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   1. Statement of the theorem. 

   In this note, we prove the following assertions. 

   THEOREM. Let k be a perfect field of characteristic p>O and X a smooth 
complete intersection of dimension n in a projective space over k. 

   (a) If i* j and i+ j * n, n+1, H~(X, WQX) =0. 
   (b) I f 2i =i=n, n+1 and 0 < i.<_ n, Hi (X, W SAX) =W and F is bi j ective on 

Hi(X, WQX). 
   (c) Hn-~(X, WQX) is a Cartier module (in the sense of [5], Ch. I, Def. 2.4). 

   (d) If 2i*n+1, Hn-i+1(X, WQX)/F"B=O. 
   (e) If 2i = n+1, Hn-1'(X, WQX)/F°'B = W and F is bijective on 

Hn-ti+1(X, WQX)/Fc B. 

   We follow the notation of [1], [4] and [5]. In particular, W=W(k) (resp. 
K) is the ring of Witt vectors with coefficients in k (resp. the fraction field of 
W). H'(X/W) (resp. H'(X, WQX)) denotes the crystalline cohomology group 

(resp. the Hodge-Witt cohomology group) of X. F (resp. V) stands for the 
Frobenius morphism (resp. the Verschiebung morphism). For a commutative 

group A and an endomorphism m of A, mA (resp. A/m) denotes Ker [m: AA] 
(resp. Coker [m: A-~A]). 

   2. Proof of the theorem. 

   Throughout this section, k denotes a perfect field of characteristic p>O 

and X a smooth complete intersection of dimension n in a projective space 
over k. 

   We first recall known facts on the Hodge cohomology and the crystalline 
cohomology of a smooth complete intersection in a projective space : 

   (I) H~(X, Q1)=0 if i* j and i+j~n; 

   (II) H~(X, SAX)=k if 2i~n and 0<i<_n; 
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  (III) Hi(X/W)=0 if i is odd and i=/= n ; 

   (IV) Hi(X/W)=W if i=2r~ n and OSi<_2n. In this case, H2r(X/W)K is 

generated by the classes of algebraic cycles, and therefore H2r(X/W)K= 
H2r(X/W)K'=Hr(X, WQ .)K (cf. [2], Th. 1.5, [1], Ch. VII, Remarque 1.1.11, 

[4], Ch. II, Cor. 3.5). 
   We shall prove the theorem step by step. 

   STEP 1. (a) I f i =i=j and i + j < n, H'(X, W SAX)=0. 

   (b) I f 0 <_ 2i < n, H1(X, WQX) =W and F is bijective on H1(X, W Q}). 

   PROOF. We shall prove the assertions by induction on i. 
   First note that the assertion (a) holds true for i=-1 since WQX1=0 and 

that the assertion (b) holds true for i=0 (cf. [4], Ch. II, Cor. 2.17). 

   Assume now that : 

   (1) H'(X, WQX 1)=0 if j ~i-1 and i-1+ j <n ; 

   (2) H2-1(X, WQX 1)=W and F is bijective on Hi-1(X, WQX-1) if 0_<i-1<n/2. 
The commutative diagram of pro-sheaves on X with exact rows and columns 

0

F
                                             )i-1 0->W.QX1--~W.QX-1-~W. --~0

      Fd v 

0-> W.Q -->

  dV 

W.QX --> W.

 /F S 

 dV 

SlX/V 

0

--> 0

([4], Ch. I, Cor. 3.5, Cor. 3.19) defines a commutative diagram with exact rows 
and columns 

                        H '1(X, QX) 

   0 --> H'(X, WQX 1)/F-> H'(X, WQX 1/F) -* FHA+1(X, WQX-1) --> 0 

          dV j,dV Fd 
   0 --> H'(X, W QX )/V -* H'(X, WQX/V) ---> yH'+1(X, W Q}) ->0 

                       H'(X, Q})



                          Hodge-Witt cohomology 

By the hypothesis of induction, we have 

    H'(X, WQX 1)/F = 0 and FH'+1(X, WQX~I) = 0 for j < n--i. 

Then we obtain 

               H'(X, WQT 1)/F= 0 for j < n--i. 

By (I) and (II), we have 

                     0 if j* i and i+ j< n 
         dim H'(X, Q}) = 

                       1 if j= i and i+j < n. 

This implies that 

                     0 if j a i and i+ j< n 
     dim H'(X, W SAX/V) = 

                       0 or 1 if j= i and i+ j< n, 

and hence 
                     0 if j* i and i+ j< n 

     dim H(X, WQX)/V = 
                       0 or 1 if j= i and i+ j< n.
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Since H(X, WQX) is V-adically separated ([4], Ch. II, Cor. 2.5), we obtain 

           H'(X, WQX) =0 if j * i and j < n-1. 

By (IV) we have H1(X, WQX)K=H21(X/W)K=K if 2i<n. Then we get H(X, 

WQX)/V ~0 and therefore dim H(X, WQX)/V =1. It follows that H1(X, WQX) 
=W and that F is bijective on H(X, WQX). 

   While proving Step 1, we have shown the following assertion. 

   STEP 2. H(X, WQX) is V-torsion-free. Hence H~-1(X, WQX) is a Cartier 
module. 

   STEP 3. (a) The differential d : H'(X, WQX) --~ H'(X, WQX+1) is zero if 
i+J~n. 

  (b) H'(X, WQX) is of finite type over W if i+j>n+1. 

   PROOF. First note that the differential d : H(X, WQX)-~H'(X, WQX+I) is 

zero if and only if dim Domino H(X, WQX)ti=0 (cf. [5], Ch. I, Prop. 2.18.). 
   By Step 1, dim Domino H(X, WQ y)i=0 if i+ j <n. Hence, by Ekedhal's 

duality ([3], Ch. IV, Cor. 3.5.1), dim Domino H(X, WQX)1=0, and therefore 

the differential d : H'(X, WQX)-->H'(X, WQX+1) is zero, if i+j>n. It follows 

that H'+1(X, WQX) is of finite type over W if i+ j> n. 

   STEP 4. (a) If i~ j and i+j>n+1, H(X, WQX)=0. 

   (b) If n+1 <2i<_2n, H(X, WQX)=W and F is bijective on H1(X, WQX). 

   PROOF. By Step 3, X is of Hodge-Witt type in degree r for r> n+1, that
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is, Hj(X, WQ}) is of finite type over W for each (i, j) with i+ j=r> n+1. 

Hence we have a decomposition of W-module 

                 Hr(X/W) _ H'(X, WQ}) 
                                                  i+j=r 

([5], Ch. IV, Th. 4.5). 
   Case 1. r is odd. 

   By (III) we have Hr(X/W)=O, and therefore H3(X, WQX)=0 for each (i, j) 

with i+ j=r. 
   Case 2, r is even and n+1<r<_2n. 

   By (IV) we have Hr(X/W)=W, and therefore, H3(X, WQ}) is torsion-free 

for each (i, j) with i+ j=r, and ~i+j-r rkwHj(X, WQX)=1. However, by (IV) 

we have H1(X, WQX)K=Hr(X/W)K=K if n/2<i<_n. Hence we obtain 

                          1 if i = j = r/2 
          rkwHj(X, WQ}) = 

                         0 if i~ j,i+j=r. 

   STEP 5. (a) If 2i~n+1, Hn-i+1(X, WQX)/F°°B=O. 

   (b) If 2i=n+1, Hn-i+l(X, WQX)/F°°B=W and F is bijective on Hn-i+1(X~ 
WQX)/F°°B. 

   PROOF. Consider now the commutative diagram with exact rows and 

columns: 

0 -~ H'-1+1(X, WQX-')/F--> Hn-i+1(X, WQX-'/F) - FHn-i+2(X, WQX 1) ->00

 dV

Put

and

[

Case 1. n~2i--1. 

B   (I) we have H )

          dV 

               -~ V -> Hn-i+1(X, WQX/V) 

      H'(X, Qx)• 

M° r Hn-i+'(X, WQX 1)/F 
 dV = dV 

       L Hn-i+1(X, WQX)/V M1 

L° r Hn-i+1(X, WQX-1/F) 
 dV = dV 

L1 L Hn-i+1(X, WQX/V) 

n-i    +1                   lies that   X SlX         =O. This im

Fd

VHn-i+2(X, WQ}) -+ 0

                                                 dV : L°-L' is sur-y ( p 

jective, and therefore that L1=M1=F°°BM1 ([5], Ch. I, 1.4). Then we have 

       [Hn-i+1(X, WQX)/F°°B]/V = Hn-i+1(X, WQX)l(F°°B+V) = 0.
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Since H°-1+1(X, WQX)/F°°B is V-adically separated (loc. cit. Ch. I, Th. 2.9), 
we obtain 

    [H°-1+1(X, WQX)/F°°B]/V = 0. 

    Case 2, n=2i-1. 
   By (II) we have dim H1(X, Q}) =1. This implies that dim M1/F°°B <_ 

dim L1/F°°B=0 or 1. Further, we have Hi(X, WQX)K=H2i(X/W)K=K by (IV). 
Then we get [H1(X, WQX)/F°°B]/V ~0 and therefore dim [H1(X, WQX)/F°°B]/V 
=1. It follows that H1(X, WQ-)/F°°B=W and that F is bijective on Hi(X, 
WQX)/F°°B. 
   The proof of the theorem is now completed. 

   COROLLARY. Let X be a smooth complete intersection of dimension n in a 

projective space over a perfect field k of characteristic p>0. 
   (a) If i* j and i+j~n, n+l, H1(X, WQX,,og)=0. 

   (b) If 2i~n, n+1 and 0<i<_n, Hi(X, WQX,Iog)=Zp. 
   (c) Hn-i(X, W QX, log) is a free Zp-module and rk2p H n-~(X, WQX,,og) _ 

dimKH°(X/W)K'. 

   (d) If 2i~n+1, Hn-it1(X, WQX,log)=Un-i+1(X, WQX,log) 

• 

   (e) If 2i=n+1, Hn-+1(X, WQX.iog)/U°-i+1(X, WQ},log)=Zp. 

   PROOF. By Illusie-Raynaud [5], Ch. IV, Th. 3.3, we see that 

   (1) H'(X, WQX,log) is an extension of a pro-etale quasi-algebraic group 
D'(X, WQX, log) by a connected unipotent quasi-algebraic group U'(X, WQX, log) ; 

   (2) dim U'(X, WQX, log)=dim Domino H'(X, WQk)i-1 ; 
   (3) D'(X, WQX,1og) (k) is isomorphic to F_1(HeartH'(Xk, WQk)i)ss. 

   Now we can deduce the assertions from the theorem as follows. 

   Case 1, i + j * n, n+1. 

   By Step 3, the differentials d : H'(X, WQX 1)--~H'(X, WQI-) and d : H~(X, 
WQj)--J-1(X, WQy1) are zero. Hence 

                 Heart H'(X, WQX)i = H'(X, WQ}) 

(cf. [5], Ch. I. Prop. 2.18), and therefore 

                               W if i = j 
              Heart H'(X, WQ)i = 

                           0 if i ~ j . 

This implies (a) and (b). 

   Case 2. i+ j=n. 

   By Step 3, the differential d : H'(X, WQX-1)-- H'(X, WQX) is zero. Hence 

              Heart H'(X, N7QX)i = V -°°Z c H'(X, WQX), 

and therefore Heart H'(X, WQX)i is torsion-free. This implies (c).
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   Case 3. i+j=n+1. 

   By Step 3, the differential d : H'(X, WQX)-->H'(X, WQX+') is zero. Hence 

               Heart H'(X, WQk)i = H'(X, WQX)/F°°B, 

and therefore 

                               W if i = j 
              Heart H'(X, WQ~)i = 

                                0 if i=/=j. 

This implies (d) and (e). 

   REMARK. By Deligne (cf. [6]), general smooth complete intersections of 

dimension n and of multidegree (d1, ", dm) in a projective space are ordinary. 

In this case, H'(X, W Q}) is a free W-module of rank h i'(X) =dim k H'(X, Q j) 

and F is bijective on H'(X, WQX) for each (i, j). 
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