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1. Introduction.

In [7], S. Mardesic and A. Prasolov translate the calculation of the k-
dimensional strong homology of $Y^{(k+1)}$ (the discrete sum of countably many
copies of the $(k+1)$-dimensional Hawaiian earring) into a condition which is the
existence of a certain family of functions on $\omega$ . They showed that the k-
dimensional strong homology of $Y^{(k+1)}$ is nontrivial if and only if there exists
such a nontrivial family. After that, Dow, Simon and Vanghan [4] named
these families almost coinciding families and showed the following Proposition
$1\sim 3$ .

PROPOSITION 1. $\overline{L}^{4}$ , Theorem 2.4] If $d=\omega_{1}$ , then there exists a nontrivial
almost coinciding family indexed by $\omega\omega$ .

PROPOSITION 2. [4, Theorem 3.1] The Proper forcing axiom implies that
every almost coinciding family indexed by $\omega\omega$ is trivial.

PROPOSITION 3. [4, Theorem 4.1, Lemma 4.2, 4.3] If there exists a nontrivial
almost coinciding family indexed by $\omega\omega$ , then there exists an unfilled $(b, b)$ -gap
in $g(\omega)$ . So, in Kunen’s model of $ZFC+Martin’ s$ Axiom $(MA)+2^{\omega}=\omega_{2}+there$

are no unfilled $(2^{\omega}, 2^{\omega})- gaps’$ , there does not exist a nontrivial almost coinciding
family indexed by $\omega\omega$ .

By Propositions 1 and 2, the existence of nontrivial almost coinciding families
is independent from the negation of the Continuum Hypothesis (CH). It is an
interesting problem to consider whether certain set theoretical axioms imply the
existence of nontrivial almost coinciding families. In this paper, we shall show

THEOREM 1. Let $P$ be the partially ordered set (poset for short) which
adjoins $\omega_{2}$ Cohen reals. Then, in $V^{P}$ , these does not exist a nontrivial almost
coinciding family indexed by $\omega\omega$ .

THEOREM 2. Let $\omega_{1}<\kappa=\kappa^{<\kappa}$ . Then, there is a poset $P$ with the countable
chain condition such that, in $V^{P},$ $2^{\omega}=\kappa+MA+there$ exists an unfilled (rc, $\kappa$ ) $- gap+$



358 S. KAMO

there does not exist a nontrivial almost coinciding family indexed by $\omega\omega$ .

Since, in Theorem 1, it holds that $|\vdash$ $b=\omega_{1}+d\geqq\omega_{2}’$ , the assumption $d=\omega_{1}$

in Proposition 1 cannot be replaced by $b=\omega_{1}$ . By Theorem 2, $MA+\neg CH+the$

existence of unfilled $(2^{\omega}, 2^{\omega})$ -gaps does not imply the existence of nontrivial
almost coinciding families indexed by $\omega\omega$ .

Theorems 1 and 2 are results about the non-existence of the families. And
Proposition 1 is the only result about the existence of the families which I know.
The author failed to construct a model of ZFC such that $d>\omega_{1}+there$ exists a
nontrivial almost coinciding family.

QUESTION. Is $ZFC+d>\omega_{1}+$ there is a nontrivial almost coinciding family
indexed by $\omega\omega$

’ consistent?

Theorems 1 and 2 are proved in gg 3 and 4, respectively.
The author thanks to the referee for improving and giving short proofs of

Lemmas B. 1, B.2 and C. 1. (Especially, Lemma B.2 is due to the referee and
much stronger than the original one.)

2. Notation and Definitions.

The notation used in this paper is a standard one. For the notation on
forcing see e. g. [6]. Let $\omega$ be the set of natural numbers and $\omega\omega$ the set of
all functions on $\omega$ . $\forall^{\infty}x(\cdots x\cdots)$ means that $\{x : not\cdots x\cdots\}$ is finite. $\exists^{\infty}x(\cdots x\cdots)$

means that $\{x: x\cdots\}$ is infinite. Define the pseudo-ordering $\prec$ on $\omega\omega$ by

$f\prec g$ iff $\forall^{\infty}n<\omega(f(n)<g(n))$ .

Let $F$ be a subset of $\omega\omega$ . $F$ is said to be bounded, if there exists a $g\in^{\omega}\omega$ such
that $\forall f\in F(f\prec g)$ . $F$ is called a dominating family if, for any $g\in^{\omega}\omega$ , there
exists an $f\in F$ such that $g\prec f$ . The cardinals $b$ and $d$ are defined by

$b= \min$ { $|F|$ : $F$ is not bounded},

$d= \min$ { $|F|$ : $F$ is a dominating family}.

For $f\in^{\omega}\omega,$ $L_{f}$ denotes the set $\{(n, m)\in\omega\cross\omega:m\leqq f(n)\}$ . Define the quasi-
ordering $\subset*$ and the equivalence relation $\sim$ by

$X\subset*Y$ iff $X\backslash Y$ is finite,

$X\sim Y$ iff $X\triangle Y$ is finite.

Let $\mathcal{A},$ $B$ be families of sets. $\lrcorner I\perp 9$ means that $A\cap B\sim\emptyset$ , for any $A\in A$ and
$B\in B$ . $\mathcal{A}\ll 9$ means that $A\subset*B$ , for any $A\in A$ and $B\in S$ . A and $B$ can be
separated, if there is an $X$ such that $i\ll\{X\}$ and $B\perp\{X\}$ .
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A $\kappa$-sequence $\langle X_{\alpha}|\alpha<\kappa\rangle$ of subsets of $\omega$ is called a $\kappa$-tower, if $X_{\alpha}\subset^{*}X_{\beta}$ ,
for any $\alpha<\beta<\kappa$ . A $\kappa$-sequence $\langle(X_{\alpha}, Y_{\alpha})|\alpha<\kappa\rangle$ is called a $(\kappa, \kappa)- gap$ , if
$\langle X_{\alpha}|\alpha<\kappa\rangle$ and $\langle Y_{\alpha}|\alpha<\kappa\rangle$ are towers and $\{X_{\alpha} : \alpha<\kappa\}\perp\{Y_{\alpha} : \alpha<\kappa\}$ . A $(\kappa, \kappa)-$

gap $\langle(X_{\alpha}, Y_{\alpha})|\alpha<\kappa\rangle$ is unfilled, if $\{X_{\alpha} : \alpha<\kappa\}$ and $\{Y_{\alpha} : \alpha<\kappa\}$ cannot be separated.
Finally, an indexed set $\langle\psi_{f}|f\in F\rangle$ is called an almost coinciding family indexed
by $F$, if

(i) for any $f\in F,$ $\psi_{f}$ : $L_{f} \frac{>}{}\omega$ ,

(ii) for any $f,$ $g\in F,$ $\psi_{f}r(L_{f}\cap L_{g})\sim\psi_{g}\uparrow(L_{f}\cap L_{g})$ .
An almost coinciding family $\langle\psi_{f}|\psi\in F\rangle$ is nontrivial, if there does not exist a
$\sigma:\omega\cross\omegaarrow\omega$ such that $\{\psi_{f} : f\in F\}\ll\{\sigma\}$ .

3. A proof of Theorem 1.

TO prove Theorem 1, we need the following lemma which is a little modi-
fication of Lemma 4.3 in [4] and is easily verified by using Fact 3.2 which
appears below.

LEMMA 3.1. Let $F\subset S\subset^{\omega}\omega$ . Suppose that $\langle\psi_{f}|f\in S\rangle$ is a nontrivial almost
coinciding family indexed by $S$ and that $F$ is an unbounded subset of $\omega\omega$ whuch
consists strictly increasing functions. Then, $\langle\psi_{f}|f\in F\rangle$ is nontrivial.

FACT 3.2 (well-known/clear). Suppose that $F$ is an unbounded subset of $\omega\omega$

which consts $ts$ strictly increasing functions. Then, it holds that, for any infinite
subset $A$ of $\omega$ ,

$\forall f\in^{\omega}\omega\exists g\in F\exists^{\infty}n\in A(f(n)<g(n))$ .

Let $P$ be the poset which adjoins $\omega_{2}$ Cohen reals ( $i$ . $e.,$ $P=\{p:\exists x\subset\omega_{2}(|x|<\omega$ ;
&p: $xarrow 2$)}) and $Q$ the poset $\{q:\exists n<\omega(q:narrow\omega)\}$ .

LEMMA 3.3. Suppose that $S$ is an unbounded subset of $\omega\omega$ whech consists
strictly increasing functions and $\langle\psi_{f}|f\in S\rangle$ is a nontrivial almost coinciding
family indexed by S. Let $\dot{g}$ be the $Q$ -name of the canonical generic function $in_{r}arrow\simeq$

$\omega\omega$ . Then, in $V^{QxP}$ , $\langle\psi_{f}|f\in S\rangle$ can not be extended to an almost coinciding
family indexed by $S\cup\{\dot{g}\}$ .

PROOF. TO get a contradiction, assume that there exist $(q, p)\in Q\cross P$,
$QxP$-name $\dot{\psi}$ such that

(1) $|\vdash_{Q\cross P}\dot{\psi}$ : $L_{\dot{g}}arrow\omega$ ,

(2) $(q, p)|\vdash_{Q\cross P}\forall f\in S\forall^{\infty}x\in L_{f}\cap L_{\dot{g}}(\dot{\psi}(x)=\psi_{f}(x))$ .

Because $Q\cross P$ satisfies the countable chain condition, there exists an $A\subset\omega_{2}$

such that
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$|A|\leqq\omega$ and $p\in PrA$ and $\dot{\psi}$ is a $Q\cross PJ$ A-name.

By using (2), for each $f\in S$ , take an $n_{f}<\omega$ and $(q_{f}, p_{f})\in QxPtA$ such that

(3) dom $(q_{f})\subset n_{f}$ and $(q_{f}, p_{f})$ $ $(q, p)$ ,

(4) $(q_{f}, p_{f})|\vdash_{Q\cross P}\forall x\in L_{f}\cap L_{\dot{g}}\backslash (n_{f}\cross\omega)(\dot{\psi}(x)=\psi_{f}(x))$ .

Since $|Q\cross PrA|\leqq\omega$ and $S$ is unbounded in $\omega\omega$ , there exist an $n’<\omega,$ $(q’, P’)\in$

$Q\cross PrA$ and a subset $F$ of $S$ such that

$\langle$5) $F$ is unbounded in $\omega\omega$ ,

(6) $\forall f\in F$ ( $n_{f}=n’$ and $q_{f}=q’$ and $p_{f}=p’$).

By (5) and Lemma 3.1,

$\langle$ $\eta$ $\langle\psi_{f}|f\in F\rangle$ is nontrivial.

CLAIM 1. $\forall x\in L_{f}\cap L_{h}\backslash (n’X\omega)(\psi_{f}(x)=\psi_{h}(x))$ , for any $f,$ $h\in F$.

PROOF OF CLAIM 1. Let $f,$ $h\in F$ and $x=(m, k)\in L_{f}\cap L_{h}$ and $n’\leqq m$ . Take
$q’’\in Q$ such that

$q’’\leqq q’$ and $m\in dom(q’’)$ and $q’’(m)>k$ .
Since $(q’, p’)|\vdash x\in L_{\dot{g}}\cap L_{f}\backslash (n’\cross\omega)$ , it holds that

$(q’, p’)|\vdash\dot{\psi}(x)=\psi_{f}(x)$

Similary, $(q^{f\prime}, p’)|\vdash\dot{\psi}(x)=\psi_{h}(x)$ . Hence, $\psi_{f}(x)=\psi_{h}(x)$ . QED of Claim 1

By Claim 1, it holds that $\cup\{\Phi_{f}r(L_{f}\backslash (n’\cross\omega)):f\in F\}$ is a function. So,
$\langle\psi_{f}|f\in F\rangle$ is trivial. This contradicts (7). $\square$

PROOF OF THEOREM 1. TO get a contradiction, assume that

$|\vdash_{P}$
“

$\langle\psi_{f}|f\in^{\omega}\omega\rangle$ is a nontrivial almost coinciding family indexed by $\omega\omega’$ .

Since $|\vdash_{P}$ $b=\omega_{1}’$ , we can take an $A\subset\omega_{2}$ and a $PrA$-name $\dot{S}$ such that $|A|\leqq\omega_{1}$

and $|\vdash_{P}$
$\dot{S}$ is an unbounded subset of $\omega\omega$ consisting of increasing functions and

$|\dot{S}|=\omega_{1}’$ . Since $P$ satisfies the countable chain condition, there exists a $B\subset\omega_{2}$

such that

$A\subset B$ and $|B|\leqq\omega_{1}$ and $\langle\dot{\psi}_{f}|f\in\dot{S}\rangle$ is a $PbB$ -name.

Since $|\vdash_{P}$
$\dot{S}$ is unbounded and consists of increasing functions”, by Lemma 3.1,

$|\vdash_{P}$
“

$\langle\dot{\psi}_{f}|f\in S\rangle$ is nontrivial”.

From this and the fact that the formula $x$ is nontrivial” is $\Pi_{1}$ , it holds that
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$|\vdash_{P\}B}$
“

$\langle\psi_{f}|f\in\dot{S}\rangle$ is nontrivial”.

Since $Pr(\omega_{2}\backslash B)$ is isomorphic to $P$, by replacing the ground model $V$ with $V^{P(B}$ ,
we can assume that $\dot{S}$ and $\langle\dot{\psi}_{f}|f\in\dot{S}\rangle$ are sets in $V$ . Since ro $(P)$ is isomorphic
to ro $(Q\cross P)$ , by Lemma 3.3, in $V^{P},$ $\langle\dot{\psi}_{f}|f\in\dot{S}\rangle$ cannot be extended to an almost
coinciding family indexed by $\omega\omega$ . But this contradicts the fact that, in $V^{P}$ ,
$\langle\dot{\psi}_{f}|f\in^{\omega}\omega\rangle$ is an almost coinciding family. $\square$

4. A proof of Theorem 2.

LEMMA 4.1. The following (a), (b) and $(b’)$ are equivalent.
(a) There exists a nontrivial almost coinciding family indexed by $\omega\omega$ .
(b) There exist a dominating family $F\subset^{\omega}\omega$ and an indexed set $\langle(A_{f}, B_{f})|$

$f\in F\rangle$ such that
(b.1) for any $f\in F,$ $(A_{f}, B_{f})$ is a partition of $L_{f}$ ,
(b.2) $\{A_{f} : f\in F\}$ and $\{B_{f} : f\in F\}$ cannot be seParated,
(b.3) for any $f,$ $g\in F$, if $f\prec g$ then $A_{f}\subset^{*}A_{g}$ and $B_{f}\subset^{*}B_{g}$ .

$(b’)$ For any dominating family $F\subset^{\omega}\omega$ , there exists an indexed set $\langle(A_{f}, B_{f})|$

$f\in F\rangle$ wluch satisfies $(b.1)\sim(b.3)$ .

PROOF. It is easy to see that (b) and $(b’)$ are equivalent to the following
(c) and $(c’)$ , respectively.

(c) There exists a dominating family $S\subset^{\omega}\omega$ and a nontrivial almost coin-
ciding family $\langle\psi_{f}|f\in S\rangle$ such that, for every $f\in S,$ $\psi_{f}$ : $L_{f}arrow 2$ .

$(c’)$ For any dominating family $S\subset^{\omega}\omega$ , there exists a nontrivial almost
coinciding family $\langle\psi_{f}|f\in S\rangle$ such that, for every $f\in S,$ $\psi_{f}$ : $L_{f}arrow 2$ .
Also, it is easy to see that (c) and $(c^{f})$ are equivalent. So, it suffices to show
that (c) and (a) are equivalent. The implication from (c) to (a) is clear. To
show from (a) to (c), let $\langle\psi_{f}|f\in^{\omega}\omega\rangle$ be a nontrivial almost coinciding family
indexed by $\omega\omega$ . For each finite sequence $s=\langle a_{i}|i<n\rangle:narrow\omega,$ $s^{*}$ denotes the
finite sequence

$\langle 0,1_{\frac{1}{a_{1}times}}, 0,1, \cdots, 1,0,1_{\frac{1}{-1^{time}}},0\rangle a_{n}S$
For each $g:\omegaarrow\omega,$ $\psi:L_{g}arrow\omega$

and $n<\omega$ , let $s_{\psi.n}$ denotes $\langle\psi(n, i)|i<g(n)\rangle$ . For each $f:\omegaarrow\omega$ , define $\tilde{f}:\omegaarrow\omega$

and $\Psi_{f}^{\sim}$ : $L_{f}^{\sim}arrow 2$ by

$f(n)=the$ length of $(s_{Q_{f}.n})^{*}$ ,

$\Psi_{f}^{\sim}=$ the unique $\Phi$ : $L_{f}^{\sim}arrow 2$ such that, for any $n<\omega,$ $(s_{\psi_{f}.n})^{*}=s_{\Phi.n}$ .
Then, it is easy to see that $\{f:f\in^{\omega}\omega\}$ is a dominating subset of $\omega\omega$ and

$\langle\Psi_{f}^{\sim}|f\in^{\omega}\omega\rangle$ is a nontrivial almost coinciding family indexed by $\{f:f\in^{\omega}\omega\}$ . $\square$

The next lemma is due to Kunen (see [1, p. 931, Theorem 4.2]).
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LEMMA 4.2. If $T$ is an unfilled $(\omega_{1}, \omega_{1})$ -gap, then there is a poset $P$ with the
countable chain condition such that, $|P|=\omega_{1}$ and, in $V^{P},$ $T$ remains unfilled for
any generic extension preserving $\omega_{1}$ .

We shall show that any finite product of such posets whicb are described
in the above lemma satisfies the countable chain condition (Theorem 4 in Ap-
pendix A). By this and Lemma 4.2, we have the following lemma (a proof is
given in Appendix A).

LEMMA 4.3. There is a poset $Q$ such that
(i) $Q$ satisfies the countable chain condition and $|Q|\leqq 2^{\omega_{1}}$ ,
(ii) for any unfilled $(\omega_{1}, \omega_{1})$ -gap $T,$ $|\vdash_{Q}$ $T$ remains unfilled for any generic

extenston preserving $\omega_{1}’$ .

The next lemma follows from Lemma 4.3 and the standard forcing argu-
ments.

LEMMA 4.4. Let $\omega_{1}<\kappa=\kappa^{<\kappa}$ and $\delta<\kappa$ . Suppose that $\mathcal{A}=\langle A_{\alpha}|\alpha<\kappa\rangle,$ $\ovalbox{\tt\small REJECT}=$

$\langle B_{\xi}|\xi<\delta\rangle$ are towers and $-\ell\perp B$ . Then, there exist a poset $Q$ and $Q$ -names $\dot{f},\dot{B}$

such that

(8) $Q$ satisfies the countable chain condition and $|Q|=\kappa$ ,

(9) $|\vdash_{Q}$
$2^{\omega}=\kappa$ and MA”,

(10) $|\vdash_{Q}$
$\dot{f}\in^{\omega}\omega$

’ and $|\vdash_{Q}$

“
$h\prec\dot{f}’$ , for any $h\in^{\omega}\omega$ ,

(11) $|\vdash_{Q}$
$\mathcal{A}\perp\{\dot{B}\}$ and $9\ll\{\dot{B}\}$ ,

(12) whenever $X\subset\omega$ and $\mathcal{A}\perp\{X\},$ $|\vdash_{Q}$
$\dot{B}\not\subset*X’$ ,

(13) if $T$ is an unfilled $(\omega_{1}, \omega_{1})$ -gap, then, in $V^{Q},$ $T$ remains unfilled
for any generic extenston preserving $\omega_{1}$ .

(Outline of a proof) Let $Q_{1}$ be the poset as in Lemma 4.3. Since $|Q_{1}|\leqq\kappa$

and $Q_{1}$ satisfies the countable chain condition, it holds that $|\vdash_{Q_{1}}$
$\kappa=\kappa<\kappa$ So,

in $V^{Q_{1}}$ , take a poset $\dot{Q}_{2}$ such that $\dot{Q}_{2}$ satisfies the countable chain condition and
(9) $\sim(12)$ except for $|\vdash_{\dot{Q}_{2}}$ “MA”. Then, in $V^{Q_{1}*Q_{2}}$ , take a poset $\dot{Q}_{3}$ such that $\dot{Q}_{3}$

satisfies the countable chain condition and $|\vdash_{\dot{Q}_{3}}$
$\kappa=\kappa^{<\kappa}$ and MA”. (Such a poset

exists under the assumption that $\kappa=\kappa^{<\kappa}>\omega_{1}$ (see $e$ . $g.,$ [$2$ , Remark after Lemma
3.5, p. 16])). Then, the poset $Q=Q_{1}*\dot{Q}_{2}*\dot{Q}_{3}$ is as required. $\square$

TO prove Theorem 2, assume that $\omega_{1}<\kappa=\kappa^{<\kappa}$ . By replacing the ground

model with a certain generic extension, we may assume that there exists a $\kappa-$

tower $-fl=\langle A_{\alpha}|\alpha<\kappa\rangle$ in $q(\omega)$ . By using Lemma 4.4, we can construct a rc-stage
finite support iteration $P_{\alpha},\dot{Q}_{\alpha}$ and $P_{\alpha}$ -names $\dot{f}_{\alpha},\dot{B}_{\alpha}$ (for $\alpha<\kappa$) such that, in $V^{P_{a}}$ ,
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(8) $\dot{Q}_{\alpha}$ satisfies the countable chain condition and $|\dot{Q}_{\alpha}|=\kappa$ ,

(9) $\langle\dot{B}_{\xi}|\xi<\alpha\rangle$ is a tower and $-l\perp\{\dot{B}_{\xi} : \xi<\alpha\}$ ,

(10) for any $X\subset\omega$ , if $\mathcal{A}\perp\{X\}$ , then $|\vdash_{\dot{Q}_{\alpha}}$

$\dot{B}_{\alpha}\not\subset^{*}X’$ ,

(11) $\dot{Q}_{\alpha}$ forces $2^{\omega}=Xi+MA’$ ,

(12’) $\dot{Q}_{\alpha}$ forces “
$\dot{f}_{a}\in\omega\omega$ and $g\prec\dot{f}_{\alpha}$ ”, for any $g\in^{\omega}\omega$ ,

(13‘) if $T$ is an unfilled $(\omega_{1}, \omega_{1})$-gap (in $V^{P_{\alpha}}$), then $\dot{Q}_{\alpha}$ forces that
$T$ remains unfilled for any generic extension preserving $\omega_{1}’$ .

Let $P$ be the direct limit of $(P_{\alpha}|\alpha<\kappa)$ . It is easy to see that $P$ satisfies the
requirement in Theorem 2 except for

$|\vdash_{P}$ “these does not exist a nontrivial almost coinciding family indexed by $\omega\omega’$ .

TO show thls by a contradiction, assume that $p_{0}\in P$ forces the existence of a
nontrivial almost coinciding family indexed by $\omega\omega$ . Then, by Lemma 4.1, there
exist $P$-names $\langle(\dot{X}_{\alpha},\dot{Y}_{\alpha})|\alpha<\kappa\rangle$ sucb that

(14) $|\vdash_{P}$
$(\dot{X}_{\alpha},\dot{Y}_{a})$ is a partition of $L_{\dot{f}_{\alpha}}$ ,

(15) $|\vdash_{P}$ $\dot{X}_{\alpha}\subset*\dot{X}_{\beta}$ and $\dot{Y}_{\alpha}\subset*\dot{Y}_{\beta}’$ , if $\alpha<\beta<\kappa$ ,

(16) $p_{0}|\vdash_{P}$ $\{\dot{X}_{\alpha} : \alpha<\kappa\},$ $\{Y_{a} : \alpha<\kappa\}$ cannot be separated”.

Set $S=\{\delta<\kappa:\delta$ is a limit ordinal and $cf(\delta)=\omega_{1}$ and $\dot{X}_{a},\dot{Y}_{\alpha}$ are $P_{\delta}$-names, for
any $\alpha<\delta$ }. Since $P$ satisfies the countable chain condition, $S$ is unbounded in
$\kappa$ and $\omega_{1}$-closed. By (13),

$p_{0}|\vdash_{\delta}\langle(\dot{X}_{\alpha},\dot{Y}_{\alpha})|\alpha<\delta\rangle$ is filled”, for any $\delta\in S$ .
By this and the fact that $P$ satisfies the countable chain condition, it holds that,
for any $\delta\in S$ , there is a $\beta<\delta$ such that

$(*)$ there exists a $P_{\beta}$ -name $\dot{C}$ such that $p_{0}|\vdash_{\delta}$
“

$\{\dot{X}_{\alpha} : \alpha<\delta\}\ll\{\dot{C}\}$

and {V $\alpha$ : $\alpha<\delta$ } $\perp\{\dot{C}\}$ .

So, we can define the function $\pi$ from $S$ to $\kappa$ by

$\pi(\delta)=$ the least $\beta<\delta$ sucb that $(*)$ holds.

For each $\delta\in S$ , take a $P_{\gamma_{\vee}(\delta)}$ -name $\dot{C}_{\delta}$ such that

$p_{0}|\vdash_{\delta}$
“ {X $\alpha$ : $\alpha<\delta$ } $\ll\{\dot{C}_{\delta}\}$ and $\{\dot{Y}_{\alpha} : \alpha<\delta\}\perp\{\dot{C}_{\delta}\}$ .

Since $\pi:Sarrow\kappa$ is regressive, there exist a stationary set $S’\subset S$ and $\beta<\kappa$ such
that

$p_{0}\in P_{\beta}$ and $\pi(\delta)=\beta$ , for any $\delta\in S’$ .

CLAIM 2. Let 6, $\eta\in S’$ and $\beta<\delta<\eta$ . Then, it holds that
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$p_{0}|\vdash_{\beta}\dot{C}_{\delta}\backslash (n\cross\omega)=\dot{C}_{\eta}\backslash (n\chi\omega),$ for some $n<\omega$ .
PROOF OF CLAIM 2. TO get a contradiction, let $\delta,$ $\eta\in S’$ and $p_{1}\leqq p_{0}$ such

that
$\beta<\delta<\eta$ and $p_{1}|\vdash_{\beta}\forall n<\omega(\dot{C}_{\delta}\backslash (n\cross\omega)\neq\dot{C}_{\eta}\backslash (n\cross\omega))$ .

Take a $P_{\beta}$ -name $\dot{g}$ such that

$|\vdash_{\beta\dot{g}}$ : $\omegaarrow\omega$
’ and $p_{1}|\vdash_{\beta}L_{\dot{g}}\cap(\dot{C}_{\delta}\triangle\dot{C}_{\eta})$ is infinite”.

Since $|\vdash_{\beta+1}$

“
$\dot{g}\prec\dot{f}_{\beta}’$ , it holds that

$p_{1}|\vdash_{\beta+1}$
“

$L_{\dot{J}_{\beta}}\cap(\dot{C}_{\beta}\triangle\dot{C}_{\eta})$ is infinite”.

But this contradicts that $p_{0}|\vdash L_{\dot{f}_{\beta}}\cap\dot{C}_{\delta}\sim\dot{X}_{\beta}\sim L_{\dot{f}_{\beta}}\cap\dot{C}_{\eta}’$ . QED of Claim 2

Take $\delta\in S’$ such that $\beta<\delta$ . By Claim 2, since $S’$ is cofinal in $\kappa$ , it holds
that

$p_{0}||-\dot{C}_{\delta}$ separates {X$\alpha$ : $\alpha<\kappa$ } and $\{\dot{Y}_{\alpha} : \alpha<\kappa\}$ .

But, this contradicts (16). $\square$

A. The posets associated with $(\omega_{1}, \omega_{1})$-gaps.

We state some definitions. Let $T=\langle(a_{\alpha}, b_{\alpha})|\alpha<\omega_{1}\rangle$ be an $(\omega_{1}, \omega_{1})$-gap. For
each $\alpha<\omega_{1}$ , set $b_{\alpha}’=b_{\alpha}\backslash a_{\alpha}$ . Define the poset $P_{T}$ by

$P_{T}= \{(s, u) : u\subset\omega_{1} \ |u|< \omega \ \exists n<\omega(s : narrow 2 \ \bigcup_{\alpha\in u}a_{\alpha}\bigcap_{\alpha\in u}Ub_{\alpha}’\subset n)\}$ ,

$(s, u)$ $ $(i, v)$ iff $t\subset s$ &v\subset u &V $k \in dom(s\backslash t)((k\in\bigcup_{\alpha\in v}a_{\alpha}\Rightarrow s(k)=1)$

&(k\in U $b_{\alpha}’$

\alpha \in v

$\Rightarrow s(k)=0$) $)$ .

We note that, for any $V$-generic filter $G$ on $P_{T},$ $\{k<\omega:\exists(s, u)\in G(s(k)=1)\}$

fills the gap $T$ .
For each $\alpha<\omega_{1}$ , set $p_{a}=(\emptyset, \{\alpha\})(\in P_{T})$ . Define the poset $Q_{T}$ by

$Q_{T}=$ { $u\subset\omega_{1}$ : $|u|<\omega$ & $\{p_{\alpha}$ : $\alpha\in u\}$ is an antichain of $P_{T}$ },

$u\leqq v$ iff $v\subset u$ .
The following theorem is due to Kunen (see [1, p. 931, Theorem 4.2]).

THEOREM 3. Let $T$ be an $(\omega_{1}, \omega_{1})- gaP$ . Set $P=P_{T}$ and $Q=Q_{T}$ .
(a) If $T$ is filled, then $P$ satisfies the countable chain condition.
(b) If $T$ is unfilled, then

(b.1) $q|\vdash_{Q}P$ has an uncountable antichain”, for some $q\in Q$ ,

(b.2) $Q$ satisfies the countable chain condition.
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We shall show

THEOREM 4. Let $n<\omega$ and $T_{i}$ an unfilled $(\omega_{1}, \omega_{1})- gap$ , for each $i<n$ . Then,
the product of $\langle Q_{T_{i}}|i<n\rangle$ satisfies the countable chain condition.

REMARK. Let $T$ be an unfilled $(\omega_{1}, \omega_{1})$-gap. Then, under the assumption
of $MA+\neg CH$ , Theorem 4 is a trivial consequence of Theorem 3, because any
poset $P$ which satisfies the countable chain condition also has property $K$ : Any
uncountable subset of $P$ has an uncountable subset of pairwise compatible ele-
ments. The next theorem claims that the assumption of $MA+\neg CH$ (or some
assumption like this) is necessary to show that QT has property K.

THEOREM 5. There are a poset $R$ and an $R$-name $\dot{X}$ such tllat
(1) $R$ satisfies the countable chain condition and $|R|=\omega_{1}$ ,

(2) $|\vdash_{R}$
$\dot{X}$ is an unfilled $(\omega_{1}, \omega_{1})- gaP$ and $Q_{\dot{X}}$ does not have ProPerty K.”

Theorems 4 and 5 shall be proved in Appendix $B$ and $C$ (respectively).

The rest of this appendix is

PROOF OF LEMMA 4.3. For each unfilled $(\omega_{1}, \omega_{1})$-gap $T$ , by using Theorem
3 (b.1), take a $q_{T}\in Q_{T}$ such that

$q_{T}|\vdash_{Q_{T}}$ $P_{T}$ has an uncountable antichain”

and set $Q_{T}’=\{q\in Q_{T} : q\leqq q_{T}\}$ . Set $Q=the$ finite support product of $\langle$ $Q_{T}’|T$ is an
unfilled $(\omega_{1}, \omega_{1})- gap\rangle$ . Then, by Theorem 4, $Q$ is as required. $\square$

B. The countable chain condition.

We first show the following combinatorial lemmas which are due to the
referee.

LEMMA B.1. Let $\langle(a_{a}, b_{a})|\alpha<\omega_{1}\rangle$ be an unfilled $(\omega_{1}, \omega_{1})$ -gap, and suppose $A$

and $B$ are countable subsets of $\omega_{1}$ . Then there are uncountable $A’\subset B$ and $B’\subset B$

such that for all $\alpha\in A’$ and $\beta\in B’,$ $a_{\alpha}\cap b_{\beta}\neq\emptyset$ .

PROOF. For each $\gamma<\omega_{1}$ , choose $n_{\gamma}<\omega$ such that $\{\alpha\in A:a_{\gamma}\backslash n_{\gamma}\subset a_{a}\}$ and
$\{\beta\in B:b_{\gamma}\backslash n_{\gamma}\subset b_{\beta}\}$ are uncountable. Let $a_{\gamma}’=a_{\gamma}\backslash n_{\gamma}$ and $b_{\gamma}’=b_{\gamma}\backslash n_{\gamma}$ . Since the
gap is unfilled, $U_{\gamma<\omega_{1}}a_{\gamma}’\cap\bigcup_{r<\omega_{1}}b_{\gamma}’\neq\emptyset$ . Take $\gamma,$

$\delta<\omega_{1}$ and $n\in a_{\gamma}’\cap b_{\delta}’$ . Let $A’=$

$\{\alpha\in A:a_{\gamma}’\subset b_{\alpha}\}$ and $B’=\{\beta\in B:b_{\gamma}’\subset b_{\beta}\}$ . By the definition of $n_{\gamma}$ and $n_{\delta}$ , it holds
that $n\in a_{a}\cap b_{\beta}$ , for all $\alpha\in A’$ and $\beta\in B’$ . $\square$

LEMMA B.2. Let $n<\omega$ and $\langle(a_{\alpha}^{i}, b_{\alpha}^{i})|\alpha<\omega_{1}\rangle$ be an unfilled $(\omega_{1}, \omega_{1})$ -gap, for
each $i<n$ . Let $A$ and $B$ are uncountable subsets of $\omega_{1}$ . Then there are uncoun-
table $A’\subset B$ and $B’\subset B$ such that if $\alpha\in A’$ and $\beta\in B’$ then for all $i<n,$ $a_{\alpha}^{i}\cap b\not\in$

$\neq\emptyset$ .
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PROOF. Use Lemma B.l $n$ times. $\square$

NOW we are ready to prove Theorem 4. The proof is similar to the proof
of Theorem 3 (b.2) (in [1, p. 932]) except we need Lemma B.2. Let $n<\omega$ and
$T_{i}=\langle(a_{\alpha}^{i}, b_{\alpha}^{i})|\alpha<\omega_{1}\rangle$ an unfilled $(\omega_{1}, \omega_{1})$-gap, for $i<n$ . Set $Q=the$ product of
$\langle Q_{\tau_{i}}|i<n\rangle$ . TO get a contradiction, suppose that $\langle w_{\alpha}|\alpha<\omega_{1}\rangle$ is an antichain
of $Q$ . For each $\alpha<\omega_{1}$ , let $w_{\alpha}=(w_{\alpha}^{0}$ , $\cdot$ .. , $w_{\alpha}^{n-1})$ . By using $\Delta$-system argument,
we may assume that there are $k_{0}$ , $\cdot$ . , $k_{n-1}\in\omega\backslash \{0\}$ such that, for each $i<n$ ,

$|w_{a}^{i}|=k_{i}$ , for each $\alpha<\omega_{1}$ ,

if $\alpha<\beta$ , then $w_{\alpha}^{i}\cap w_{\beta}^{i}=\emptyset$ and $\max(w_{\alpha}^{i})<\min(u_{\beta}^{i}))$ .

For each $i<n$ and $\alpha<\omega_{1}$ , take $m_{i.\alpha}<\omega_{1}$ such that

$a_{\xi}^{i}\backslash m_{i,a}\subset a_{\eta}^{i}\backslash m_{i.a}$ and $b\xi\backslash m_{i.\alpha}\subset b_{\eta}^{i}\backslash m_{\ell.\alpha}$ , if $\xi,$ $\eta\in w_{\alpha}^{i}$ and $\xi<\eta$ .
Again without loss of generality, we may assume that $m_{i},$ $.=m$ , for all $i<n$

and all $\alpha<\omega_{1}$ . For each $i<n$ and $\alpha<\omega_{1}$ , set

$c_{\alpha}^{i}=a_{\xi}^{i}\backslash m$ and $d_{a}^{i}=b_{\xi}^{i}\backslash m$ , where $\xi=\min(w_{a}^{i})$ .
Then, it bolds tbat

$\langle(c_{\alpha}^{i}, d_{a}^{i})|\alpha<\omega_{1}\rangle$ is an unfilled $(\omega_{1}, \omega_{1})$-gap, for $i<n$ .

So, by Lemma B.2, there are $\alpha,$
$\beta<\omega_{1}$ such that

$c_{\alpha}^{i}\cap d\beta\neq\emptyset$ , for all $i<n$ .

So, $\omega_{\alpha}$ and $\omega_{\beta}$ are compatible, a contradiction. $\square$

C. Property K.

A poset $P$ has property $K$ if for any uncountable $X\subset P$ there is an uncounta-
ble $Y\subset X$ such that any two members of $Y$ are compatible. The following
facts are well-known.

(1) If $P$ has property $K$ , then $P$ satisfies the countable chain condition.
(2) If $P$ has property $K$ and $Q$ satisfies the countable chain condition, then

$P\cross Q$ satisfies the countable chain condition.
(3) The product of finitely many posets with propertyK also has property K.
(4) $MA+\neg CH$ implies the converse of (1).

There are several examples of a poset which satisfies the countable chain con-
dition but does not have property $K$ , under some set theoretical assumption (see
$e$ . $g.,$ [ $8$ , section 3] $)$ . Theorem 5 gives ano’her such example.

We turn to a proof of Theorem 5.
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LEMMA C.l. Let $R$ be a poset and $\dot{X}$ an $R$-name such that
(c.1) $V^{R}F\dot{X}$ is an unfilled $(\omega_{1}, \omega_{1})$ -gap” and $\omega_{1}^{V^{R}}=\omega_{1}^{V}$ .

Suppose that there exists an $R$-name $\dot{Y}$ such that, in $V^{R}$ ,

(c.2) $|\vdash_{\dot{Y}}$

$\dot{X}$ is filled” and $\omega_{1}^{V^{R_{*}\dot{Y}}}=\omega_{1}^{V^{R}}$ .
Then, it holds that, in $V^{R},$ $Q_{\dot{X}}$ does not have property K. So, $R$ and $\dot{X}$ satisfy (1)

and (2) in Theorem 5.

PROOF. Set $W=V^{R}$ and $W^{*}=W^{\dot{Y}}$ . By (c.2) and Theorem 3 (a), it holds that

$W^{*}PP_{X}$ satisfies the countable chain condition.

Since $\omega_{1}^{W*}=\omega_{1}^{W}$ , it holds that
(c.3) $WFP_{\dot{X}}$ satisfies the countable chain condition.

Since $WF\exists q\in Q_{\dot{X}}$( $q|\vdash_{Q_{\dot{X}}}$
$P_{\dot{X}}$ has an uncountable antichain”), it holds that

(c.4) $WFQ_{\dot{X}}\cross P_{\dot{X}}$ does not satisfy the countable chain condition.
By (c.3) and (c.4), $W\models Q_{\dot{X}}$ does not have property K. $\square$

We shall construct a poset $R$ and $R$-names .Xr and $\dot{Y}$ which satisfy (c.1) and
(c.2). The method for doing this is due to Hechler [5] and Dordal [3]. Hechler
used it for adjoining a tower in a generic extension and later Dordal generalized
it for adjoining an arbitrary partially order type of $q(\omega)/finite$ in a generic
extension.

DEFINITION (Hechler and Dordal). Let $A=(A, <_{A})$ be a partial order type.
Define the poset $P(A)$ by

$P(A)=$ { $p:\exists u\subset A\exists n<\omega(|u|<\omega$ and $p:u\cross narrow 2)$ },

and for any $p,$ $q\in P(A)$ such that $p:uXnarrow 2$ and $q:v\cross marrow 2$ ,

p:$ $q$ iff $q\subset P$ and $\forall a,$ $b\in v\forall k\in[m, n)$ ( $a<_{A}b\Rightarrow p$ ( $a$ , k);$ $p(b,$ $k)$).

For each $a\in A$ , define $P(A)$-name $\dot{H}_{a}$ by

$|\vdash\dot{H}_{a}=\{n<\omega:\exists p\in\dot{G}(P(a, n)=1)\}$ ,

where $\dot{G}$ is the $P(A)$-name of the canonical generic filter.
The following lemma is due to P. Dordal ([3, Lemma 5.4, p. 45]).

LEMMA C.2. Let $A=(A, <_{A})$ be a linear order $tyPe$ and $B$ a sub-order tyPe

of $A$ .
(1) $P(A)$ satisfies the countable chain condition.
(2) If $G$ is a $V$-generic filter on $P(A)$ , then $G\cap P(B)$ is a $V$-generic filter

on $P(B)$ .
(3) If $\dot{x}$ is a $P(A)$-name such that $|\vdash\dot{x}\subset\omega’$ , then there exists a countable

subset $C$ of $A$ such that $\dot{x}$ is a $P(C)$ -name.
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(4) For any a, $b\in A,$ $a<_{A}b$ if and only if $|\vdash\dot{H}_{a}\subset^{*}\dot{H}_{b}’$ .

Let $Q$ denote the set of rationals. Set $A=Q\cross\omega_{1}\cross 2$ and $B=A\cup\{0\}$ . Define
the linear ordering $<_{B}$ on $B$ by

$(q, \alpha, 0)<_{B}0<_{B}(q, \alpha, 1)$ , for any $q\in Q$ and any $\alpha<\omega_{1}$ ,

$(q, \alpha, 0)<_{B}(r, \beta, 0)$ , if $\alpha<\beta$ or ( $\alpha=\beta$ and $q<r$),

$(q, \alpha, 1)<_{B}(r, \beta, 1)$ , if $\alpha>\beta$ or ( $\alpha=\beta$ and $q<r$).

We regard $B$ as the linear order type $(B, <_{B})$ and $A$ its sub-order type. Set
the poset $R=P(A)$ . Define $R$-name $\dot{a}_{\alpha},\dot{b}_{\alpha}$ (for $\alpha<\omega_{1}$ ) by

$\dot{a}_{\alpha}=\dot{H}_{(0,\alpha.0)}$ and $\dot{b}_{\alpha}=\omega\backslash \dot{H}_{(0,\alpha,1)}$ , for each $\alpha<\omega_{1}$ .

Set $W=V^{R}$ . In $W$, set $\dot{X}=\langle(\dot{a}_{\alpha},\dot{b}_{\alpha})|\alpha<\omega_{1}\rangle$ and take the poset $\dot{Y}$ such that
$W^{\dot{Y}}=V^{P(B)}$ . Then, by Lemma C.2, it holds that

$W\models\dot{X}$ is an $(\omega_{1}, \omega_{1})$ -gap” and $W^{\dot{Y}}$ :“X is filled”.

So, the next lemma completes a proof of Theorem 5. The lemma is proved by
the same way in the proof of Theorem 5.3 in [3]. So, we omit a proof.

LEMMA C.3. $W\models\dot{X}$ is unfilled.”
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