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1. Introduction.

Let $X$ be a connected CW complex with base point, and let $G(X)$ and $G_{0}(X)$

be the spaces of self homotopy equivalences of $X$ and self homotopy equi-
valences of $X$ preserving the base point respectively.

It seems that little is known $aMut$ the relation between $G(X)$ and $X$ ex-
cept an H-space $X$ (see [10]). When $X$ is not an $H$-space, we have Gottlieb’s
theorem on $G(K(\pi, 1))([4])$ and Hansen’s theorem on $G(S^{g})([7])$ .

Of the projective plane $P^{2}$ , it is known that the spaces Top $(P^{2})$ and $Diff(P^{2})$

both have the same homotopy type as $SO(3)$ , where Top $(P^{l})$ and Diff $(P^{2})$ are
the space of homeomorphisms of $P^{2}$ and the space of diffeomorphisms of $P^{2}$

respectively. This was proved for Top $(P^{2})$ by M.-E. Hamstrom [5] in 1965
and for $Diff(P^{2})$ by C. J. Earle and J. $Ee$lls [3] in 1969.

In this paper we shall prove the following

THEOREM. There is a homeomorphism

$G(P^{2})\cong SO(3)\cross(G_{0}(P^{2})/O(2))$ .

2. Compact Lie group actions.

Throughout this paper, all spaces will be Hausdorff spaces with base points
when necessary and all spaces of maps will be equipped with the compact open
topology.

For Lie group actions on manifolds, we have the following

PROPOSITION 1. Let $L$ be a compact Lie group whch transitively acts on a
connected closed manifold M. And let $S$ be the isotropy subgroup at the base
poinf. Then there is a homeomorPhsm

$G(M)\cong L\cross s^{G_{0}}(M)$ .
PROOF. We begin by defining an $L$ -action on $G(M)$ by $a\cdot f=a\circ f$ for $\sigma\in L$ ,
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$f\in G(M)$ . Let $\omega$ be the evaluation map at the base point $x_{0}$ of $G(M)$ onto
$L/S\cong M$. Then we see that $\omega$ is an $L$ -map. Obviously, we have $\omega^{-1}(x_{0})=$

$G_{0}(M)$ . By (4.4) Proposition in [2], there exists a homeomorphism

$c(M)\cong L\cross s^{G_{0}(M)}$ .
Let $M$ be the $n$-sphere $S^{n}$ . Then $O(n+1)$ transitively acts on $S^{n}$ in the

usual manner and its isotropy subgroup is $O(n)$ . So, we have the following

EXAMPLE 1. There are homeomorphisms

$G(S^{n})\cong O(n+1)\cross 0(n)G_{0}(S^{n})$ ,

$G^{+}(S^{n})\cong SO(n+1)\cross s_{o(n)}G_{0}^{+}(S^{n})$ ,

where $G^{+}(S^{n})$ and $G_{0}^{+}(S^{n})$ denote the path components at the identity element
of $G(S$“

$)$ and $G_{0}(S$“ $)$ respectively.
Similarly, $SO(n+1)$ transitively acts on the $n$ dimensional real projective

space $P$“ in the usual manner. Then there exists a natural homeomorphism

$SO(n+1)/O’(n)\cong P^{n}$ ,

$O’(n)=\{(\begin{array}{ll}\pm 1 00 \sigma\end{array})\in SO(n+1)\}$ ,

where $0’(n)$ is isomorphic to $O(n)$ . So, we have the following

EXAMPLE 2. There is a homeomorphism

$G(P^{n})\cong SO(n+1)\cross o^{r}(n)G_{0}(P^{n})$ .
NOW, when a topological group $L$ effectively acts on a connected closed

manifold $M$, we easily see that $L$ freely acts on $G(M)$ . Also when a topo-
logical group $L$ effectively acts on a connected closed manifold $M$ leaving the
base point fixed, we see that $L$ freely acts on $G_{0}(M)$ . Especially, for a com-
pact Lie group $L$ we have the following principal fibre bundles ([1], [2])

$Larrow G_{0}(M)arrow G_{0}(M)/L$ .
In the sequel we need

PROPOSITION 2.2. Let $L$ be a comPact Lie group and $X$ be an ANR for the
class of all metrizable spaces. If $L$ freely acts on $X$ , then the orbit space $X/L$

is an ANR.

PROOF. For each point $x$ of $X/L$ , there exists a neighbourhood $V$ of $x$

such that $V\cross L$ is homeomorphic to an open subspace of $X$ (see 5.4, Theorem
in Chap. II ([1]) $)$ . Since $X$ is an ANR, $V\cross L$ is an ANR (see [6], [8]). So,
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$V$ is a retract of ANR $VxL$ . Consequently, $V$ is an ANR. That is, $X/L$ is
locally an ANR. This means that $X/L$ is an ANR.

3. Hansen’s theorem on $G(S^{2})$ .
Consider the usual $SO(2)$-action on the based 2-sphere $S^{2}$ . This action in-

duces the free $SO(2)$-action on $G_{0}^{+}(S^{2})$ . Therefore we have a principal fibre
bundle

$i$ $p$

$SO(2)arrow G_{0}^{+}(S^{2})arrow G_{0}^{+}(S^{g})/SO(2)$ .
About this principal fibre bundle, we have the following

PROPOSITION 3.1. The PrinciPal fibre bundle

$SO(2)arrow G_{0}^{+}(S^{2})arrow G_{0}^{+}(S^{2})/SO(2)ip$

is trivial.

PROOF. First, we shall show that $G_{0}^{+}(S^{2})/SO(2)$ has the same homotopy
type as CW complex. Clearly $G_{0}^{+}(S^{g})$ is an ANR for the class of all metrizable
spaces (see Theorem 3.1 in Chap. VI [8]). By Proposition 2.2 the orbit space
$G_{0}^{+}(S^{g})/SO(2)$ is an ANR. Therefore, by the famous Milnor’s theorem ([9]),
$G_{0}^{+}(S^{g})/SO(2)$ has the homotopy type of a CW complex.

Next, since $i_{*}:$ $\pi_{1}(SO(2))arrow\pi_{1}(G_{0}^{+}(S^{t}))$ is an isomorphism, $p_{*}:$ $\pi_{n}(G_{0}^{+}(S^{2}))arrow$

$\pi_{n}(G_{0}^{+}(S^{g})/SO(2))$ are isomorphisms for $n\geqq 2$ . So, we can easily see that
$G_{0}^{+}(S^{g})/SO(2)$ has the same homotopy tyPe as the universal covering space $\tilde{\Omega}$

of $G0(S^{2})$ . Furthermore $\tilde{\Omega}$ has the same homotopy type as the universal cover-
ing space $\tilde{\Omega}^{2}(S^{s})$ of the double loop space $\Omega^{2}(S^{S})$ of $S^{s}$ . Therefore we have

$\pi_{1}(\tilde{\Omega})=0$ , $\pi_{2}(\tilde{\Omega})\cong\pi_{4}(S^{s})\cong Z_{2}$ .
Consequently, we have $H_{2}(\tilde{\Omega}, Z)\cong Z_{g}$ . So, by the universal coefficient

theorem we get $H^{g}(\tilde{\Omega};Z)=0$ . This means the classifying map of $G_{0}^{+}(S^{g})/SO(2)$

into $BSO(2)$ for the principal fibre bundle must be trivial. Thus our bundle is
trivial.

AS a special case of Example 1, there is the principal fibre bundle

$SO(3)arrow G^{+}(S^{2})arrow G_{0}^{+}(S^{2})/SO(2)$ .
About this bundle we have immediately the following from Proposition 3.1

COROLLARY 3.2. The principal fibre bundle

$SO(3)arrow G^{+}(S^{2})arrow G_{0}^{+}(S^{2})/SO(2)$
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is trivial.

PROOF. By Proposition 3.1 we see that the principal fibre bundle

$SO(2)arrow G_{0}^{+}(S^{2})arrow G_{0}^{+}(S^{2})/SO(2)$

has a cross-section $\sigma$ . Since this bundle is the $re$striction of our principal fibre
bundle on $G_{0}^{+}(S^{2})$ , our bundle has the cross-section $\sigma$ .

Corollary 3.2 provides the following equivalences
$G^{+}(S^{g})\cong SO(3)\cross(G_{0}^{+}(S^{2})/SO(2))$ ,

$G^{+}(S^{\underline{0}})\simeq SO(3)\cross\tilde{\Omega}^{2}(S^{3})$ .
The second homotopy equivalence was proved by V. L. Hansen ([7]).

4. A splitting of $G_{0}(P^{2})$ .
Consider the usual $SO(2)$-action on the based projective plane $P^{2}$ . This

action is obviously effective and induces the free action on $G_{0}^{+}(P^{2})$ . Thus we
have the following principal fibre bundle

$SO(2)arrow G_{0}^{+}(P^{2})arrow G_{0}^{+}(P^{2})/SO(2)$ .
We shall show that this principal fibre bundle has a cross-section.

Let $\pi$ be the covering maP of $S^{g}$ onto $P^{g}$ and let $map_{0}(S^{g}, P^{2} ; \pi)$ denote
the path component of $\pi$ in the based map space $map_{0}(S^{g}, P^{2})$ from $S^{g}$ into $P^{2}$ .
Furthermore we define an $SO(2)$-action on $map_{0}(S^{2}, P^{2} ; \pi)$ by $\sigma\cdot f=\sigma of$ for $\sigma\in$

$SO(2)$ and $f\in map_{0}(S^{g}, P^{2} ; \pi)$ . Then we see that this action is free, so we
have the following principal fibre bundle

$SO(2)arrow map_{0}(S^{2}, P^{2} ; \pi)arrow map_{0}(S^{2}, P^{2} ; \pi)/SO(2)$ .
Denote $\pi^{*}:$ $G_{0}^{+}(P^{2})arrow map_{0}(S^{g}, P^{2} ; \pi)$ the map induced by $\pi$ . We easily see that
$\pi^{*}$ is an $SO(2)$-map. Thus we have a bundle map between principal fibre
bundles as follows

$SO(2)-G_{0}^{+}(P^{2})-G_{0}^{+}(P^{2})/SO(2)$

$||$ $\downarrow\pi^{r}$ $\downarrow\overline{\pi}$

$SO(2)arrow map_{0}(S^{2}, P^{g} ; \pi)arrow map_{0}(S^{g}, P^{2} ; \pi)/SO(2)$ ,

where it is the map between orbit spaces induced by $\pi^{r}$ . Then we have the
following

LEMMA 4.1. If the principal fibre bundle:
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$SO(2)arrow map_{0}(S^{2}, P^{2} ; \pi)arrow map_{0}(S^{2}, P^{2} ; \pi)/SO(2)$

has a cross-section, then our principal fibre bundle:

$SO(2)arrow G_{0}^{+}(P^{g})arrow G_{(}^{+}(P^{2})/SO(2)$

has also a cross-section.

Proof is straightforward and it is omitted.
Next, we consider the map $\pi_{\#}$ of $G_{0}^{+}(S^{2})$ into $map_{0}(S^{2}, P^{2} ; \pi)$ induced by $\pi$ .

Then it is easily seen that $\pi_{\#}$ is an $SO(2)$-map. So, we have a bundle map
between principal bundles as follows

$SO(2)-G_{0}^{+}(S^{2})-G_{\iota}^{+}(S^{2})/SO(2)$

$||$ $\downarrow\pi_{\#}$ $\downarrow\epsilon_{\#}$

$SO(2)arrow map_{0}(S^{2}, P^{2} ; \pi)arrow map_{0}(S^{2}, P^{2} ; \pi)/SO(2)$ ,

where it $\#$ is the map between orbit spaces induced by $\pi_{\#}$ .
In the following we shall show that $\pi_{\#}$ is a homotopy equivalence.
NOW, there is a fibration

$i$ $j$

$S^{2}arrow P^{2}arrow P^{\infty}$ ,

where $P^{\infty}$ denotes the infinite real projective space and $i$ coincides with the
covering map $\pi$ homotopically. Therefore we have the following fibration

$i_{\#}$ $j*$

$G_{0}^{+}(S^{2})arrow map_{0}(S^{2}, P^{2} ; \pi)arrow map_{0}(S^{2}, P^{\infty})$

and we know that $map_{0}(S^{2}, P^{\infty})$ is contractible. This means that $i_{\#}$ is a homo-
topy equivalence. That is, $\pi_{\#}$ : $G_{0}^{+}(S^{2})arrow map_{0}(S^{2}, P^{2} ; \pi)$ is a homotopy equi-
valence.

We are ready to show our main lemma.

LEMMA 4.2. The principal fibre bundle

$SO(2)arrow G_{0}^{+}(P^{2})arrow G_{b}^{+}(P^{2})/SO(2)$

has a cross-section.

PROOF. By the exactness of homotopy sequences for fibrations, we see
that $\overline{\pi}*$ is a weak homotopy equivalence. On the other hand, both the spaces
$G_{0}^{+}(S^{2})/SO(2)$ and $map_{0}(S^{2}, P^{2} ; \pi)/SO(2)$ have homotopy types of CW com-
plexes. Consequently we see that it $\#$ is actually a homotopy equivalence. Now,
the proof of our lemma follows from Proposition 3.1 and Lemma 4.1.

Finally, from Lemma 4.2 it can be proved that the principal fibre bundle
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$SO(3)arrow G(P^{2})arrow G_{0}(P^{2})/O(2)\cong G_{0}^{+}(P^{2})/SO(2)$

has a cross-section (cf. Corollary 3.2). Immediately we get

THEOREM 4.3. There is a homeomorphism

$G(P^{2})\cong SO(3)\cross(G_{0}(P^{2})/O(2))$

$\cong SO(3)\cross(G_{0}^{+}(P^{2})/SO(2))$ .
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