) 10 G gcerencey. 7 (H(L2)).

2. Let J€9 and h(d)<—(A(P)+h(P)). Then, the operator P is an iso-
morphism from Fp.[A+A4(P): H(Q')] to Fp.[d: H(2')].

3. The operator norm of P~' in 2 can be estimated by a constant that is
independent of T' and £'. (As in Proposition 5.3, we fix a decomposition of 4 to
consider the operator norm. This constant may also depend on 4.)

(2) For any 4€ T satisfying h(d)<—(A(P)+h(P)), there exists an open
neighborhood £, of 0=C™ such that, for any subdomain Q' of £, and for any
T'<(0, T], the following holds:

The operator P is an isomorphism from Fp. [ d+A(P) : H (2")] to Fr.[4: H'(2")].
Further, the operator norm of P! can be estimated by a constant that is inde-
pendent of T’ and 2’'. (We also fix a decomposition of 4 to consider the operator
norm.)

REMARK 6.2. Note that the domain £, can be taken independently of J in
(1). As for H’, the author could not prove the independence of 2, on 4. Thus,
(2) is rather weak compared with (1). It is, however, sufficient for our purpose,
that is the proof of Theorem 4.6. The results (1) shall be used in the proof
of [Theorem 4.3 and [Theorem 4.4l

Proor oF THEOREM 6.1. First note that, if £ is convex, then O(Q)cF (L")
for any 2’ such that Q’c®. Hence, by reducing £ if necessary, we may
assume that the coefficients a; belong to F([0, T]; F(2)) (0<7<m).

Put

Poi= D a;t, 000 and P:=P—@,.
j=0

The operator 2, satisfies the condition (A-3) and there holds 4(®,)=4(2).

Assume that €9, h(J)<—(A(P)+h(@)), T'’=(0, T] and that 2’ is a sub-
domain of £. Let X denote one of the spaces H(2’) and H'(2’). By Proposi-
tion 5.3, the operator @, is an isomorphism from Fr.[d+4(®): X] to Fr.[d: X].
Since the coefficients of & vanish at x=0, there exists an open neighborhood
2, of x=0 such that, if 2’c®,, then the operator norm of #%;' as a trans-
form in Fp.[4:X] is less than 1. Since @=(Id+PP;)P,, the operator @ is
an isomorphism from Fr.[d4+A4(®): X] to Fr.[d:X]. It also follows from
[Proposition 5.3 that the operator norm of £~! can be estimated by a constant
that is independent of 7’/ and £’. Thus, (2) has been proved and (1)-2 and 3
has also been proved except that £, can be taken independently of 4.

Now, take a fixed open neighborhood £, of 0 in C* such that 2,c and
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the following holds:
(A-2)° If (j, )V, then & ,(0, x)+0 on 2,.
(A-3)° If u=S and >0, then all non-zero roots 2 of C,(A; x)=0 (xeQy)
satisfy Re 2<0.
Assume that €7, h(d)<—~(A(@P)+h(P), T'’=(0, T] and that £’ is a sub-
domain of £,. We can prove the following:

CLAIM. The operator P is an isomorphism from Fr.[d+4(P): H(2")] to
Fp.[d: H)].

We have only to prove the surjectivity. Let feFp.[Jd: H(£2)]. For any
fixed x,=0’, put

B

-(laxo:: . Oaj(t, xo)a‘i.
J

Note that 4(®.)=4(¢) and 2. satisfies the conditions (A-2) and (A-3). By
[Proposition 5.3, there exists a unique uxoeFT,[Z—f—A(SP): C] such that @, u. =
f(t, xo). Put u,, x):=u,) (x2).

LEMMA 6.3. There exists a finite number of points x,€Q, (=1, 2, ---, M)
and open neighborhoods 2; of x; such that

Av —
(i) H‘QiD‘QO!

(i) the operator P is an isomorphism from Fp.[d+A(P): H(R")] to Fp.[d:
H(2")] for any T'<(0, T] and any subdomain Q" of 2; (i=1, ---, M).

ProoF. For any x,=,, consider x, as the origin. By the same argument
as above, there exists an open neighborhood 2., of x, such that the operator @ is
an isomorphism from Fr.[d+4(®): H(2”)] to Fr.[d: H(2”)] for any T'<(0, T]
and any subdomain 27 of 2. Since U:, 2,52, we have the lemma by the
compactness of 2,. m

By this lemma, the equation Pu=/f|g;sz has a unique solution u=u;c
Fr.[d+4(2): H(2:N2)]. Since u=u,{, x,) is also a solution of ?.u=7(, x,)
for x,e 2,127, we have u,(t, x)=u,{t, x) for x=@2;"2’, by the uniqueness.
Thus, we have

uolgpw € Fp[d+4(@): HQ:N2)] G=1, -, M).
This implies
uy € Fr.[d+4(2): HQ)] .

Thus, Claim is proved, and hence (1)-2 and 3 are proved. (1)-1 follows
from (1)-2 and Definition 3.9. |
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§7. Proof of the regularity theorem.

In this section, we give a proof of [Theorem 4.4

Consider a differential operator P of the form (1.1) with the coefficients in
F([0, T]; o). First, we rewrite the operator P. Let [” be the side function
of 4(P). By t¢i=9@—1)---(—;j+1), we can write the operator P in the
following form:
(7.1) P= 31 bjalt, o)t 951e0974%,

J+iajsm
where b; .= F([0, T]: (), and b, o, x)=1.

Further, we have C.Q4; x):Z(j,p(j))eLﬂb,-,o(O, x)A7 for p=S (even if p=0).
Under this representation, the conditions (A-1) and (A-2) are equivalent to
(A-1) b, .0, x) =0 if a=0.
(A-2y If (5, 0)= V, then b, 0, 0)=0.
Assume the conditions (A-1), (A-2), and (A-3). Put

(7.2) @ = 3b;ot, OFOY and ¢ = S by.alt, 2709958
j=0 a

By the assumption (A-1), we have 4(P)=4(®) and A(P)=A(?). Further, the
operator ¢ also satisfies the conditions (A-2) and (A-3). Since Q)=
projlimgsno E(Q7), (1) implies that there exists an open neighbor-
hood 2, of 0 in C™ such that, for any 7/<(0, T] and any subdomain £’ of Q,,
the operator € is a bijection as follows:

L. Gy (O) T G ayiner. 7 (O(2))
(7.3) U U
P Fp[d+A4P): 0(2)] == Fr[d:002)]
if 49 and h(d) < —(A(P)+h(P)).

Also by the assumption (A-1), we can write the operator ¢ in the form

(7.4) C= 3 cslt, x; 00t/ P+1ags
1

jsm-

where ¢g=N\{0} and c;{, x;0,) are differential operators with respect to x
with coefficients in ([0, T]; ©(2)). Hence, for any 49, any 7'<(0, T], and
any subdomain 2’ of 2, we have

(7.5) C: Fp[d4+4(P): 0(R)] —> Fp.[d+4,: 0(2)],

where 4y:= A[k]+4(0, —1/q) for k:= m)—I'(m—1)=0.
Now, assume that 43, h(d)<—(AP)+h(P)), u=G spy. 7 (O(2’)) and that
PucFr[d4:0(2)]. Since uEG ypy, 7 (©O(2")), we have ucFr.[—4(N, a): 0(2")]
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for some N=N and a>/A(P), by Definition 3.9.

LEMMA 7.1. For any r&N, there holds
(7.6) u € Fp[d4+4P): 02)]+Fp.[—AN, a)+rd,: 0(2)] .
Hevre, rd, denotes the sum of r copies of 4,.

PrOOF. We prove by the induction on ». For »=0, this is trivial. Assume

for r=~k. By [7.5), we have

Cu < Fr[d+4,: 0Q)]+Fr[— AN, a)+(b+1)4,—4(P): ©(2")] .
Since Fr.[d+4,: 0Q)]cFr.[4d:0(Q")], we have

f—Cu e Fp[d: Q)]+ Fp[—AN, a)+(k+14d,—AP): 0(2)] .
By the equation Pu=f—Cu and (7.3), we have

u € Fp[d+4(P): 0201+ Fr [— AN, a)+(k+1)4,: 0(21].
Thus, holds for r=4k-+1. ]
Since

rdy = ((—o0, 01X[—7/g, NU{(u, v) € R*; usr, v=z—r/q+ku}

there holds —A(N, a)+rd,> 4+ 4(P) for sufficiently large ». Hence, we have
uec Fp[d+4(P): 0(2)].

The latter part of the theorem follows easily by Example 3.3-(1).

§ 8. Abstract equations.

In this section, we solve equations of the form v+Qv=F in scales of Banach
spaces.

Let {Xs}ocs<s, be an increasing scale of Banach spaces. That is, for 0<s<
r<s;, the Banach space X; is embedded in X, and the operator norm of the
embedding does not exceed 1. We denote the norm of X; by |-|s.

We consider an operator

@8.1) 0=11 3 CP e,
1, j=0

where ¢, meN~{0} and the operators C{;({), & satisfy the following four
conditions :
B-D Cye, N CA0, T1; LXK X)) G j=0, L -, m).
LTSy

(B-2) There exists a constant M such that
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ICs 0l < @—_%m—-

for any we X, 0<s<r<s, te[0, T], 0L, j<m.
(B-3) &:eL(CY[0, T']; X;)) for any T’ (0, T] and any s (0, s;) (0<i<m).
(B-4) A:= supr. s 1€l cccocro, 173 x40y < oo

lwlls

REMARK 8.1. The operator 9=9+1 is an isomorphism
Fr[A(1, 0): XJ(=C([0, T]; X)) = C[0, T]; X)

for any T and X. Hence, gi-m (7<m) is a continuous transform in C°([0, T']; X;)
for any T’/ and s. Thus, the operator Q is a well-defined continuous operator
from C*[0, T']; Xs) to C°([0, T'];: X.), if 0<s<r<s,and T'<(0, T]. Further,
since

Ggn=| g0 anda - do 42D,

there holds the following for any Banach space X, any /=N, and any p=R
with p=0.

___C_‘l__tp_
(p+1*
This estimate plays an important role in the proof of the theorem below.

82 If geC*([0, T1; X) and [|g)llx<Cyt”, then [(§'g)®)x<

For the operator Q, we consider the equation v+Qu=Ff.

THEOREM 8.2. Let 0<s,<s5,=1. For any s&(s,, S1), there exists p=(0, T]
such that the following holds:

For any f&C%[0, T]; Xs,), there exists a unique ve C*([0, p]; X,) satisfying
v+Qu=f.

In order to prove the theorem, we prepare a lemma, which is proved by a
similar method to the proof of Proposition 2 in [1].

LEMMA 8.3. Let wo&Nsycs<s, CU[0, T]; Xs) be given and assume that

8.3) K= sup Jw,@®ls<oo.
50<8<8, 05¢tsT
If we put
(8.4) Wps1 = —pr (PZO, 1’ )’
then we have w,< Nss<s, CU([0, T]; Xs) (p=0, 1, ---) and
! Cutl/q r fened ee
(8.5) hep@lls = K(25w) (0=0,1, )

for any s€(s,, s1) and t<[0, T], where C,:= (m+1)*MAe*™.
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PrOOF. We show the estimate by the induction on p. For p=0, the esti-

mate is trivial. Assume the estimate [8.5) for p (»p=0). By and (B-2),
we have

M o\ §meaw,®l.y

m
| 1 1
@O £ 117
|. p+1()lzs = ,‘Zjio ﬂm_]

1

for any s&(s,, s1) and n=(0, s—s,).

By the assumption (B-4) and the induction hypothesis, we have
Cgtmq
N€iwpDlls-y = Afggp””wp(ﬂ”“” = AKWI;-

By (8.2), we have

CZ()’tP/q

197 gy £ AK (s

Thus, we have

m Copr+11 g \m-i
[ < - .
a0l < (nEDAKM S (S

If p=1, then we take
ey 9
7 = (s—5o) g

We have s—s,—5=(s—s,)p/(p+¢) and hence

1 g _\"7 _ (pFg\mr 1
Since s—s,=1 and {(p+q)/p}?<e?, we have

Cgt(ﬁ'?l)/qeqm

(s—s)mP*D "

(8.6) lwp®lls < (m+1)? AKM

If p=0, then (s—s,)q/(p+qg)=s—s, which is not admissible as a value of 7,
hence the argument above is not valid. In this case, we take p=(s—s,)(1—¢)
(e€(0, 1)). By letting €| 0, we also get the estimate [8.6).

Since C,=(m+1)2MAe*™, we have the estimate for p+1. ]

PROOF OF THEOREM 8.2. First, in order to prove the existence of the
solution, we put ‘

8.7 vo=0, vp=f—0Qv,.y (p=1,2, ).

Since f & C°([0,T]; X;,) and Q is an operator from C*([0,T]; X,)to C°([0,T]; X.,)
for 0<s<r<s,, we have »,=C%[0, T]; X,) (p=0) for any s&(s, s;). Put
K= supeero, 11l f (©)lls,

Since v, —vp=—0Qwp—v,-,), We have the following estimate by Lemma 8.3.
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Ct'17 \»
88 -0l = K(57)" (920, s0<s <5, 0SIST).
(s—S50)
By this estimate, v:= lim,.. v, exists in C°([0, p]; Xs), if Cop'?<(s—so)™.
Next, we prove the uniqueness. Let v;=C°([0, p]; X;) ¢=1, 2), where p<=
(0, T] and s&(s,, s,). Assume that v,=f—Qv; (=1,2). Since v,—v,=
—Q(v,—v,), we have by that there exists a constant K such that

. vy Cott? P
=0l = R( 2 5%)
for any p=0, s'=(s, s1), t<[0, p]. From this estimate, it follows that, if p is

sufficiently small, then v,=v,. [ ]

§9. Proof of extended results.

In this section, we prove the results in Section 4, using the results in the
preceding sections.

First, we define two scales of Banach spaces as in [1]. (Notations are slightly
different.) Let B be an arbitrary bounded open set in R® such that Bc Q.
For s>0, we set B;=\Uqcp B(a, s), where B(a, s):= {z€C"; |z—a|<s}. Take
an arbitrary s,=(0, 17. (Later, B and s, shall be taken suitably.) The system
(F(Bs))<s<s, is a decreasing scale of Banach spaces. Since the embedding of
F(B,) into F(B,) (0<s<r<s;) has a dense image, F’/(B;) is also embedded in
F’(B,) with embedding of norm =1. Thus, the system (F'(B;))<s<s, is an in-
creasing scale of Banach spaces. We denote by (X,)o<s<s, One of the increasing
scales (F(Bs,-s))o<s<s, and (F'(B))y<s<s,- The norm of X, is denoted by |- ;.

Next, consider the operator P given in Section 4 and assume the conditions
(A-1), (A-2), and (A-3).

Rewriting P as [7.I), we can define ¢ and C by [7.2). By the assumptions,
there holds A(P)=4(®), A(P)=A(®), and the operator ¢ also satisfies (A-2)
and (A-3), which implies that we can apply to <. Further, as
for the operator C, the following holds:

PROPOSITION 9.1. (1) The operator C can be written as follows:
©.1) C=r1s T o o,
j=t

=0
where g=N~{0}, I' is the side function of A(P), and
Ciu) = Cit, %500 = B efalt, wae,
latsm-—j

with ¢, 9 ([0, T]; 0(Q)).

(2) The operators CR2;(t) satisfy the condition (B-2) in Section 8. (We put
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Cs2;=0 unless 0=i<j<m—1.)
(3) Put dy:= A[L]+40, —1/q) for k:=T'm)—I'm—1)=0 as in Section 7.
For any A& T, there holds

C:Fr[d+4P): X;] —> Fp.[d+4,: X,] (0<s<r<s,).
Proor. (1) By and (A-1) in Section 7, we can write as

C=3 5j,a<ty x)fur1an+1/agiga
a#0

— S S B, x)ag)t“m'w
i=1 j=0 ja|l=m-1i-j
for some ¢g=N\{0} and b;.=9([0, T];0(2)). Since *$=(9—a)t* and 9=
9—1, the operator C can be written in the form [9.1).
It is well-known that the estimate in (B-2) follows from the Cauchy’s inte-
gral formula.
Since the operator C can be also written as [7.4), we have (3) in the same

way as [7.5). [
Take @, in for 4=4(0, 0). Put
&= gn-yffm-ng-1 ;=0 1, - m).

If ESICQO, then the operators &; satisfy the conditions (B-3) and (B-4) in Sec-
tion 8. Thus, the operator

m . ~
9.2) Q:=CP =113 CY, e,
i, j=0
satisfies the conditions on Q in Section 8.
Now, we prove the following proposition, by which and
are proved.

PROPOSITION 9.2. For any J& 7 satisfying h(d)< —(A(P)+ h(P)), there exists
an open neighborhood 2, of 0 in C™ for which, if B and s, satisfy Bs,c£,, then
the following holds:

Let s,&(0, s,) and s<(s,, s1). There exists p=(0, T] such that, for any f<
Frld: X, ], there exists a unique ueF,[1+4(P): X,] satisfying Pu=Ff.

Further, in the case of X=F(Bs,s), we can take 2, and p independently of
4. Hence, in this case, for any [&G . r(Xs), there exists a unique ue
G 1pr+npy, o(Xs) satisfying Pu=f. »

ProOF. By considering ﬁ:zt”(Z)Pt'W—“‘h(”’, we can assume that A(d)=
h(P)=0> A(P), without loss of generality. (Note that A(P)=A(P)+h(J)+h(P).)
Take MeN as J+M4,24(0, 0). By [Theorem 6.1, there exists an open
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neighborhood 2,0, of 0 such that, if Eslcﬂl, then the operator & is a bijec-
tion from Fp [d4+rd,+4(P): Xs] to Fr.[d+rd,: Xs] for any T, T], s<=
(s, s1), and for r=0,1, ---, M. Note that £, can be taken independently of
A7 in the case of X,=F(B,,.,). Assume that B,,c@,.

1. PROOF OF EXISTENCE. Let feFr[4: X, ] for some s,=(0, s)). We can
take wleFT[Z-l—A(P):XsO] such that w,=f. By [Proposition 9.1 (3), we have
fri=—Cw,eF;[d+4,: X,] for any s&(so, s1). By u=w,+u,;, the equation
Pu=f is reduced to Pu,=f,. By iterating this reduction, the equation Pu=/f
is reduced to

Puy=fye N FT[ZI‘{"MAO:X&'] c N CY0, T]; Xy).

$0<8<8y 3088y

Take an arbitrary si=(s,, s;) and consider Pu=f<=C%[0, T Xs;,)- By
putting Pu=v, this equation is written asv+Quv=f. By [Theorem 8.7, for any
s&(sq, s1), there exists p<(0, 7] such that there exists a unique v C*([0, p]: Xs)
satisfying v+Qu=/f. Since s; is arbitrary, we obtain the existence of solution
in the proposition.

2. ProOOF OF UNIQUNEsS. Let usF,[d+4(P): X,] satisfy Pu=0. By an
argument similar to that in Section 7, we can show that u & Ny e, s, C°(L0, o] : Xs0).
By the uniqueness in [Theorem 8.2, if p is sufficiently small, then we have
u=0. |

If ©’ is sufficiently small, then there holds @(2)cF(£2’). Hence, Theorem
4.3 follows trivially from the proposition above, by Definition 3.9.

We prove by a similar argument to the proof of Theorem 4
in [1].

PROOF OF THEOREM 4.6. Let u€0 1py. (9" (QNR™) and Pu=0in (0, T)x B,
where B is an open neighborhood of 0 in R*. There exists N=N and a> A{(P)
such that usFr[—4(N, a): 9" (2NR™)].

Take 2, in [Proposition 9.7 for d=—4(N, a)—4(P). We may assume that
..

Take an open neighborhood w of 0 in R™ such that &cB and take ps
C‘;ﬁ’(g) such that ¢=1 near w. Put

wopY!

vi=qu & Fr[— AN, a): &' (B)] < Fr[—A(N, a): F'(B)] (s>0).

If we put f:= Py, then we have feF[—4(N, a)—4(P): & (B)], where B :=
B\@. Hence, we have fFr[—4(N, a)—4(P): F'(B,)] for any s>0.

Fix a sufficiently small s>0. By [Proposition 9.2, there exist p=(0, T] and
u,eF,[—4(N, a): F'(B,)] such that Pu,=f. Since F’(BS)CF’(&), both of u,
and v are solutions of the equation Pu=f in F,[—4(N, a): F'(B,)). Hence,
by the uniqueness in [Proposition 9.2, there exists p’=(0, p] such that u,=v in
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F,[—4(N, a): F/(B,)). This means that
v e F,[—AN, a): F/(B)INF, [—4(N, a): &'(B)].

Since 9% is a bijection from C°([0, p’]: X) to F, [—4(N, 0): X], we can
take 5= C%[0, p’]; F/(B))NC ([0, p']; 8’(5)) such that t“@N(ﬁ):v. Since #(t)
€F'(Bs) (t=[0, p’]), we obtain 5(t)|,,=0 for any t<[0, p’] by Lemma 5 in [1],
where ®, is an open neighborhood of 0 in R™ such that @,\B.=g. Thus, we
obtain v=0 in (0, p’)Xw,, which implies that =0 in (0, p’) X ®,. [ ]
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