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\S 1. Introduction.

Let $X=(X(n) ; n\in Z)$ be a $d$-dimensional weakly stationary time series on
a Probability sPace $(\Omega, B, P)$ with exPectation vector $0$ and covariance matrix
function $R$ . Wiener and Masani ([16], [17], [3]) have developed a theory of
$the_{\wedge}^{\sim}1inear$ predicUon problem for the time series $X$ . By the innovation method,
they have introduced an innovation process $\epsilon_{+}=(\epsilon_{+}(n);n\in Z)$ by

(1.1) $\epsilon_{+}(n)=X(n)-P_{r_{arrow}^{n-1}cx)}X(n)$ ,

where $P_{r_{\infty}^{\underline{n}-1}CX)}$ stands for the projection operator on the past subspace $M_{\infty}^{\underline{n}-1}(X)$

of $L^{g}(\Omega, \mathcal{B}, P)$ defined by

(1.2) $M_{\infty}^{\underline{n}-1}(X)=the$ closed subspace generated by {$X_{j}(l)$ ; l$n--l, $1\leqq j\leqq d$}.

We denote by $V_{+}\in M(d;R)$ the prediction error matrix:

(1.3) $V_{+}=E(\epsilon_{+}(0)^{t}\epsilon_{+}(0))$ .
The process $X$ is said to be purely nondeterministic if and only if

$\bigcap_{n\in Z}M_{\infty}^{\underline{n}}(X)=0$ and to be of full rank if and only if the rank of the matrix
$V_{+}$ is $d$ . It has been in [16] characterized that $X$ is purely nondeterministic
and of full rank if and only if it has a spectral density matrix function $\Delta$ such
that

(1.4) $\log(\det(\Delta))\in L^{1}(-\pi, \pi)$

and then proved that

(1.5) $\det V_{+}=\exp[\frac{1}{2\pi}\int_{-\pi}^{\pi}\log(\det(\Delta(\theta)))d\theta]$ .
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Furthermore in [17] and [3] they have derived a generating function which,
in the one-dimensional case, corresponds to the outer function of the spectral
density function: the main purpose of [17] was to obtain certain algorithms
computing the generating function, the linear predictor and the prediction error
matrix in terms of the spectral density matrix function under the conditions
that $X$ is purely nondeterministic and of full rank and the eigenvalues of the
spectral density matrix function are essentially bounded above and away from
zero; the latter condition has been weakened in [3]. For that purpose, they
have used the theorem of alternating projections due to von Neuman [14].

However, it seems that they have not succeeded in obtaining the computable
algorithm which is fit for the application to other science.

Differently from Wiener-Masani’s method in [16], [17] and [3], we shall
apply the theory of $KM_{2}O$-Langevin equations to the linear prediction problem
for the process $X$ which is purely nondeterministic and of full rank and to
solve some unsettled problems in [17] and [3]. We shall find that, in addition
to the forward innovation process $e_{+}$ and the forward prediction error matrix
$V_{+}$ , the backward innovation process $e_{-}=(\epsilon_{-}(n);n\in Z)$ and the backward pre-
diction error matrix $V_{-}\in M(d;R)$ will be indispensable to obtain certain com-
putable algorithm for the linear predictor which is fit for the application to
other science:

(1.6) $\epsilon_{-}(n)=X(n)-P_{u_{n+1}^{\infty}cx)}X(n)$ ;

(1.7) $V_{-}=E(\epsilon_{-}(0)^{t}\epsilon_{-}(0))$ .
By using the so-called innovation method, we have in [7] constructed the

theory of $KM_{2}O$-Langevin equations with finite delay drift term for the multi-
dimensional weakly stationary time series. Some relations which hold between
Mth the delay and fluctuation coefficients in $KM_{2}O$-Langevin equations play
important roles in this theory. In the field of systems, control and information
engineerings, they have been known as LD-algorithm for the one-dimensional
case and LWWR-algorithm for the multi-dimensional case in the model fitting
of AR-Langevin equations with finite degree $([2], [1], [15J, [18])$ . A funda-
mental feature of the theory of $KM_{2}O$-Langevin equations lies in a comprehen-
sion that such algorithms can be understood as a kind of fluctuation-dissipation
theorem ([7]). As the application of the theory of $KM_{2}O$-Langevin equations to
data analysis, we are going to develop a new project of the stationary, causal
and prediction analysis ([11], [10], [13]).

NOW we shall explain the contents of this paper. In \S 2 we shall recall and
rearrange a part of the Wiener-Masani’s theory in [16]. The theory of $KM_{g}0-$

Langevin equations will be introduced in \S 3 according to [7]. In particular,
we shall rearrange the $KM_{2}O$-Langevin data associated with the process $X$
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which consists of the triplet of the forward and backward $KM_{g}O$-Langevin delay
functions, the forward and backward $KM_{g}O$-Langevin partial correlation func-
tions, and the forward and backward $KM_{2}O$-Langevin fluctuation functions. By
taking certain scaling limit of the forward (resp. backward) $KM_{g}O$-Langevin
equation, we shall in \S 4 derive a forward (resp. backward) $AR(\infty)$-Langevin
equation which governs the time evolution of the time series X. \S 5 treats the
global behaviour of the $KM_{2}O$-Langevin partial correlation (resp. delay) functions
by using the algorithms mentioned above. We shall in \S 6 obtain two kinds of
prediction formulae for the linear predictor in terms of the innovation process
$\bullet+and$ the process $X$ , respectively. In the final \S 7, we shall give a concrete
representation theorem for the generating function in the Wiener-Masani’s theory
([17] and [3]) which, according to the nomenclature in the one-dimensional
time series, will be called in this paper an outer matrix function of the spectral
density matrix function $\Delta$ of the time series $X$ .

This paper has been announced in [8]. The method used in this Paper can
be effectively applied to the non-linear prediction problem for one-dimensional
strictly stationary time series in order to resolve the open problem in Masani
and Wiener ([4]) which will be apPeared in the future ([12]). Furthermore in
[13] we shall develop the prediction analysis based upon non-linear causal
analysis in the part (III) of our new project.

\S 2. The Wiener-Masani’s theory.

Let $X=(X(n);n\in Z)$ be a $d$-dimensional weakly stationary time series on
a probability space $(\Omega, \mathcal{B}, P)$ with expectation vector $0$ and covariance matrix
function $R$ :
(2.1) $E(X(n))=0$ $(n\in \mathbb{Z})$ ;

(2.2) $E(X(m)^{t}X(n))=R(m-n)$ $(m, n\in Z)$ .
We introduce a notation which will be often used in this paper. For any

$d$-dimensional square-integrable stochastic process $Y=((Y_{1}(n), Y_{g}(n),$ $\cdots$ , $Y_{d}(n))$ ;
$n\in Z)$ defined on the probability space $(\Omega, \mathcal{B}, P)$ , we define, for any $m,$ $n,$ $-\infty$

$n$m\leqq \infty , a real closed subspace Mre $(Y)$ of $L^{2}(\Omega, \mathcal{B}, P)$ by

(2.3) Mre $(Y)\equiv the$ closed linear hull of { $Y_{j}(k);k\in Z$, n\leqq k$m, $1\leqq j\leqq d$ }.

Furthermore $P_{r_{n}^{m_{CY)}}}$ denotes the projection operator on the closed subspace
$M_{n}^{m}(T)$ .

We shall recall and rearrange a part of the Wiener-Masani’s theory for the
linear prediction problem of the time series $X([16])$ . By the innovation method,
they have introduced an innovation process $e_{+}=(\epsilon_{+}(n);n\in Z)$ by
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(2.4) $\epsilon_{+}(n)=X(n)-P_{r_{\infty}^{\underline{n}-1}tX)}X(n)$

and defined the prediction error matrix $V_{+}\in M(d;R)$ by

(2.5) $V_{+}=E(\epsilon_{+}(0)^{\iota}\epsilon_{+}(0))$ .
It is easy to see that the time series $\epsilon_{+}$ is a white noise with covariance matrix
function $V_{+}$ , that is, for any $m,$ $n\in Z$ ,

(2.6) $E(\epsilon_{+}(m)^{\iota}\epsilon_{+}(n))=\delta_{mn}V_{+}$ .
The process $X$ is said to be purely nondeterministic if and only if

(2.7) $\bigcap_{n\in Z}M_{\infty}^{\underline{n}}(X)=0$

and Wiener and Masani have proved

THEOREM 2.1 ([16]). The condition (2.7) is equivalent to the following causal
condition :
(2.8) $M_{\infty}^{\underline{n}}(X)=M_{\infty}^{\underline{n}}(e_{+})$ $(n\in Z)$ .

Furthermore, $X$ is said to be of full rank if and only if the rank of the
matrix $V_{+}$ is $d$ . Wiener and Masani have proved

THEOREM 2.2 ([16]). The time series $X$ is Purely nondeterministic and of
full rank if and only if it has a $sPectral$ density matrix function $\Delta$ such that

(2.9) $\log(\det(\Delta))\in L^{1}(-\pi, \pi)$ .
Then the following formula holds:

(2.10) $\det V_{+}=\exp[\frac{1}{2\pi}\int_{-\pi}^{n}\log(\det(\Delta(\theta)))d\theta]$ .

We call the time series $\bullet+and$ the matrix $V_{+}$ the forward innovation pro-
cess and the forward prediction error matrix, respectively. For further study,
we need to introduce the backward innovation process $\epsilon-=(\epsilon_{-}(n);n\in Z)$ and
the backward prediction error matrix V-by

(2.11) $\epsilon_{-}(n)=X(n)-P_{r_{n+1}^{\infty}cx)}X(n)$

and

(2.12) $V_{-}=E(\epsilon_{-}(0)^{\iota}\epsilon_{-}(0))$ .
Similarly for $\epsilon_{+}$ , the time series $\epsilon_{-}$ is a white noise with covariance matrix

function $V_{-}:$

(2.13) $E(\epsilon_{-}(m)^{t}\epsilon_{-}(n))=\delta_{mn}V_{-}$ $(m, n\in Z)$ .
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COROLLARY 2.1. We assume that the time series $X$ is Purely nondeterministic
and of full rank. Then the following hold:

(2.14) $M_{n}^{\infty}(X)=M_{n}^{\infty}(\epsilon_{-})$ $(n\in Z)$ :
(2.15) $\det V_{-}=\exp[\frac{1}{2\pi}\int:_{n}\log(\det(\Delta(\theta)))d\theta]$ .

PROOF. We consider the $d$-dimensional weakly stationary time series $X_{-}\equiv$

$(X(-n);n\in Z)$ . When we use the notation that $\epsilon_{-}(X)$ (resp. $\epsilon_{+}(X_{-})$) stands
for the backward (resp. forward) innovation process associated with the time
series $X$ (resp. $X_{-}$), it can be seen that $M_{n}^{\infty}(X)=M_{r}^{-n}(X_{-})$ and $e_{-}(X)(n)=$

$L\bullet_{+}(X_{-})(-n)$ . Furthermore it follows that the spectral density matrix function
of $X_{-}$ becomes $\iota\Delta(\theta)$ and $\det(\Delta(\theta))=\det(\iota\Delta(\theta))$ . Therefore we can prove Corol-
lary 2.1 from Theorems 2.1 and 2.2. Q. E. D.

\S 3. The theory of $KM_{2}O$-Langevin equations.

We shall recall the theory of $KM_{f}O$-Langevin equations from [7]. Let $X=$

$(X(n);n\in Z)$ be the same time series as in \S 2. In this section, we treat the
case where the covariance function $R$ has a spectral density matrix function $\Delta$

defined on $[-\pi, \pi)$ :

(3.1) $R(n)= \int_{-\pi}^{\pi}e^{-ln\theta}\Delta(\theta)d\theta$ $(n\in Z)$ .
Then we define, for each $n\in N$ , two block Toeplitz matrices $T_{n}^{+},$ $T_{\overline{n}}\in$

$M(nd;R)$ by

$(3.2_{\pm})$
$T_{n}^{\pm}=(R(\mp 1)R(0)$

$R(\mp(n-2))R(0)R(\pm 1)..\cdot.\cdot R(\pm(n-1))R(0)\cdot\cdot..R(\pm(n-2)))$ .

It is to be noted ([7]) that

(3.3) $\iota_{R(n)}=R(-n)$ $(n\in Z)$ ,

(3.4) $T_{n}^{+},$ $T_{\overline{n}}\in GL(nd;R)$ $(n\in N)$ , and

(3.5) $T_{1}^{+}=T_{1}^{-}=R(0)$ .
According to the method of innovation, we introduce the d-dimensional

forward (resp. backward) $KM_{2}O$-Langevin force $\nu_{+}=(\nu_{+}(n);n\in N^{*})$ (resp. $\nu-=$

$(\nu_{-}(l);l\in-N^{*}))$ as follows:
$(3.6_{+})$ $\nu_{+}(n)=X(n)-P_{H_{0}^{n-1_{(X)}}}X(n)$ $(n\in N^{*})$ ;
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$(3.6_{-})$ $\nu_{-}(1)=X(l)-P_{\kappa_{l+1}^{0}cx)}X(l)$ $(l\in-N^{*})$ ,

where $N^{*}=\{0,1, 2, \},$ $-N^{*}=\{0, -1, -2, \}$ , and $M_{0}^{-1}(X)=M_{1}^{0}(X)=\{0\}$ .
For each $n\in N*$ , let $V_{+}(n)$ (resp. $V_{-}(n)$) be the covariance matrix of $\nu_{+}(n)$

(resp. $\nu_{-}(-n)$). We call the function $V_{+}(\cdot)$ (resp. $V_{-}(\cdot)$) the forward (resp.

backward) $KM_{2}O$-Langevin fluctuation function. The following causal relation
holds among $X,$ $\nu_{+}$ and $\nu-$ :

Causal relation ([7]).

(3.7) $\nu_{+}(0)=\nu_{-}(0)=X(0)$ .
$(3.8_{\pm})$ $E(\nu_{\pm}(\pm m)^{t}\nu_{\pm}(\pm n))=\delta_{mn}V_{\pm}(n)$ $(m, n\in N^{*})$ .
$(3.9_{+})$ $M_{0}^{n}(X)=M_{0}^{n}(\nu_{+})$ $(n\in N^{*})$ .
$(3.9_{-})$ $M_{-n}^{0}(X)=M_{-n}^{0}(\nu_{-})$ $(n\in N^{*})$ .

Let the system $\{\gamma_{+}(n, k),$ $\gamma_{-}(n, k),$ $\delta_{+}(m),$ $\delta_{-}(m),$ $V_{+}(l),$ $V_{-}(l);l\in N*,$ $m,$ $n\in N$ ,
$1\leqq k<n\}$ of $M(d;R)$ be the $KM_{2}O$-Langevin data associated with the process
X. We know that $X$ satisfies the forward (resp. backward) $KM_{2}O$-Langevin
equation $(3.10_{+})$ (resp. $(3.10_{-})$):

$KM_{g}O$-Langevin equations ([7]).

$(3.10_{\pm})$ $X( \pm n)=-\sum_{l=1}^{n-1}\gamma_{\pm}(n, k)X(\pm k)-\delta_{\pm}(n)X(O)+\nu_{\pm}(\pm n)$ $(n\in N)$ .

We call the function $\gamma_{+}(\cdot, *)$ (resp. $\gamma_{-}(\cdot,$ $*)$) the forward (resp. backward)

$KM_{2}O$-Langevin delay function associated with the process $X$ . The function
$\delta_{+}(\cdot)$ (resp. $\delta_{-}(\cdot)$) is said to be the forward (resp. backward) $KM_{g}O$-Langevin
partial correlation function associated with the process $X$ .

REMARK 3.1. The forward $KM_{g}O$-Langevin equation $(3.10_{+})$ is a discrete
analogue to the $(\alpha, \beta, \gamma, \delta)$-Langevin equation derived by T. Miyoshi ([5], [6]).

Concerning the relation between the Toeplitz matrices and the $KM_{2}O-$

Langevin fluctuation functions, we can use the $KM_{2}O$-Langevin equations to
see that

(3.11.) $\det$ Tfi $= \prod_{l=0}^{n-1}\det V_{\pm}(k)$ $(n\in N)$ .

If follows from (3.4) and $(3.11_{\pm})$ that

(3.12) $V_{+}(n),$ $V_{-}(n)\in GL(d;R)$ $(n\in R^{Y*})$ .
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The fluctuation-dissipation theorem (FDT) we have stated in \S 1 is the fol-
lowing:

FDT ([2], [1], [15], [18], [7]). For any $n,$ $k\in N,$ $n>k$ ,

$(3.13_{\pm})$ $\gamma_{\pm}(n, k)=\gamma_{\pm}(n-1, k-1)+\delta_{\pm}(n)_{\mp}\gamma(n-1, n-k-1)$ ;

$(3.14_{\pm})$ $V_{\pm}(n)=(I-\delta_{\pm}(n)\delta_{\mp}(n))V_{\pm}(n-1)$ ;

(3.15) $\delta_{-}(n)V_{+}(n-1)=V_{-}(n-1)^{t}\delta_{+}(n)$ ;

(3.16) $\delta_{-}(n)V_{+}(n)=V_{-}(n)^{t}\delta_{+}(n)$ ,

where we $p_{u}t$

(3.17) $\gamma_{+}(m, 0)=\delta_{+}(m)$ and $\gamma_{-}(m, O)=\delta_{-}(m)$ $(m\in N)$ .

FDT implies that both the $KM_{2}O$-Langevin delay and fluctuation functions
can be recursively calculated from the $KM_{2}O$-Langevin partial correlation func-
tions. On the other hand, the latter can be obtained from the correlation func-
tion $R$ by the following formulae:

$KM_{g}O$-Langevin partial correlation functions ([2], [1], [15], [18], [7]).

$(3.18_{\pm})$ $\delta_{\pm}(n)=-(R(\pm n)+\sum_{k=0}^{n-l}\gamma_{\pm}(n-1, k)R(\pm(k+1)))V_{\pm}(n-1)^{-1}$ $(n\in N)$ .

For any $m,$ $n\in N*,$ $m\geqq n$ , we define $P_{+}(m, n),$ $P_{-}(m, n)$ and $e_{+}(m, n),$ $e_{-}(m, n)$

by

$(3.19_{\pm})$ $P_{\pm}(m, n)=E[X(\pm m)^{t}\nu_{\pm}(\pm n)]V_{\pm}(n)^{-1/2}$

and

$(3.20_{+})$ $e_{+}(m, n)=E[(X(m)-P_{M_{0}^{n_{(X)}}}X(m))^{t}(X(m)-P_{r_{0}^{n_{(X)}}}X(m))]$ ,

$(3.20_{-})$ $e_{-}(m, n)=E[(X(-m)-P_{H_{-n^{(X)}}^{0}}X(-m))^{t}(X(-m)-P_{H_{n^{(X)}}^{\underline{0}}}X(-m))]$ .

We call the function $P_{+}(\cdot, *)$ (resp. $P_{-}(.,$ $*$)) the forward (resp. backward) pre-
diction function and the function $e_{+}(\cdot, *)$ (resp. $e_{-}(\cdot,$ $*)$) the forward (resp. back-
ward) prediction error function. Then we know

Prediction formulae ([7]). (i) For any $m,$ $n\in N*,$ $m\geqq n$ ,

$(3.21_{+})$ $P_{u_{0}^{n_{CX)}}}X(m)= \sum_{l=0}^{n}P_{+}(m, k)V_{+}(k)^{-1/g}\nu_{+}(k)$ ;

$(3.21_{-})$ $P_{u_{-n^{(X)}}^{0}}X(-m)= \sum_{l=0}^{n}P_{-}(m, k)V_{-}(k)^{-1/2}\nu_{-}(-k)$ .
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(ii) For any $m,$ $n\in N*,$ $m>n$ ,

$(3.22_{+})$ $P_{H_{0}^{n_{(X)}}}X(m)= \sum_{l=0}^{n}Q_{+}(m, n;k)X(k)$ ;

$(3.22_{-})$ $P_{H_{n^{(X)}}^{\underline{0}}}X(-m)= \sum_{k-0}^{n}Q_{-}(m, n;k)X(-k)$ .
$Here_{*}^{arrow}theM(d;\mathbb{R})$-valued prediction functions $P_{\pm}(\cdot, *)$ and $Q_{\pm}(\cdot, *;\star)$ can be

determined by the following algorithms:

Prediction algorithms ([7]). (i) For any $m,$ $k\in N*,$ $m\geqq k$ ,

$(3.23_{\pm})$ $P_{\pm}(m, k)=\{$

$V_{\pm}(k)^{1/2}$ if $m=k$

$-\Sigma_{l=k}^{m-1}\gamma_{f}(m, l)P_{f}(l, k)$ if $m\geqq k+1$ .
(\"u) For any $m,$ $n,$ $k\in N*,$ $m>n\geqq k$ ,

$(3.24_{\pm})$ $Q_{\pm}(m, n;k)=\{$

$-\gamma_{*}(n+1, k)$ if $m=n+1$

$\Sigma_{l\neq n^{1}+1}^{m-}\gamma_{\pm}(m, l)Q_{\pm}(l, n;k)-\gamma_{\pm}(m, k)$ if $m\geqq n+2$ .
Finally the prediction error functions can be calculated by the following

formulae:

Prediction error formulae ([7]). (i) For any $m,$ $n\in N*,$ $m>n$ ,

$(3.25_{\pm})$ $e_{\pm}(m, n)= \sum_{k\approx n+1}^{m}P_{\pm}(m, k)^{\iota}P_{\pm}(m, k)$ .
(ii) In particular, for any $n\in N*$ ,

$(3.26_{\pm})$ $e_{\pm}(n+1, n)=(I-\delta_{\pm}(n+1)\delta_{*}(n+1))\cdots(I-\delta_{\pm}(1)\delta_{\tau}(1))R(0)$ .

\S 4. $AR(\infty)$-Langevin equations.

In the sequel, we shall assume that the time series $X$ is purely nondeter-
ministic and of full rank. Hence we remark from Theorem 2.2 that $X$ has
the spectral density matrix function $\Delta$ satisfying the regularity condition (2.9).

Let $N$ be any fixed natural number. Using the unitary discrete group
$(U(n);n\in Z)$ on the Hilbert space $M_{-\infty}^{\infty}(X)$ defined by

(4.1) $U(n)(X_{j}(m))=X_{j}(m+n)$ $(m, n\in Z, 1\leqq j\leqq d)$ ,

we define two $d$-dimensional weakly stationary processes $\epsilon_{N}^{+}=(\epsilon_{N}^{+}(n);n\in Z)$

and $\epsilon_{\overline{N}}=(\epsilon_{N}^{-}(n);n\in Z)$ by

$(4.2_{\pm})$ $\epsilon_{N}^{\pm}(n)=U(n\mp N)\nu_{\pm}(\pm N)$ .
Then the forward (resp. backward) $KM_{2}O$-Langevin equation $(3.10_{+})$ (resp. $(3.10_{-})$)
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can be transformed into the following generalized forward (resp. backward)
$AR(N)$-Langevin equation $(4.3_{+})$ (resp. $(4.3_{-})$):

$(4.3_{+})$ $X(n)=- \sum_{\iota\approx 1}^{N}\gamma_{+}(N, N-k)X(n-k)+\epsilon_{N}^{+}(n)$ $(n\in Z)$ ;

$(4.3_{-})$ $X(n)=- \sum_{l\approx\iota}^{N}\gamma_{-}(N, N-k)X(n+k)+\epsilon_{N}^{-}(n)$ $(n\in Z)$ .

REMARK 4.1. The AR-Langevin equations with finite degree can be charac-
terized in the framework of the generalized AR-Langevin equations ([10]).

According to the definition of the $KM_{t}0$-Langevin forces and $(4.2_{\pm})$ , we have

$(4.4_{+})$ $\epsilon_{N}^{+}(n)=X(n)-P_{H_{n-N^{(X)}}^{n-1}}X(n)$ $(n\in Z)$ ;

$(4.4_{-})$ $\epsilon_{N}^{-}(n)=X(n)-P_{r_{n+\iota}^{n+N_{(X)}}}X(n)$ $(n\in Z)$ .
Hence, by noting (2.4) and (2.11), we can let $Narrow\infty$ in $(4.4_{\pm})$ to obtain the fol-
lowing

THBOREM 4.1.

$(4.5_{\pm})$
$1.i.m.\epsilon_{N}^{\pm}(n)Narrow\infty=\epsilon_{\pm}(n)$ for any $n\in Z$ .

Concerning the global behaviour of the $KM_{g}O$-Langevin fluctuation functions,
we have

THEOREM 4.2.
$(4.6_{*})$ $\lim_{narrow\infty}V_{*}(n)=V_{f}$ .

PROOF. According to the definition of the forward $KM_{2}O$-Langevin force,
it follows from the weak stationarity of the process $X$ that, for any $n\in N$ ,

$V_{+}(n+1)=E[(X(0)-P_{H_{-n-\iota^{(X)}}^{-1}}X(0))^{\iota}(X(0)-P_{r_{-n-\iota^{(X)}}^{-1}}X(0))]$ .
Therefore, letting $narrow\infty$ in the above, we find from (2.4), (2.5), (2.11) and (2.12)
that $(4.6_{+})$ holds. In the same way, we can prove $(4.6_{-})$ . Q. E. D.

By virtue of Theorem 2.2, the matrices $V_{\pm}$ are non-singular and so we can
define two $d$-dimensional time series $\xi_{*}=(\xi_{\pm}(n);n\in Z)$ by

$(4.7_{*})$ $\xi_{f}(n)=V_{*}^{-1/2}\epsilon_{*}(n)$ .
It at once follows from (2.6) and (2.13) that two time series $\xi_{f}$ are standard
white noises:
$(4.8_{\pm})$ $E(\xi_{\pm}(m)^{t}\xi_{\pm}(n))=\delta_{mn}I$ .
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Immediately from (2.8), (2.14) and $(4.7_{\pm})$ , we have

THEOREM 4.3. There exist the following causal relations among $X$ and $\epsilon_{\pm}:$

$(4.9_{+})$ $M_{\infty}^{\underline{n}}(X)=M_{\infty}^{\underline{n}}(\xi_{+})$ $(n\in Z)$ ;

$(4.9_{-})$ $M_{n}^{\infty}(X)=M_{n}^{\infty}(\xi_{-})$ $(n\in Z)$ .
Moreover, by letting $Narrow\infty$ in the generalized $AR(N)$-Langevin equations

$(4.3_{\pm})$ , we find from Theorems 4.1 and 4.2 that

THEOREM 4.4. The time series $X$ satisfies the following two kinds of
stochastic difference equations:

$(4.10_{+})$ $X(n)=-1. i.m.\sum_{lNarrow\infty=1}^{N-1}\gamma_{+}(N, N-k)X(n-k)+V_{+}^{1/2}\xi_{+}(n)$ $(n\in Z)$ ;

$(4.10_{-})$ $X(n)=-1. i.m.\sum_{lNarrow\infty=1}^{N-1}\gamma_{-}(N, N-k)X(n+k)+V_{-}^{1/2}\xi_{-}(n)$ $(n\in Z)$ .

DEFINITION 4.1. We call equation $(4.10_{+})$ (resp. $(4.10_{-})$) the forward (resp.

backward) $AR(\infty)$-Langevin equation associated with the time series $X$ .
We remark that equations $(4.10_{\pm})$ give the concrete representations for the

inclusion $\supset$ in the causal relations $(4.9_{\pm})$ .

\S 5. The global behaviour of $KM_{2}O$-Langevin partial correlation
(resp. delay) functions.

In order to obtain the concrete form of the limit of coefficients in $AR(\infty)-$

Langevin equations $(4.10_{\pm})$ , we shall study the global behaviour for both the
$KM_{g}O$-Langevin partial correlation functions and the $KM_{2}O$-Langevin delay
functions.

LEMMA 5.1.
$\lim_{narrow\infty}\delta_{\pm}(n)=0$ .

PROOF. We claim that

(5.1) the sequence $(\delta_{+}(n);n\in N)$ is bounded.

By virtue of $(3.14_{\pm})$ and (3.15) in FDT,

$(5.2_{\pm})$ $V_{\pm}(n+1)-V_{\pm}(n)=-\delta_{\pm}(n+1)V_{\pm}(n)^{t}\delta_{\pm}(n+1)$

and. so, for any $x\in \mathbb{R}^{a}$ ,

$((V_{+}(n+1)-V_{+}(n))x, x)=(V_{+}(n)^{t}\delta_{+}(n+1)x,{}^{t}\delta_{+}(n+1)x)$ :

11: $(V_{+}(\infty)^{t}\delta_{+}(n+1)x,{}^{t}\delta_{+}(n+1)x)$ .
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Hence, there exists a positive constant $c$ such that, for any $n\in N$ ,

$||{}^{t}\delta_{+}(n+1)x||\leqq c||x||$ ,
which yields (5.1).

Let $D_{+}\in M(d;R)$ be any limit point of the sequence $(\delta_{+}(n);n\in N)$ along a
subsequence $(n_{i} ; k\in N)$ converging to $\infty$ . Letting $karrow\infty$ in $(5.2_{+})$ along the
subsequence above, we find that

$D_{+}V_{+}{}^{t}D_{+}=0$

and so the non-singularity of the matrix $V_{+}$ implies that $D_{+}=0$ , which com-
pletes the forward part. The backward part can be proved in like manner.

Q. E. D.

LEMMA 5.2.
$\lim_{narrow\infty}\gamma_{\pm}(n, k)=0$ for any fixed $k\in N$ .

PROOF. We show only the forward part, because the backward part can
be similarly proved. We claim that there exists a positive constant $c_{k}$ such that

(5.3) $||\gamma_{+}(n, n-k)||$ $ $c_{k}$ for any $n\geqq k$ .
By multiplying $\iota_{\nu_{+}(n-m)}$ (1:Sm:$ $k$) in the forward $KM_{2}O$-Langevin equation
$(3.10_{+})$ from the right, we have

(5.4) $E(X(n)^{t}\nu_{+}(n-m))$

$=- \sum_{\iota\Leftarrow 1}^{m-1}\gamma_{+}(n, n-l)E[X(n-l)^{\iota}\nu_{+}(n-m)]-\gamma_{+}(n, n-m)V_{+}(n-m)$ .
Since if follows from $(3.8_{+})$ and Theorem 4.2 that, for any $l\in Z$ ,

$||E(X(l)^{t}\nu_{+}(n-m))||\leqq||R(0)||||V_{+}(n-m)||\leqq||R(0)||^{g}$ ,

we can apply this and Theorem 4.2 to (5.4) to observe that (5.3) can be proved
by mathematical induction.

Therefore, we can conclude from $(3.13_{+})$ in FDT, Lemma 5.1 and (5.3) that
the forward part holds by mathematical induction. Q. E. D.

We are now in a position to state the main theorem for the global be-
haviour of the $KM_{g}O$-Langevin delay functions $\gamma_{+}(\cdot, *),$ $\gamma_{-}(\cdot,\cdot*)$ .

THEOREM 5.1. The limits $\gamma_{\pm}(k)\equiv\lim_{narrow\infty}\gamma_{f}(n, n-k)$ exist for any $k\in N*$

and they satisfy the following recursive relations:

$\gamma_{\pm}(k)=-\{E[X(0)^{t}\xi_{\pm}(\mp k)]-\sum_{l=1}^{\iota-1}\gamma_{\pm}(l)E[X(0)^{t}\xi_{\pm}(\mp(k-l))]\}V_{f^{-1/2}}$ .
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PROOF. We prove only the forward part. According to the definition of
the forward KM,$O$-Langevin force, for any $l,$ $n\in N*,$ $0\leqq l\leqq k-1<n$ ,

$E(X(n-l)^{\iota}\nu_{+}(n-k))=E(X(0)^{\iota}\epsilon_{n-i}^{+}(l-k))$ .
Substituting these relations into (5.4) with $m=k$ , we have, for any $n\in N,$ $n\geqq k$ ,

$E(X(0)^{\iota} \epsilon_{n-l}^{+}(-k))=-\sum_{\iota\approx\iota}^{\iota-1}\gamma_{+}(n, n-l)E[X(0)^{t}\epsilon_{n-\iota}^{+}(l-k)]-\gamma_{+}(n, n-k)V_{+}(n-k)$ .
Therefore, we can apply Theorem 4.1 to the equations above to observe that
the forward part holds by mathematical induction. Q. E. D.

\S 6. The prediction formulae.

We shall show that the $d$-dimensional white noises $\xi_{+}$ and $\xi_{-}$ in Theorem
4.1 play the same role as those in the canonical representation theorem for one-
dimensional purely nondeterministic weakly stationary processes and give some
prediction formulae.

At first we shall study the global behaviour of the prediction functions
$P_{\pm}(\cdot, *)$ .

THEOREM 6.1. (i) For any $k\in N*$ , the limits $P_{f}(k) \equiv\lim_{narrow\infty}P_{\pm}(n, n-k)$

exist and they are $rePresented$ in terms of the white noises:

(6.1) $P_{\pm}(k)=E(X(0)^{\iota}\xi_{\pm}(\mp k))$ .
$\zeta\dot{u})$ They satisfy the following estimates:

$(6.2_{\pm})$ $\sum_{l-0}^{\infty}P_{*}(k)^{\iota}P_{*}(k)\leqq C_{*}$

with two Posifive definite matrices $C_{+},$ $C_{-}\in GL(d;\mathbb{R})$ .
(iii) Moreover, they satisfy the following recursive relations:

$(6.3_{\pm})$ $\{$

$P_{*}(0)=V_{f}^{1/8}$

$P_{*}(k)=-\Sigma_{l=0}^{l-1}\gamma_{\pm}(k-l)P_{\pm}(l)$ $(k\in N)$ .
PROOF. Only the forward part is proved. By $(3.19_{+})$ and $(4.2_{+})$ , for any

$n,$ $k\in N*,$ $n\geqq k$ ,

$P_{+}(n, n-k)=E[X(0)^{\iota}\epsilon_{n}^{+}(-k)]V_{+}(n-k)^{-1/}$ ,

which, combined with Theorems 4.1 and 4.2, implies that (i) holds. Further-
more, if follows from $(3.25_{+})$ that, for any $n,$ $k\in N^{*},$ $n\geqq k$ ,

(6.4) $e_{+}(n, n-k)= \sum_{I=1}^{l}P_{+}(n, n-k+l)^{\iota}P_{+}(n, n-k+l)$ .



Application of the theory of $KM_{l}O$-Langevin equations 289

On the other hand, we can see from $(3.20_{+})$ that there exists a positive
definite matrix $C_{+}\in GL(d;R)$ satisfying

(6.5) $e_{+}(n, n-k)\leqq C_{+}$ .
Therefore, by virtue of (i), we can let $narrow\infty$ in (6.4) to observe that (i1) holds
from (6.5).

Finally it follows from $(3.23_{\pm})$ that, for any $n,$ $k\in N$ ,

$\{$

$P_{f}(n, n)=V_{\pm}(n)^{1/2}$

$P_{\pm}(n, n-k)=-\Sigma_{l=0}^{l-1}\gamma_{f}(n, n-k+l)P_{f}(n-k+l, n-k)$ .
Therefore, letting $narrow\infty$ in the equations above, we find that (iii) follows from
(i), Theorems 4.2 and 5.1. Q. E. D.

REMARK 6.1. The recursive relations in Theorem 5.1, together with $(6.1_{\pm})$ ,
are the same as the relations $(6.3_{\pm})$ in Theorem 6.1.

Concerning the concrete representations for the inclusion $\subset$ in $(4.9_{\pm})$ , we
shall show

THEOREM 6.2. The time series $X$ can be represented in terms of the standard
whte noises $\xi_{\pm}:$

$(6.6_{+})$ $X(n)= \sum_{i=-\infty}^{n}P_{+}(n-k)\xi_{+}(k)$ $(n\in Z)$ ;

$(6.6_{-})$ $X(n)= \sum_{l=n}^{\infty}P_{-}(k-n)\xi_{-}(k)$ $(n\in Z)$ .
PROOF. Note that each component of the right-hand sides of $(6.6_{*})$ con-

verges in the space $L^{t}(\Omega, \mathcal{B}, P)$ by (ii) in Theorem 6.1. For any fixed $n\in Z$ ,
put

$Y\equiv X(n)-\sum_{\iota=-\infty}^{n}P_{+}(n-k)\xi_{+}(k)$ .
It follows from $(4.9_{+})$ that Ye $M^{\underline{n}_{\Phi}}(\xi_{+})$ . On the other hand, we see from $(4.9_{+})$

and $(6.1_{+})$ that, for any $m\in Z$ , m;$n,

$E(Y^{\iota}\xi_{+}(m))=E(X(0)^{t}\xi_{+}(m-n))-P_{+}(n-m)=0$

and so $Y=0$, giving $(6.6_{+})$ . In the same way, $(6.6_{-})$ can be proved. Q. E. D.

By virtue of Theorems 4.3 and 6.2, the predictor based upon the past (resp.

the future) can be concretely represented in terms of white noises $\xi_{+}$ and $\xi_{-}$ .
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THEOREM 6.3.
$(6.7_{+})$ $P_{M_{\infty}^{\underline{0}}(X)}X(n)= \sum_{i=-\infty}^{0}P_{+}(n-k)\xi_{+}(k)$ $(n\in N)$ .

$(6.7_{-})$ $P_{H_{0}^{\infty}(X)}X(-n)= \sum_{\iota=0}^{\infty}P_{-}(k+n)\xi_{-}(k)$ $(n\in N)$ .

On the other hand, we shall obtain another formulae of the predictors in
terms of the time series $X$ itself.

THEOREM 6.4.
$(6.8_{+})$ $P_{u_{-\infty}^{0}(X)}X(n)=1 i.m\dot{N}arrow\infty\sum_{\iota=0}^{N}Q_{+}(N+n, N;N-k)X(-k)$ $(n\in N)$ .

$(6.8_{-})$ $P_{u_{0}^{\infty}cx)}X(-n)=1 i.m.\sum_{l\dot{N}arrow\infty\approx 0}^{N}Q_{-}(N+n, N;N-k)X(k)$ $(n\in N)$ .

PROOF. We prove only $(6.8_{+})$ , because $(6.8_{-})$ can be proved in a similar
way. According to the prediction formula $(3.22_{+})$ with $m=N+n$ and $n=N$, for
any $N,$ $n\in N$ , we have

$P_{u_{0}^{N_{(X)}}}X(n+N)= \sum_{l=0}^{N}Q_{+}(n+N, N;k)X(k)$ .
By operating the shift operator $U(-N)$ to the equation above,

$P_{H_{-N^{CX)}}^{0}}X(n+N)= \sum_{l=0}^{N}Q_{+}(n+N, N;1V-k)X(-k)$ .
Hence, letting $Narrow\infty$ in this equation, we obtain $(6.8_{+})$ . Q. E. D.

In order to obtain the concrete form of the limit of coefficients in the pre-
diction formulae $(6.8_{\pm})$ , we shall study the global behaviour of the prediction
functions $Q_{\pm}(\cdot, *;\star)$ .

THEOREM 6.5. The limits $Q_{f}(n, k) \equiv\lim_{Narrow\infty}Q_{\pm}(n+N, N;N-k)$ exist for
any $n\in N,$ $k\in N*$ and they satisfy the following recursive relations:

$(6.9_{\pm})$ $\{$

$Q_{\pm}(1, k)=-\gamma_{\pm}(k+1)$

$Q_{\pm}(n, k)=\Sigma_{t=1}^{n-1}\gamma_{\pm}(n-l)Q_{\pm}(l, k)-\gamma_{\underline{\neq}}(n+k)$ $(n\geqq 2)$ .

PROOF. By $(3.24_{+})$ ,

$Q_{\pm}(1+N, N;N-k)=-\gamma_{\pm}(N+1, N-k)$ .
Hence, it follows from Theorem 5.1 that $(6.9_{\pm})$ holds for $n=1$ . When $n\geqq 2$,
furthermore, by using $(3.24_{+})$ again,

$Q_{-*}(n+N, N;N-k)= \sum_{\iota=1}^{n-1}\gamma_{\pm}(n+N, l+N)Q_{\pm}(N+l, N;N-k)-\gamma_{\pm}(n+N, N-k)$ .
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Therefore, by virtue of Theorem 5.1, we can let $Narrow\infty$ in the above to observe
that the limits $Q_{\pm}(n, k) \equiv\lim_{Narrow\infty}Q_{\pm}(n+N, N;N-k)$ exist and they satisfy $(6.9_{\pm})$ ,
by mathematical induction. Q. E. D.

\S 7. Outer matrix functions for the process $X$.
We determine two $M(d;R)$-valued functions $E_{+},$ $E$-defined on $Z$ by

$(7.1_{\pm})$ $E_{\pm}(n)=\sqrt{}\overline{2\pi}\chi_{10.1\ldots.1(\pm n)^{p_{\pm}}(\pm n)}$

and then denote by $H_{+}$ , H-their Fourier inverse transform:

$(7.2_{\pm})$ $H_{\pm}=\tilde{E}_{\pm}$ .
Immediately from Theorem 6.2, we have

$(7.3_{+})$ $X(n)= \frac{1}{v\overline{2\pi}}E_{+}*\xi_{+}(n)$ $(n\in \mathbb{Z})$ ;

$(7.3_{-})$ $X(n)= \frac{1}{\sqrt{2\pi}}E_{-}*\xi_{-}(n)$ $(n\in Z)$ .

It can be seen from $(7.3_{\pm})$ that

$(7.4_{+})$ $\Delta(\theta)=H_{+}(\theta)H_{+}(\theta)^{*}$ $a$ . $e$ . $\theta\in[-\pi, \pi)_{j}$

$(7.4_{-})$ $\Delta(\theta)=H_{-}(\theta)H_{-}(\theta)^{*}$ $a.e$ . $\theta\in[-\pi, \pi)$ .
In particular, it is to be noted from (2.9) and $(7.4_{\pm})$ that $H_{\pm}(\theta)$ belong to

$GL(d;R)$ for almost all $\theta\in[-\pi, \pi)$ . The function $H_{+}$ is named by the gener-
ating function in [16], [17] and [3]. By taking account of $(4.9_{\pm}),$ $(7.3_{\pm})$ and
$(7.4_{\pm})$ , according to the nomenclature in the one-dimensional case, we shall
give the following

DEFINITION 7.1. We call the matrix function $H_{+}$ (resp. $H_{-}$) the forward
(resp. backward) outer matrix function of the spectral density matrix function
$\Delta$ or the process $X$ .

The aim of this section is to obtain a concrete representation for the outer
matrix functions $H_{+},$ $H_{-}$ . Let $(E(\theta);\theta\in[-\pi, \pi))$ be the resolution of the
identity associated with the unitary discrete group $(U(n);n\in Z)$ acting on the
Hilbert space $M_{-\infty}^{\infty}(X)$ :

(7.5) $X(n)= \int_{-\pi}^{Jl}e^{-in\theta}dE(\theta)X(0)$ .

$It_{-}^{\vee}is$ to be noted that $the:spectral$ density matrix function $\Delta$ can be represented
as
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(7.6) $\Delta(\theta)d\theta=d(E(\theta)X(O), X(O))$ .
LEMMA 7.1.

$\xi_{\pm}(n)=\frac{1}{\sqrt{2\pi}}\int_{-\pi}^{\pi}e^{-ln\theta}H_{\pm}(\theta)^{-1}dE(\theta)X(0)$ $(n\in Z)$ .

PROOF. By Theorem 4.3, we can find two $M(d;\mathbb{C})$-valued functions $F_{\pm}=$

$(F_{jl}^{\pm})_{1\leq j.ISd}$ defined on $[-\pi, \pi)$ satisfying

$(7.7_{\pm})$ $F_{jk}^{\pm}\in L^{g}([-\pi, \pi),$ $\Delta_{\iota t}(\theta)d\theta)$ $(1\leqq j, k\leqq d)$ ;

$(7.8_{\pm})$ $\xi_{\pm}(0)=\int:_{i\Gamma}F_{\pm}(\theta)dE(\theta)X(0)$ .

However, since it follows from (2.4), (2.11) and $(4.7_{\pm})$ that

$(7.9_{\pm})$ $U(n)\xi_{\pm}(0)=\xi_{\pm}(n)$ for any $n\in Z$ ,

we can see that

$(7.10_{\pm})$ $\xi_{\pm}(n)=\int_{-\pi}^{n}e^{-in\theta}F_{\pm}(\theta)dE(\theta)X(0)$ $(n\in Z)$ .
By substituting $(7.10_{\pm})$ into $(7.3_{\pm})$ , we have

$X(n)= \sqrt{2\pi}\int_{-n}^{n}e^{-ln\theta}\tilde{E}_{\pm}(\theta)F_{\pm}(\theta)dE(\theta)X(0)$ for any $n\in Z$ .
Therefore, by virtue of the uniqueness of Fourier transform, it follows from
$(7.2_{\pm})$ and (7.5) that

$F_{\pm}= \frac{1}{\sqrt{2\pi}}H_{\pm}^{-1}$ ,

which, together with $(7.10_{\pm})$ , completes the proof of Lemma 7.1. Q. E. D.

For each $n\in N$ , two $M(d;R)$-valued functions $F_{n}^{+},$ $F_{\overline{n}}$ are defined on $[-\pi, \pi)$ :

$(7.11_{\pm})$ $F_{n}^{\pm}( \theta)=I+\sum_{l=1}^{n-1}\gamma_{\pm}(n, n-l)e^{s\iota\theta}$

We are now in a position to prove the main theorem of this section.

THEOREM 7.1. (i) The following limits exist in $L^{2}(-\pi, \pi)$ :

$1.i.m$ .$F_{n}^{\pm}H_{\pm}= \frac{1}{\sqrt{2\pi}}V_{\pm}(\infty)^{1/2}narrow\infty$

(ii) There exists a subsequence $(n_{k})_{k=1}^{\infty}$ converging to $\infty$ such that

$H_{\pm}( \theta)^{-1}=\sqrt{2\pi}V_{\pm}(\infty)^{-1/g}\lim_{larrow\infty}\sum_{\iota=1}^{n_{i}-1}(I+\gamma_{\pm}(n_{k}, n_{k}-l)e^{t\iota\theta})$
$a$ . $e$ . $\theta\in[-\pi, \pi)$ .
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PROOF. (ii) immediately follows from (i). Put

$Y(n)\equiv X(0)+\sum_{\iota\approx 1}^{n-1}\gamma_{+}(n, n-l)X(-l)-V_{+}(\infty)^{1/2}\xi_{+}(0)$ .
According to Theorem 4.4,

(7.12) $\lim_{narrow\infty}E(Y(n)^{t}Y(n))=0$ .
On the other hand, by virtue of Lemma 7.1, it follows from the spectral repre-
sentation (7.5) and $(7.11_{\pm})$ that

$Y(n)=\int_{-\pi}^{n}\{F_{n}^{+}(\theta)-\frac{1}{\sqrt{2\pi}}V_{+}(\infty)^{1/2}H_{+}(\theta)^{-1}\}dE(\theta)X(0)$ .
Hence, we find from $(7.4_{+})$ that

$E(Y(n)^{t}Y(n))$

$= \int_{-n}^{\pi}\{F_{n}^{+}(\theta)-\frac{1}{\sqrt{2\pi}}V_{+}(\infty)^{1/2}H_{+}(\theta)^{-1}\}\Delta(\theta)\{F_{n}^{+}(\theta)-\frac{1}{\sqrt{2\pi}}V_{+}(\infty)^{1/2}H_{+}(\theta)^{-1}\}^{*}d\theta$

$= \int_{-\pi}^{\pi}\{F_{n}^{+}(\theta)H_{+}(\theta)-\frac{1}{\sqrt{2\pi}}V_{+}(\infty)^{1/2}\}\{F_{n}^{+}(\theta)H_{+}(\theta)-\frac{1}{\sqrt{2\pi}}V_{+}(\infty)^{1/g}\}^{*}d\theta$ .
Therefore, combining this with (7.12), we have the forward part of (i). The
backward part can be similarly proved. Q. E. D.
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