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Introduction.

Let $Q^{*}$ be a subfield of $\overline{Q}$ , and suppose that we are given an open immer-
sion $j^{*}:$ $Y^{*}\subset,X^{*}$ of smooth and geometrically irreducible algebraic curves over
$Q^{*}$ , where $Y^{*}$ (resp. $X^{*}$ ) is affine (resp. proper) over $Q^{*}$ . Let $j$ : Yc.X be the
base change of $j^{*}$ to $\overline{Q}$ . Then for any abelian (or $Z_{\iota^{-}}$ ) sheaf $F$ on the \’etale

site of $Y^{*}$ , we have three kinds of \’etale cohomology groups: $H^{1}(Y, F),$ $H_{c}^{1}(Y, F)$

$=H^{1}(X, j_{!}F)$ and $H_{P}^{1}(Y, F):=H^{1}(X, j_{*}F)\cong{\rm Im}(H_{c}^{1}(Y, F)arrow H^{1}(Y, F))$ . Such co-
homology groups, being equipped with the action of the Galois group $G_{Q*}:=$

Gal $(\overline{Q}/Q^{*})$ , often come up as interesting objects when $Y^{*},$ $x*$ and $F$ are suitably
chosen. For instance, they naturally appear in the study of the elliptic modular
forms, when $Y^{*}$ and $X^{*}$ are the canonical models of the modular curves (cf.

[D] $)$ .
The purpose of this paper is to study the cohomology groups of the same

type, not for a single pair $Y^{*}cX^{*}$ , but for a tower of algebraic curves. Namely,
let $Y^{*}\subset_{arrow}X^{*}$ be as above, and consider a tower $\{Y_{n}^{*}\}_{n\in N}$ of geometrically irre-
ducible algebraic curves over $Q^{*}$ , all of which are \’etale coverings of $Y^{*}$ . In
the text, this tower will be subject to some simple “axioms”, which include
that all $Y_{n}:=Y_{n}^{*}\otimes_{Q}*\overline{Q}$ are Galois coverings of $Y$ , and that (SS: $=\varliminf_{n\in N}Ga1(Y_{n}/Y)$

is an “almost pro-l group” with a prime number $l$ . (See \S 1 for details, where
two basic examples of such towers can be also found.) Let $X_{n}^{*}$ be the normali-
zation of $x*$ in $Y_{n}^{*}$ , and put $X_{n}:=X_{n}^{*}\otimes_{Q*}\overline{Q}$ . The group (S3 naturally acts on
the various cohomology groups $H^{1}(Y_{n}, Z_{\iota}),$ $H_{c}^{1}(Y_{n}, Z_{l})$ and $H_{P}^{1}(Y_{n}, Z_{l})\cong$

$H^{1}(X_{n}, Z_{l})$ ; and hence we may consider them as modules over the completed
group algebra $\sim A:=Z_{\iota}[[\mathfrak{G}]]$ , as well as $G_{Q*}$-modules. Now we would like to
put such cohomology groups together to get single cohomology theories corre-
sponding to $H^{1}’,$ $H_{c}^{1}$

’ and $H_{P}^{1}$“, respectively attached to the given tower.
Natural candidates for such cohomology theories are simply the projective

limits $l\dot{g}\underline{m}_{n\in}{}_{N}H^{1}(Y_{n}, Z_{l}),$ $\varliminf {}_{n\in N}H_{c}^{1}(Y_{n}, Z_{\iota})$ and $1\dot{\not\leq}\underline{m}{}_{n\in N}H^{1}(X_{n}, Z_{\iota})$ relative to the
trace mappings; and our aim is to study their structure. Let $Z$ be the maxi-
mum connected pro-l \’etale Galois covering of the scheme $\varliminf_{n\in N}Y_{n}$ , and let $\mathfrak{F}$
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be the Galois grouP of $Z$ over $Y$ . We can then consider $Z$ as the pro-l universal
covering of our tower. On the other hand, there is the canonical homomorphism:
$\mathfrak{F}arrow \mathfrak{G}$ ; and we hereafter consider -A as an $\mathfrak{F}$-module through it. In \S 2, we make
succesive use of the Hochschild-Serre spectral sequence relative to $Z$ and the
“Shapiro isomorphism” for each member of the tower, and give the following
isomorphism of (right) A-modules:

(1) $\varliminf {}_{n\in N}H^{1}(Y_{n}, Z_{\iota})\cong H^{1}(\mathfrak{F}, \mathcal{A})$ .

Here in the right hand side, $H^{1}$ means the continuous cochaln cohomology group;
and $H^{1}(\mathfrak{F}, \mathcal{J}l)$ is regarded as au $\mathcal{A}$ -module via the obvious right $\lrcorner I$ -module struc-
ture of $A$ . In \S 3, we look at the Leray spectral sequences for $Y_{n}\subset,X_{n}$ to des-
crible the $\mathcal{A}$ -submodule $\varliminf {}_{n\in N}H^{1}(X_{n}, Z_{l})$ of $\varliminf {}_{n\in N}H^{1}(Y_{n}, Z_{\iota})$ in terms of con-
tinuous cochain “parabolic” cohomology group, which is defined in a similar
manner as in the classical case:

(2) $\varliminf_{n\in}{}_{N}H^{1}(X_{n}, Z_{l})\cong H_{P}^{1}(\mathfrak{F}, \mathcal{A})$ .

In the text, we also describe the action of $G_{Q*}$ on $H^{1}(\mathfrak{F},$ -fl $)$ and $H_{P}^{1}(\mathfrak{F},$ -fl $)$ so
that (1) and (2) are $G_{Q*}$-equivariant.

On the other hand, the isomorphism (1), when combined with a result of
Ihara (4.1.4), which is based on his free differential calculus on the “free almost
pro-l group” $\mathfrak{F}$ , enables us to give the following finite presentation of
$\varliminf {}_{n\in N}H^{1}(Y_{n}, Z_{l})$ as an $i$ -module (\S 4):

(3) $0arrow-Aarrow A^{\oplus r}arrow\llcorner im_{n\in}{}_{N}H^{1}(Y_{n}, Z_{\iota})arrow 0$

$(r=rank\mathfrak{F})$ , explicitly in terms of the (topological) free generators of & via (1).

This then allows us to describe $\lim {}_{arrow n\in N}H^{1}(X_{n}, Z_{\iota})\cong H_{P}^{1}(\mathfrak{F}, -A)\subset H^{1}(\mathfrak{F}, \mathcal{A})$ as an
$\mathcal{A}$ -module also.

The results above should be contrasted with Ihara’s theory of Galois repre-
sentations [I1], which we now briefly recall: Set $\%:=\lim_{arrow n\in N}T_{\iota}(Jac(X_{n}^{*}))$ , and
consider it as an $\mathcal{A}$ -module in a natural manner. Then in [I1], when $Y^{*}=$

$P_{Q*}^{1}-\{0,1, \infty\}$ , Ihara proved that there is an exact sequence:

$0arrow \mathfrak{T}arrow A^{\oplus 2}arrow i$

of A-modules, which can be explicitly written down using free differential
calculus on $\mathfrak{F}$ . Moreover, he defined certain anti 1-cocycles on $G_{Q*}$ with values
in A $\cross$ by means of which he described the action of $G_{Q*}$ on $\mathfrak{T}cA^{\oplus 2}$ ([I1] \S 1
(C) $)$ . We note that, in an unpublished part of the first draft of [I1], Ihara
has already shown how these results can be generalized to the case of general
base curves $Y^{*}$ rather than $P_{q*}^{1}-\{0,1, \infty\}|$ and also discussed the related co-
homology groups. Anyway, one of his starting point of view was to interpret
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El as the abelianization of $Ga1(Z/\varliminf_{n\in N}Y_{n})$ ; and in this sense we may consider
his theory as the “one-dimensional $l$-adic homology theory” of the tower. Our
motivation for the present work has been to seek the corresponding $l$-adic co-
homology theory. In this direction, when $Y^{*}=P_{q*}^{1}-\{0,1, \infty\}$ , we describe the
action of $G_{Q*}$ on $\varliminf {}_{n\in N}H^{1}(Y_{n}, Z_{l})$ in terms of Ihara’s anti 1-cocycles; and show
that the kernel of this Galois representation coincides with that of Ibara’s $\psi$ .
These results owe to the above mentioned unpublished results of Ihara in an
essential way.

AS for $H_{c}^{1}$ , we show that there is the following canonical isomorphism of
$A$ -modules (\S 5):

(4) $\iota\angle\underline{m}{}_{n\in N}H_{c}^{1}(Y_{n}, Z_{f})\cong Hom_{c,\mathfrak{F}}(9_{0}, \mathcal{A})$

where $9_{0}$ is certain “completed cuspidal divisor group of degree $0$ over $Z_{l}$
’ of

$Z$ ; and $Hom_{c.\mathfrak{F}}$ means the group of continuous homomorphisms of $\mathfrak{F}$-modules.
We use (\’etale version of) Grothendieck’s $G$ -sheaf theory to establish (4); and
also describe explicitly the canonical mapping: $\lim {}_{arrow n\in N}H_{c}^{1}(Y_{n}, Z_{l})arrow\lim {}_{arrow n\in N}H^{1}(Y_{n}, Z_{l})$

through (1) and (4). Such an interpretation of $H_{c}^{1}$ was motivated by the work
of Ash and Stevens [AS2] on modular symbols; and it is the starting point of
our $P$ -adic theory of modular symbols to be developed in a subsequent paper;
cf. below.

So far, we explained our results on cohomology groups for the “total tower”
$\{Y_{n}^{*}\}_{n\in N}$ for simplicity. But in the text, we also prove similar results for its
certain “subtower”. For example, in the case of the elliptic modular tower (\S 1),

the corresponding results can be formulated as follows: Fix an integer $N\geqq 4$

and a prime number 1; and let $\mathfrak{G}$ (resp. U) be the closure of the usual congruence
subgroup $\Gamma_{1}(N)$ in $SL_{2}(Z_{l})$ (resp. the subgroup consisting of upper triangular
unipotent matrices in $SL_{2}(Z_{\iota}))$ . Also let & be the completion of $\Gamma_{1}(N)$ with
respect to the pro-l topology of $\Gamma_{1}(N)\cap\Gamma(l)$ . Denoting by $Y_{1}(N)$ and $X_{1}(N)$ the
usual modular curves over $Q$ attached to $\Gamma_{1}(N)$ , we then have the following
isomorphisms:

(5) $\{$

$\varliminf {}_{n\in N}H^{1}(Y_{1}(Nl^{n})\otimes_{Q}\overline{Q}, Z_{\iota})\cong H^{1}(\mathfrak{F}, Z_{l}[[\mathfrak{G}/\mathfrak{U}]])$

$\varliminf {}_{n\in N}H^{1}(X_{1}(Nl^{n})\otimes_{Q}\overline{Q}, Z_{l})\cong H_{P}^{1}(\mathfrak{F}, Z_{l}[[\mathfrak{G}/\mathfrak{U}]])$

$\varliminf {}_{n\in N}H_{c}^{1}(Y_{1}(Nl^{n})\otimes_{Q}\overline{Q}, Z_{\iota})\cong Hom_{c.\mathfrak{F}}(9_{0}, Z_{\iota}[[\mathfrak{G}/\mathfrak{U}]])$ .

Here, $Z_{l}[[\mathfrak{G}/\mathfrak{U}]]$ is the maximum separated left $\mathcal{A}$ -module quotient of $A=$

$Z_{\iota}[[\mathfrak{G}]]$ on which $\mathfrak{U}$ acts trivially from the right; and $9_{0}$ is a certain comple-
tion of the “degree $0$-part” of the free abelian group on the set of cusps for
$\Gamma_{1}(N)$ .

NOW one of the interesting features of our cohomology theories with “generic”
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coefficients such as A or $Z_{l}[[\mathfrak{G}/\mathfrak{U}]]$ lies in that they have many “specializations”.
Namely, they “specialize” not only to the \’etale cohomology groups of $Y_{n}$ with
coefficients in the constant $Z_{\iota}$ -sheaf (via the natural projection), but also to
those with coefficients in certain twisted constant sheaves. In \S 6, we discuss
such “specialization mappings”, and give sufficient conditions for the finiteness
of their cokernels.

In the final \S 7, we study the groups (5) more closely. In this case, apply-
ing the method of \S 6, we can define the specialization mapping from
$km{}_{n\in N}H^{1}(X_{1}(Nl^{n})\otimes_{Q}\overline{Q}, Z_{\iota})$ to Deligne’s 1-adic representation space attached to
cusp forms of weight $k$ with respect to $\Gamma_{1}(Nl^{n})$ for each $k\geqq 2$ and $n\geqq 0$ . In
\S 7, we firstly deduce from a result in \S 6, combined with a result of Shimura,
that the cokernel of such a mapping is always finite. We then discuss Hecke
operators acting on the groups (5); and prove compatibility properties of Hecke
operators with respect to the specialization mappings. As an application, we
derive Deligne’s congruence relations on his 1-adic representation spaces from
the classical Eichler-Shimura congruence relations. We note that this method
of reducing the problem of cusp forms of higher weights to those of weight 2
is originally due to Shimura [Sh2] (cf. also [01]), and later it was further
developed by Hida [H2].

Finally, we would like to mention further aspect of our cohomology theory:
AS we noted above, the isomorphism (4) and the third one in (5) were suggested
by [AS2], in which Ash and Stevens developed the theory of higher weight
modular symbols. From this point of view, via the third isomorphism in (5),

an element of $\lim {}_{arrow n\in N}H_{c}^{1}(Y_{1}(Nl^{n})\otimes_{Q}\overline{Q}, Z_{l})$ can be interpreted as a modular sym-
bol with values in $Z_{\iota}[[\mathfrak{G}/\mathfrak{U}]]$ , the group of $Z_{\iota}$ -valued measures on $\mathfrak{G}/\mathfrak{U}$ . In a
subsequent paper (in which we replace 1’ by “

$p’$ ), we will study the measures
obtained from such “

$p$ -adic modular symbols“ in detail; and relate the integrals
against them with the special values of $L$-functions of elliptic cusp forms. We
will in particular give a generalization of congruences of Ash and Stevens be-
tween the special values of $L$-functions attached to two cusp forms ([AS2]
Corollary 4.6) to certain $p$ -adic families of ordinary cusp forms (in the sense of
Hida; cf. [H21). This paper in part includes preliminaries for this application.

TO conclude this introduction, I would like to express my sincere gratitude
to Professor Y. Ihara, for kindly allowing me to include his unpublished results
in this paper; and also for introducing me to this subject. During the prepara-
tion of a part of this paper, I was partially supported by the Max-Planck-
Institut f\"ur Mathematik in Bonn; and I would like to thank the MPI both for
its financial support and its hospitality.
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Notation and conventions.

For a Galois extension $L/K$ of fields, we denote by Gal $(L/K)$ its Galois
group. We let $Ga1(L/K)$ act on $L$ from the right; i.e. $x^{\sigma\tau}=(x^{\sigma})^{\tau}$ for all $x\in L$

and $a,$ $\tau\in Ga1(L/K)$ . For a field $K$, we denote by $\overline{K}$ its separable closure, and
write $G_{K}$ for Gal $(\overline{K}/K)$ .

When we are given a right action of a group $G$ on a set $S$ by $s-\rangle$ $s^{\sigma}(s\in S$ ,

$\sigma\in G)$ , we sometimes convert this action into a left action by: $s->\sigma\cdot s:=s^{\sigma^{-1}}$ ;
and vice versa.

If $R$ is a ring and $S$ is a set, the symbol $R[S]$ stands for the free R-module
generated by the elements of $S$ .

For a scheme $X$ , we denote by $X_{et}$ the small \’etale site of $X$ . If $f:Xarrow Y$

is a morphism of schemes, and $F$ is a sheaf (resp. an abelian sheaf) on $Y_{e’t}$ ,

we often write $F$ (resp. $H^{i}(X,$ $F)$ ) for $f^{*}F$ (resp. $H^{i}(X,$ $f^{*}F)$), when there is
no fear of confusion.

\S 1. Ihara’s tower of algebraic curves.

1.1. The basic setting. First we fix our notation which will be used
throughout this paper, following Ihara [I1].

We fix a prime number $l$ once and for all.
We fix an algebraic extension $Q^{*}$ of $Q$ , and an algebraic function field of

one variable $K^{*}$ whose constant field is $Q^{*}$ . Let $L^{*}$ be an extension of $K^{*}$

without constant field extension. We set $K:=K^{*}\cdot\overline{Q}$ and $L:=L^{*}\cdot\overline{Q}$ . We also
assume that we are given a finite set of prime divisors $c*$ of $K^{*}/Q^{*}$ , and
denote by $C=\{Q_{1}, \cdots Q_{s}\}$ the set of all prime divisors of $K$ lying above those
of $c*$ . The elements of $C$ or $c*$ (or their extensions) will be called “cusps”.

The “axioms” of our theory will be the following three conditions:
(A1) $L/K$ is a Galois extension, and is unramified outside $C$ .
(A2) $L/K$ is an “almost pro-l extension” in the sense that there is a finite

Galois subextension $K’/K$ of $L/K$ such that $L/K’$ is a pro-l extension.
(A3) If $C\neq\emptyset$ , then the ramification index of each $Q_{j}(1\leqq j\leqq s)$ in $L/K$ is

infinite.
Let $M$ be the maximum pro-l Galois extension of $L$ unramified outside the

prime divisors above $C$ . Then the extensions $L/K^{*},$ $M/K^{*}$ (and hence $M/L^{*}$ ,
$M/K$, and $M/L$ ) are Galois extensions, while the extension $L^{*}/K^{*}$ need not
be Galois. We set:
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(1.1.1) $\{$

$\mathfrak{F}:=Ga1(M/K)$

$\mathfrak{R}:=Ga1(M/L)$

$\mathfrak{G}:=Ga1(L/K)$

$\tilde{\mathfrak{G}}$

$:=Ga1(L/K^{*})$ .
There is an obvious exact sequence

(1.1.2) $1arrow \mathfrak{G}arrow\tilde{\mathfrak{G}}arrow G_{Q*}arrow 1$ ,

where $G_{Q*}=Ga1(\overline{Q}/Q^{*})$ . If we start from the situation $L/K/K^{*}$ , then to give
an $L^{*}$ is equivalent to give a splitting of the exact sequence (1.1.2). Identify-
ing $G_{Q*}$ with Gal $(L/L^{*})$ via the obvious isomorphism, $\rho\in G_{Q*}$ then acts on $\mathfrak{G}$

from the left by the inner automorphism, which we denote by $J_{\rho}$ :

(1.1.3) $J_{\rho}(g):=\rho g\rho^{-1}$

By this action, $\tilde{\mathfrak{G}}$ is a semidirect product of $G_{Q*}$ and G.
Fix a family $\{f_{n}\}_{n\in N}$ of open normal subgroups of $\mathfrak{G}$ , with a directed set

$N$, satisfying: (i) $f_{n}\subseteqq f_{m}$ if and only if $n\geqq m$ ; (ii) $\dagger f_{n}\}_{n\in N}$ is a fundamental
neighbourhood system of $1\in \mathfrak{G}$ ; and (iii) $J_{\rho}(f_{n})=f_{n}$ for all $p\in G_{Q*}$ and $n\in N$.
Since & and 6 are finitely generated topologically (cf. 3.1), we can in fact take
$\uparrow n$ to be characteristic subgroups of @.

DEFINITION (1.1.4). We denote by $A=Z_{\iota}[[\mathfrak{G}]]$ the completed group algebra
of $\mathfrak{G}$ over $Z_{\iota}$ . Thus

$\lrcorner\iota=\lim_{arrow m\in N.n\in N}(Z/l^{m}Z)[\mathfrak{G}_{n}]=\lim_{arrow n\in N}Z_{\iota}[\mathfrak{G}_{n}]$ ,

where $\mathfrak{G}_{n}=\mathfrak{G}/f_{n}$ . $\mathcal{A}$ is a compact topological ring with respect to the projec-
tive limit topology. The action $J_{\rho}$ on $\mathfrak{G}(\rho\in G_{Q*})$ naturally extends to a $Z_{\iota^{-}}$

algebra automorphism of $\mathcal{A}$ , which we denote by the same letter $J_{\rho}$ . We de-
note by $I$ the augmentation ideal of $\mathcal{A}$ .

For each $n\in N$, put

(1.1.5) $K_{n}:=L^{f_{n}}$ , $K_{n}^{*}$ $:=K_{n}\cap L^{*}$ .
Then it is easy to see that $K_{n}=K_{n}^{*}\cdot\overline{Q}$ . We shall use the following notation:
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(1.1.6) $\{$

$X_{n}^{*}$ (resp. $X^{*}$) $:=(the$ complete nonsingular curve over $Q^{*}$

whose function field is $K_{n}^{*}$ (resp. $K^{*}$) $)$

$X_{n}:=X_{n}^{*}\otimes_{Q*}\overline{Q}$ ; $X:=X^{*}\otimes_{Q*}\overline{Q}$

$Y^{*}:=X^{*}-C^{*};$ $Y:=X-C$

$Y_{n}^{*}:=$ ($the$ normalization of $Y^{*}$ in $K_{n}^{*}$)

$Y_{n}:=Y_{n}^{*}\otimes_{Q*}\overline{Q}$

$C_{n}:=X_{n}-Y_{n}$ .
Here, we identified $c*$ (resp. $C$ ) wlth the set of corresponding closed points of
$x*$ (resp. $X$).

1.2. Examples of Ihara’s tower. Here, we give two examples.

EXAMPLE (M): The maximum pro-l tower of $P_{Q}^{1}-\{0,1, \infty\}$ (cf. [I1] \S 1
(D) $)$ . Let us take $Q^{*}=Q$ and $K^{*}=Q(t)$ , the rational function field of one vari-
able over $Q$ . Let $c*$ be the set of prime divisors of $K^{*}$ corresponding to $t=$

$0,1$ , and $\infty$ ; and $L=M$ the maximum pro-l extension of $K=\overline{Q}(t)$ unramified
outside $C$ . Then there is so-called “Belyi’s model” $L^{*}$ of $L$ over $Q$ , so that
the conditions $(A1)-(A3)$ are satisfied. In this case, &=G is a free pro-l group
of rank 2, and the action $J_{\rho}$ of $G_{Q}$ on (SS or a gives a very large Galois re-
presentation.

EXAMPLE (E): Elliptic modular tower. Let $\mathcal{L}$ be the field of all auto-
morphic functions with respect to congruence subgroups of $SL_{2}(Z)$ whose co-
efficients of the Fourier expansions (at the cusp $i\infty$ ) all belong to $Q_{ab}$ , the
maximal abelian extension of $Q$ . Then by Shimura’s theory (Shimura [Shl]
6.5), there is a canonical surjective homomorphism

(1.2.1) $\tau:\Pi_{p}GL_{2}(Z_{p})arrow$ Gal $(\mathcal{L}/Q(j))$

whose kernel is $\{\pm 1\}$ , and such that

(1.2.2) $\{$

$f^{\tau(\alpha)}(z)=f(\alpha(z))$ if $\alpha\in SL_{2}(Z)$

$\tau(x)=[\det(x)^{-1}, Q]$ on $Q_{ab}$ ,

where $j$ is the usual elliptic modular $j$-function, and $[$–, $Q]$ is the Artin sym-
bol for $Q$ .

In the following, we fix a positive integer $N\geqq 4$ , and put

(1.2.3) $\{$

$U:=\Pi_{pkN}GL_{2}(Z_{p})$

$\cross\Pi_{pIN}\{\{\begin{array}{ll}a bc d\end{array}\}\in GL_{2}(Z_{p})|\{\begin{array}{ll}a bc d\end{array}\}\equiv\{\begin{array}{l}1 *0 *\end{array}\}mod$ N. $M_{2}(Z_{p})\}$

$U_{\infty}:=$ { $x\in U|thel$-component of $x$ is 1}.
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Let $K^{*}$ and $L’$ be the fixed fields of $\tau(U)$ and $\tau(U_{\infty})$ , respectively. Then it
follows from [Shl] Proposition 6.9 and (1.2.2) above that $K^{*}$ consists of all
modular functions with respect to $\Gamma_{1}(N)=U\cap SL_{2}(Z)$ whose coefficients of the
Fourier expansions are rational, and that the constant field of $L’$ is $Q(\mu_{\iota^{\infty}})$ ,

where $\mu l^{\infty}$ denotes the set of all $l$-powerth roots of unity. Now $\tau$ obviously
induces an isomorphism:

(1.2.4) $\mathfrak{G}^{*}:=\{\{\begin{array}{ll}a bc d\end{array}\}\in GL_{2}(Z_{\iota})|\{\begin{array}{ll}a bc d\end{array}\}\cong\{\begin{array}{ll}1 *0 *\end{array}\}mod N\cdot M_{2}(Z_{l})\}\simarrow$; Gal $(L’/K)$ .

Identifying these two groups by $\tau$ , let $L^{*}$ be the subfield of $L’$ corresponding to

$\{\{\begin{array}{ll}1 00 *\end{array}\}\in \mathfrak{G}^{*}\}$ , and put $\mathfrak{G}:=\mathfrak{G}^{*}\cap SL_{2}(Z_{l})$ . Then we have an isomorphism :

(1.2.5) $\mathfrak{G}=Ga1(L’/K^{*}(\mu_{\iota^{\infty}}))\cong$ Gal $(L/K)$ ,

where, as before, we put $L:=L^{*}\cdot\overline{Q}$ and $K:=K^{*}\cdot\overline{Q}$ . Putting $Q^{*}:=Q$ and
letting $C$ be the set of all prime divisors of $K^{*}/Q$ corresponding to the cusps
in the usual sense, these data satisfy the conditions $(A1)-(A3)$ .

In this case, $J_{\rho}$ is of elementary nature; $i.e.$ ,

(1.2.6) $J_{\rho}(\{\begin{array}{ll}a bc d\end{array}\})=\{\begin{array}{ll}a \chi_{l}(\rho)^{-1}bX_{l}(p)c d\end{array}\}$

for $p\in G_{Q}$ and $\{\begin{array}{ll}a bc d\end{array}\}\in \mathfrak{G}$ , where $\chi_{l}$ denotes the 1-cyclotomic character.

We shall return to this situation in \S 7.

For other examples, see [I1].

\S 2. One dimensional cohomology groups attached to Ihara’s tower.

In this section, we fix an Ihara’s tower (1.1) satisfying $(A1)-(A3)$ .

2.1. Continuous cochain cohomology groups.

DEFINITION (2.1.1). When $\mathscr{M}$ is a pro-l abelian group, and $\mathfrak{G}$ acts on $\mathscr{M}$

continuously and $Z_{l}$ -linearly from the left, we call $\mathscr{M}$ a pro-l $\mathfrak{G}$-module. Pro-l
$\mathfrak{F}$-modules and pro-l $\tilde{\mathfrak{G}}$-modules are defined similarly.

Note that a prol-l $\mathfrak{G}$-module can be considered as a left $i=Z_{l}[[\mathfrak{G}]]$ -module
in a natural manner; and similarly for pro-l $\tilde{\mathfrak{G}}-$ or pro-l $\mathfrak{F}$-modules. Now a
pro-l $\mathfrak{G}$-module $\mathscr{M}$ can be considerd as a pro-l $\mathfrak{F}$-module via the natural projec-
tion $\mathfrak{F}arrow \mathfrak{G}$ , and we are interested in the continuous cochain cohomology groups
$H^{t}(\mathfrak{F}, \mathscr{M})$ ; so let us recall their definitions. First, for any pro-l $\mathfrak{F}$-module $\mathscr{M}$ ,
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put

(2.1.2) $C^{\iota}(\mathfrak{F}, \mathscr{M}):=$ { $\alpha:\mathfrak{F}^{i}arrow \mathscr{M}|\alpha$ is continuous} ,

where $\mathfrak{F}^{i}$ is the product of $i$-copies of 8 ( $i\geqq 0$ ; we put $C^{0}(\mathfrak{F},$ $\mathscr{M})=\mathscr{M}$). The
differentiation operators d’ : $C^{i}(\mathfrak{F}, \mathscr{M})arrow C^{i+1}(\mathfrak{F}, \mathscr{M})$ are defined by:

(2.1.3) $(d^{i}\alpha)(x_{1}, \cdots , x_{i+1})=x_{1}\cdot\alpha(x_{2}, \cdots x_{\ell+1})$

$+\Sigma_{j=1}^{i}(-1)^{j}\alpha(x_{1}, \cdots x_{j}x_{j+1}, \cdots x_{i+1})+(-1)^{i+1}\alpha(x_{1}, \cdots x_{i})$ .

We then put

(2.1.4) $\{$

$Z^{i}(\mathfrak{F}, \mathscr{M}):=Ker(d^{i})$

$B^{i}(\mathfrak{F}, \mathscr{M}):={\rm Im}(d^{i-1})$

$H^{i}(\mathfrak{F}, \mathscr{M})$ $:=Z^{i}(\mathfrak{F}, \mathscr{M})/B^{i}(\mathfrak{F}, \mathscr{M})$ .

(Here we understand that $B^{0}(\mathfrak{F},$ $\mathscr{M})=\{0\}.$ ) The cohomology class of $\alpha\in Z^{\iota}(\mathfrak{F}, \mathscr{M})$

will be denoted by $cl(\alpha)$ . Recall that if $\mathscr{M}=\lim_{arrow i\in I}\mathscr{M}_{t}$ with pro-l $\mathfrak{F}$-modules $\mathscr{M}$

and $\mathscr{M}_{i}$ , then we have a canonical isomorphism:

(2.1.5) $H^{1}( \mathfrak{F}, \mathscr{M})\cong\lim {}_{arrow i\in I}H^{1}(\mathfrak{F}, \mathscr{M}_{i})$

(Serre [Se3] Proposition 7). Especially, since $\mathscr{M}$ is a pro-l group and $\mathfrak{F}$ is
topologically finitely generated (cf. 3.1), $H^{1}(\mathfrak{F}, \mathscr{M})$ is naturally equipped with
the structure of a pro-l abelian group.

Next assume that $\mathscr{M}$ is a pro-l $\tilde{\mathfrak{G}}$-module. In view of the semidirect prod-

uct expression: $\sim=G_{Q*}\ltimes \mathfrak{G}(1.1)$ , this is equivalent to saying that $\mathscr{M}$ is a pro-l
$\mathfrak{G}$-module and moreover that either: i) $G_{Q*}$ acts on $\mathscr{M}$ continuously from the
left, and $p(a\cdot m)=J_{\rho}(a)\cdot\rho(m)$ for all $p\in G_{Q*},$ $a\in \mathfrak{G}$ and $m\in \mathscr{M}$ ; or ii) $G_{Q*}$ acts
on $\mathscr{M}$ continuously from the right, and $(a\cdot m)^{\rho}=J_{\rho}-1(a)\cdot m^{\rho}$ for all $p,$ $a$ and $m$

as above. In this case, using the terminology i) above, we can consider
$H^{1}(\mathfrak{F}, \mathscr{M})$ as a right $G_{Q*}$-module as follows: For $\rho\in G_{Q*}=Ga1(L/L^{*})$ , take $\tilde{\rho}\in$

Gal $(M/L^{*})$ such that $\tilde{\rho}|_{L}=\rho$ . For $\alpha\in Z^{1}(\mathfrak{F}, \mathscr{M})$ , we put

(2.1.6) $\alpha^{\rho}(x):=\sim\rho^{-1}\cdot\alpha(\tilde{\rho}x\tilde{\rho}^{-1})$ .

Then we can let $\rho$ act on $H^{1}(\mathfrak{F}, \mathscr{M})$ by $cl(\alpha)->cl(\alpha^{\rho});\sim$ it is easy to see that this
is well-defined. It is also easy to see that this action of $G_{Q*}$ on $H^{1}(\mathfrak{F}, \mathscr{M})$ is
continuous.

Let $\mathfrak{F}^{C}$ (resp. $C_{\mathfrak{F}}$ ) be the category of (discrete) abelian groups on which $\mathfrak{F}$

acts continuously from the left (resp. right). $\mathfrak{F}^{C}$ and $C_{\mathfrak{F}}$ are canonically equi-
valent (cf. Notation and conventions). When we restrict our attention to finite
$(pro-)l\mathfrak{G}$-modules $\mathscr{M}$ , it is well-known that the groups $H^{i}(\mathfrak{F}, \mathscr{M})$ (together with
natural connecting homomorphisms) are isomorphic to the derived functor co-
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homology groups of $H^{0}(\mathfrak{F}$ , - $)$ on $\mathfrak{F}^{C}$ . We shall always identify them. Also
when $\mathscr{M}$ is finite, $H^{1}(\mathfrak{F}, \mathscr{M})$ may be considered as the set of isomorphism classes
of (right) $\mathscr{M}$-torsors ( $=principal$ homogeneous spaces under $\mathscr{M}$ ) in the category
of continuous left &-sets (Serre [Se2] I 5.2). From this point of view, an $\mathscr{M}-$

torsor $P$ corresponds to $cl(\alpha)\in H^{1}(\mathfrak{F}, \mathscr{M})$ via the formula:

(2.1.7) $\sigma P=p\cdot\alpha(\sigma)$ for a fixed $p\in P$

(loc. cit.).

2.2. We give here a general remark which will be used repeatedly in the
sequel. Suppose that we are given the following diagram of abelian categories
and additive left exact functors between them:

$f\downarrow \mathcal{A}arrow\sim AF\underline{F}B9\downarrow_{\nearrow_{G’}}^{\searrow^{G}}gC$

Assume that:
i) $\mathcal{A},$ $\mathcal{A}’,$ $B$ , and $\ovalbox{\tt\small REJECT}’$ have enough injective objects;
ii) $F$ (resp. $F’$) sends each injective object of a (resp. il) to a $G-(resp. G’-)$

acyclic object;
iii) $f$ and $g$ are exact;
iv) We are given morphisms of functors:

$\{$

$c:g\circ Farrow F’\circ f$

$\epsilon$ : $Garrow G’\circ g$ .
Then, for each $A\in a$ , we have two spectral sequences of composite functors
by i) and ii):

$S_{1}$ : $E_{2}^{p.q}=R^{p}G(R^{q}F(A))\Rightarrow R^{p+q}(G\circ F)(A)$

$S_{2}$ : $E_{2}^{p.q}=R^{p}G’(R^{q}F’(f(A))\Rightarrow R^{p+q}(G’\circ F’)(f(A))$ ,

and moreover a morphism $\xi:S_{1}arrow S_{2}$ of spectral sequences by iii) and iv), which
can be described as follows: First note that there are unique morphisms of
$\partial$-functors

$\xi_{1}$ : $g\circ R^{q}Farrow R^{q}F’\circ f$

which coincides with $c$ when $q=0$ ; and

$\xi_{2}$ : $R^{p}Garrow R^{p}G’\circ g$
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which coincides with $\epsilon$ when $p=0$ . Then the morphism of $E_{2}$-terms of $\xi$ is
the composite of:

$\xi_{2}$ $\xi_{1}$

$R^{p}G(R^{q}F(A))arrow R^{p}G’(goR^{q}F(A))arrow R^{p}G’(R^{q}F’(f(A)))$ .
On the other hand, the morphism of abutments of $\xi$ is the unique morphism
of $\partial$-functors

$R^{n}(G\circ F)arrow R^{n}(G’. F’)\circ f$

which coincides with the composite of $G\circ Farrow G’\circ g\circ F^{t}arrow G’\circ F’\circ f\epsilon$ when $n=0$ .
This fact must be well-known, and in fact can be proved directly, going

back to the constructions of $S_{1}$ and $S_{2}$ through Cartan-Eilenberg resolutions
(Grothendieck [Gr], [EGAIII]). The details are thus omitted.

2.3. \’Etale cohomology groups. Let $\mathscr{M}=\varliminf_{i\in I}\mathscr{M}_{i}$ be a pro-l (S3-modu1e

with finite $\mathfrak{G}$-modules $\mathscr{M}_{i}$ . Then, for each $i\in I$ , there is a finite Galois sub-
extension $K’/K$ of $L/K$ such that the action of 6 on $\mathscr{M}_{i}$ factors through
Gal $(K’/K)$ . Denote by $W$ the normalization of $Y$ in $K’$ . Then taking the
quotient of the constant group scheme $W\cross \mathscr{M}_{i}$ over $W$ by the diagonal left
action of Gal $(K’/K)$ , we obtain a finite \’etale group scheme $F_{\mathscr{M}_{i}}$ over $Y$ :

(2.3.1) Fsu $i$

$:=Ga1(K’/K)\backslash W\cross \mathscr{M}_{i}$ .
Up to canonical isomorphisms, $F_{\mathscr{M}_{i}}s$ are independent of the choice of $K’$ , and
we may consider them as a projective system of twisted constant sheaves on
the \’etale site $Y_{et}$ of $Y$ .

DEFINITION (2.3.2). We write $H^{n}(Y, F_{su_{i}})(n\geqq 0)$ for the \’etale cohomology
groups, and put

$H^{n}(Y, F_{\mathscr{M}})$ $:= \lim {}_{arrow i\in I}H^{n}(Y, F_{\mathscr{M}_{i}})$ .
Note that, since $H^{n}(Y, F_{\mathscr{M}_{i}})s$ are finite, $H^{n}(Y, F_{\mathscr{M}})$ are pro-l abelian groups.
If $\mathscr{M}=Iim_{i\in I}\mathscr{M}_{i}arrow$ above is a pro-l $\tilde{\mathfrak{G}}$-module, then repeating the same argu-

ment as above replacing $K$ by $K^{*}$ , we get a projective system of twisted con-
stant sheaves on $Y_{et}^{*}$, whose base change to Yet is $\{F_{\mathscr{M}_{i}}\}_{i\in I}$ . In this case, $G_{Q*}$

naturally acts on $H^{n}(Y, F_{\mathscr{M}_{i}})$ and $H^{n}(Y, F_{\mathscr{M}})$ continuously from the right $(i.e$ .
contravariantly).

PROPOSITION (2.3.3). For a Pro-l $\mathfrak{G}$-module $\mathscr{M}$ as above, $H^{1}(\mathfrak{F}, \mathscr{M})$ and
$H^{1}(Y, F_{\mathscr{M}})$ are canonically isomorPhic. When $\mathscr{M}$ is a Pro-l $\tilde{\mathfrak{G}}$-module, this iso-
morphism commutes with the right action of $G_{q*}$ .

PROOF. For a finite subextension $K’/K$ of $M/K$, let $Y_{K}$ , be the normali-
zation of $Y$ in $K’$ . If $K_{1}’\supseteqq K_{2}’$ are such subextensions, then the natural morphism
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$Y_{K_{1}’}arrow Y_{K_{2}’}$ is finite. Therefore the projective limit $\varliminf_{K’/K}Y_{K’}=:Z$ exists, when
$K’$ runs through all finite subextensions of $M/K$ . $Z$ is a pro-\’etale Galois covering
of $Y$ , and hence we have the Hochschild-Serre spectral sequence:

$E_{2}^{p.q}=H^{p}(\mathfrak{F}, H^{q}(Z, F_{\mathscr{M}_{i}}))=H^{p+q}(Y, F_{\mathscr{M}_{i}})$

for each $i\in I$ (Artin [A] III 4.7, [SGA4] VIII Corollary 8.5). Since the base
change of $F_{\mathscr{M}_{i}}$ to $Z$ is isomorphic to the constant group scheme over $Z$ corre-
sponding to $\mathscr{M}_{i}$ , we have $H^{0}(Z, F_{\mathscr{M}_{i}})\cong \mathscr{M}_{i}$ as left $\mathfrak{F}$-modules, and $H^{1}(Z, F_{\mathscr{M}_{i}})$

$=\{0\}$ , because this group is isomorphic to the group of continuous homomorphisms
of $\pi_{1}^{alg}(Z)$ (the algebraic fundamental group of $Z$ ) to $\mathscr{M}_{i}$ . Thus the edge homo-
morphism induces an isomorphism: $H^{1}(\mathfrak{F}, \mathscr{M}_{i})\cong H^{1}(Y, F_{\mathscr{M}_{i}})$ for each $i\in I$ . Tak-
ing projective limits, we obtain an isomorphism: $H^{1}(\mathfrak{F}, \mathscr{M})\cong H^{1}(Y, Fffl)$ of pro-l
abelian groups.

TO show that this is an isomorphism of $G_{Q*}$-modules when $\mathscr{M}$ is a pro-l
$\tilde{\mathfrak{G}}$-module, we may assume that $\mathscr{M}$ is finite. Fix $p\in G_{Q*}$ and choose a lifting
$\overline{\rho}\in Ga1(M/L^{*})$ as in 2.1. Thus $\tilde{\rho}=id\otimes p$ on $K\cong K^{*}\otimes_{Q*}\overline{Q}$ . Denote by $q$ the
automorphism $id\cross Spec(\rho)$ of $Y=Y^{*}\otimes_{Q*}\overline{Q}$ , and consider the diagram:

$q^{*I^{i}}Y_{\text{\’{e}} i}^{\sim ab}Y_{\text{\’{e}}}^{\sim ab}\underline{F}\overline{F}C_{\Im}C_{\Im G ’\downarrow_{\nearrow_{G}}^{\searrow}}g$ (Ab)

where $Y_{e}^{\sim}\prime i^{ab}$ is the category of abelian sheaves on $Y_{e’t},$ $C_{\mathfrak{F}}$ is the category of
continuous right $\mathfrak{F}$-modules as before, and (Ab) is the category of abelian groups,
respectively. Define the functors $F,$ $G$ and $g$ as follows: $F(A):=H^{0}(Z, A)$ for
$A\in Y_{e’i;}^{\sim ab}G(M):=M^{\mathfrak{F}}=$ ( $\mathfrak{F}$-invariant elements in $M$); and $g(M):=(M$ as an
abelian group on which a\in & acts as $\tilde{\rho}\sigma\tilde{\rho}^{-1}$ ), for $M\in C_{\tilde{U}}$ . If we define mor-
phisms of functors $c:g\circ Farrow F’\circ q^{*}$ by $g(H^{0}(Z, A))=H^{0}(Z, A)carrow an_{H^{0}(Z},$ $q^{*}A)$ (pull-
back of sections), and $\epsilon:=id:Garrow G\circ g=G$ , then these data satisfy the assump-
tions in 2.2. Recall that the spectral sequence of Hochshild-Serre is that of the
composition of functors $F$ and $G$ above. We can therefore apply 2.2 to obtain,
for each $A\in Y_{e’i}^{\sim ab}$ , a morphism $\xi$ of Hochschild-Serre spectral sequences for $A$

and $q^{*}A$ as described in loc. cit.. The morphism of $E_{2}$-terms of $\xi$ :
$H^{p}(\mathfrak{F}, H^{q}(Z, A))arrow H^{p}(\mathfrak{F}, H^{q}(Z, q^{*}A))$

is easily seen to be induced from the change of groups: $\mathfrak{F}arrow \mathfrak{F}$ which sends $\sigma$

to $\tilde{\rho}\sigma\tilde{\rho}^{-1}$ , and the map: $H^{q}(Z, A)carrow an_{H^{q}(Z},$
$q^{*}A)$ compatible with it (cf. Serre

[Sel] VII \S 5). On the other hand, the morphism of abutments of $\xi:H^{n}(Y, A)$



Cohomology groups attached to towers 143

$arrow H^{n}(Y, q^{*}A)$ is the canonical one. Our conclusion now follows immediately. $\blacksquare$

2.4. One dimensional cohomology groups with “generic” coefficients.
Recall that $\mathcal{A}=Z_{\iota}[[\mathfrak{G}]]$ is the completed group algebra of $\mathfrak{G}$ over $Z_{l}(1.1.4)$ .
This is in a natural manner a pro-l $\mathfrak{G}$-module. Moreover, letting $p\in G_{Q*}$ act
on A by $J_{\rho}$ from the left, a becomes a pro-l $\tilde{\mathfrak{G}}$-module (cf. 2.1). Our first main
result is the following:

THEOREM (2.4.1). $H^{1}(\mathfrak{F}, \mathcal{A})$ is canonically isomorphic to $km{}_{n\in N}H^{1}(Y_{n}, Z_{l})$ as
a right $G_{Q*}$-module, where the projective limit is taken relative to trace mappings

of \’etale cohomology groups ([SGA4] XVII 6.2.7, [M] V Lemma 1.12).

More generally, take and fix a closed subgroup $\mathfrak{U}$ of (SS which is $G_{Q*}$-stable
(under the action $J_{\rho}$ ). Put

(2.4.2) $\{$

$\mathfrak{U}_{n}:=$ ($the$ image of $\mathfrak{U}$ in $\mathfrak{G}_{n}=Ga1(K_{n}/K)$)

$K_{1,n}$ $:=K_{n}^{u_{n}}$

$K_{1.n}^{*}:=K_{1.n}\cap K_{n}^{*}$

$x*1.$ $:=$ ($the$ complete nonsingular model of $K_{1.n}^{*}/Q^{*}$ )

$Y_{1.n}^{*}:=$ ($the$ normalization of $Y^{*}$ in $X_{1.n}^{*}$ )

$X_{1.n}$ $:=X_{1.n}^{*}\otimes_{Q*}\overline{Q}$

$Y_{1.n}:=Y_{1.n}^{*}\otimes_{Q*}\overline{Q}$ .

It is easy to see that $K_{1.n}^{*}\cdot\overline{Q}=K_{1.n}$ . Now the inclusion: Uc 6 induces an in-
jective ring homomorphism: $Z_{l}[[\mathfrak{U}]]cZ_{l}[[\mathfrak{G}]]$ . Denote by $I_{u}$ the augmenta-
tion ideal of $Z_{\iota}[[\mathfrak{U}]]$ . Thus $I_{u}$ is the closed $Z_{l}$ -submodule of $Z_{\iota}[[\mathfrak{U}]]$ generated
by $u-1(u\in \mathfrak{U})$ , and $\overline{\mathcal{A}I_{\mathfrak{U}}}$ (the closure of $-AI_{11}$ in $\mathcal{A}$ ) is the closed left ideal of
$\mathcal{A}$ generated by them. Therefore $\mathcal{A}/\overline{\mathcal{A}I_{u}}$ is the maximal separated left a-
module quotient of a on which $\mathfrak{U}$ acts trivially from the right; $i$ . $e.$ ,

(2.4.3) $\mathcal{A}/\overline{JI_{\mathfrak{U}}}\cong\lim_{arrow n\in N}Z_{l}[\mathfrak{G}_{n}/\mathfrak{U}_{n}]$ ,

where $Z_{l}[\mathfrak{G}_{n}/\mathfrak{U}_{n}]$ is the free $Z_{l}$ -module on $\mathfrak{G}_{n}/\mathfrak{U}_{n}$ . $\mathcal{A}/\overline{\mathcal{A}I_{\mathfrak{U}}}$ is naturally equipped
with the structure of a pro-l $\tilde{\mathfrak{G}}$-module in the same manner as A. Note that
if $\mathfrak{U}$ is generated by finitely many elements topologically, then $-AI_{\mathfrak{U}}$ itself is
closed. With these terminologies, we have the following:

THEOREM (2.4.4). $H^{1}(\mathfrak{F}, \mathcal{A}/\overline{JI_{1I}})$ is canonically isomorphic to $km{}_{n\in N}H^{1}(Y_{1.n}, Z_{l})$

as a right $G_{Q*}$-module, where the Projective limit is taken, as before, relative to
the trace maPPings.

2.5. Proof of Theorem (2.4.4). Put $\ ?:=Ga1(M/K_{1.n})$ . Then we have an
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obvious isomorphism: $Z_{l}[\mathfrak{G}_{n}/\mathfrak{U}_{n}]\cong Z_{\iota}[\mathfrak{F}/\mathfrak{F}_{1}^{n}]$ of left $\mathfrak{F}$-modules. Consider the
mappings:

${\rm Res}$

(2.5.1) $H^{1}(\mathfrak{F}, Z_{l}[\mathfrak{G}_{n}/\mathfrak{U}_{n}])arrow H^{1}(\mathfrak{F}_{1}^{n}, Z_{l}[\mathfrak{G}_{n}/\mathfrak{U}_{n}])arrow H^{1}(\mathfrak{F}_{1}^{n}e_{n}Z_{l})$ ,

where the first arrow is the restriction mapping, and the second one is defined
as follows: Let $\mathfrak{G}_{n}=II_{t}g_{i}\mathfrak{U}_{n}$ be the disjoint decomposition, and write $\overline{g}_{i}$ for
$g_{i}\mathfrak{U}_{n}$ . Then every $\alpha\in Z^{1}(\mathfrak{F}_{1}^{n}, Z_{l}[\mathfrak{G}_{n}/\mathfrak{U}_{n}])$ can be written as $\alpha=\Sigma_{i}\alpha_{\overline{g_{i}}}\cdot\overline{g}_{i}$ with
mappings $\alpha_{\overline{g_{i}}}$ from $\mathfrak{F}_{1}^{n}$ to $Z_{\iota}$ . We then put $e_{n}(cl(\alpha))=cl(\alpha_{1}^{-})$ . As is well-known,
$s_{n}:=e_{n}\circ{\rm Res}$ is an isomorphism. Indeed, if we replace $Z_{l}$ by $Z/l^{k}Z(k>0)$ in
the argument above, the composite of the mappings in (2.5.1) is an isomorphism
(Shapiro isomorphism” ; cf. Serre [Se2] I 2.5). Thus our claim follows by
taking $\lim_{arrow k}$ .

Since $L^{*}/K_{1.n}^{*}$ satisfies the conditions $(A1)-(A3)$ in 1.1 with the obvious de-
finition of the set of “cusps”, we can consider the associated tower. Especially
we can let $G_{Q*}$ act on $H^{1}(\mathfrak{F}_{1}^{n}, Z_{l})$ by (2.1.6). Then it is easy to see that the
mapping $s_{n}$ is compatible with the action of $G_{Q*}$ . Notice also that (2.3.3) applied
to this tower yields an isomorphism: $H^{1}(\mathfrak{F}_{1}^{n}, Z_{l})_{arrow}^{\sim}H^{1}(Y_{1.n}, Z_{\iota})$ of $G_{Q*}$-modules.

NOW for $n\geqq m(n, m\in N)$ , the corestriction mappings $H^{1}(\mathfrak{F}_{1}^{n}, Z/l^{k}Z)arrow$

$H^{1}(\mathfrak{F}_{1}^{m}, Z/l^{k}Z)(k>0)$ induce a mapping: $H^{1}(\mathfrak{F}_{1}^{n}, Z_{\iota})arrow H^{1}(\mathfrak{F}_{1}^{m}, Z_{l})$ by taking $\lim_{arrow k}$ ,

which we again call the corestriction mapping. Then it is also well-known
that the following diagram commutes (cf. [Se2] loc. cit.):

$H^{1}(\mathfrak{F}, Z_{l}[\mathfrak{G}_{n}/\mathfrak{U}_{n}])H^{1}(\mathfrak{F}_{1}^{n}\underline{s_{n}}Z_{l})$

(2.5.2) can. $\downarrow$ $\downarrow Cor$

$H^{1}(\mathfrak{F}, Z_{l}[\mathfrak{G}_{m}/\mathfrak{U}_{m}])H^{1}(\mathfrak{F}_{1}^{m}\overline{s_{m}}Z_{l})$

where the left vertical arrow is induced from the canonical projection $\mathfrak{G}_{n}/\mathfrak{U}_{n}arrow$

$\mathfrak{G}_{m}/\mathfrak{U}_{m}$ . We have therefore obtained an isomorphism of $G_{Q*}$-modules:

(2.5.3) $H^{1}(\mathfrak{F}, \lrcorner]/\overline{JI_{u}})\cong km{}_{n\in N}H^{1}(\mathfrak{F}_{1}^{n}, Z_{l})$ ,

the projective limit being taken relative to corestriction mappings above.
The proof of (2.4.4) is thus reduced to the commutativity of the following

diagram, which holds for any finite $(pro-)l\mathfrak{G}$-module $\mathscr{M}$ :

$H^{1}(\mathfrak{F}_{1}^{n}, \mathscr{M})\underline{(2.3.3)}H^{1}(Y_{1.n}, F_{\mathscr{M}})$

(2.5.4) $Cor\downarrow$ $\downarrow trace$

$H^{1}(\mathfrak{F}_{1}^{m}, \mathscr{M})H^{1}(Y_{1.m}\underline{(2.3.3)}F_{\mathscr{M}})$ .
In fact, let $f:Y_{1.n}arrow Y_{1.m}$ be the unique morphism corresponding to $K_{1.m}cK_{1.n}$ ,
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and consider the diagram:

$Y_{1.n.et}^{\sim,ab,}id\downarrowarrow FC_{\Im_{1}^{n}}\downarrow g$

(Ab)$\searrow^{G}\nearrow_{G’}$

$Y_{1.m.e\ell}^{\sim,ab,}\overline{F’}c_{\mathfrak{J}^{m}1}$

where the functors are defined by: $F(A):=(H^{0}(Z, A)$ viewed as a right ew-
module); $F’(A):=(H^{\theta}(Z, A)$ viewed as a right $\mathfrak{F}_{1}^{m}$-module); $g(M):=M\otimes_{Z[\mathfrak{F}_{1}^{n}]}$

$Z[\mathfrak{F}_{1}^{m}]$ ; $G(M):=M^{\mathfrak{F}_{1}^{n}}$ ; and $G’(M’):=M^{\prime \mathfrak{F}_{1}^{n}}’$ , respectively. Let $c:g\circ Farrow F’$ be
defined by: $H^{0}(Z, A)\otimes_{Z[\mathfrak{F}_{1}^{n}]}Z[\mathfrak{F}_{1}^{m}]arrow H^{0}(Z, A)$ which sends $\sum_{i}m,\otimes a_{i}(m_{i}\in H^{\mathfrak{v}}(Z, A)$ ,
$a_{i}\in \mathfrak{F}_{1}^{m})$ to $\sum,m_{i}a_{i}$ ; and let $\epsilon:=$ id: $Garrow G’\circ g=G$ . Applying 2.2 to this situa-
tion, we easily obtain the commutativity of (2.5.4), using the description of the
trace mapping given in [M] loc. cit.. This completes the proof of (2.4.4).

REMARK (2.5.5). Fix an $m\in N$. Then as remarked above, we can consider
the tower corresponding to $L^{*}/K_{1.m}^{*}$ . If we set $\mathfrak{G}_{1}^{m}:=Ga1(L/K_{1,m})$ and $\mathcal{A}_{1,m}$ :
$=Z_{l}[[\mathfrak{G}_{1}^{m}]J$ , we therefore obtain an isomorphism:

$H^{1}\langle \mathfrak{F}_{1}^{m}$ , $\mathcal{A}_{1.m}/\overline{.l_{1.m}I_{\mathfrak{U}}})\cong\lim {}_{arrow n\geqq m}H^{1}(Y_{1.n}, Z_{\iota})$ ,

by (2.4.4). Since the right hand side is identical with $\lim {}_{arrow n\in N}H^{1}(Y_{1.n}, Z_{l})$ , this
isomorphism, combined with (2.4.4), yields an isomorphism:

$H^{1}(\mathfrak{F}, \mathcal{A}/\overline{JI_{u}})\cong H^{1}(\mathfrak{F}_{1}^{m}, \mathcal{A}_{1.m}/\overline{\mathcal{A}_{1.m}I_{u}})$ .
Let us make this explicit: Let $\mathfrak{G}=\square ^{h}\ell\Leftarrow og_{i}\mathfrak{G}_{1}^{m}$ be the disjoint decomposition with
$g_{0}=1$ . Then we see that $\mathcal{A}=Z_{l}[[\mathfrak{G}]]=\oplus_{=0}^{h}g_{t}Z_{\iota}[[\mathfrak{G}_{1}^{m}]]$ with $g_{0}Z_{\iota}[[\mathfrak{G}_{1}^{m}]J=$

$\mathcal{A}_{1.m}$ . From this, we may consider $\mathcal{A}_{1.m}/\overline{\mathcal{A}_{1.m}I_{u}}$ as a direct summand of $-fl/\overline{\mathcal{A}I_{u}}$

as a left $\mathfrak{F}_{1}^{m}$-module. The isomorphism above is then easily seen to be the
composite of:

${\rm Res}$

$H^{1}(\mathfrak{F}, \mathcal{A}/\overline{JI_{\mathfrak{U}}})arrow H^{1}(\mathfrak{F}_{1}^{m}, \mathcal{A}/\overline{JI_{\mathfrak{U}}})arrow H^{1}(\mathfrak{F}_{1}^{m}, \mathcal{A}_{1,m}/\overline{\mathcal{A}_{1.m}I_{\mathfrak{U}}})$ ,

where the second arrow corresponds to the projection $\lrcorner q/_{\lrcorner}\overline{tI_{\mathfrak{U}}}arrow \mathcal{A}_{1,m}/\overline{\mathcal{A}_{1,m}I_{u}}$ to
the direct factor.

2.6. Let the situation be as in 2.4, and fix a closed subgroup $R$ of 6 which
normalizes U. Then $R$ naturally acts on $\mathcal{A}/\overline{\lrcorner II_{u}}$ from the right as left $\mathcal{A}$ -module
automorphisms; and hence we can consider $H^{1}(\mathfrak{F}, -fl/\overline{\lrcorner lI_{\mathfrak{U}}})$ as a right St- or
$Z_{\iota}[[R]]$ -module.

On the other hand, $K_{1}$
, , corresponds to the subgroup $f_{n}\mathfrak{n}$ of $\mathfrak{G}$ , which is

normalized by R. Therefore $R$ acts on $K_{1,n}$ (resp. $Y_{1.n}$ and $X_{1.n}$ ) from the
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right (resp. left); and so, $H^{1}(Y_{1.n}, Z_{\iota}) and\lim {}_{arrow n\in N}H^{1}(Y_{1.n}, Z_{l})$ may be also con-
sidered as right St- or $Z_{\iota}[[R]]$ -modules.

PROPOSITION (2.6.1). The isomorPhism in (2.4.4) is compatible with the right
$R$-module structure described above.

PROOF. Fix $k\in R$ , and choose $\tilde{k}\in \mathfrak{F}$ such that $\tilde{k}|_{L}=k$ . Via the isomorphism
$s_{n}$ : $H^{1}(\mathfrak{F}, Z_{l}[\mathfrak{G}_{n}/\mathfrak{U}_{n}])\simarrow H^{1}(\mathfrak{F}_{1}^{n}, Z_{l})(2.5.1)$ , the action of $k$ on $H^{1}(\mathfrak{F}, Z_{l}[\mathfrak{G}_{n}/\mathfrak{U}_{n}])$

and the automorphism of $H^{1}(\mathfrak{F}_{1}^{n}, Z_{l})$ defined by: $cl(\beta)arrow cl(\beta’)$ with $\beta’(x)=$

$\beta(\tilde{k}x\tilde{k}^{-1})(\beta, \beta’\in Z^{1}(\mathfrak{F}_{1}^{n}, Z_{l}))$ commute. In fact, this follows easily from the
formula: $\alpha(\tilde{k}x\tilde{k}^{-1})=(1-\tilde{k}x\tilde{k}^{-1})\alpha(\tilde{k})+\tilde{k}\alpha(x)$ for $\alpha\in Z^{1}(\mathfrak{F}, Z_{l}[\mathfrak{G}_{n}/\mathfrak{U}_{n}])$ . Let $q$ be the
automorphism of $Y_{1.n}$ corresponding to $k$ . Then, as in the proof of (2.4.4), we
get our conclusion by applying 2.2 to the following situation:

$Y_{1,n.e’t}^{\sim,ab}Y_{1}^{\sim.ab}q^{*I_{n,\text{\’{e}} t}}\underline{F}\overline{F}c_{\Im n}c_{\Im_{1}^{n}}1_{\nearrow_{G}}^{1}g\searrow^{G}$ (Ab)

where $F(A):=H^{0}(Z, A);g(M):=$ ( $M$ on which $\sigma\in \mathfrak{F}_{1}^{n}$ acts as $\tilde{k}\sigma\tilde{k}^{-1}$ ) $;G(M):=$

$M^{\mathfrak{F}_{1}^{n}}$ ; $c:g\circ Farrow F\circ q^{*}$ is defined by $g(H^{0}(Z, A))=H^{0}(Z, A)$ $H^{0}$($Z$
can

$q^{*}A$); and
$\epsilon:=id:Garrow G’\circ g=G$ . $\blacksquare$

\S 3. Parabolic cohomology groups.

Fix an Ihara’s tower (1.1) satisfying $(A1)-(A3)$ . We hereafter assume that
$C\neq\emptyset$ , until the end of \S 6.

3.1. Remarks on the group $\mathfrak{F}$ As before, we identify $C=\{Q_{1}, \cdots Q_{s}\}$

with a set of closed points of $X$ ; and also with a subset of $X(\overline{Q})$ or $X(C)$ .
Thus $Y(C)=X(C)-C$ . Let $g$ be the genus of $X$ . Then

$\langle$3.1.1) $\Gamma:=\pi_{1}^{top}(Y(C))$ ,

the topological fundamental group of $Y(C)$ (with a fixed base point), has a well-
known structure: It is generated by $2g+s$ elements { $x_{1}$ , , $x_{g},$ $y_{1},$

$\cdots$ , $y_{g}$ ,
$z_{1},$ $\cdots$ $z_{s}\}$ with the fundamental relation
$\langle$3.1.2) $[x_{1}, y_{1}]\ldots[x_{g}, y_{g}]z_{1}\cdots z_{s}=1$ .
Here, $[x, y]=xyx^{-1}y^{-1}$ , and $z_{j}$ corresponds to a certain closed path circulating
around $Q_{j}$ counterclockwise. Since we assumed that $s>0,$ $\Gamma$ is a free group of
rank $r:=2g+s-1$ . $By_{-}^{-}our$ assumption (A3), $\gamma$ is strictly positive.
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By the well-known theory of Riemann surfaces, the universal covering
space $c_{U}$ of $Y(C)$ is isomorphic to either $C$ or the complex upper half plane
H. $c_{U\cong C}$ if and only if $g=0$ and $s=2$ ; $i.e.$ , $Y(C)\cong P^{1}(C)-$ { $two$ points}.
When $c_{U\cong H}$ we may consider $\Gamma$ as a Fuchsian group of the first kind

$\langle$$cPSL_{2}(R))$ . In this latter case, denoting by $H*$ the union of $H$ and the set
of cusps for $\Gamma,$ $X(C)$ is isomorphic to $\Gamma\backslash H*$ , and the terminology “cusps” of
$X$ in the sense of 1.1 coincides with the usual one.

NOW the algebraic fundamental group $\pi_{1}^{alg}(Y\otimes_{\overline{Q}}C)\cong\pi_{1}^{\mathfrak{a}lg}(Y)$ (with a fixed
base point) is canonically isomorphic to the profinite completion of $\Gamma$ . If we
take $K’$ as in (A2), and if $\Gamma’$ is the normal subgroup of $\Gamma$ corresponding to
$K’\otimes {}_{\overline{Q}}C$ , then & is isomorphic to the completion of $\Gamma$ with respect to the pro-l
topology of $\Gamma’$ :
$\langle$3.1.3) $\mathfrak{F}\cong 1\dot{f}\underline{m}_{N}\Gamma/N$ ,

where $N$ runs through all normal subgroups of $\Gamma$ which are contained in $\Gamma’$

and such that $|\Gamma’$ : $N|$ is a power of 1. Thus & is a free almost pro-l group
in the sense of [I1]. & is generated by $x_{i},$ $y_{i}(1\leqq i\leqq g)$ and $z_{j}$ (l$j\leqq s) topo-
logically, and we may consider $z_{j}$ a topological generator of the inertia group
of an extension of $Q_{j}$ to $M$.

3.2. Parabolic cohomology groups. Let the notation be as in 2.1. Follow-
ing Shimura [Shl] 8.1, we make the following:

DEFINITION (3.2.1). For a pro-l $\mathfrak{F}$-module $\mathscr{M}$ , using the notation (2.1.4),

we set:

$\{$

$C_{P}^{1}(\mathfrak{F}, \mathscr{M}):=\{\alpha\in C^{1}(\mathfrak{F}, \mathscr{M})|\alpha(z_{j})\in(z_{j}-1)\mathscr{M}(1\leqq j\leqq s)\}$

$Z_{P}^{1}(\mathfrak{F}, \mathscr{M}):=Z^{1}(\mathfrak{F}, \mathscr{M})\cap C_{P}^{1}(\mathfrak{F}, \ovalbox{\tt\small REJECT})$

$B_{P}^{2}($&, $\mathscr{M}):=d^{1}(C_{P}^{1}(\mathfrak{F}, \mathscr{M}))$

$H_{P}^{1}(\mathfrak{F}, \mathscr{M}):=Z_{P}^{1}(\mathfrak{F}, \mathscr{M})/B^{1}(\mathfrak{F}, \mathscr{M})$

$H_{P}^{2}(\mathfrak{F}, \mathscr{M})$ $:=Z^{2}(\mathfrak{F}, \mathscr{M})/B_{P}^{2}(\mathfrak{F}, \mathscr{M})$ .

LEMMA (3.2.2). (cf. [Shl] (8.1.30)) $For\alpha\in Z^{1}(\mathfrak{F}, \mathscr{M}),$ $\alpha$ belongs to $Z_{P}^{1}(\mathfrak{F}, \mathscr{M})$

if and only if $\alpha(x)\in(x-1)\mathscr{M}$ holds for any x\in & which is contained in an inertia
group of some prime divisor of $M$.

PROOF. The “if” part is obvious. Assume conversely that $\alpha\in Z_{P}^{1}(\mathfrak{F}, \mathscr{M})$ .
The element $x$ as above can be expressed as $x=tz_{j}^{a}t^{-1}$ for some $j(1\leqq j\underline{\leq}s)$ ,
$a\in\hat{Z}$ (the profinite completion of $Z$ ), and $t\in \mathfrak{F}$ By our assumption, $\alpha(z_{j})=$

$(z_{j}-1)m$ for some $m\in \mathscr{M}$ . When $a$ is an integer, we have $\alpha(x)=(x-1)(tm-\alpha(t))$

$\in(x-1)\mathscr{M}$ ( $[Sh1]$ loc. cit.). But by continuity, we obtain the same formula
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for arbitrary $a\in\hat{Z}$ . $\bullet$

COROLLARY (3.2.3). When $\mathscr{M}$ is a pro-l $\tilde{\mathfrak{G}}$-module, $H_{P}^{1}(\mathfrak{F}, \mathscr{M})$ is a $G_{Q*}$ -stable
subgroup of $H^{1}(\mathfrak{F}, \mathscr{M})$ .

PROOF. This follows immediately from the definition of the action of $G_{Q*}$

on $H^{1}(\mathfrak{F}, \ovalbox{\tt\small REJECT})(2.1)$ , and the lemma above. $\bullet$

LEMMA (3.2.4). For a pro-l $\mathfrak{F}-$-module $\mathscr{M}$ , we have the exact sequence:
$f$

$0arrow H_{P}^{1}(\mathfrak{F}, \mathscr{M})arrow H^{1}(\mathfrak{F}, \mathscr{M})arrow\oplus_{j=1}^{s}\mathscr{M}/(z_{j}-1)\mathscr{M}$

$g$

$arrow H_{P}^{2}(\mathfrak{F}, \mathscr{M})arrow H^{2}(\mathfrak{F}, \mathscr{M})arrow 0$ ,

where the unlabelled arrows are the natural ones, and $f(cl(\alpha)):=(\alpha(z_{f})$

$mod (z_{j}-1)\mathscr{M})_{1\leqq j\leqq s}$ for $\alpha\in Z^{1}(\mathfrak{F}, \mathscr{M})$ . For $m=(m_{j}mod (z_{j}-1)\mathscr{M})_{1\leqq j\leqq s}\in\oplus_{j=1}^{s}\mathscr{M}/$

$(z_{f}-1)\mathscr{M}$ , there exists an $\alpha\in C^{1}(\mathfrak{F}, \mathscr{M})$ satisfying $\alpha(z_{j})=m_{j}(1\leqq_{J}\leqq s)$ . $g$ is then
defined by $g(m)=cl(d^{1}\alpha)$ .

PROOF. Direct. $\blacksquare$

COROLLARY (3.2.5). For $\mathscr{M}=km_{i\in I}\mathscr{M}_{i}$ with pro-l $\mathfrak{F}$-modules ,St and $\mathscr{M}_{i}$ , we
have a canonical isomorphism:

$H_{P}^{1}( \mathfrak{F}, \mathscr{M})\cong\lim {}_{arrow i\in I}H_{P}^{1}(\mathfrak{F}, \mathscr{M}_{i})$ .

PROOF. This follows from (2.1.5), (3.2.4) and the fact that Iim is exact in
the category of compact abelian groups.

In the first draft of [I1], Ihara proved the following:

LEMMA (3.2.6) (Ihara). For any pro-l $\mathfrak{F}-$-module $\mathscr{M},$ $H^{2}(\mathfrak{F}, \mathscr{M})$ vanishes.

PROOF. AS is well-known, to each element of $Z^{2}(\mathfrak{F}, \mathscr{M})$ corresponds an

extension: $1arrow \mathscr{M}arrow Garrow \mathfrak{F}arrow 1pq$ where $G$ is a profinite group, and both $P$ and $q$ are
continuous homomorphisms. Let $X_{i},$ $y_{t}$ and $\overline{z}_{j}$ be any liftings of $x_{i},$ $y_{i}$ and $z_{j}$

to $G$ , respectively. Then, using the fact that & is a free almost pro-l group
and that .St is a pro-l group, it is easy to see that the closed subgroup of $G$

generated by $\tilde{x}_{i},\overline{y}_{i}$ and $\overline{z}_{j}$ is isomorphic to $\mathfrak{F}$ via $q$ , and hence the extension
above splits.

Next we want to relate parabolic cohomology groups, and the exact sequence
(3.2.4) with \’etale cohomology grouPs. Let $j:YcX$ be the natural oPen immer-
sion. Since we assumed that $C\neq\emptyset,$ $i.e.$ , that $Y$ is an affine scheme, the \’etale

cohomology group $H^{l}(Y, F)$ vanishes for any abelian torsion sheaf $F$ on $Y_{\text{\’{e}} t}$

([M] $V$ Remark $2.4(a)$). Leray spectral sequence for $j$ then induces an exact
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sequence:

(3.2.7) $0arrow H^{1}(X, j_{*}F)arrow H^{1}(Y, F)arrow H^{0}(X, R^{1}j_{*}F)arrow H^{2}(X, j_{*}F)arrow 0$ .
PROPOSITION (3.2.8). Let $\mathscr{M}$ be a finite $(pro-)l\mathfrak{G}-$-module. Then we have the

following commutative diagram:

0– $H_{P}^{1}(\mathfrak{F}, \mathscr{M})$ $-H^{1}($&, $\mathscr{M})-\oplus_{j=1}^{s}\mathscr{M}/(z_{i}-1)\mathscr{M}$

$\downarrow l$ $\downarrow l(2.3.3)$ $\downarrow 1$

$0-H^{1}(X, j_{*}F_{\mathscr{M}})-H^{1}(Y, F_{\mathscr{M}})-H^{0}(X, R^{1}j_{*}F_{\mathscr{M}})$

$-H_{P}^{2}(\mathfrak{F}, \mathscr{M})-0$

$\downarrow l$

$-H^{2}(X, j_{*}F_{\mathscr{M}})-0$ ,

where the upper (resp. lower) horizontal exact sequence is that of (3.2.4) (cf.
(3.2.6) $)$ $(resp. (3.2.7))$ , and the unlabelled vertical isomorphisms will be described
in the course of the proof.

PROOF. Let $\tilde{Q}_{j}$ be an extension of the prime divisor $Q_{j}$ of $K$ to $\overline{K}$, and $1_{j}$

the inertia group of $\tilde{Q}_{j}$ for each $j(1\leqq j\leqq s)$ . $f_{j}$ is generated by an element $\tilde{z}_{j}$

topologically. Taking $\tilde{Q}_{j}$ suitably, we may assume that $\tilde{z}_{j}|_{M}=z_{j}$ . Then $R^{1}j_{*}F_{\mathscr{M}}$

is a skyscraper sheaf supported at $C$ (considered as a set of closed points of
$X)$ , and its stalk at $Q_{j}$ is isomorphic to $H^{1}(Spec(\overline{K}^{I_{j}})\sim, F_{\mathscr{M}})$ , because the base
change by $j$ of the strict localization of $X$ at $Q_{j}$ is isomorphic to $Spec(\overline{K}^{I_{j}}\rangle\sim$

(cf. [M] III Theorem 1.15). This cohomology group is canonically isomorphic
to the Galois cohomology group $H^{1}(\tilde{l}_{j}, \mathscr{M})$ , which is isomorphic to $\mathscr{M}/(\tilde{z}_{j}-1)\mathscr{M}$

$=\mathscr{M}/(z_{j}-1)\mathscr{M}$ by the correspondence: $cl(\alpha)-\Rightarrow\alpha(\tilde{z}_{j})mod (z_{j}-1)\mathscr{M}$ . Thus, if we
denote by $I_{j}$ the subgroup of ew generated by $z_{j}$ topologically, the homomor-
phism $\tilde{I}_{j}arrow I_{j}(\tilde{z}_{j}-z_{j})$ induces an isomorphism: $H^{1}$ ( $I_{j}$ , ..Sll) $arrow\sim H^{1}(\tilde{I}_{j}, \mathscr{M})$ .

Let $T_{\mathfrak{F}}$ be the category of finite sets on which ew acts continuously from
the right, endowed with natural Grothendieck topology ([Al I (0.6 $bis)$). Since
ew can be naturally regarded as a quotient of $\pi^{alg}(Y)$ , there is a morphism of
sites $f$ : $Y_{e’t}arrow T_{\mathfrak{F}}$ by the theory of fundamental groups. The $di$rect image func-
tor for the category of set-valued sheaves $f_{*}:$ $Y_{et}^{\sim}’arrow T_{\mathfrak{F}}^{\sim}$ is given by $f_{*}(F)=$

$\Gamma(Z, F)$ , where we identified an object of $T_{\mathfrak{F}}^{\sim}$ with a continuous right $\mathfrak{F}$-set (cf.

loc. cit.). Now recall that the Hochschild-Serre spectral sequence appearing in
the proof of (2.3.3) is nothing but the Leray spectral sequence for this morphism
of sites ([A] III (4.7)).

On the other hand, it is well-known that $H^{1}(Y, F)$ can be identified with
the set of isomorphism classes of $F$-torsors in $Y_{et}^{\sim}$ for any abelian sheaf $F$ on
$Y_{et}$ (Giraud [Gi]). From this point of view, by $[Gi]V3.1$ and the remark
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above, the inverse of the isomorphism: $H^{1}(\mathfrak{F}, \mathscr{M})_{arrow}^{\sim}H^{1}(1^{\gamma}, F_{\mathscr{M}})(2.3.3)$ can be
interpreted as the correspondence: (isomorphism class of an $F_{\mathscr{M}}$ -torsor $P$) $-\succ$

(isomorphism class of the $\mathscr{M}$-torsor $\Gamma(Z,$ $P)$ in $T_{\mathfrak{F}}^{\sim}$)( $rightarrow cl(\alpha)$ , with $\alpha$ given by
$xp=p^{x^{-1}}=p\cdot\alpha(x)$ for a fixed $P\in\Gamma(Z, P))$ . Now in view of [Gi] V 2.1 and
3.1, we have the commutative diagram:

$H^{1}(\mathfrak{F}, \mathscr{M})\oplus_{j=1}^{s}H^{1}(I_{j}\underline{\oplus{\rm Res}}\mathscr{M})arrow\oplus_{j=1}^{s}H^{1}(1_{j}, \mathscr{M})$

$($2.3.3 $)^{-1}l\uparrow$ $\uparrow l$

$H^{1}(Y, F_{\mathscr{M}})H^{0}(X\overline{edge}R^{1}j_{*}F_{\ovalbox{\tt\small REJECT}})arrow\oplus_{j=1}^{s}H^{1}(Spec(K^{f_{j}}), \mathscr{M})$ ,

because both of the two mappings $H^{1}(Y, F_{\mathscr{M}})arrow\oplus_{j=1}^{s}H^{1}(\tilde{I}_{j}, \mathscr{M})$ obtained by com-
position are induced from the correspondence: (an $F_{\mathscr{M}}$ -torsor $P$ on $Y$ ) $rightarrow$

$(\Gamma(Spec(K), P)$ viewed as an $\mathscr{M}$ -torsor in $T_{I_{j}}^{\sim})_{1\leqq j\leqq s}$ . Our conclusion now follows
immediately. $\blacksquare$

REMARK (3.2.9). AS is well-known, there is a canonical isomorphism:

$H^{1}(X, j_{*}F)\cong{\rm Im}(H_{c}^{1}(Y, F)arrow H^{1}(Y, F))$ ,

where $H_{c}^{1}$ denotes the cohomology group with compact support. In fact, this
follows from the long exact sequence of cohomology groups deduced from:

$0arrow j_{I}Farrow j_{*}Farrow i_{*^{l^{*}}}^{\backslash }j_{*}Farrow 0$ (exact),

where $i$ : Cc.X is the natural closed immersion.

3.3. Parabolic cohomology groups with “generic” coefficients. Let the
notation be as in 2.4. If we denote by $j_{1,n}$ : $Y_{1,n}cX_{1,n}$ the natural open immer-
sion, we have the mapping:

(3.3.1) $H^{1}(X_{1.n}, Z_{\iota})arrow H^{1}(Y_{1,n}, j_{1,n}^{*}Z_{l})=H^{1}(Y_{1,n}canZ_{l})$ .

Notice that this mapping is identical with the edge homomorphism: $H^{1}(X_{1.n},$ $Z_{l}\rangle$

$=H^{1}(X_{1.n}, j_{1.n*}Z_{l})arrow H^{1}(Y_{1.n}, Z_{l})$ induced from the Leray spectral sequence for
$j_{1.n}$ (cf. the argument of [EGA III] Chapter $0$ (12.1.7)). Especially the map-
ping above is injective. When $n$ varies, these mappings are compatible with
trace mappings ([SGA4] XVII 6.2.3), and hence we obtain:

(3.3.2) $\lim {}_{arrow n\in N}H^{1}(X_{1.n}, Z_{l})=\lim {}_{arrow n\in N}H^{1}(Y_{1,n}, Z_{\iota})$ ,

where both projective limits are taken relative to trace mappings.

THEOREM (3.3.3). There is a unique isomorphism of $G_{Q*}$-modules:

$H_{P}^{1}( \mathfrak{F}, -\ell/J\overline{I_{t1}})_{arrow}\sim\lim {}_{arrow n\in N}H^{1}(X_{1.n}, Z_{l})$
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which makes the following diagram commutative:

0– $H_{P}^{1}(\mathfrak{F}, \mathcal{J}\iota/J\overline{I_{\mathfrak{U}}})$ – $H^{1}(\mathfrak{F}, \mathcal{A}/\mathcal{A}I_{\mathfrak{U}})$

$l\downarrow$ $\downarrow l(2.4.4)$

$0-Iiarrow m{}_{n\in N}H^{1}(X_{1,n}, Z_{l})1iarrow m{}_{\gamma}H^{1}(Y_{1,n}\overline{(3.3.2)}Z_{\iota})$
,

where the uPPer right horizontal arrow is the obvious inclusion.

PROOF. Recall the “Shapiro isomorphism” $s_{n}$ : $H^{1}(\mathfrak{F}, Z_{\iota}[\mathfrak{G}_{n}/\mathfrak{U}_{n}])_{arrow}^{\sim}H^{1}(\mathfrak{F}_{1}^{n},$ $Z_{\iota}\rangle$

$=Hom_{c}(\mathfrak{F}_{1}^{n}, Z_{\iota})(2.5.1)$ , where the right hand side is the group of continuous
homomorphisms. We first claim that this induces an isomorphism:
$H_{P}^{1}(\mathfrak{F}, Z_{l}[\mathfrak{G}_{n}/\mathfrak{U}_{n}])_{arrow}^{\sim}H_{P}^{1}(\mathfrak{F}_{1}^{n}, Z_{l})$ . In fact, it is trivial that $H_{P}^{1}(\mathfrak{F}, Z_{\iota}[\mathfrak{G}_{n}/\mathfrak{U}_{n}])$ is
sent to $H_{P}^{1}$(fi?, $Z_{l}$ ) by $s_{n}$ .

Conversely, suppose that $cl(\alpha)(\alpha\in Z^{1}(\mathfrak{F}, Z_{l}[\mathfrak{G}_{n}/\mathfrak{U}_{n}]))$ is sent to $H_{P}^{1}(\mathfrak{F}_{1}^{n},$ $Z_{l}\rangle$

by $s_{n}$ . Thus if $\mathfrak{G}_{n}=\Pi_{i}g_{i}\mathfrak{U}_{n}=II_{i}\overline{g}$ , is disjoint and if $\alpha=\Sigma_{i}\alpha_{\overline{g}}\cdot\overline{g}_{i}$ as in 2.5,
we have $\alpha_{1}^{-}(x)=0$ whenever $x$ is contained in an inertia subgroup of $\mathfrak{F}_{1}^{n}$

for some place of $M$. Since $\alpha(gxg^{-1})=g\alpha(x)+(1-gxg^{-1})\alpha(g)$ for any $x\in \mathfrak{F}$,
we see that, if $x$ is contained in an inertia subgroup of $g^{-1}\mathfrak{F}_{1}^{n}g$ , then we have:
$\alpha_{1}^{-}(gxg^{-1})=\alpha_{\overline{\epsilon^{-1}}}(x)=0$ . NOW suppose that $x\in \mathfrak{F}$ is contained in an inertia sub-
group, and let $d$ be the order of the image $\tilde{x}$ of $x$ in $\mathfrak{G}_{n}=\mathfrak{F}/\mathfrak{F}^{n}$ , where $\mathfrak{F}^{n}:=$

Gal $(M/K_{n})$ . Then we clearly have $x^{a} \in \mathfrak{F}^{n}\subseteqq\bigcap_{g\in \mathfrak{F}}g^{-1}\mathfrak{F}_{1}^{n}g$ , and hence $a(x^{d})=$

$(1+x+\cdots+x^{d-1})\alpha(x)=0$ .
Let $\mathfrak{G}_{n}=II_{k}\langle\tilde{x}\rangle\xi_{k}\mathfrak{U}_{n}$ be the disjoint double coset decomposition. The num-

ber $d_{k}$ of distinct $\overline{x}^{i}\xi_{k}\mathfrak{U}_{n}=:\overline{x^{i}\xi_{k}}$, for a fixed $k$ , is a divisor of $d$ . If an ele-
ment $a=\Sigma_{k}\Sigma_{i=0}^{a_{k}-1}a_{\overline{x^{i}\xi_{k}}}\cdot\overline{x^{i}\xi_{k}}\in Z_{\iota}[\mathfrak{G}_{n}/\mathfrak{U}_{n}](a_{\overline{x^{i}\xi_{k}}}\in Z_{l})$ , is annihilated by $\Sigma_{j=0}^{a-1}x^{j}$ ,
then it is easy to see that $\Sigma_{i=0}^{a_{k^{-1}}}a_{\overline{x^{i}\xi_{k}}}=0$ for any $k$ . This implies that $a=$

$\sum_{k}\Sigma_{i=0}^{d_{k}-1}a_{\overline{x^{i}\xi_{k}}}(x-1)\cdot\overline{\xi}_{k}\in(x-1)Z_{l}[\mathfrak{G}_{n}/\mathfrak{U}_{n}]$ , which proves our first claim.
On the other hand, in view of (3.2.8) and the remark after (3.3.1), we

know that there is a unique isomorphism: $H_{P}^{1}(\mathfrak{F}_{1}^{n}, Z_{l})_{arrow}^{\sim}H^{1}(X_{1.n}, Z_{l})$ which makes
the following diagram commutative:

0– $H_{P}^{1}(\mathfrak{F}_{1}^{n}, Z_{l})-H^{1}(\mathfrak{F}_{1}^{n}, Z_{\iota})$

$l\downarrow$ $\downarrow l(2.3.3)$

$0-H^{1}(X_{1.n}, Z_{\iota})H^{1}(Y_{1.n}\overline{(3.3.1)}Z_{l})$ .

Summing up what we have said above and taking projective limits, we get our
conclusion. $\blacksquare$

Let Jac $(X_{1.n}^{*})$ be the Jacobian variety of $X_{1.n}^{*}$ defined over $Q^{*}$ . Then the
Kummer theory gives an isomorphism: $H^{1}(X_{1.n}, Z_{l})\cong T_{l}(Jac(X_{1.n}^{*}))(-1)$ of $G_{Q*}-$
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modules, where, as usual, $T_{l}$ (resp. $(-1)$) means the $l$-adic Tate module (resp.

Tate twist). By [SGA4] XVII 6.3.18, we therefore obtain an isomorphism of
$G_{Q*}$-modules:

(3.3.4) $\varliminf {}_{n\in N}H^{1}(X_{1.n}, Z_{\iota})x\lim_{arrow n\in N}T_{\iota}(Jac(X_{1.n}^{*}))(-1)$ ,

where the projective limit in the right hand side is taken relative to the
Albanese mappings: Jac $(X_{1.n}^{*})arrow Jac(X_{1.m}^{*})$ for $n\geqq m$ .

3.4. Let the situation be as in 2.6. Especially $R$ is a closed subgroup of $\mathfrak{G}$

which normalizes U. Then it is clear that the right action of ge on $H^{1}(\mathfrak{F}, \mathcal{A}/_{\lrcorner}\overline{lI_{u}})$

$\langle$resp. $\varliminf {}_{n\in N}H^{1}(Y_{1.n}, Z_{l}))$ described there leaves $H_{P}^{1}(\mathfrak{F}, \mathcal{A}/\overline{AI_{u}})$ (resp.
$\lim {}_{arrow n\in N}H^{1}(X_{1.n}, Z_{l}))$ stable. By (2.6.1), the isomorphism in (3.3.3) is an isomor-
phism of right $R$-modules. On the other hand, the action of $R$ on $\varliminf_{n\in}{}_{N}H^{1}(X_{1.n}, Z_{1})$

corresponds to the action via “Pic-functoriality” of $R$ on $\lim_{arrow n\in N}T_{\iota}(Jac(X_{1.n}^{*}))(-1)$

as follows: Namely, for each $n\in N$, as explained in 2.6, $k\in R$ induces an auto-
morphism of $X_{1.n}$ , and thus an automorphism of Jac $(X_{1.n}^{*})\otimes_{Q*}\overline{Q}$ viewed as the
Picard variety of $X_{1.n}$ . If we define the action of $k$ on $T_{l}(Jac(X_{1.n}^{*}))(-1)=$

$T_{l}(Jac(X_{1.n}^{*}))\otimes T_{l}(G_{m})^{\otimes(-1)}$ by $T_{l}$ ($the$ action $above$) $\otimes id$ for each $n\in N$,
$\varliminf_{n\in N}T_{l}(Jac(X_{1.n}^{*}))(-1)$ becomes a right $R$-module, and the isomorphism (3.3.4)

is R-equivariant.

\S 4. Applications of Ihara’s free differential calculus.

AS in the previous section, we fix an Ihara’s tower (1.1), and assume that
$C\neq\emptyset$ . Recall that 8 is generated by $2g+s$ elements $x_{t},$ $y_{i}(1\leqq i\leqq g)$ , and $z_{j}$

<l$j\leqq s) topologically, and that & is a free almost pro-l group of rank $r=$

$2g+s-1>0(3.1)$ . In this section, we often write $\{x_{1}$ , $\cdot$ .. , $x_{r}\}$ for { $x_{1}$ , $\cdot$ .. , $x_{g}$ ,
$y_{1},$ $y_{g},$ $z_{1},$

$\cdots$ , $z_{S-1}$ }, which is a set of topological generators of &. The
content of this section relies heavily on Ihara’s (both published and unpublished)
results (cf. [I1]).

4.1. Ihara’s results and some consequences. First, we recall Ihara’s free
differential calculus. Put $B=Z_{l}[[\mathfrak{F}]]$ . Then for each $j$ ( $1\leqq]$ $r), there is a
continuous $Z_{\iota}$ -linear mapping

$\langle$4.1.1) $\frac{\partial}{\partial x_{j}}:Barrow B$

so that every $\theta\in B$ can be expressed uniquely as: $\theta=s(\theta)+\Sigma_{J\approx 1}^{r}\partial\theta/\partial x_{j}(x_{j}-1)$ ,
where $s:Barrow Z_{l}$ is the augmentation homomorphism ([I1] Theorem 2.1). The
mappings $\partial/\partial x_{j}$ satisfy:
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(4.1.2) $\frac{\partial x_{i}}{\partial x_{j}}=\delta_{ij}$ $(1\leqq i, j\leqq r)$

(4.1.3) $\frac{\partial(\alpha\beta)}{\partial x_{j}}=\frac{\partial\alpha}{\partial x_{j}}\cdot s(\beta)+\alpha\frac{\partial\beta}{\partial x_{j}}$ $(\alpha, \beta\in\ovalbox{\tt\small REJECT})$ .

THEOREM (4.1.4) (Ihara). For a $pr$o-l $\mathfrak{F}-$-module ,.St, the correspondence: $\alpha\vdasharrow$

$(\alpha(x_{j}))_{1SjSr}$ gives an isomorphism of $Z_{\iota}$ -modules

$I:Z^{1}(\mathfrak{F}, \mathscr{M})_{arrow}\sim \mathscr{M}^{\oplus r}$

Thes mapping then induces an isomorPhesm:
$H^{1}(\mathfrak{F}, \mathscr{M})_{arrow}\sim coker(\mathscr{M}arrow \mathscr{M}^{\oplus r})i$

where $i$ sends $m\in \mathscr{M}$ to $((x_{j}-1)m)_{1\leqq j\leqq r}$ .
PROOF. $I$ is clearly injective and $Z_{\iota}$ -linear. For any given $m=(m_{j})_{1\xi j\xi r}$

$\in \mathscr{M}^{\oplus r}$ , define $\alpha:\mathfrak{F}arrow \mathscr{M}$ by $\alpha(x)=\Sigma_{j=1}^{r}(\partial x/\partial x_{j})m_{j}$ . By (4.1.3), $\alpha$ belongs to
$Z^{1}(\mathfrak{F}, \mathscr{M})$ , and by (4.1.2), we have $\alpha(x_{j})=m_{j}(1\leqq j\leqq r)$ . This shows that $I(\alpha)$

$=m$ . The second assertion follows from the first one easily. $\bullet$

Let $\pi:Barrow \mathcal{A}$ be the algebra homomorphism induced from the natural pro-
jection: $\mathfrak{F}arrow 9$ .

COROLLARY (4.1.5). Assume that $\mathscr{M}$ is a Pro-l $\tilde{\mathfrak{G}}$-module. For $p\in G_{Q*}$ , let
$\tilde{\rho}\in Ga1(M/L^{*})$ be its lifting. Denote by $M(\tilde{\rho})$ the $r\cross r$ matrix whose $(i, ])$-entry
is $\pi(\partial(\tilde{\rho}x_{i}\tilde{\rho}^{-1})/\partial x_{j})\in-P$ . Then the action of $\rho$ on $H^{1}(\mathfrak{F}, \mathscr{M})$ corresponds, via
(4.1.4), to the automorphism:

$\{\begin{array}{l}m_{1}\vdots m_{r}\end{array}\}$ mod ${\rm Im}(i)-J_{\rho^{-1}}(M(\tilde{p}))\{\begin{array}{l}\rho^{-1}m_{1}\rho^{-\dot{i}}m_{r}\end{array}\}$ mod ${\rm Im}(l)$

of $Coker(i)$ , where we view an element of $\mathscr{M}^{\oplus\gamma}$ as a column vector.

PROOF. Recall that we defined the action of $p$ on $H^{1}(\mathfrak{F}, \mathscr{M})$ by $cl(\alpha)^{\rho}=$

$cl(\alpha^{\tilde{\rho}})$ with $\alpha^{\tilde{\rho}}(x)=\rho^{-1}\alpha(\tilde{\rho}x\tilde{\rho}^{-1})(2.1.6)$ . For each $x_{i}(1\leqq i\leqq r)$ , in view of the
proof of (4.1.4), we have

$\alpha^{\tilde{\rho}}(x_{i})=\rho^{-1}(\sum_{j=1}^{r}\frac{\partial(\tilde{\rho}x_{i}\tilde{\rho}^{-1})}{\partial x_{j}}\alpha(x_{j}))=\sum_{j=1}^{r}J_{\rho^{-1}}(\pi(\frac{\partial(\tilde{\rho}x_{i}\tilde{\rho}^{-1})}{\partial x_{j}}))\cdot\rho^{-1}\alpha(x_{j})$ .
$\blacksquare$

NOW let us specialize to the case where $\mathscr{M}=\mathcal{A}$ . As above, we define
$i:\mathcal{A}arrow_{-}A^{\oplus\tau}$ by $i(a)=((x_{j}-1)a)_{1\leqq J^{\xi r}}$ . Then by (2.4.1) and (4.1.4) (cf. also (2.6.1)),

we have an isomorphism of right $\mathcal{A}$ -modules:

(4.1.6) $\lim {}_{arrow n\in N}H^{1}(Y_{n}, Z_{\iota})\cong Coker(i)$ .
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Notice here that $i$ is injective. In fact, it is easy to see that $a\in Ker(\iota)$ implies
$(g-1)a=0$ for all $g\in \mathfrak{G}$ . But by the condition (A3), each $\pi(z_{j})-1\in A(1\leqq j\leqq s)$

is not a left (or right) zero-divisor by [I1] Lemma 3.1; and hence we must
have $a=0$ . The isomorphism above therefore gives a free resolution of
$1im{}_{n\in N}H^{1}(Y_{n}arrow’ Z_{l})$ of length 1 as a right $J$ -module. Also, it is clear from (3.2.4),

(3.3.3) and (4.1.4) that we have an isomorphism of right $\mathcal{A}$ -modules:

(4.1.7) $I\dot{4}\underline{m}{}_{n\in N}H^{1}(X_{n}, Z_{\iota})\cong Ker(Coker(i)arrow\oplus_{j=1}^{s}\mathcal{A}/(z_{j}-1)A)$ ,

where the right arrow corresponds, via (4.1.4), to the mapping $f$ in (3.2.4).

4.2. The case where $Y^{*}=P_{Q*}^{1}-\{0,1, \infty\}$ . In this case, we write $x_{1}=x$ ,

$x_{2}=y$ and $x_{3}=z$ , respectively. For $\rho\in G_{Q*}$ and its lifting $\tilde{\rho}\in Ga1(M/L^{*})$ as
before, it is known that:

(4.2.1) $\{$

$\tilde{\rho}x\tilde{\rho}^{-1}=sx^{\alpha}s^{-1}$

$\tilde{\rho}y\tilde{\rho}^{-1}=ty^{\alpha}t^{-1}$ ,

for some $s,$ $t\in \mathfrak{F}$ , with $\alpha=x(\rho^{-1})$ , where $x:G_{Q*}arrow\hat{Z}^{\cross}$ is the cyclotomic character
([I1] Proposition 1.2; remember our convention on the composition law on Galois
groups, which is inverse to that in [I1] $)$ . We then recall Ihara’s anti l-cocycles
([I1] p. 433, p. 435):

(4.2.2) $\{\begin{array}{l}\psi(\rho)\cdot=\pi(s-\frac{\partial(s-t)}{\partial x}(\pi-1))=\pi(t-\frac{\partial(t-s)}{\partial y}(y-1))\psi_{x}(\rho)\cdot=\pi(s\frac{x^{\alpha}-1}{x-1})+(1-J_{\rho}(\pi(x)))\pi(\frac{\partial(s-t)}{\partial x})\psi_{y}(\rho)\cdot=\pi(t\frac{y^{\alpha}-1}{y-1})+(1-J_{\rho}(\pi(y)))\pi(\frac{\partial(t-s)}{\partial y})\cdot\end{array}$

THEOREM (4.2.3) (Ihara). Let $\mathscr{M}$ be a Pro-l $\tilde{\mathfrak{G}}$-module. Then the action of
$\rho\in G_{Q*}$ on $H^{1}$ ($\mathfrak{F}$ , .St) corresponds, via (4.1.4), to the automorphism:

$\{\begin{array}{l}m_{1}m_{2}\end{array}\}$ mod ${\rm Im}(i)-\{\begin{array}{ll}J_{\rho^{-1}}(\psi_{x}(\rho)) 00 J_{\rho^{-1}}(\psi_{y}(p))\end{array}\}\{\begin{array}{l}p^{-1}m_{1}\rho^{-1}m_{2}\end{array}\}$ mod ${\rm Im}(i)$

of $Coker$ (.Sll $arrow \mathscr{M}^{\oplus 2}$)
$i$

PROOF. By [I1] Lemma 3.2, we see from (4.2.1) that:

$M(\tilde{\rho})=\pi(\{\begin{array}{l}s\cdot(x^{\alpha}-1)/(x-1)+(1-\tilde{\rho}x\tilde{\rho}^{-1})\partial s/\partialx (1-\tilde{\rho}x\tilde{\rho}^{-1})\partial s/\partial y(1-\tilde{\rho}y\tilde{p}^{-1})\partial t/\partial x t\cdot(y^{a}-1)/(y-1)+(1-\tilde{\rho}y\tilde{\rho}^{-1})\partial t/\partial y\end{array}\})$ .



Cohomology grouPs attached to towers 155

A simple calculation then shows that
$J_{\rho^{-1}}(M(\tilde{\rho})-\{\begin{array}{ll}\psi_{x}(p) 00 \psi_{y}(\rho)\end{array}\})$

annihilates
$Coker(i)$ ; and hence the conclusion follows from (4.1.5).

Note especially that the action of $\rho$ on $\lim_{arrow}{}_{n\in N}H^{1}(Y_{n}, Z_{l})\cong Coker$ (A 3 $\mathcal{A}^{\oplus 2}$)

is induced from the automorphism:

(4.2.4) $\{\begin{array}{l}a_{1}a_{2}\end{array}\}-\{\begin{array}{ll}J_{\rho^{-1}}(\psi_{x}(\rho)) 00 J_{\rho^{-1}}(\psi_{y}(\rho))\end{array}\}[_{J_{\rho^{-}}}^{J_{\rho^{-}}}|_{(a_{2})}^{(a_{1})}]$

of $A^{\oplus 2}$ .
COROLLARY (4.2.5). For $p\in G_{Q*},$ $\rho$ acts on $km_{n\in}{}_{N}H^{1}(Y_{n}, Z_{l})$ trivially if and

only if $\rho\in Ker(\psi);i.e.,$ $\psi(\rho)=1$ .

PROOF. Assume that $\rho$ acts on $\lim {}_{arrow n\in N}H^{1}(Y_{n}, Z_{\iota})\cong H^{1}(\mathfrak{F}, \mathcal{A})$ trivially. The

injection $i_{x}$ : $\mathcal{A}c_{-p\oplus 2}(a$ }$arrow\{\begin{array}{l}a0\end{array}\})$ induces, via (4.1.4), an injective homomorphism

$\zeta_{x}$ : Ac.H’ $(\ , -\ell)$ by Lemma 3.1 or Proposition 1.4 of [I1]. The description of
the action of $\rho$ above then implies that $a=J_{\rho^{-1}}(\psi_{x}(\rho)a);i.e.,$ $\psi_{x}(\rho)a=J_{\rho}(a)$

for all $a\in A$ . Taking especially $a=1\in \mathfrak{G}$ , we obtain: $\psi_{x}(\rho)=1$ ; and hence also
$a=J_{\rho}(a)$ for all $a$ . From the relations ([I1] p. 435):

(4.2.6) $\{$

$\phi_{x}(\rho)(\pi(x)-1)=(J_{\rho}(\pi(x))-1)\psi(\rho)$

$\psi_{y}(\rho)(\pi(y)-1)=(J_{\rho}(\pi(y))-1)\psi(\rho)$ ,

we conclude that $\psi(\rho)=1$ .
Conversely, suppose that $\psi(\rho)=1$ . Then this implies that $J_{\rho}=id$ (cf. Ihara

[I2] \S 3). Therefore we obtain $\psi_{x}(\rho)=1$ from (4.2.6); and also $\psi_{y}(\rho)=1$ for
the same reason. $\blacksquare$

In [I2] loc. cit., Ihara relates $\psi$ with a certain representation $G_{Q*}arrow\Psi$ (which

is called $\psi$
’ there), whose kernel coincides with $Ker(\emptyset)$ . Especially in the case

of Example (M) (1.2), we see from the corollary above that the kernels of the
two Galois representations: $G_{Q} arrow Aut(\lim_{arrow}{}_{n\in N}H^{1}(Y_{n}, Z_{l}))$ and $G_{Q} arrow Out(\pi_{1}^{pro-l}(P\frac{1}{Q}$

$-\{0,1, \infty\}))$ coincide.
Finally, let us describe $H_{P}^{1}(\mathfrak{F}, -4)$ . For $\alpha\in Z^{1}(\mathfrak{F}, \lrcorner I),$ $a$ belongs to $Z_{P}^{1}(\mathfrak{F}, 1)$

if and only if $\alpha(x)\in(x-1)i,$ $\alpha(y)\in(y-1)\mathcal{A}$ , and $\alpha(z)\in(z-1)\mathcal{A}$ , by definition.
The last condition is equivalent to $\alpha(z^{-1})\in(z-1)\mathcal{A}$ ; and by the relation $xyz=1$ ,

this in turn is equivalent to $x\alpha(y)+\alpha(x)\in(z-1)\mathcal{A}$ . Therefore $I(4.1.4)$ induces
as isomorphism:

$Z_{P}^{1}(\mathfrak{F}, \lrcorner I)_{arrow}\sim\{\{\begin{array}{l}a_{1}a_{2}\end{array}\}\in(x-1)\mathcal{A}\oplus(y-1)_{-}A|a_{1}+xa_{2}\in(z-1)\mathcal{A}\}$ .
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It is then easy to see that $\zeta_{x}$ above gives an isomorphism:

(4.2.7) $(x-1)\mathcal{A}\cap(z-1)_{\lrcorner}t_{arrow}\sim H_{P}^{1}(\mathfrak{F}, \mathcal{A})$

of right $\mathcal{A}$ -modules. The action of $\rho\in G_{Q*}$ on $H_{P}^{1}(\mathfrak{F}, \mathcal{A})$ corresponds to $(x-1)A$

$\cap(z-1)\mathcal{A}\ni a-J_{\rho^{-1}}(\psi_{x}(\rho)a)$ via th $is$ isomorphism.

4.3. We add here another application of (4.1.4). Let the notation be as in
3.1. For a $\Gamma$-moduIe $M$, we denote by $H^{i}(\Gamma, M)$ the usual group cobomology.
Replacing “continuous cochains” by the usual cochains, we can also define
$H_{P}^{i}(\Gamma, M)$ for $i=1,2$ in the same manner as in (3.2.1), which are nothing but
the classical parabolic cohomology groups ([Shl] 8.1) when $q$] $\cong H$.

PROPOSITION (4.3.1). Let $\mathscr{M}$ be a Pro-l $\mathfrak{F}-$-module. Then the homomorPhsm:
$H^{1}(\mathfrak{F}, \mathscr{M})-H^{1}(\Gamma, \mathscr{M})$

obtained by restricting (continuous) 1-cocycles $on$ & $to$ $\Gamma$, is an isomorPhism. Also,
this induces an isomorPfusm:

$H_{P}^{1}(\mathfrak{F}, \mathscr{M})_{arrow}\sim H_{P}^{1}(\Gamma, \mathscr{M})$ .

PROOF. The classical free differential calculus (Fox [F]) applied to $\Gamma$

yields, exactly in the same manner as in the proof of (4.1.4), an isomorphism:

$H^{1}(\Gamma, M)arrow Coker(Marrow M^{\oplus r})i$ for any $\Gamma$-module $M$. The first assertion follows
from this and (4.1.4). The second assertion follows from the first one and the
fact that the exact sequence (3.2.4) also holds if one replaces ew by $\Gamma$ . $\blacksquare$

\S 5. Cohomology groups with compact support.

5.1. Preliminaries on $G$-sheaves. In [Gr] Chapter V, Grothendieck de-
veloped a general cohomology theory of $G$-sheaves on topological spaces. As
he noticed later (SGA $5X1$), a similar theory holds for \’etale cohomology groups.
In the following, we shall freely use th $is$ language for \’etale cobomology groups,
referring to [Gr] for the corresponding statements in the classical case.

We first recall some definitions. Suppose that a group $G$ acts on a scheme
$T$ from the left. Then a (set-valued) sheaf $F$ on $T_{et}$ is called a $G$-sheaf if we
are given an isomorphism $\varphi_{F}(g):F_{arrow}\sim g^{*}F$ for each $g\in G$ , and the diagram

$F^{\underline{\varphi_{F}(g_{1}g_{2})}}(g_{1}g_{2})^{*}F$

(5.1.1) $\varphi_{F}(g_{2})\downarrow$ $\downarrow l$

$g_{2}^{*}Fg_{z}^{*}g_{1}^{*}Fg_{2}^{*}\varphi_{F}(g_{1})$
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commutes for each $g_{1},$ $g_{2}\in G$ . If we denote by $\psi_{F}(g):Farrow g_{*}F$ the morphism
corresponding to $\varphi_{F}(g)^{-1}$ : $g^{*}Farrow F$ by adjunction, this is equivalent to the com-
mutativity of:

$\psi_{F}(g_{1}g_{2})$

$F-(g_{1}g_{2})_{*}F$

(5.1.2) $\psi_{F}(g_{1})\downarrow$ $\downarrow l$

$g_{1*}Fg_{1*}g_{2*}Fg_{1*}\overline{\psi_{F}(g_{2})}$

Call $T_{et.G}^{\sim}$
, the category of (set-valued) $G$-sheaves on $T_{et}$ , with the obvious de-

finition of morphisms. The category $T_{ei.c}^{\sim ab}$, of abelian $G$-sheaves on $T_{bt}$ can be
defined similarly. For FE $\tau et,$

$G$ and any $Uarrow T$ \’etale, the composites of

(5.1.3) $\{$

$F(U)g^{*}F(g^{*}U)F(g^{*}U)\underline{can}\underline{\varphi_{F}(g)^{-1}}$ and
$F(U)g_{*}F(U)\underline{\psi_{F}(g)}=F(g^{*}U)$

coincide, where we denote by $g^{*}U$ the base change of $U$ by $g$ . Next assume
that $T$ is an $S$-scheme, and let $f:Tarrow S$ be the structure morphism. Suppose
that $G$ acts on $T$ as $S$-automorphisms. Then, for any $Uarrow S$ \’etale, $G$ acts on
$f_{*}F(U)=F(f^{*}U)=F(g^{*}f^{*}U)$ by (5.1.3). Let $f_{*}^{G}F$ be the sheaf on $S_{\text{\’{e}} t}$ defined by

(5.1.4) $f_{*}^{G}F(U):=f_{*}F(U)^{G}$

for $Uarrow S$ \’etale. Thus on $T_{e}^{\sim}i^{a}c^{b},$ $f_{*}^{G}F$ is defined as the kernel of

(5.1.5) $\Pi_{g\in G}(f_{*}\psi_{F}(g)-id):f_{*}Farrow\Pi_{g\in G}f_{*}F$ .
NOW let $X’$ be a complete variety defined over a separably closed field $k$ .

We assume that a finite group $G$ acts on $X’$ as $k$-automorphisms admissibly
from the left (in the sense of SGA 1 V 1.7). Let $f:X’arrow X:=G\backslash X’$ be the
quotient morphism. Also assume that we are given an open immersiVn $j:YcX$
defined over $k$ . Then $G$ acts on $Y’:=Y\cross_{X}X’$ admissibly, and we may identify
$Y$ with $G\backslash Y’$ . Call $h$ the restriction of $f$ to $Y’$ , and $j’$ the open immersion:
$Y’c,X’$ :

$Y’X’\underline{j’}$

(5.1.6) $h\downarrow$ $f\downarrow$

$YX\overline{j}$

Recall that the base change morphism induces a canonical isomorphism of func-
tors on $Y_{\iota i^{ab}:}^{\sim}$

(5.1.7) $f^{*}j_{1}\cong j_{1}’h^{*}$
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([SGA4] XVII 5.1.2). On the other hand, there is a canonical isomorphism:
$f_{*}j_{!}’\cong j_{!}h_{*}$ on $Y_{bt}’\sim$

ab because $f$ and $h$ are proper ([SGA4] XVII 6.1). From this
and the description (5.1.5) above, it is easy to see that $j_{!}’$ naturally defines a
functor: $Y_{et.G}^{\prime\sim.ab}arrow X_{et.G}^{\prime\sim.ab}$ , and that the isomorphism above gives rise to a canonical
isomorphism of functors:

(5.1.8) $f_{*}^{G}j_{I}’\cong j_{I}h_{*}^{G}$

on $Y_{et.G}^{\prime\sim,ab}$ . From the adjunction morphisms, we also have monomorphisms:

(5.1.9) $\{$

$h^{*}h_{*}^{G}F=F$

$f^{*}f_{*}j_{1F}’=j_{I}’F$

for each FE $Y_{bt.G}^{\prime\sim,\alpha b}$ , which are isomorphisms when $h$ is \’etale (use [Gr] Theorem
5.3.1, which holds without the assumption (D) there in our present case (cf.

[SGA4]‘ VIII 5.5), to look at stalks).

For any abelian sheaf $F$ on $Y_{et}$ , we have the canonical homomorphism of
\’etale cohomology groups with compact support:

(5.1.10) $H_{c}^{i}(Y, F)arrow H_{c}^{i}(Y’, F)$ ,

which is by definition the composite of: $H_{c}^{i}(Y, F)=H^{i}(X, j_{!}F)arrow H^{i}(X’canf^{*}j_{!}F)$

$C517)\cong H^{i}(X’, j_{!}’h^{*}F)=H_{c}^{i}(Y’, F)$ . $G$ acts on $H_{c}^{i}(Y’, F)$ in a natural manner, and
the image of (5.1.10) is $G$ -invariant. For $F\in Y_{et.G}’\sim ab$ we can also define a homo-
morphism:

(5.1.11) $H_{c}^{1}(Y, h_{*}^{G}F)arrow H_{c}^{1}(Y’, F)$

as the composite of: $H_{c}^{1}(Y, h_{*}^{G}F)^{(5.1.10)}arrow H_{c}^{1}(Y’, h^{*}h_{*}^{G}F)arrow H_{c}^{1}(Y’(519)F)$ . $G$ again
acts on $H_{c}^{1}(Y’, F)$ in a natural manner, and the image of (5.1.11) is G-invariant.
It can be easily seen that the mapping (5.1.11) coincides with the composite of:
$H_{c}^{1}(Y, h_{*}^{G}F)=H^{1}(X, j_{!}h_{*}^{G}F)^{(5}\cong^{1.8)}H^{1}(X, f_{*}^{G}j_{1}’F)arrow H^{1}(X’canf^{*}f_{*}^{G}j_{!}F)arrow H^{1}(X’, j_{!}’F)=(519)$

$H_{c}^{1}(Y’, F)$ .

PROPOSITION (5.1.12). The notation being as above, assume that $h$ is itale.
Then for any $F\in Y_{et.G}^{\prime\sim,ab}$ satisfying $H_{c}^{0}(Y’, F)=\{0\}$ , the mapping (5.1.11) above
induces an isomorphism

$H_{c}^{1}(Y, h_{*}^{G}F)_{arrow}\sim H_{c}^{1}(Y’, F)^{G}$ .

PROOF. Denoting by $H^{n}(X’$ ; $G$ , - $)$ the n-th right derived functor of
$H^{0}(X, f_{*}^{G}(-))=H^{0}(X’, -)^{G}$ on $X_{e’t.G}’\sim ab$ we have two spectral sequences:

$E_{2}^{p.q}=H^{p}(X, R^{q}f_{*}^{G}(j_{|}^{f}F))\Rightarrow H^{p+q}(X’ ; G, j_{I}’F)$
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$E_{2}^{p.q}=H^{p}(G, H^{q}(X’, j_{!}’F))\Rightarrow H^{p+q}(X’ ; G, j_{!}’F)$

by [Gr] Theorem 5.2.1. Under our assumption on $h$ , we see by [Gr] Theorem
5.3.1 that the stalk of $R^{q}f_{*}^{G}(j_{!}^{f}F)$ at any geometric point of $X$ vanishes for $q>0$ ; and
hence the first spectral sequence degenerates. We therefore obtain two isomor-
phisms: $H^{1}(X, f_{*}^{G}j_{!}’F)_{arrow}^{\sim}H^{1}(X’ ; G, j_{!}’F)$ , and $H^{1}(X’ ; G, j_{!}’F)\simarrow H^{1}(X’, j_{!}’F)^{G}$ . Com-

posing them with the isomorphism: $H_{c}^{1}(Y, h_{*}^{G}F)\cong H^{1}(XC518)f_{*}^{G}j_{!}’F)$ , we obtain an
isomorphism: $H_{c}^{1}(Y, h_{*}^{G}F)_{arrow}^{\sim}H_{c}^{1}(Y’, F)^{G}$ , which is easily seen to be induced from
the mapping (5.1.11), in view of the remark made before the proposition (cf.

the remark after (5.2.7) in [Gr] $)$ . $\blacksquare$

5.2. The group of “modular symbols”. Let us return to the situatlon of
\S 3. We fix a set $\{K_{\nu}\}_{\nu\in N’}$ of finite Galois subextensions of $M/K$ such that the
composite of all $K_{\nu}$ is $M$. We define the partial order in $N^{f}$ by setting $\nu\geqq\mu$

if and only if $K_{\nu}\supseteqq K_{\mu}$ . We may (and do) assume that: i) $N^{f}$ is a directed set
with respect to this partial order; and ii) Gal $(M/K_{\nu})$ is a normal subgroup of
$Ga1(M/K^{*})$ for each $\nu\in N’$ (cf. 1.1). For $\nu\in N’$ , we denote $byX$, (resp. $Y_{\nu}$) the
normalization of $X$ (resp. $Y$ ) in $K_{\nu}$ , and set C. $:=X_{\nu}-Y_{\nu}$ . As before, C. will
be often identified with a subset of $X_{\nu}(\overline{Q})$ . If $\nu\geqq\mu(\mu, \nu\in N’)$ , the morphism
$X_{\nu}arrow X_{\mu}$ induces a mapping $C_{v}arrow C_{\mu}$ ; and hence a $Z_{\iota}$ -homomorphism $Z_{t}[C_{\nu}]arrow$

$Z_{l}[C_{\mu}]$ . We denote by deg. : $Z_{l}[C_{\nu}]arrow Z_{\iota}$ the mapping which sends an element
of $Z_{\iota}[C_{\nu}]$ to the sum of its coefficients, and by $Z_{\iota}[C_{\nu}]_{0}$ $:=Ker(\deg_{\nu})$ the “degree
$0$-part” of $Z_{\iota}[C_{\nu}]$ . It is obvious that deg.’s are compatible with $Z_{\iota}[C_{\nu}]arrow$

$Z_{\iota}[C_{\mu}]$ .
DEFINITION (5.2.1). The notation being as above, we set

$\{$

$g:=1\acute{A}^{\underline{m}_{\nu\in N’}Z_{\iota}[C_{\nu}]}$

$deg:=1\dot{A}^{\underline{m}_{\nu\in N’}}$ deg. : $9arrow Z_{\iota}$

$9_{0}:=Ker(\deg)=\underline{Iim}_{\nu\in N’}Z_{l}[C_{\nu}]_{0}$ .
By our assumption ii) above, Gal $(M/K^{*})$ acts on $C_{\nu}(cX_{\nu})$ from the left,

and hence 9 and $9_{0}$ are continuous left Gal $(M/K^{*})$-modules.
For a Pro-l $\mathfrak{G}$-module $\mathscr{M}$ , let $Hom_{c.\mathfrak{F}}(9_{0}, \mathscr{M})$ be the group of continuous

homomorphisms of $\mathfrak{F}$-modules. If $\mathscr{M}=\lim_{arrow i\in I}\mathscr{M}_{i}$ with pro-l $\mathfrak{G}$-modules $\mathscr{M}$ and
$\mathscr{M}_{i}$ , then it is clear that the natural mapping: $Hom_{c.\mathfrak{F}}(9_{0}, \mathscr{M})arrow$

$\lim {}_{arrow i\in I}Hom_{c,\mathfrak{F}}(9_{0}, \mathscr{M}_{i})$ is an isomorphism. On the other hand, when $\mathscr{M}$ is a
pro-l $\tilde{\mathfrak{G}}$-module, we can consider $Hom_{c.\mathfrak{F}}(9_{0}, \mathscr{M})$ as a right $G_{Q*}$-module as fol-
lows: For $\rho\in G_{Q*}$ , take its lifting $\tilde{\rho}\in Ga1(M/L^{*})$ . Then for $f\in Hom_{c.\mathfrak{F}}(9_{0}, \mathscr{M})$ ,
we define

(5.2.2) $f^{\rho}(d):=\rho^{-1}f(\tilde{p}(d))$ $(d\in 9_{0})$ .
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It is easy to see that this is well-defined.
Recall that rr is a completion of $\Gamma(3.1)$ . When the universal covering

space $V$ of $Y(C)$ is isomorphic to $H$, let $C$ be the set of cusps of $\Gamma$ viewed as
a Fuchsian group of the first kind (loc. cit.), and denote by $D:=Z[C]$ the free
abelian group on $C$ . When $cU\cong C$ , each $C_{\nu}$ consists of just two elements, and
hence so is $C:= \lim_{arrow},\in N’$ C.. We again put $D$ $:=Z[C]$ . In either case, we can
define the “degree $0$-part’‘ $D_{0}$ of $D$ in an obvious way. The natural mappings:
$Carrow C_{\nu}$ induce injective homomorphisms $Darrow 9$ and $D_{0}arrow 9_{0}$ whose image is dense.

PROPOSITION (5.2.3). For a pro-l $\mathfrak{G}$-module $R$ , the natural maPPings:

$Hom_{c.\mathfrak{F}}(9, \mathscr{M})arrow Hom_{\Gamma}(D, \mathscr{M})$ , and

$Hom_{c.\mathfrak{F}}$ ($9_{0}$ , .St) $arrow Hom_{\Gamma}(D_{0}, \mathscr{M})$

are isomorphisms.

PROOF. Take a set $\{c_{1}, \cdots c_{S}\}$ of representatives of $\Gamma\backslash C$ . We may assume
that $z_{j}\in\Gamma$ generates the stabilizer subgroup $\Gamma_{j}$ of $c_{j}$ in $\Gamma(1\leqq j\leqq s)$ . Then $D$

is isomorphic to $\oplus_{j=1}^{s}Z[\Gamma/\Gamma_{j}]$ as a left $\Gamma$-module; and hence $Hom_{\Gamma}(D, \mathscr{M})\cong$

$\oplus_{j=1}^{s}\mathscr{M}^{\Gamma_{j}}$ . On the other hand, the inertia group $I_{j}(\subseteqq \mathfrak{F})$ of the image of $c_{j}$ in
$\varliminf_{\nu\in N’}$ $C.=$ (cuspidal’ prime divisors of $M$) is topologically generated by $z_{j}$ .
Since $\lim_{arrow\nu\in N’}C_{\nu}\cong\oplus_{j=1}^{s}\mathfrak{F}/I_{j}$ , we have an isomorphism $9\cong\oplus_{j\Rightarrow 1}^{\iota}Z_{l}[[\mathfrak{F}]]/$

$Z_{\iota}[[\mathfrak{F}]](z_{j}-1)$ of $\mathfrak{F}$-modules. This implies that $Hom_{c.\mathfrak{F}}$($9$ , .Set) $\cong\oplus_{j=1}^{s}\mathscr{M}^{I_{j}}=$

$\oplus_{j=1}^{s}\mathscr{M}^{\Gamma_{j}}$ ; and hence the first mapping is an isomorphism.
Next, from the following obvious morphism of short exact sequences:

$0-D_{0}-D-Z-0$
$\downarrow$ $\downarrow$ $\downarrow$

$0-9_{0}-9-Z_{l}-0$ ,

we obtain a morphism of well-known exact $s$equences:

$0-Hom_{c.\mathfrak{F}}(Z_{l}, \mathscr{M})-Hom_{c.\mathfrak{F}}(9, \mathscr{M})$

(5.2.4) $\downarrow l$ $\downarrow 1$

$0-Hom_{\Gamma}(Z, \mathscr{M})-Hom_{\Gamma}(D, \mathscr{M})$

$-Hom_{c.\mathfrak{F}}(9_{0}, \mathscr{M})-Ext_{c.\mathfrak{F}}(Z_{\iota}, SIZ)-Ext_{c.\mathfrak{F}}(9, \mathscr{M})$

$\downarrow$ $\downarrow$ $\downarrow$

$-Hom_{\Gamma}(D_{0}, \mathscr{M})-$ $Extr(Z, \ovalbox{\tt\small REJECT})$ $-Extr$($D$ , .St),

where $Ext_{c.\mathfrak{F}}$ (resp. $Ext_{\Gamma}$ ) means the group of isomorphism classes of extensions
in the category of Profinite $\mathfrak{F}$-modules ($i.e$ . proPnite abelian grouPs with con-
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tinuous left &-action) (resp. usual $\Gamma$-modules); and the middle right (resp. right)

vertical arrow is induced from the correspondence: (an extension of $\mathscr{M}$ by $Z_{l}$

(resp. 9) as profinite $\mathfrak{F}- modules$)$-(its$ “pull-back” by $Zarrow Z_{\iota}$ (resp. $Darrow 9$) viewed
as an extension of $\Gamma$-modules).

NOW for $\alpha\in Z^{1}(\mathfrak{F}, \mathscr{M})$ , let $M_{\alpha}$ be $\mathscr{M}\cross Z_{l}$ as a topological group on which
$x\in \mathfrak{F}$ acts as: $x\cdot(m, a):=(xm+a\alpha(x), a)$ . Via the obvious injection $\mathscr{M}cM_{a}$

and the surjection $M_{a}arrow Z_{l}$ , we can consider $M_{a}$ as an extension of $\mathscr{M}$ by $Z_{l}$

in the category of profinite $\mathfrak{F}$-modules. By a direct computation (as is perhaps
well-known), we easily see that this correspondence gives an isomorphism:
$H^{1}(\mathfrak{F}, \mathscr{M})_{arrow}^{\sim}Ext_{c,\mathfrak{F}}(Z_{l}, \mathscr{M})$ . In a similar fashion, we obtain an isomorphism:
$H^{1}(\Gamma, \mathscr{M})_{arrow}^{\sim}Ext_{\Gamma}(Z, \mathscr{M})$ . From this and (4.3.1), we see that the mapping:
$Ext_{c,\mathfrak{F}}(Z_{l}, \mathscr{M})arrow Ext_{\Gamma}(Z, \mathscr{M})$ is an isomorphism; and therefore it is enough to
show the injectivity of the right vertical arrow to complete the proof. For
this, first note that the natural inclusion: $Z_{\iota}cZ_{l}[[\mathfrak{F}]]$ induces an injective
homomorphism of $I_{j}$-modules: $Z_{l}c,Z_{l}[[\mathfrak{F}]]/Z_{l}[[\mathfrak{F}]](z_{j}-1)$ for each $j$ (l$j$s).

Thus the corresPondence: (an extension of $\mathscr{M}$ by $Z_{\iota}[[\mathfrak{F}]]/Z_{\iota}[[\mathfrak{F}]](z_{j}-1)$ as
profinite $\mathfrak{F}- modules$) $arrow(its$ pull-back by the mapping above, viewed as an exten-
sion of profinite $I_{j}$-modules) induces a homomorphism: $Ext_{c,\mathfrak{F}}(Z_{l}[[\mathfrak{F}]]/$

$Z_{l}[[\mathfrak{F}]](z_{j}-1),$ $\mathscr{M})arrow Ext_{c.I_{j}}(Z_{\iota}, \mathscr{M})$ for each $j(1\leqq j\leqq s)$ , which is easily seen
to be injective. On the other hand, by the same reasoning as above, we have
an isomorphism: $Ext_{c,I_{j}}(Z_{l}, \mathscr{M})_{arrow}\sim H^{1}(I_{j}, \mathscr{M})$ . Arguing in the same manner for
(discrete) $\Gamma$-modules, we obtain the following commutative diagram:

$Ext_{c,\mathfrak{F}}(9, \mathscr{M})arrow\oplus_{j=1}^{s}Ext_{c.I_{j}}(Z_{\iota}, \mathscr{M})$ : $\oplus_{j=1}^{S}H^{1}(I_{j}, \mathscr{M})$

$\downarrow$ $\downarrow$ $\downarrow{\rm Res}$

$Ext_{\Gamma}(D, \mathscr{M})arrow\oplus_{j=1}^{s}Ext_{\Gamma_{j}}(Z, \mathscr{M})arrow\sim\oplus_{j\Rightarrow 1}^{S}H^{1}(\Gamma_{j}, \mathscr{M})$

with injective left horizontal arrows. Since $H^{1}(I_{j}, \mathscr{M})$ and $H^{1}(\Gamma_{j}, \mathscr{M})$ are iso-
morphic to $\mathscr{M}/(z_{j}-1)\mathscr{M}$ by the correspondence: $cl(a)-\alpha(z_{j})mod (z_{j}-1)\mathscr{M}$ , the
mapping ${\rm Res}$ above is an isomorphism; and hence our conclusion follows. $\blacksquare$

AS the argument above shows, $Hom_{c.\mathfrak{F}}(9_{0}, \mathscr{M})$ is finite whenever $\mathscr{M}$ is
finite. Thus for any pro-l $\mathfrak{G}$-module $\mathscr{M},$ $Hom_{c.\mathfrak{F}}(9_{0}, \mathscr{M})$ is naturally equipped
with the structure of a pro-l abelian group; and the action of $G_{Q*}$ defined by
(5.2.2) is continuous.

REMARK (5.2.5). The groups $Hom_{\Gamma}(D_{0}, \mathscr{M})$ (in the elliptic modular case (cf.

\S 7)) were first introduced by Ash and Stevens [AS2] in their theory of higher
weight modular symbols. Our definition of the groups $Hom_{c.\mathfrak{F}}(9_{0}, \mathscr{M})$ and the
Theorem (5.3.2) below were directly motivated by their work (cf. especially
[AS2] p. 862). Indeed, the above groups (again in the elliptic modular $case\rangle$
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for “large” $\mathscr{M}$ will play a central role in the “
$p$ -adic analytic theory of modular

symbols” to be developed in a subsequent paper.

5.3. $H_{c}^{1}$ and “modular symbols”. Let $\mathscr{M}=\varliminf_{i\in I}\mathscr{M}_{i}$ be a pro-l G-module
with finite $\mathscr{M}_{i}$ . Then we defined in 2.3 a projective system $\{F_{\mathscr{M}_{i}}\}_{i\in I}$ of twisted
constant sheaves on $Y_{et}$ . We put

(5.3.1) $H_{c}^{1}(Y, F_{\mathscr{M}}):=\varliminf_{i\in I}H_{c}^{1}(Y, F_{\mathscr{M}_{i}})$ .
If $\mathscr{M}$ is a pro-l $\tilde{\mathfrak{G}}$-module, $G_{Q*}$ acts on this group continuously from the right.

THEOREM (5.3.2). The notation being as above and as in 5.2, $H_{c}^{1}(Y, F_{\mathscr{M}})$ is
canonically isomorPhic to $Hom_{c.\mathfrak{F}}(9_{0}, \mathscr{M})$ for any pro-l $\mathfrak{G}$-module $\mathscr{M}$ . When $\mathscr{M}$

is a pro-l $\tilde{\mathfrak{G}}$-module, this isomorPhesm commutes with the action of $G_{Q*}$ .

PROOF. We may assume that $\mathscr{M}$ is finite. In this case, there is a $\nu\in N’$

such that $\mathscr{M}$ is a trivial Gal $(M/K_{\nu})$-module. For the moment, we fix such a $\nu$ ,
and put $\mathfrak{F}_{\nu}$ $:=Ga1(K,/K)$ . For $\sigma\in \mathfrak{F}\nu$ or $\mathfrak{F}$ , we denote by $[\sigma]$ the automorphism
of $Y_{\nu}$ or $X_{\nu}$ corresponding to $\sigma$ : $K.arrow\sim K_{\nu}$ . Then there is an isomorphism of
group schemes $f:F_{\mathscr{M}}\cross_{Y}Y_{\nuarrow}\sim Y_{\nu}\cross \mathscr{M}=:\underline{\mathscr{M}}_{Y_{\nu}}$ (the constant group scheme) over
Y., and the following diagram commutes for all $\sigma\in \mathfrak{F}$, or $\mathfrak{F}$ :

$F_{\mathscr{M}}\cross_{Y}Y_{\nu}F_{\mathscr{M}}\cross_{Y}Y_{\nu}\underline{id\cross[\sigma]}$

(5.3.3) $cl\downarrow$ $\downarrow l$ ,

$Y,\cross \mathscr{M}Y_{\nu}\cross \mathscr{M}\overline{[\sigma]\cross\sigma}$

In other words, if we define $\varphi(\sigma)$ : $Y_{\nu}\cross \mathscr{M}arrow[\sigma]^{*}(Y_{\nu}\cross \mathscr{M})=Y,\cross \mathscr{M}$ by $id\cross\sigma$ ,
$\{\varphi(\sigma)\}_{\sigma\in \mathfrak{F}}$, gives an $\mathfrak{F}_{\nu}$-sheaf structure on $\underline{\mathscr{M}}_{Y_{\nu}}$ . If we denote by $h_{\nu}$ : $Y_{\nu}arrow Y$ the
natural morphism, it is easy to see that $h_{*}^{\mathfrak{F}_{\nu}}(\underline{\mathscr{M}}_{Y_{\nu}})\cong F_{\mathscr{M}}$ .

Let $j_{\nu}$ : $Y{}_{\nu}CX_{\nu}$ (resp. $i$, : $C_{{}_{\nu}C}X_{\nu}$) be the natural open (resp. closed) immer-
sion. Then we have the exact sequence in $X_{\nu.e’t}^{\sim ab}$ :

(5.3.4) $0arrow j_{\nu I}F_{\mathscr{M}}arrow j_{\nu*}F_{3l}arrow i_{\nu*}i_{\nu}^{*}j_{\nu*}F_{\mathscr{M}}arrow 0$ .
Notice that $j_{*}F_{\mathscr{M}}$ is isomorphic to the constant sheaf on X. defined by $\mathscr{M}$ ,

which we denote by $\ovalbox{\tt\small REJECT}_{X},$ , and also that $i_{\nu*}i_{\nu}^{*}j_{\nu*}F_{\mathscr{M}}$ is isomorphic to the direct
image by $i_{\nu}$ of the constant sheaf defined by $\mathscr{M}$ on $C_{\nu}$ . We therefore have
isomorphisms:

(5.3.5) $H^{0}(X_{\nu}, j_{\nu*}F_{\mathscr{M}})\cong \mathscr{M}$

(5.3.6) $H^{0}(X,, i_{\nu*}i_{\nu}^{*}j_{\nu*}F_{\mathscr{M}})\cong\oplus_{x\in C_{\nu}}\mathscr{M}$ .

If we let $\sigma\in \mathfrak{F}$ act on $\mathscr{M}$ (resP. $\oplus_{x\in C},\mathscr{M}$) by $m-,\sigma^{-1}m$ (resP. $(m_{x})_{x\in C},rightarrow(m_{x}’)_{x\in c_{\nu}}$
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with $m_{x}’=\sigma^{-1}m_{\sigma x}$ ) from the right, it is easily seen from (5.3.3) that (5.3.5)

(resp. (5.3.6)) is $\mathfrak{F}$-equivariant. Thus from the long exact sequence of cohomo-
logy groups deduced from (5.3.4), we obtain the exact sequence of $\mathfrak{F}$-modules:

(5.3.7) $0-\mathscr{M}arrow\oplus_{x\in c_{\nu}\mathscr{M}}arrow H_{c}^{1}(Y_{\nu}, F_{\mathscr{M}})arrow H^{1}(X_{v}, j_{\nu*}F_{\mathscr{M}})$ ,

where the second arrow is the diagonal injection. Now we have a canonical
isomorphism:

(5.3.8) $\oplus_{x\in c_{J}\mathscr{M}_{arrow}}\backslash \sim Hom(Z_{l}[C_{\nu}], \mathscr{M})$

by sending $(m_{x})_{x\in C_{\nu}}$ to $f$ defined by $f(x)=m_{x}(x\in C_{v})$ . If we define the right
action of & on $Hom(Z_{\iota}[C_{\nu}], \mathscr{M})$ by $f^{\sigma}(x):=\sigma^{-1}f(\sigma x)$ , this isomorphism is $\mathfrak{F}-$

equivariant. From the split exact sequence:

$0-Z_{l}[C_{\nu}]_{0}arrow Z_{l}[C_{\nu}]Z_{l}\underline{\deg_{\nu}}arrow 0$ ,

we obtain an exact sequence:

$0arrow Hom(Z_{l}, \mathscr{M})arrow Hom(Z_{l}[C_{v}], \mathscr{M})arrow Hom$ ( $Z_{\iota}[C_{\nu}]_{0}$ , .Sit) $arrow 0$ .

Thus from (5.3.7) and (5.3.8), we obtain the exact sequence of right $\mathfrak{F}$-modules:

$\langle$5.3.9) $0arrow Hom(Z_{l}[C_{\nu}]_{0}, \mathscr{M})arrow H_{c}^{1}(Y_{\nu}, F_{\mathscr{M}})arrow H^{1}(X_{\nu}, j_{\nu*}F_{\mathscr{M}})(\cong H^{1}(X_{\nu}, \underline{\mathscr{M}}_{X_{\nu}}))$ ,

where we let $\mathfrak{F}$ act on $Hom(Z_{\iota}[C_{\nu}]_{0}, \mathscr{M})$ by the same formula as above. When
$\mathscr{M}$ is a pro-l $\tilde{\mathfrak{G}}$-module, by the same reasoning as above replacing & by
Gal $(MK^{*})$ , we see that (5.3.9) is Gal $(M/K^{*})$-equivariant.

NOW fix a $\mu\in N’$ such that $\mathscr{M}$ is a trivial Gal $(M/K_{\mu})$-module. For any
$\iota)\geqq\mu$ , we have a homomorphism: $Hom(Z_{l}[C_{\mu}]_{0}, \mathscr{M})arrow Hom(Z_{\iota}[C_{\nu}]_{0}, \mathscr{M})$ induced
from the obvious mapPing: $C_{\nu}arrow C_{\mu}$ , and it is easy to see that the following
diagram commutes:

$0arrow Hom(Z_{\iota}[C_{\mu}]_{0}, \mathscr{M})arrow H_{c}^{1}(Y_{\mu}, F_{\mathscr{M}})arrow H^{1}(X_{\mu}, \underline{\mathscr{M}}_{x_{\mu}})$

$\downarrow$ $\downarrow(5.1.10)$ $\downarrow can$ .
$0arrow Hom(Z_{\iota}[C_{\nu}]_{0}, \mathscr{M})arrow H_{c}^{1}(Y_{\nu}, F_{\mathscr{M}})arrow H^{1}(X_{\nu}, \underline{\mathscr{M}}_{X_{\nu}})$ .

Since $\lim {}_{arrow\nu\geqq\mu}H^{1}(X_{\nu}, \underline{\mathscr{M}}_{X_{\nu}})$ is lsomorphic to the $H^{1}$ of $1i^{\underline{m}_{\nu\geqq\mu}X_{\nu}}$ with values in the
constant sheaf defined by $\mathscr{M}$ ([SGA4] VII 5.8), this group vanishes by the de-
finition of the field $M$ (cf. the proof of (2.3.3)). Therefore we have, by taking
the inductive limit, an isomorphism of right 8-modules:

$\varliminf_{\nu\geqq}{}_{\mu}Hom(Z_{l}[C_{\nu}]_{0}, \mathscr{M})\cong\lim {}_{arrow\nu\geqq\mu}H_{c}^{1}(Y_{\nu}, F_{\mathscr{M}})$ .
It is easy to see that the left hand side is isomorphic to the group of con-
tinuous homomorphisms $Hom_{c}(9_{0}, \mathscr{M})$ . Therefore taking $\mathfrak{F}$-invariants, we ob-
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tain the desired isomorphism:

$Hom_{c.\mathfrak{F}}(9_{0}, \partial\ell)\cong H_{c}^{1}(Y, Fffl)$

by applying (5.1.12).

Finally, when $\mathscr{M}$ is a pro-l $\tilde{\mathfrak{G}}$-module, this isomorphism is compatible with
the action of $G_{Q*}$ , as is easily seen from the remark after (5.3.9). $\blacksquare$

5.4. Let the notation be as in 5.3. For a pro-l $\mathfrak{G}$-module $\mathscr{M}=\varliminf_{\iota\in I}\mathscr{M}_{i}$

with finite $\mathscr{M}_{t}$ , natural mappings: $H_{c}^{1}(Y, F_{3f_{i}})arrow H^{1}(Y, F_{\mathscr{M}_{\ell}})$ induce

(5.4.1) $H_{c}^{1}(Y, F_{\lrcorner}\circ_{1})arrow H^{1}(Y, F_{R})$ .

On the other hand, we define a homomorphism

(5.4.2) $Hom_{c}\mathfrak{F}(9_{0}, \mathscr{M})arrow H^{1}(\mathfrak{F}, \mathscr{M})$

as follows: Fix an element $d\in\varliminf_{\nu\in N’}C_{\nu}$ , and for $f\in Hom_{c.\mathfrak{F}}(9_{0}, \mathscr{M})$ , put $\alpha(\sigma)$ :
$=f(\sigma d-d)(\sigma\in \mathfrak{F})$ . It is then easy to see that $\alpha\in Z^{1}(\mathfrak{F}, \mathscr{M})$ , and that we can
define (5.4.2) by the correspondence: $farrow cl(\alpha)$ , which is independent of the
choice of $d$ .

THEOREM (5.4.3). For each pro-l $\mathfrak{G}$ -module $\mathscr{M}$ , the following diagram com-
mutes:

$Hom_{c,\mathfrak{F}}(9_{0}, \mathscr{M})H_{c}^{1}(Y\underline{(532)}\sim F_{\mathscr{M}})$

$(5.4.2)\downarrow$ $\downarrow(5.4.1)$

$H^{1}(\mathfrak{F}, \mathscr{M})\overline{(2.3.3)}\sim H^{1}(Y, F_{\mathscr{M}})$ .

PROOF. We may assume that $\mathscr{M}$ is finite. The mapping (5.4.1) is, by def-

inition, given by: $H_{c}^{1}(Y, F_{\theta t})=H^{1}(X, j_{|}F_{\mathscr{M}})arrow H^{1}(Y, j_{J_{I}}^{*}F_{\ovalbox{\tt\small REJECT}})can\cdot\cong H^{1}(Y, F_{\mathscr{M}})$ . In
terms of torsors, it is therefore induced from the correspondence: (a $j_{!}F_{\mathscr{M}^{-}}$

torsor $P$ on $X$ ) $-,$( $j_{J!}^{*}F_{\mathscr{M}}\cong F_{\mathscr{M}}$ -torsor $j^{*}P$ on $Y$ ). Also, in view of the proof of
(3.2.8), the inverse of the isomorphism (2.3.3) may be interpreted as the corre-
spondence: (isomorphism class of an $F_{\mathscr{M}}$ -torsor $P$) $arrow cl(a)$ with $a\in Z^{1}(\mathfrak{F}, \mathscr{M})$ de-
fined by: $\sigma p=p^{\sigma^{-1}}=p\cdot a(\sigma)(\sigma\in \mathfrak{F})$ for a fixed $P\in\Gamma(Z, P)$ .

NOW suppose that we are given an element $f\in Hom_{c.\mathfrak{F}}(9_{0}, \mathscr{M})\cong$

$\varliminf_{\nu\in N’}Hom(Z_{\iota}[C_{\nu}]_{0}, \mathscr{M})$ , and assume that it is represented by an element of
$Hom_{\mathfrak{F}}(Z_{\iota}[C_{\nu}]_{0}, \mathscr{M})$ , which we denote by the same letter $f$ . We may assume
that $\mathscr{M}$ is a trivial Gal $(M/K_{\nu})$ -module. Let $P_{\nu}$ (resp. $P$) be a $j_{\nu!^{F_{\mathscr{M}}}}$ -torsor
(resp. $j_{!^{F_{\backslash }}9t}$ -torsor) on $X_{v}$ (resp. $X$ ) corresponding to $f$ via:

$Hom_{\mathfrak{F}}(Z_{\iota}[C_{\nu}]_{0}, \mathscr{M})H_{c}^{1}(Y_{\nu}\underline{(539)}F_{\mathscr{M}})^{\mathfrak{F}}H_{c}^{1}(Y\underline{(5112)}\sim F_{\mathscr{M}})$ .
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Then, denoting by $h_{\nu}$ : $Y_{\nu}arrow Y$ and $f_{\nu}$ : $X_{\nu}arrow X$ the natural morphisms, $f**P$ is
isomorphic to $P_{\nu}$ as a $j_{\nu!}F_{\mathscr{M}}(=]_{\nu!^{h_{\nu}^{*}F_{\theta t}}}\cong f_{\nu}^{*}J!^{F_{\mathscr{M}})}$-torsor, and by (5.1.12), $P$ is
uniquely characterized by this property up to isomorphisms.

On the other hand, take $f\in Hom(Z_{l}[C_{\nu}], \mathscr{M})$ such that $\tilde{f}|_{z_{\iota^{[C_{v}]_{0}}}}=f$ . Con-
sidering $(\tilde{f}(x))_{x\in C_{\nu}}\in\oplus_{x\in C_{v}}$ -Sit as a section of $i_{\nu*}i_{\nu}^{*}j_{\nu*}F_{\mathscr{M}}$ on X. by (5.3.6), we can
take $P_{\nu}$ to be its inverse image by $j_{v*}F_{\lrcorner}c_{W}arrow i_{\nu*}i_{\nu}^{*}j_{\nu*}F_{\mathscr{M}}$ , viewed as a $j_{\nu!}F_{\mathscr{M}}$ -torsor
via (5.3.4) (cf. [Gi] III 3.1, 3.5). Via the canonical isomorphism: $j_{\nu*}F_{\mathscr{M}}\cong\underline{\mathscr{M}}_{X_{\nu}}$ ,

we may consider $P_{\nu}$ as a subsheaf of $\underline{\mathscr{M}}_{X_{\nu}}$ .
AS before, we define $\phi(\sigma):\underline{\mathscr{M}}_{X_{\nu}}(=X_{\nu}\cross \mathscr{M})arrow[\sigma]^{*}\underline{\mathscr{M}}_{X_{\nu}}=\underline{\mathscr{M}}_{X_{\nu}}$ by $\phi(\sigma):=id\cross\sigma$

$\langle$ $\sigma\in \mathfrak{F}_{\nu})$ , and consider $\underline{c_{7t_{X_{\nu}}}}$ as an $\mathfrak{F}_{\nu}$-sheaf on $X_{\nu.e’t}$ by means of this. Now it
is easy to see that the inverse image by $\phi(\sigma)$ of $[\sigma]^{*}P_{\nu}\subset[\sigma]^{*}\underline{\mathscr{M}}_{X_{\nu}}=\underline{\mathscr{M}}_{X_{\nu}}$ is the
subsheaf of $\underline{\mathscr{M}}_{X_{\nu}}$ corresponding to $\tilde{f}^{\sigma}$ exactly in the same manner as $P_{v}$ corre-
sponded to $\tilde{f}$ . Denote this sheaf by $P_{\nu}^{\sigma}$ . For any $x,$ $y\in C_{\nu},$ $f^{\sigma}(x-y)=f(x-y)$

implies that $\tilde{f}^{\sigma}(x)-\tilde{f}(x)=:m_{\sigma}\in \mathscr{M}=\Gamma(X_{\nu}, \underline{\mathscr{M}}_{X_{\nu}})$ is independent of $x$ , and hence
we can define an isomorphism $a(\sigma):P_{\nu}arrow P_{\nu}^{\sigma}$ of torsors by: (local section $s$ ) $arrow s+$

$\langle$the pull-back $of$) $m_{\sigma}$ . Denote by $b(\sigma):P_{\nu}arrow[\sigma]^{*}P_{\nu}$ the composite of $a(\sigma)$ and
$\phi(\sigma)$ . Then it is easy to see that $\{b(\sigma)\}_{\sigma\in \mathfrak{F}_{\nu}}$ defines an $\mathfrak{F}_{\nu}$-sheaf structure on
$P_{\nu}$ , and that the action $P_{\nu}\cross j_{\nu!}F_{\mathscr{M}}arrow P_{\nu}$ is compatible with the $\mathfrak{F}_{\nu}$-sheaf structures.
Applying the functor $f_{\nu*}^{\mathfrak{F}_{\nu}}$ , we get an $f_{\nu*}^{\mathfrak{F}_{\nu}}]_{\nu!^{F_{\mathscr{M}}\cong_{J!}F_{\mathscr{M}}}}$ -torsor $f_{v*}^{\mathfrak{F}_{\nu}}P_{\nu}$ on $X$ . Since
$f_{\nu}^{*}(f_{\nu*}^{\mathfrak{F}_{\nu}}P_{\nu})$ is isomorphic to $P_{\nu}$ as a $j_{\nu!}F_{\mathscr{M}}$ -torsor, we may take $P$ to be the torsor
above. For any $\sigma\in \mathfrak{F}\nu$

’ the right action of $\sigma$ on $\Gamma(Y_{\nu}, f_{\nu}^{*}P)\cong\Gamma(Y_{\nu}, P_{\nu})=$

$\Gamma(Y_{v}, [\sigma]^{*}P_{\nu})\cong \mathscr{M}$ is then given by $\Gamma(Y_{\nu}, b(\sigma)^{-1})$ . We therefore see that the
cohomology class $cl(a)\in H^{1}(\mathfrak{F}, \mathscr{M})$ corresponding to $P$ via the composite of (5.3.2),

(5.4.1) and the inverse of (2.3.3) is given by:

$\alpha(\sigma)=(\sigma m-m_{\sigma-1})-m=(\sigma m-(\tilde{f}^{\sigma^{-1}}(x)-\tilde{f}(x)))-m$

for any fixed $m\in \mathscr{M}$ and $x\in C_{\nu}$ . Fixing $x\in C_{\nu}$ and putting $m=\tilde{f}(x)$ , we con-
clude that

$\alpha(\sigma)=\sigma f(x)-\sigma\tilde{f}(\sigma^{-1}x)=\sigma f(x-\sigma^{-1}x)=f(\sigma x-x)$

for all $\sigma\in \mathfrak{F}$ . From this, our conclusion follows. $\blacksquare$

COROLLARY (5.4.4). For any Pro-l $\mathfrak{G}$-module $\mathscr{M}$ , the image of the mapping
$\langle$5.4.2) is presicely $H_{P}^{1}(\mathfrak{F}, \mathscr{M})$ .

PROOF. In view of (3.2.8) and (3.2.9), this follows immediately from the
theorem above. $\blacksquare$

5.5. “Modular symbols” with “generic” values. We now return to the
situation considered in (2.4.2), and propose to describe $\varliminf {}_{n\in N}H_{c}^{1}(Y_{1.n}, Z_{l})$ in
terms of “modular symbols”, where the projective limit is taken relative to the
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trace mappings.

THEOREM (5.5.1). There is an isomorphism.

$Hom_{c.\mathfrak{F}}(9_{0}, A/\overline{-AI_{u}})_{arrow}\sim\varliminf {}_{n\in N}H_{c}^{1}(Y_{1.n}, Z_{l})$

of right $G_{Q*}$-modules. Moreover this isomorphism makes the following diagram
commutative:

$Hom_{c,\mathfrak{F}}(9_{0}, A/\overline{JI_{\mathfrak{U}}})arrow\lim {}_{arrow n\in N}H_{c}^{1}(Y_{1.n}, Z_{\iota})$

$(5.4.2)\downarrow$ $\downarrow can$ .
$H^{1}(\mathfrak{F}, \mathcal{A}/\overline{JI_{u}})$

$\overline{(2.4.4)}\sim[\dot{A}^{\underline{m}{}_{n\in N}H^{1}(Y_{1.n}}, Z_{\iota})$ .

PROOF. In general, let $\mathscr{M}$ be a pro-l $\mathfrak{G}$-module, which is a free $Z_{\iota}$ -module
of finite rank. For $n,$ $m\in N$ such that $n\geqq m$ , we have an isomorphism:
$H_{c}^{1}(Y_{1.m}, F_{\mathscr{M}})\cong H_{c}^{1}(Y_{n}, F_{\mathscr{M}})^{G}$ by (5.1.12), where $G=Ga1(K_{n}/K_{1.m})$ . Identifying
these two groups, we first claim that the trace mapping: $H_{c}^{1}(Y_{n}, F_{\mathscr{M}})arrow$

$H_{c}^{1}(Y_{1,m}, F_{\mathscr{M}})$ is given by the mapping: $xarrow\Sigma_{g\in G}x^{g}$ , which we call $t$ . In fact,

since the groups above are free $Z_{\iota}$ -modules of finite rank (cf. (5.3.2)), it is
enough to show this after tensoring $Q_{\iota}$ over $Z_{l}$ . As a $G$ -module, we have a
direct sum decomposition: $H_{c}^{1}(Y_{n}, F_{\mathscr{M}})\otimes_{Z_{l}}Q_{\iota}=A\oplus B$ , where $A:=$

$(H_{c}^{1}(Y_{n}, F_{\mathscr{M}})\otimes_{z_{l}}Q_{\iota})^{G}$ and $B$ is a direct sum of nontrivial irreducible G-modules.
Since the trace mapping is $G$ -equivariant, it is identically zero on $B$ ; while $\tau$

is also zero on $B$ . On the other hand, the composite of: $H_{c}^{1}(Y_{1,m}, F_{\mathscr{M}})\simarrow$

$H_{c}^{1}(Y_{n}, Fffl)^{G_{arrow}^{trace}}H_{c}^{1}(Y_{1.m}, F_{\mathscr{M}})$ is multiplication by $|G|$ by [SGA4] XVII 6.2.3.
Therefore the trace mapping and $t$ agree also on $A$ , which shows our claim.

From the remark above, it is easy to see that the trace mapping:
$H_{c}^{1}(Y_{1.n}, F_{\mathscr{M}})arrow H_{c}^{1}$ ($Y_{1.m}$ , F.su) is given by: $x-arrow\Sigma_{g\in \mathfrak{F}_{1}^{m/\mathfrak{F}_{1}^{n}}}x^{g^{-1}}$ . Thus we see that
the following diagram commutes:

(5.5.2)
$Hom_{c,\mathfrak{F}_{1}^{n}}(9_{0}\downarrow’ \mathscr{M})H_{c}^{1}(Y_{1,n},F_{\mathscr{M}})\underline{(5.3.2)}\downarrow trace$

$Hom_{c.\mathfrak{F}_{1}^{m}}(9_{0}, \mathscr{M})H_{C}^{1}(Y_{1,m}\underline{(532)}F_{\mathscr{M}})$ ,

if we define the left arrow by: $f- \sum_{g\in \mathfrak{F}_{1}^{m/\mathfrak{F}_{1}^{n}}}f^{g^{-1}}$ .
Next recall that $\mathfrak{F}/\mathfrak{F}_{1}^{n}\cong \mathfrak{G}_{n}/\mathfrak{U}_{n}$ canonically as left $\mathfrak{F}$-sets, and let $\mathfrak{G}_{n}=\square _{i}g_{i}\mathfrak{U}_{n-}$

$=II_{i}g_{i}$ be the disjoint decomposition. In analogy with (2.5.1), we define the
mapping:

(5.5.3) $Hom_{c.\mathfrak{F}}(9_{0}, Z_{\iota}[\mathfrak{G}_{n}/\mathfrak{U}_{n}])arrow Hom_{c,\mathfrak{F}_{1}^{n}}(9_{0}, Z_{\iota})$
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by sending $f=\Sigma_{i}f_{\overline{g}},\cdot\overline{g}_{i}$ , with continuous mappings $f_{\overline{g_{i}}}$ from $9_{0}$ to $Z_{\iota}$ , to $f_{\overline{1}}$ .
Then a simple computation shows that this mapping is an isomorphism of $G_{Q*}-$

modules, and that the following diagram commutes:

(5.5.4)
$Hom_{c,\mathfrak{F}}(9_{0}\downarrow’ Z_{\iota}[\mathfrak{G}_{n}/\mathfrak{U}_{n}])arrow Hom_{c,\mathfrak{F}_{1}^{n}}(9_{0}\downarrow’ Z_{\iota})$

$Hom_{c.\mathfrak{F}}(9_{0}, Z_{\iota}[\mathfrak{G}_{m}/\mathfrak{U}_{m}])-\sim Hom_{c.\mathfrak{F}_{1}^{m}}(9_{0}, Z_{\iota})$ ,

where the left (resp. right) arrow is induced from the natural projection:
$Z_{\iota}[\mathfrak{G}_{n}/\mathfrak{U}_{n}]arrow Z_{l}[\mathfrak{G}_{m}/\mathfrak{U}_{m}]$ (resp. the previous one). Combining (5.5.2) and (5.5.4),

and taking projective limits, we obtain our first assertion.
The second assertion follows from (5.4.3) and the commutativity of:

$Hom_{c.\mathfrak{F}}(9_{0}, Z_{l}[\mathfrak{G}_{n}/\mathfrak{U}_{n}])Hom_{c,\mathfrak{F}_{1}^{n}}(9_{0}\underline{(553)}Z_{\iota})$

(5.5.5) $(5.4.2)\downarrow$ $\downarrow(5.4.2)$

$H^{1}(\mathfrak{F}, Z_{l}[\mathfrak{G}_{n}/\mathfrak{U}_{n}])$ $H^{1}(\mathfrak{F}_{1}^{n}, Z_{l})$ ,
(2.5.1)

which can be checked easily. $\blacksquare$

Suppose finally that we are in the situation of 2.6. Then the group ge na-
turally acts on $\lim {}_{arrow n\in N}H_{c}^{1}(Y_{1,n}, Z_{\iota})$ from the right. On the other hand, the
obvious right action of St on $\mathcal{A}/\overline{\mathcal{A}I_{u}}$ induces the action of St on $Hom_{c.\mathfrak{F}}(9_{0}, \mathcal{A}/_{\lrcorner}\overline{lI_{u}})$ .
We claim that the isomorphism (5.5.1) is St-equivariant. In fact, it is clear from
the proof of (5.3.2) that the isomorphism: $Hom_{c.\mathfrak{F}_{1}^{n}}(9_{0}, Z\iota)^{\sim}arrow H_{c}^{1}(Y_{1.n}, Z_{\iota})$ is ge-
equivariant if we let $k\in R$ act on the right hand $s$ ide by: $f-f^{k}$ with $f^{k}(x):=$

$f(\tilde{k}x)$ for any $\tilde{k}\in \mathfrak{F}$ such that $\tilde{k}|_{L}=k$ . It is then easy to see that this action
corresponds, via $(5.5.3),$ $tothenaturalrightactionofkonHom_{c,\mathfrak{F}}(9_{0}, Z_{\iota}[\mathfrak{G}_{n}/\mathfrak{U}_{n}])$ ,
which shows the desired compatibility.

\S 6. Specialization mappings.

6.1. Let us keep the notation and assumptions of the previous sections.
Let $\mathscr{M}$ be a pro-l $\mathfrak{G}$-module, and fix an element $m_{0}\in \mathscr{M}$ . Since $\mathscr{M}$ is an i-
module in a natural manner, we obtain a morphism of pro-l $\mathfrak{G}-$ (and hence 3
pro-l $\mathfrak{F}-$) modules:

(6.1.1) $arrow Aarrow \mathscr{M}$ $(a-a\cdot m_{0})$ .

From this, we obtain
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(6.1.2) $\{$

$sp_{m_{0}}$ : $H^{1}(\mathfrak{F}, \mathcal{A})arrow H^{1}(\mathfrak{F}, \mathscr{M})$

$sp_{P.m_{0}}$ : $H_{P}^{1}(\mathfrak{F}, \mathcal{A})arrow H_{P}^{1}(\mathfrak{F}, \mathscr{M})$

$sp_{c,m_{0}}$ : $Hom_{c.\mathfrak{F}}(9_{0}, \mathcal{A})arrow Hom_{c,\mathfrak{F}}(9_{0}, \mathscr{M})$ .
We call these mappings “specialization mappings”, and write them simply $sp$ ,
$sp_{P}$ and $sp_{C}$ , respectively, when there is no fear of confusion.

If a closed subgroup $\mathfrak{U}$ of $\mathfrak{G}$ stabilizes $m_{0}$ , then it is easy to see that $sp$ ,
$sp_{P}$ , and $sp_{c}$ factor through $H^{1}(\mathfrak{F}, \mathcal{A}/\overline{\mathcal{A}I_{11}}),$ $H_{P}^{1}(\mathfrak{F}, \mathcal{A}/\overline{\mathcal{A}I_{\mathfrak{U}}})$ and $Hom_{c.\mathfrak{F}}(9_{0}, \mathcal{A}/\overline{\mathcal{A}I_{u}})$ ,
respectively. The induced mappings will be also called “specialization mappings”.

Suppose next that $\mathscr{M}$ is a pro-l $\tilde{\mathfrak{G}}$ -module, and hence especially a $G_{Q^{*}}-$

module (cf. 2.1). If $m_{0}\in \mathscr{M}$ above is fixed under $G_{Q*}$ , then the mappings in
$\langle$6.1.2) commute with the action of $G_{Q*}$ , as can be seen easily from the defini-
tions of the Galois action (2.1, 5.2).

PROPOSITION (6.1.3). Let $\mathscr{M}$ be a Pro-l $\mathfrak{G}$-module. If the cokernel of (6.1.1)

is finite (for examPle, if $\mathscr{M}$ is a free $Z_{l}$ -module of finite rank, $\mathscr{M}\otimes_{Z_{l}}Q_{l}$ is an
irreducible $\mathfrak{G}$-module, and $m_{0}\neq 0$), then the cokernel of $sp:H^{1}(\mathfrak{F}, \mathcal{A})arrow H^{1}(\mathfrak{F}, \mathscr{M})$

is finite.
PROOF. Let $\mathscr{K}$ (resp. $\mathscr{M}’$ ) be the kernel (resp. tbe image) of $\mathcal{A}arrow \mathscr{M}(a-$

$a\cdot m_{0})$ . Then from the short exact sequences:

$\{$

$0arrow \mathscr{K}arrow-flarrow \mathscr{M}’arrow 0$

$0arrow \mathscr{M}’arrow \mathscr{M}arrow \mathfrak{N}arrow 0$ $(X:=\mathscr{M}/\mathscr{M}’)$ ,

we obtain, via the long exact sequences of cohomology groups, the following
diagram:

$H^{1}(\mathfrak{F}, \mathcal{A})-H^{1}(\mathfrak{F}, \mathscr{M}^{f})-H^{2}(\mathfrak{F}, \mathscr{K})$

$\downarrow$

$H^{1}(\mathfrak{F}, \mathscr{M})$

$\downarrow$

$H^{1}(\mathfrak{F}, \Re)$

in which the mapping $H^{1}(\mathfrak{F}, \mathcal{A})arrow H^{1}(\mathfrak{F}, \mathscr{M})$ obtained by composition is $sp$ . Now
$H^{2}(\mathfrak{F}, \mathscr{K})=0$ by (3.2.6), and $H^{1}(\mathfrak{F}, \Re)$ is finite by our assumption, because & is
topologically finitely generated. Thus our conclusion follows. $\blacksquare$

The proposition above especially means that the Galois representation on
$H^{1}( \mathfrak{F}, A)\cong\lim {}_{arrow n\in N}H^{1}(Y_{n}, Z_{\iota})(2.4.1)$ essentially contains all information for those
on $H^{1}(\mathfrak{F}, \mathscr{M})\otimes_{Z_{l}}Q_{\iota}\cong H^{1}(Y, F_{\mathscr{M}})\otimes_{Z_{l}}Q_{\iota}(2.3.3)$ , for pro-l $\tilde{\mathfrak{G}}$-modules $\mathscr{M}$ with $m_{0}\in$

$\mathscr{M}^{G_{Q*}}$ , satisfying the condition in (6.1.3) (see 7.2 for explicit examples). On the
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other hand, we remark that the conclusion of (6.1.3) does not hold unconditionally
for $sp_{P}$ and $sp_{C}$ . For example, consider the case of Example (M) (1.2). In this
case, $H_{P}^{1}(\mathfrak{F}, \mathcal{A})$ vanishes: This follows from the isomorphism $H_{P}^{1}(\mathfrak{F}, \mathcal{A})\cong \mathfrak{R}^{ab}(-1)$

(combine (3.3.3), (3.3.4) and [I1] Proposition 1.3) because $\mathfrak{F}=\mathfrak{G}$ ; or also from
(4.2.7). Nevertheless, “its specializations” $H_{P}^{1}(\mathfrak{F}, Z_{l}[\mathfrak{G}_{n}])\cong H^{1}(X_{n}, Z_{l})$ (cf. 3.3)

can have arbitrarily large rank. Also, since we have the commutative diagram:

$Hom_{c.\mathfrak{F}}(9_{0}, \mathcal{A})H_{P}^{1}(\mathfrak{F}, \mathcal{A})-0\underline{(5.4.2)}$

(6.1.4) $\downarrow sp_{c}$ $\downarrow sp_{P}$

$Hom_{c,\mathfrak{F}}(9_{0}, \mathscr{M})H_{P}^{1}(\mathfrak{F}\overline{(5.4.2)}\mathscr{M})-0$

with exact horizontal lines by (5.4.4), (6.1.3) cannot hold for $sp_{C}$ neither. (We

can actually prove that $Hom_{c.\mathfrak{F}}(9_{0}, \mathcal{A})=\{0\}$ in this case.)

The purpose of the rest of this section is to prove the following:

THEOREM (6.1.5). The notation and the assumptions being as in (6.1.3), $we$

put $\ovalbox{\tt\small REJECT}\downarrow:=Hom_{c}(\mathscr{M}, Q_{\iota}/Z_{l})$ (the $Pontr_{J}agin$ dual of $\mathscr{M}$). We consider ,Sii as a
discrete abelian grouP on which $\mathfrak{G}$ (and hence &) acts continuously from the left
by: $(g\cdot f)(m):=f(g^{-1}m)$ for $f\in\tilde{\mathscr{M}},$ $g\in \mathfrak{G}$ and $m\in \mathscr{M}$ . If $H^{1}$ ( $\mathfrak{G}$ , .Si) is finite,
then the cokernels of $sp_{P}$ : $H_{P}^{1}(\mathfrak{F}, \mathcal{A})arrow H_{P}^{1}(\mathfrak{F}, \mathscr{M})$ and $sp_{C}$ : $Hom_{c.\mathfrak{F}}(9_{0}, \mathcal{A})arrow$

$Hom_{c,\mathfrak{F}}(9_{0}, \mathscr{M})$ are finite.

6.2. Proof of (6.1.5). Let the notation be as in (6.1.5). In view of (6.1.4),

it is enough to prove the assertion only for $sp_{c}$ . For this, first note that we
may replace $\mathscr{M}$ by ${\rm Im}(\mathcal{A}arrow \mathscr{M})$ ; and hence we may assume that $\mathcal{A}arrow \mathscr{M}$ is sur-
jective. This indeed follows from a similar argument as in the proof of (6.1.3),

noting that $Hom_{c.\mathfrak{F}}(9_{0}, \mathfrak{N})\cong H_{c}^{1}(Y, F_{\Re})$ is finite whenever En is finite. Next, by
(5.2.3), we may identify $sp_{C}$ with

$Hom_{\Gamma}(D_{0}, \mathcal{A})arrow Hom_{\Gamma}(D_{0}, \mathscr{M})$

induced from (6.1.1), and want to show that its cokernel is finite. Let $\mathscr{K}:=$

$Ker(\mathcal{A}arrow \mathscr{M})$ ; i.e.,

(6.2.1) $0arrow \mathscr{K}arrow \mathcal{A}arrow \mathscr{M}arrow 0$ (exact).

Then by the definition of $D_{0}(5.2)$ , we obtain a commutative diagram:
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$Ext_{\Gamma}^{1}(Z\downarrow’ \mathscr{K})-Ext_{\Gamma}^{1}(Z\downarrow’ A)$

$Ext_{\Gamma}(D\downarrow’ \mathscr{K})arrow Ext_{\Gamma\downarrow}^{1}(D, -\ell)$

$sp_{c}$

$Hom_{\Gamma}(D_{0}, \mathcal{A})arrow Hom_{\Gamma}(D_{0}, \mathscr{M})arrow Ext_{\Gamma}^{1}(D_{0}, \mathscr{K})arrow Ext_{\Gamma}^{1}(D_{0}, \mathcal{A})$

$Ext_{\Gamma}^{2}(Z\downarrow, \mathscr{K})arrow Ext_{\Gamma}^{2}(Z\downarrow, \mathcal{A})$

,

where the third horizontal line and the two vertical lines are exact. Note here
that $Ext_{\Gamma}^{i}(Z, -)\cong H^{i}(\Gamma$, - $)$ ; and hence these groups vanish for $i\geqq 2$ , because
$\Gamma$ is a free group (cf. the proof of (3.2.6)). Also note that, since $Hom_{\Gamma}(D$ , - $)$

$\cong\oplus_{j=1}^{s}(-)^{\Gamma_{j}}(\Gamma_{j}=\langle z_{j}\rangle)$ as we saw in the course of the proof of (5.2.3), its right
derived functors $Ext_{\Gamma}^{i}(D$ , - $)$ are canonically isomorphic to $\oplus_{j=1}^{s}H^{i}(\Gamma_{j}$ , - $)$ , and
$Ext_{\Gamma}^{i}(Z, -)arrow Ext_{\Gamma}^{i}(D$ , - $)$ may be identified with the direct sum of restrictions:

$\oplus{\rm Res}$

$H^{i}(\Gamma, -)arrow\oplus_{j=1}^{s}H^{t}(\Gamma_{j}$ , - $)$ . From this, and the exact sequence (3.2.4) with
ew replaced by $\Gamma$ , we are reduced to prove the finiteness of $Ker(H_{P}^{2}(\Gamma, \mathscr{K})arrow$

$H_{P}^{2}(\Gamma, A))$ .

LEMMA (6.2.2). Let $I’$ be the augmentation ideal of $Z[\Gamma]$ . For any $\Gamma-$

module $\mathscr{M},$ $H_{P}^{2}(\Gamma, \mathscr{M})$ is canonically isomorPhic to $\mathscr{M}/I’\mathscr{M}$ .
Admitting this, the proof of (6.1.5) can be completed as follows: It now

remains to prove the finiteness of $Ker(\mathscr{K}/I’\mathscr{K}arrow i/I_{-}’P)=Ker(\mathscr{K}/I\mathscr{K}arrow i/I_{z}I)$ ,

where $I$ is the augmentation ideal of $\mathcal{A}(1.1)$ . From the Pontrjagin dual of
the exact sequence (6.2.1):

$0arrow\ovalbox{\tt\small REJECT}arrow\tilde{\mathcal{A}}arrow\tilde{\mathscr{K}}arrow 0$ (exact),

we obtain a long exact sequence of cohomology groups:

$arrow cX^{\mathfrak{G}}arrow\tilde{\mathscr{K}}^{\mathfrak{G}}arrow H^{1}$ ( $\mathfrak{G}$ , SZZ) $arrow\ldots$

of discrete abelian groups. Taking again the Pontrjagin dual of this exact
sequence, we obtain an exact seqence:

$...arrow \mathcal{A}/Ii-\mathscr{K}/I\mathscr{K}arrow H^{1}(\mathfrak{G},\tilde{\mathscr{M}})^{\sim}arrow\cdots$ .

Thus the finiteness of $H^{1}(\mathfrak{G},\tilde{\mathscr{M}})$ implies the desired conclusion.

PROOF OF (6.2.2). We first assume that $c_{U\cong C;}i.e$ . that $\Gamma$ is generated
by two elements $x$ and $y$ with the fundamental relation $xy=1$ . In this case,
$H^{1}(\Gamma, \mathscr{M})\cong \mathscr{M}/(x-1)\mathscr{M}$ by the correspondence: $cl(\alpha)-\alpha(x)mod (x-1)\mathscr{M}$ . Not-
ing that $\alpha(y)=-x^{-1}\alpha(x)$ for any $\alpha\in Z^{1}(\Gamma, \mathscr{M}),$ $H_{P}^{2}(\Gamma, \mathscr{M})$ is isomorphic to the
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cokernel of: $\mathscr{M}/(x-1)\mathscr{M}arrow \mathscr{M}/(x-1)\mathscr{M}\oplus \mathscr{M}/(y-1)\mathscr{M}$ which sends $mmod (x-1)\mathscr{M}$

to $(m, -x^{-1}m)mod (x-1)\mathscr{M}\oplus(y-1)\mathscr{M}$ . We obtain our conclusion immediately
from this.

In the other case, $\Gamma$ may be considered as a Fuchsian group of the first
kind; and hence our claim is a special case of [Shl] Propositions 8.1 and 8.2.
(We can also give a direct proof along the same line as above, after a some-
what tedious computation). $\blacksquare$

\S 7. Elliptic modular tower.

7.1. Summary of what we know. We now focus our attention to the case
of Example (E) (1.2). Tbus we fix a positive integer $N\geqq 4$ , and use the nota-
tion of loc. cit.. Let le $(e\geqq 0)$ be the largest power of $l$ dividing $N$. As for
the index set $N$ ’ in 1.1, we take the set $N$ of natural numbers, and for each
$n\in N$ we put

$f_{n}:=\{\{\begin{array}{ll}a bc d\end{array}\}\in \mathfrak{G}|\{\begin{array}{ll}a bc d\end{array}\}\equiv\{\begin{array}{ll}1 00 1\end{array}\}mod l^{n+e}\cdot M_{2}(Z_{l})\}$ .

The curve $X_{n}^{*}$ is then the canonical model of the modular curve $\Gamma_{1}(N)\cap\Gamma(l^{n+e})\backslash H*$

defined over $Q$ , for which the cusp $i\infty$ is $Q$ -rational. In the following, we set

(7.1.1) $\mathfrak{U}:=\{\{\begin{array}{l}1 *0 1\end{array}\}\in SL_{2}(Z_{l})\}$ .

This subgroup of $\mathfrak{G}$ is $G_{Q}$-stable (cf. (1.2.6)); and hence we are in the situation
of 2.4. The curve $X_{1.n}^{*}$ is the canonical model of $\Gamma_{1}(Nl^{n})\backslash H^{*}$ defined over $Q$

for whicb the cusp $i\infty$ is $Q$-rational. We henceforce write it $X_{1}(Nl^{n})$ , follow-
ing the usual terminology. We also write $Y_{1}(Nl^{n})$ for $Y_{1.n}^{*}$ , which is the open
subscheme of $X_{1}(Nl^{n})$ corresponding to $\Gamma_{1}(Nl^{n})\backslash H$ .

Let $A$ be, as before, the completed group algebra of $\mathfrak{G}$ over $Z_{\iota}$ . Since the
group $\mathfrak{U}$ above is topologically cyclic, A $I_{\mathfrak{U}}$ is a closed left ideal of a. Thus
by (2.4.4), (3.3.3) and (5.5.1), we have the following isomorphisms of right $G_{Q^{-}}$

modules:

(7.1.2) $\{$

$H^{1}(\mathfrak{F}, A/AI_{\mathfrak{U}})\cong\varliminf {}_{n\in N}H^{1}(Y_{1}(Nl^{n})\otimes_{Q}\overline{Q}, Z_{l})$

$H_{P}^{1}( \mathfrak{F}, \mathcal{A}/_{\mathcal{J}}lI_{u})\cong\lim {}_{arrow n\in N}H^{1}(X_{1}(Nl^{n})\otimes_{Q}\overline{Q}, Z_{\iota})$

$Hom_{c.\mathfrak{F}}(9_{0}, A/_{-}AI_{\mathfrak{U}})\cong\lim {}_{arrow n\in N}H_{c}^{1}(Y_{1}(Nl^{n})\otimes_{Q}\overline{Q}, Z_{l})$ .

On the other hand, for each non-negative integer $d$ , let $S^{d}(Z_{l})$ (resp. $S^{d}(Q_{l})$)

be the set of column vectors of size $d+1$ with entries in $Z_{\iota}$ (resp. $Q_{\iota}$ ). We
denote by
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(7.1.3) $\rho_{d}$ : $GL_{2}(Q_{\iota})arrow GL(S^{\dot{a}}(Q_{\iota}))$

the symmetric tensor representation of degree $d$ , which is realized as in [Shl]

8.2: Namely, writing $\{\begin{array}{l}Xy\end{array}\}$ for the element of $S^{a}(Q_{l})$ whose i-th entry is

$x^{d+1-i}y^{i-1}(x, y\in Q_{l}),$ $p_{a}$ is the unique representation satisfying:

(7.1.4) $\rho_{a}(\{\begin{array}{ll}a bc d\end{array}\})\{\begin{array}{l}xy\end{array}\}=\{\begin{array}{ll}xa+by cx+d y\end{array}\}$

for all $x,$ $y\in Q_{\iota}$ . (Here we understand that $\{\begin{array}{l}xy\end{array}\}=1$ , and that $\rho_{0}$ is the trivial

representation.) Of course $\rho_{a}$ induces a representation of $GL_{2}(Z_{l})$ on $S^{d}(Z_{l})$ ,

and hence we may consider $S^{a}(Z_{l})$ as a pro-l $\mathfrak{G}$-module via $\rho_{a}$ . Moreover let-

ting $\rho\in G_{Q}$ act on $S^{d}(Z_{\iota})$ by $\rho_{f}((\{\begin{array}{ll}1 00 \chi_{l}(\rho)\end{array}\})$ , then $S^{a}(Z_{\iota})$ becomes a pro-l $\tilde{\mathfrak{G}}-$

module by (1.2.6) (cf. 2.1).

By our assumption that $N\geqq 4,$ $Y_{1}(N)$ can be considered as the fine moduli
scheme classifying elliptic curves together with certain level structure over Q-
schemes. Let $f:Earrow Y_{1}(N)$ be the universal family of such an elliptic curve.
Then the twisted constant $Z_{l}$ -sheaf on $Y_{1}(N)_{et}$ defined by $S^{1}(Z_{l})$ (cf. 2.3) is
isomorphic to $R^{1}f_{*}(Z_{\iota})$ . In fact, this can be proved by the same method as in
the proof of [02] (3.3.3), looking at the corresponding representations of the
algebraic fundamental group of $Y_{1}(N)$ at the generic point. Therefore by (2.3.3),
(3.2.8) and (3.2.9), we see that $H_{P}^{1}(\mathfrak{F}, S^{\dot{a}}(Z_{l}))(\otimes_{Z_{l}}Q_{l})$ is isomorphic to the space
of $l$-adic rePresentation of $G_{Q}$ attached by Deligne (cf. [D]) to the $sPace$

$S_{a+2}(\Gamma_{1}(N))$ of cusp forms of weight $d+2$ with respect to $\Gamma_{1}(N)$ .

7.2. Specialization mappings. The notation being as above, we fix a non-
negative integer $d$ . We first note that $S^{a}(Z_{\iota})^{G_{Q}}$ is the free $Z_{l}$ -module generated

by $m_{0}:=\{\begin{array}{l}10\end{array}\}$ Then the mapping (6.1.1), which is induced from: $\mathfrak{G}\ni\{\begin{array}{ll}a bc d\end{array}\}$

$rightarrow\rho(f(\{\begin{array}{ll}a bc d\end{array}\})m_{0}=\{\begin{array}{l}ac\end{array}\}\in S^{d}(Z_{\iota})$ , gives rise to “specialization mappings” (cf. (6.1.2)

and the remark after it):

(7.2.1) $\{$

$sp:H^{1}(\mathfrak{F}, \mathcal{A}/\mathcal{A}I_{\mathfrak{U}})arrow H^{1}(\mathfrak{F}, S^{a}(Z_{l}))$

$sp_{P}$ : $H_{P}^{1}(\mathfrak{F}, A/\mathcal{A}I_{\mathfrak{U}})arrow H_{P}^{1}(\mathfrak{F}, S^{d}(Z_{\iota}))$

$sp_{c}$ : $Hom_{c.\mathfrak{F}}(9_{0}, \mathcal{A}/\mathcal{A}I_{\mathfrak{U}})arrow Hom_{c,\mathfrak{F}}(9_{0}, S^{a}(Z_{l}))$ .

They all commute with the action of $G_{Q}$ (6.1). We already know that the
cokernel of $sp$ is finite (6.1.3).
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THEOREM (7.2.2). The cokernels of $sp_{P}$ and $sp_{C}$ above are finite.

PROOF. Recall that there is a non-degenerate bilinear form $(, )_{d}$ on $S^{d}(Q_{l})$

satisfying:

$\{$

$(m, m’)_{a}=(-1)^{a}(m^{f}, m)_{\dot{a}}$

$(\rho_{d}(x)m, p_{d}(x)m’)_{d}=\det(x)^{a}(m, m’)_{d}$

for all $x\in GL_{2}(Q_{\iota})$ , and $m,$ $m’\in S^{\prime f}(Q_{l})([Sh1]8.2)$ . Thus if we denote $b\underline{yc}ft$

the dual $Z_{l}$ -lattice of $S^{a}(Z_{l})$ with respect to $(, )_{a}$ , the Pontrjagin dual $S^{d}(Z_{l})$

of $S^{a}(Z_{l})$ is isomorphic to $\mathscr{M}\otimes_{Z_{l}}Q_{\iota}/Z_{\iota}$ as a $\mathfrak{G}$-module. By (6.1.5), the proof is
therefore reduced to the following:

PROPOSITION (7.2.3) (Shimura; cf. [Sh2]). Let 6 be any open subgrouP of
$SL_{2}(Z_{l})$ , and $\mathscr{M}a\mathfrak{G}$-stable $Z_{l}$ -lattice in $S^{d}(Q_{l})$ . Then $H^{1}(\mathfrak{G}, \mathscr{M}\otimes_{Z_{l}}Q_{l}/Z_{l})$ is
finite.

PROOF. Although one can give a completely elementary proof for this fact
(Ihara), we give here a short-cut proof. If $d=0$ , the group $H^{1}(\mathfrak{G}, \mathscr{M}\otimes_{Z_{l}}Q_{l}/Z_{l})$

$\cong Hom_{c}(\mathfrak{G}, Q_{l}/Z_{\iota})$ is finite; and hence we hereafter assume that $d\geqq 1$ .
If $\mathfrak{H}$ is an open normal subgroup of $\mathfrak{G}$ , then there is the well-known exact

sequence:
Inf

$0arrow H^{1}(\mathfrak{G}/\mathfrak{H}, (\mathscr{M}\otimes z_{l}Q_{l}/Z_{l})^{\mathfrak{H}})arrow H^{1}(\mathfrak{G}, \mathscr{M}\otimes z_{l}Q_{l}/Z_{l})$

${\rm Res}$

$arrow H^{1}(\mathfrak{H}, \mathscr{M}\otimes_{Z_{l}}Q_{l}/Z_{l})$ .

Since $(\mathscr{M}\otimes_{Z_{l}}Q_{l}/Z_{\iota})^{\mathfrak{H}}$ is finite by the assumption above, it is enough to prove
our assertion when $\mathfrak{G}$ is a principal congruence subgroup of $SL_{2}(Z_{l})$ . On the
other hand, it is easy to see that if our conclusion is true for one $\mathscr{M}$ , then it
also holds for all $\mathscr{M}$ .

Let us now take an indefinite division quaternion algebra $B$ over $Q$ whose
discriminant is prime to $l$ , and its maximal order $0$ . We fix an isomorphism:
$B\otimes_{Q}Q_{\iota}\cong M_{2}(Q_{l})$ which induces an isomorphism: $0\otimes_{Z}Z_{l}\cong M_{2}(Z_{l})$ . For each $d$ ,
in [01] \S 5, we have constructed a homomorphism

$\rho:B^{\cross}arrow GL_{\text{\’{e}}(a+1)}(Q)$

of algebraic groups over $Q$ with $\epsilon=1$ or 2 such that $\rho_{Q_{l}}$ : $(B\otimes_{Q}Q_{l})^{\cross}\cong GL_{2}(Q_{\iota})$

$arrow GL_{\epsilon(a+1)}(Q_{l})$ is equivalent to $\rho_{a}^{\oplus\epsilon}$ . Also there is a $\rho(0\cap B^{\cross})$ -stable $Z$-lattice $X$

in $Q^{s(d+1)}$ satisfying the condition $(\rho 3)$ of [01]. Let $\nu:Barrow Q$ be the reduced
norm, and put

$\Gamma_{m}:=\{\gamma\in 0|\nu(\gamma)=1, \gamma-1\in l^{m}o\}$

for each $m\geqq 0$ . We fix $k\geqq 0$ and put $\Gamma:=\Gamma_{k}$ . Then for any $n\geqq 0$ and $m\geqq$
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${\rm Max}\{k, n\}$ , we may consider $X/l^{n}X$ as a $\Gamma/\Gamma_{m}$ -module by $\rho$ . We claim that
there is a constant $C>0$ such that

$|H^{1}(\Gamma/\Gamma_{m}, X/l^{n}X)|<C$

holds independently of $m$ and $n$ . Indeed, using the terminology of [01] 3.3,
we have an isomorphism: $H^{1}(\Gamma/\Gamma_{m}, X/l^{n}X)\cong H^{1}(\Gamma’/\Gamma_{m}’, X’’/I^{n}X’’)$ by the
same reasoning as [01] Corollary (3.3.8). But the inflation mapping:
$H^{1}(\Gamma’/\Gamma_{m}’, X’’/I^{n}X’’)arrow H^{1}(\Gamma’, X’’/l^{n}X’’)$ is injective, and the argument in [01]

pp. 26-27 implies that the order of this latter group is bounded independently
of $n$ . This proves our claim, and consequently we obtain the finiteness of
$\lim_{arrow m},{}_{n}H^{1}(\Gamma/\Gamma_{m}, X/l^{n}X)\cong H^{1}(\varliminf_{m}\Gamma/\Gamma_{m}, X\otimes_{Z}Q_{l}/Z_{l})$ . Since $\varliminf_{m}\Gamma/\Gamma_{m}$ is iso-
morphic to the principal congruence subgroup of level lk of $SL_{2}(Z_{l})$ via $0\otimes_{Z}Z_{l}$

$\cong M_{2}(Z_{l})$ , our conclusion follows. $\blacksquare$

REMARK (7.2.4). We have thus shown that $H_{P}^{1}( \mathfrak{F}, \mathcal{A}/\mathcal{A}I_{\mathfrak{U}})\cong\lim {}_{arrow n\in N}H^{1}(X_{1}(Nl^{n})$

$\otimes_{Q}\overline{Q},$ $Z_{l})$ contains all information about Deligne’s $l$-adic representations attached
to $S_{k}(\Gamma_{1}(Nl^{n}))$ for all $k\geqq 2$ and $n\geqq 0$ . In [Sh2], Shimura interpreted the Eichler-
Shimura cohomology groups in algebro-geometric terms to obtain 1-adic repre-
sentations attached to more general automorphic forms of one variable (cf. also
[01] $)$ . One of his principle was that one can obtain information about auto-
morphic forms of higher weights from the knowledge of forms of weight 2 if
one grows the level. Our theorem above and the results in 7.6 below may be
thus considered as a variation of his principle.

7.3. Hecke operators. In this subsection, we mainly review formal pro-
perties of Hecke operators acting on the spaces of automorphic forms and the
related cohomology groups (cf. Shimura [Shl], [Sh2], Ash-Stevens [AS1], Hida
[H1], [O1] $)$ . Fix $N\in N$ and write $\Gamma$ for $\Gamma_{1}(N)$ for simplicity. Fix also a non-
negative integer $d$ , and put $k:=d+2$ . To begin with, we recall the Eichler-
Shimura isomorphism. Let $S^{\dot{a}}(C)=C^{a+1}$ on which $GL_{2}(C)$ acts via the sym-
metric tensor representation of degree $d(7.1.4)$ . For $f\in S_{k}(\Gamma)$ , define $S^{a}(C)-$

valued 1-forms on $H$ by:

(7.3.1) $\{$

$d(f):=f(z)\{\begin{array}{l}z1\end{array}\}dz$

$\overline{d}(\overline{f}):=\overline{f}(z)\{\begin{array}{l}\overline{z}1\end{array}\}d\overline{z}$ ,

where $z$ is a variable on $H$, and the bar means the complex conjugation. Then
we have the Eichler-Shimura isomorphism of $C$ -vector spaces:

(7.3.2) $S_{k}(\Gamma)\oplus\overline{S_{k}(\Gamma})_{arrow}\sim H_{P}^{1}(\Gamma, S^{d}(C))$



Cohomology groups attached to towers 175

which is obtained by sending $(f,\overline{g})\in S_{k}(\Gamma)\oplus\overline{S_{k}(\Gamma})$ to the cohomology class
$cl(u)$ of

(7.3.3) $u( \gamma):=\int_{z_{0}}^{\gamma(z_{0})}d(f)+\overline{d}(\overline{g})$

for any fixed $z_{0}\in H*$ . (Notice here that both sides of (7.3.2) vanish when $\Gamma\ni$

$-1$ and $d$ is odd.) Let $M_{k}(\Gamma)$ be the space of modular forms of weight $k$

with respect to $\Gamma$ . It is also known that the isomorphism above extends to an
isomorphism:

(7.3.4) $M_{k}(\Gamma)\oplus\overline{S_{k}(\Gamma})_{arrow}\sim H^{1}(\Gamma, S^{a}(C))$

defined by the same formula as above for a fixed $z_{0}\in H$ (cf. Hida [H2] \S 5).
NOW put

(7.3.5) $\Delta_{1}(N)=\Delta:=\{\alpha\in M_{2}(Z)|\det(a)>0,$ $\alpha\equiv[_{0}^{1}$ $**]mod N\cdot M_{2}(Z)\}$ ,

and denote by $R(\Gamma, \Delta)$ the Hecke ring with respect to $\Gamma$ and $\Delta([Sh1]3.1)$ .
This ring acts on $S_{k}(\Gamma),$ $Sk(\Gamma)$ , and $M_{k}(\Gamma)$ in a well-known manner. Let $t$

denote the main involution of $M_{2}(Q)$ . For any $\Delta^{\zeta}$ $:=\{\alpha^{\iota}|\alpha\in\Delta\}$ -module $\mathscr{M}$ , we
can define the action of the ring $R(\Gamma, \Delta)$ on $H^{1}(\Gamma, \mathscr{M})$ and $H_{P}^{1}(\Gamma, \mathscr{M})$ by the
formula [Shl] (8.3.2); i.e. $R(\Gamma, \Delta)\ni\Gamma\alpha\Gamma=II_{i}\Gamma\beta$ , sends $cl(u)$ to $cl(v)(u,$ $v\in$

$Z^{1}(\Gamma, \mathscr{M})$ or $Z_{P}^{1}(\Gamma, \mathscr{M}))$ with

(7.3.6) $v(\gamma):=\Sigma_{i}\beta_{i}^{p}u(\gamma_{i})$

if $\beta_{i}\gamma=\gamma_{t}\beta_{j}$ for some $j$ and $\gamma_{i}\in\Gamma$ . The isomorphisms (7.3.2) and (7.3.4) are
then isomorphisms of $R(\Gamma, \Delta)$-modules (cf. [Shl] Proposition 8.5). The action
above of $A\in R(\Gamma, \Delta)$ on $S_{k}(\Gamma),$ $\overline{S_{k}(\Gamma}),$ $M_{k}(\Gamma),$ $H^{1}(\Gamma, \mathscr{M})$ and $H_{P}^{1}(\Gamma, \mathscr{M})$ will be
denoted by $[A]$ indifferently. By definition, the Hecke operator $T(r)$ (resp.
$T(q, q))$ is the operator $[\{\alpha\in\Delta|\det(\alpha)=r\}]$ (resp. $[\Gamma(q\cdot\sigma_{q})\Gamma]$ ). Here, $r$ is any
positive integer, $q$ is a positive integer prime to $N$, and $\sigma_{q}$ is an element of

$SL_{2}(Z)$ satisfying $q\cdot\sigma_{q}\equiv\{\begin{array}{ll}1 *0 q^{2}\end{array}\}mod$ N. $M_{2}(Z)$ .
On the other hand, take an element $\Gamma\alpha\Gamma=II_{i}\alpha_{i}\Gamma(\Leftarrow;\Gamma\alpha^{f}\Gamma=II_{t}\Gamma\alpha_{i}^{c})$ of

$R(\Gamma, \Delta)$ . For $f\in M_{k}(\Gamma)$ , we set

(7.3.7) $([ \Gamma\alpha\Gamma]^{*}f)(z):=\Sigma_{i}\det(\alpha)^{-1}(c_{i}z+d_{i})^{-k}f(\frac{a_{i}z+b_{i}}{c_{i}z+d_{i}})$

with $a_{i}^{-1}=\{\begin{array}{ll}a_{i} b_{i}c_{i} d_{i}\end{array}\}$ . (This is nothing but the operator $[\Gamma\alpha^{c}\Gamma]$ ). Then it is

known that $[\Gamma\alpha\Gamma]^{*}$ is adjoint to $[\Gamma\alpha\Gamma]$ with respect to the Petersson inner
product on $S_{k}(\Gamma)([Sh1](3.4.5))$ . For a $\Delta$-module $\mathscr{M}$ , we define the operator
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$[\Gamma a\Gamma]^{*}=[\square _{i}a_{i}\Gamma]^{*}$ on $H^{1}(\Gamma, \mathscr{M})$ or $H_{P}^{1}(\Gamma, \mathscr{M})$ by sending $cl(u)$ to $cl(v)$ with

(7.3.8) $v(\gamma)=\Sigma_{i}\alpha_{i}u(\gamma_{t})$

if $\gamma^{-1}a_{i}=\alpha_{j}\gamma_{i}^{-1}$ for some $j$ and $\gamma_{i}\in\Gamma$ . Then (7.3.2) and (7.3.4) are again iso-
morphisms of $R(\Gamma, \Delta)$-modules with respect to the action $[\Gamma a\Gamma]^{*}([Sh2])$ . By
definition, $T^{*}(r):=[\{a\in\Delta|\det(a)=r\}]^{*}$ and $T^{*}(q, q):=[\Gamma(q\cdot\sigma_{q})\Gamma]^{*}$ with the
same notation as above.

In the following, we assume that $N\geqq 4$ for simplicity. To a $\Gamma$-module $\mathscr{M}$ ,

we can associate a locally constant sheaf on $\Gamma\backslash H$ whose \’etale space is $\Gamma\backslash H$

$X\mathscr{M}$ . We denote this sheaf by $\mathscr{F}_{\mathscr{M}}$ in the following. When $\mathscr{M}$ is a $\Delta^{c}$ -module,
we know how to define the action (again denoted by) $[A]$ of $A\in R(\Gamma, \Delta)$ on
$H^{1}(\Gamma\backslash H, \mathscr{F}_{\mathscr{M}}),$ $H_{c}^{1}(\Gamma\backslash H, \mathscr{F}_{\mathscr{M}})$ and $H_{P}^{1}(\Gamma\backslash H, \mathscr{F}_{\mathscr{M}})$ $(:={\rm Im}(H_{c}^{1}(\Gamma\backslash H, \mathscr{F}_{\mathscr{M}})arrow H^{1}(\Gamma\backslash H$,
$\mathscr{F}_{\mathscr{M}}))$ so that the canonical isomorphisms: $H^{1}(\Gamma\backslash H, \mathscr{F}_{\mathscr{M}})\cong H^{1}(\Gamma, \mathscr{M})$ and $H_{P}^{1}$

$(\Gamma\backslash H, \mathscr{F}_{\mathscr{M}})\cong H_{P}^{1}(\Gamma, \mathscr{M})$ are $R(\Gamma, \Delta)$-equivariant ([H1] \S 3). Assume moreover that
$\mathscr{M}$ is a finite abelian group on which $\mathfrak{G}$ acts continuously, and that the action
of $\mathfrak{G}$ and that of $\Delta^{f}$ coincide on $\mathfrak{G}\cap\Delta^{f}=\Gamma$ . Then we can define a twisted constant
sheaf on $Y_{1}(N)_{et}$ in a similar manner as above (cf. 2.3); and $R(\Gamma, \Delta)$ acts on the
one-dimensional \’etale cohomology groups of the same kind as above of $Y_{1}(N)\otimes_{Q}\overline{Q}$

with values in that sheaf compatibly with the action above via the comparison
isomorphisms.

Suppose next that $\mathscr{M}$ is a $\Delta$-module, and fix $\Gamma\alpha\Gamma\in R(\Gamma, \Delta)$ . Setting $\Gamma^{\alpha}$ $:=$

$\Gamma\cap\alpha^{-1}\Gamma\alpha$ , we define the operator $[\Gamma a\Gamma]^{*}$ on $H_{\uparrow}^{1}(\Gamma\backslash H, \mathscr{F}_{\mathscr{M}})$ as the composite
of:

(7.3.9)
$H_{\uparrow}^{1}(\Gamma\backslash H, \mathscr{F}_{\mathscr{M}})arrow H_{\tau}^{1}(\Gamma^{\alpha}\backslash H, \mathscr{F}_{\mathscr{M}})can.arrow H_{\dagger}^{1}(\Gamma^{\alpha^{-1}}\backslash H, \mathscr{F}_{\mathscr{M}})arrow H_{\uparrow}^{1}(\Gamma\backslash H, \mathscr{F}_{\mathscr{M}})trace$ .

Here, $H_{\uparrow}^{1}$ means either one of $H^{1},$ $H_{P}^{1}$ or $H_{c}^{1}$ ; and the middle arrow is induced
from the following morphism of \’etale spaces:

$\Gamma^{a}\backslash H\cross \mathscr{M}\Gamma^{\alpha^{-1}}\backslash H\cross \mathscr{M}\underline{\alpha\cross\alpha}$

$\Gamma^{\alpha}\backslash H\downarrow$ $\Gamma^{\alpha^{-1}}\backslash H\downarrow$

.
$\alpha$

This action of $R(\Gamma, \Delta)$ again corresponds to the action $[\Gamma\alpha\Gamma]^{*}$ above for the
respective group cohomologies $H_{\uparrow}^{1}(\Gamma, \mathscr{M})$ for $t=\emptyset$ (empty) or $P$. A similar
remark as in the last paragraph also applies for \’etale cohomology groups.

Let $\Lambda$ be one of the rings $Z/nZ(n\in N),$ $Q,$ $R$ or $C$ ; and let $\mathscr{M}$ be a
$\Lambda[\Delta]$ -module which is of finite type over $\Lambda$ . We consider $\check{\mathscr{M}}$

$:=Hom_{\Lambda}(\mathscr{M}, \Lambda)$

as a $\Lambda[\Delta^{f}]$ -module by: $(\alpha^{f}f)(x):=f(ax)$ for $\alpha\in\Delta$ . Then the natural pairing
$\mathscr{M}\cross\check{\mathscr{M}}arrow\Lambda$ is $\Gamma$-equivariant, and hence it induces an isomorphism: $\mathscr{F}_{\check{\ovalbox{\tt\small REJECT}}i}\cong$
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$\underline{Hom}_{\underline{\Lambda}}(\mathscr{F}_{t}\Re,$
$\Delta\Lambda$ of sheaves on $\Gamma\backslash H$, where 4 is the constant sheaf defined by

$\Lambda$ . The Poincar\’e duality theorem assures us that the cup product pairings:

(7.3.10) $\{$

$H^{1}(\Gamma\backslash H, \mathscr{F}_{\mathscr{M}})\cross H_{c}^{1}(\Gamma\backslash H, \mathscr{F}_{\check{\mathscr{M}}})arrow H_{c}^{2}(\Gamma\backslash H, \underline{\Lambda})\cong\Lambda$

$H_{c}^{1}(\Gamma\backslash H, \mathscr{F}_{\mathscr{M}})\cross H^{1}(\Gamma\backslash H, \mathscr{F}_{\check{ffl}})arrow H_{c}^{2}(\Gamma\backslash H, \underline{\Lambda})\cong\Lambda$

$H_{P}^{1}(\Gamma\backslash H, \mathscr{F}_{\mathscr{M}})\cross H_{P}^{1}$( $\Gamma\backslash H,$ $\mathscr{F}$ Sh) $arrow H_{c}^{2}(\Gamma\backslash H, \underline{\Lambda})\cong\Lambda$

are perfect. Denoting by $\langle, \rangle$ any one of these pairings, we have:

(7.3.11) $\langle[A]^{*}x, y\rangle=\langle x, [A]y\rangle$

for all $A\in R(\Gamma, \Delta)$ (cf. [H1] Proposition 3.3, [AS1] Lemma 1.4.3). When $\Lambda=$

$Z/nZ$ , and $\mathscr{M}$ is a finite continuous $\mathfrak{G}$-module, similar results hold for \’etale

cohomology groups.
NOW let $\{\mathscr{M}_{i}\}_{i\in I}$ be a projective system of finite $Z_{l}[\Delta]$ -modules as well as

pro-l $\mathfrak{G}$-modules; and put $\mathscr{M}:=\varliminf_{i\in I}\mathscr{M}_{i}$ . Then $H_{c}^{1}(Y_{1}(N)\otimes_{Q}\overline{Q}, F_{\mathscr{M}})=$

$\lim {}_{arrow i\in I}H_{c}^{1}(Y_{1}(N)\otimes_{Q}\overline{Q}, F_{\mathscr{M}_{i}})$ can be considered as an $R(\Gamma, \Delta)$-module via $[$ $]^{*}$ . On
the other hand, by (5.3.2) and (5.2.3), we have an isomorphism:

(7.3.12) $H_{C}^{1}(Y_{1}(N)\otimes_{Q}\overline{Q}, F_{\mathscr{M}})\cong Hom_{\Gamma}(D_{0}, \mathscr{M})$ ,

where $D_{0}$ is the free abelian group on $P^{1}(Q)$ , the set of cusps for $\Gamma$ .

PROPOSITION (7.3.13). For $\Gamma a\Gamma\in R(\Gamma, \Delta)$ , let $\Gamma\alpha\Gamma=II_{i}\alpha_{i}\Gamma$ be the $dis_{j}$ oinf
decomposition. If we set

$([\Gamma\alpha\Gamma]^{*}f)(x):=\Sigma_{i}\alpha_{i}f(a_{i}^{-1}x)$ $(x\in D_{0})$

for $f\in Hom_{\Gamma}(D_{0}, \mathscr{M}),$ $ths$ operator commutes with $[\Gamma\alpha\Gamma]^{*}$ on $H_{C}^{1}(Y_{1}(N)\otimes_{Q}\overline{Q}, F_{\mathscr{M}})$

via (7.3.12).

PROOF. We may assume that $\mathscr{M}$ is finite. Let $\tilde{H}$ be the Borel-Serre comple-
tion of $H$, and $j:Hc_{arrow}H$ the natural immersion. We can consider the constant sheaf
$\underline{\mathscr{M}}_{H}$ on $H$ (resp. $j_{\underline{\dagger}}\mathscr{M}_{H}$ ) as a $\Gamma$-sheaf on $H$ (resp. $\tilde{H}$) in an obvious manner; and
then by the same reason as in the \’etale case (cf. (5.1.12)), we have an iso-
morphism: $H_{c}^{1}(\Gamma\backslash H, \mathscr{F}_{\mathscr{M}})\cong H^{1}(\tilde{H}, j_{\underline{t}}\mathscr{M}_{H})^{\Gamma}$. Since $\partial\tilde{H}=\tilde{H}-H$ is the disjoint union
of $R$ indexed by $P^{1}(Q)$ , arguing in the same manner as in the proof of (5.3.2),

we have an exact sequence:
$0arrow H^{0}(\tilde{H}, \underline{\mathscr{M}}_{H})arrow H^{0}(\partial H, \underline{\mathscr{M}}_{\partial H})arrow H^{1}(\tilde{H}, j_{\underline{\dagger}}\mathscr{M}_{H})arrow 0$

$0arrow$

$\mathscr{M}\downarrow 1$ $arrow\oplus_{x\in P^{1}(Q)}\mathscr{M}\downarrow larrow Hom(D_{0}\downarrow l\mathscr{M})arrow 0$

.
Combining the right vertical isomorphism and the remark above, we have an
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isomorphism: $Hom_{\Gamma}(D_{0}, \mathscr{M})\cong H_{c}^{1}(\Gamma\backslash H, \mathscr{F}_{\mathscr{M}})$ , which is due to Ash and Stevens
[AS2]. It is easy to see that this corresponds to (7.3.12) via the comparison
isomorphism. We are thus reduced to show that the operator [ $\Gamma a\Gamma 1^{*}$ on
$H_{c}^{1}(\Gamma\backslash H, \mathscr{F}_{\mathscr{M}})(7.3.9)$ commutes with the one stated in the proposition, via the
isomorphism above. For this, it is enough to show the commutativity of the
following diagram:

$H_{c}^{1}(\Gamma\backslash H, \mathscr{F}_{\mathscr{M}})arrow H_{c}^{1}(\Gamma^{\alpha}\backslash H, \mathscr{F}_{\mathscr{M}})arrow H_{c}^{1}(\Gamma^{\alpha^{-1}}\backslash H, \mathscr{F}_{\mathscr{M}})arrow H_{c}^{1}(\Gamma\backslash H, \mathscr{F}_{\mathscr{M}})$

$\downarrow 1$ $\downarrow l$ $\downarrow l$ $\downarrow l$

$Hom_{\Gamma}(D_{0}, \mathscr{M})arrow Hom_{\Gamma^{\alpha}}(D_{0}can.\mathscr{M})arrow Hom_{\Gamma^{\alpha- 1}}(D_{0}(i)\mathscr{M})arrow Hom_{\Gamma}(D_{0}(ii)\mathscr{M})$
,

where the upper horizontal line is (7.3.9), and (i) (resp. $(ii)$) above sends $f\in$

$Hom_{\Gamma^{\alpha}}(D_{0}, \mathscr{M})$ (resp. $Hom_{\Gamma^{\alpha-1}}(D_{0},$ $\mathscr{M})$ ) to $f^{f}\in Hom_{\Gamma^{\alpha}}-1(D_{0}, \mathscr{M})$ (resp.
$Hom_{\Gamma}(D_{0}, \mathscr{M}))$ defined by $f’(x)=af(\alpha^{-1}x)$ (resp. $f’(x)=\Sigma_{i}\gamma_{i}f(\gamma_{i}^{-1}x)$ if $\Gamma=$

$\square _{i}\gamma_{i}\Gamma^{\alpha^{-1}})$ . This can be in fact proved directly applying 2.2; and the details
are omitted. $\blacksquare$

REMARK (7.3.14). In the argument above, if we instead assume that $\{\mathscr{M}_{i}\}_{i\in I}$

is a projective system of finite $Z_{l}[\Delta^{f}]$ -and $\mathfrak{G}$-modules, we can define the operator
$[\Gamma a\Gamma]$ on $H_{C}^{1}(Y_{1}(N)\otimes_{Q}\overline{Q}, F_{\mathscr{M}})$ for $\alpha\in\Delta$ . By the same reasoning as above, if
we set

$(f|[\Gamma\alpha\Gamma])(x):=\Sigma_{i}\beta if(\beta_{i}x)$

for $f\in Hom_{\Gamma}(D_{0}, \mathscr{M})$ when $\Gamma\alpha\Gamma=\square _{i}\Gamma\beta_{i}$ , then (7.3.12) is $R(\Gamma, \Delta)$-equivariant
with respect to the operators $[\Gamma\alpha\Gamma]$ .

7.4. Hecke $0$perators (continued). For a pro-l $\mathfrak{G}$-module $\mathscr{M}$ , we write
$H_{P}^{1}(Y_{1}(N)\otimes_{Q}\overline{Q}, F_{\mathscr{M}})$ for the image of $H_{C}^{1}(Y_{1}(N)\otimes_{Q}\overline{Q}, F_{\mathscr{M}})arrow H^{1}(Y_{1}(N)\otimes_{Q}\overline{Q}, F_{\mathscr{M}})$

in the following. Thus this group is canonically isomorphic to $H_{P}^{1}(\mathfrak{F}, \mathscr{M})$

$|((3.2.8), (3.2.9))$ . Also. for notational convenience, we shall put $T(q, q)=T^{*}(q, q)$

$\equiv 0$ if $q$ is not prime to the level under consideration, in the following dis-
cussions.

LEMMA (7.4.1). Assume that a Pro-l $\mathfrak{G}$-module $\mathscr{M}$ is equiPPed with the struc-
ture of a $\Delta$-module so that the action of $\Delta\cap \mathfrak{G}$ is the original one. Then for
integers $n\geqq m\geqq 1$ , the trace maPPings:

$H_{\dagger}^{1}(Y_{1}(Nl^{n})\otimes_{Q}\overline{Q}, F_{\mathscr{M}})arrow H_{\uparrow}^{1}(Y_{1}(1Vl^{m})\otimes_{Q}\overline{Q}, F_{\mathscr{M}})$

commute with all $T^{*}(r)$ and $T^{*}(q, q)$ , where $H_{\dagger}^{1}$ means either one of $H^{1},$ $H_{P}$ , or
$H_{c}^{1}$ . If 1 divides $N$, then $ths$ also holds for $m=0$ . When 1 does not divide $N$

and $m=0$ , the mappings above still commute with $T^{*}(r)$ and $T^{*}(q, q)$ for $r$ and $q$

prime to 1.
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PROOF. It is enough to prove our assertion for $H^{1}$ and $H_{c}^{1}$ . Also, we may
assume that $\mathscr{M}$ is finite; and hence that $\mathscr{M}$ is a $Z/l^{a}Z$-module for some $a\geqq 1$ .
Put $\check{\mathscr{M}}:=Hom_{Z/\iota^{a}z}(\mathscr{M}, Z/l^{a}Z)$ , and consider it as a $\Delta^{t}$ -module as in 7.3. This
action of $\Delta^{\iota}$ coincides with the natural action of $\mathfrak{G}$ on $\Delta^{f}\cap \mathfrak{G}$ . Thus by Poin-
car\’e duality theorem, in view of (the remark after) (7.3.11), our claim is equi-
valent to the assertion that the canoniacal mappings:

$H_{\tau}^{1}(Y_{1}(Nl^{m})\otimes_{Q}\overline{Q}, F_{\psi_{l}}\vee)arrow H_{\uparrow}^{1}(Y_{1}(Nl^{n})\otimes_{Q}\overline{Q}, F_{\check{m}})$

commute with $T(r)$ and $T(q, q)$ for $H_{\uparrow}^{1}=H^{1}$ or $H_{c}^{1}$ . But this is obvious from
(7.3.6) and (7.3.14), because when we decompose the double cosets appearing in
the definitions of $T(r)$ and $T(q, q)$ into a sum of left cosets, we can take the
same set of representatives for levels $Nl^{n}$ and $Nl^{m}$ ; and also for $N$ either when
$l|N$, or when $\gamma$ and $q$ are prime to 1 ([Shl] 3.3). $\blacksquare$

By this lemma, we can consider the operators $1iarrow m_{n\geq 0}T^{*}(r)$ and $\lim_{arrow n\geq 0}T^{*}(q, q)$

acting on $\varliminf_{n}{}_{\geq 0}H_{\dagger}^{1}(Y_{1}(Nl^{n})\otimes_{Q}\overline{Q}, Z_{l})$ , which will be denoted by $T^{*}(r)$ and $T^{*}(q, q)$ ,
respectively. Here we assume that $r$ and $q$ are prime to $l$ when $N$ is not
divisible by $l$ .

Next recall the isomorphisms (7.1.2), and that $\sim A/AI_{u}\cong_{arrow n\in N}\lim Z_{l}[\mathfrak{G}_{n}/\mathfrak{U}_{n}]\cong$

$\lim_{arrow n\in N}Z_{\iota}[\Gamma_{1}(N)/\Gamma_{1}(Nl^{n})]$ . When $N$ is divisible by $l$ , a simple calculation $s$hows
that

(7.4.2) $\{$

$\Gamma_{1}(N)\Delta_{1}(Nl^{n})=\Delta_{1}(N)$

$\Gamma_{1}(N)\cap\Delta_{1}(Nl^{n})\Delta_{1}(Nl^{n})^{-1}=\Gamma_{1}(Nl^{n})$ .
Let $\Gamma_{1}(N)=\square _{i}a_{i}\Gamma_{1}(Nl^{n})$ be the disjoint decomposition. Then, for $\delta\in\Delta_{1}(N)$ and
$i$ , we have: $\delta a_{i}=a_{i’}\delta’$ with unique index $i’$ and $\delta’\in\Delta_{1}(Nl^{n})$ by (7.4.2). We
hereafter consider $Z_{l}[\Gamma_{1}(N)/\Gamma_{1}(Nl^{n})]$ as a $\Delta_{1}(N)$-module by letting $\delta\in\Delta_{1}(N)$ act
on this group by: $a_{t}\Gamma_{1}(Nl^{n})arrow a_{i’}\Gamma_{1}(Nl^{n})$ with the notation as above. Thus the
groups $H_{\dagger}^{1}(\Gamma_{1}(N), Z_{l}[\Gamma_{1}(N)/\Gamma_{1}(Nl^{n})])\cong H_{\dagger}^{1}(\mathfrak{F}, Z_{\iota}[\Gamma_{1}(N)/\Gamma_{1}(Nl^{n})])\cong H_{\dagger}^{1}(Y_{1}(N)\otimes_{Q}\overline{Q}_{r}$

$F_{Z_{l}[\Gamma_{1}(N)/\Gamma_{1}CNl^{n})]})$ ( $\dagger=\emptyset$ or $P$ ) and $H_{C}^{1}(Y_{1}(N)\otimes_{Q}\overline{Q}, F_{Z_{t}[\Gamma_{1}(N)/\Gamma_{1}(N\iota^{n})]})\cong Hom_{c.\mathfrak{F}}(9_{0}$ ,
$Z_{\iota}[\Gamma_{1}(N)/\Gamma_{1}(Nl^{n})])\cong Hom_{r_{1^{(N)(D_{0}}}},$ $Z_{l}[\Gamma_{1}(N)/\Gamma_{1}(Nl^{n})])$ become modules over the
Hecke ring $R(\Gamma_{1}(N), \Delta_{1}(N))$ . Since the natural mappings $Z_{l}[\Gamma_{1}(N)/\Gamma_{1}(Nl^{n})]arrow$

$Z_{l}[\Gamma_{1}(N)/\Gamma_{1}(Nl^{m})]$ are homomorphisms of $\Delta_{1}(N)$-modules for $n\geqq m\geqq 0$ , we can
take projective limits to define the operators $T^{*}(r)$ and $T^{*}(q, q)$ on $H^{1}(\mathfrak{F}, A/\mathcal{A}I_{\mathfrak{U}})$ ,
$H_{P}^{1}(\mathfrak{F}, A/\mathcal{A}I_{\mathfrak{U}})$ and $Hom_{c,\mathfrak{F}}(9_{0}, \mathcal{J}]/AI_{\mathfrak{U}})$ for all rand $q$ . When $N$ is not divisible
by $l$ , replacing $\Delta_{1}(Nl")$ by:

$\{a\in\Delta_{1}(Nl^{n})|(\det(a), l)=1\}$

for all $n\geqq 0$ in the argument above, we can define $T^{*}(r)$ and $T^{*}(q, q)$ as above
for $r$ and $q$ prime to 1, exactly in the same manner.
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LEMMA (7.4.3). The isomorphisms(7.1.2) commute with the oPerators $T^{*}(r)$

and $T^{*}(q, q)$ defined above.

PROOF. We give the proof under the assumption that $N$ is divisible by 1;
the other case can be treated similarly. It is enough to prove our assertion for
the first and the third isomorphisms in (7.1.2). For this, we claim that the
isomorphisms (2.5.1) and (5.5.3):

$\{$

$H^{1}(\mathfrak{F}, Z_{\iota}[\Gamma_{1}(N)/\Gamma_{1}(Nl^{n})])arrow H^{1}(\mathfrak{F}_{1}^{n}, Z_{l})$

$Hom_{c.\mathfrak{F}}(9_{0}, Z_{\iota}[\Gamma_{1}(N)/\Gamma_{1}(Nl^{n})])arrow Hom_{c.\mathfrak{F}_{1}^{n}}(9_{0}, Z_{l})$

commute with all $T^{*}(r)$ and $T^{*}(q, q)$ . In fact, as is perhaps well-known, the
inverse of these isomorphisms are given by the composites of:

$i_{*}$

$\{$

$H^{1}(\mathfrak{F}_{1}^{n}, Z_{l})arrow H^{1}(\mathfrak{F}_{1}^{n}, Z_{\iota}[\Gamma_{1}(N)_{/}’\Gamma_{1}(Nl^{n})])arrow H^{1}(\mathfrak{F}, Z_{l}[\Gamma_{1}(N)/\Gamma_{1}(Nl^{n})])$

$i_{*}$

$Hom_{c,\mathfrak{F}_{1}^{n}}(9_{0}, Z_{l})arrow Hom_{c.\mathfrak{F}_{1}^{n}}(9_{0}, Z_{l}[\Gamma_{1}(N)/\Gamma_{1}(Nl^{n})])$

$arrow Hom_{c.\mathfrak{F}}(9_{0}, Z_{l}[\Gamma_{1}(N)/\Gamma_{1}(Nl^{n})])$ ,

where the first arrows are induced from the obvious injection: $i:Z_{\iota}c$

$Z_{l}[\Gamma_{1}(N)/\Gamma_{1}(Nl^{n})]$ of $\mathfrak{F}_{1}^{n}$ -modules; and the second arrows in the first (resp. the
second) sequence is the corestriction (resp. the left vertical arrow appearing
in (5.5.2) $)$ . Now since $i$ above is a homomorphism of $\Delta_{1}(Nl^{n})$-modules, the two
mappings labelled $i_{*}$ above commute with $T^{*}(r)$ and $T^{*}(q, q)$ of level $Nl^{n}$ . That
the second arrows commute with $T^{*}(r)$ and $T^{*}(q, q)$ follows from (7.4.1), in
view of the commutativity of (2.5.4) and (5.5.2). We obtain our assertion by
taking projective limits. $\blacksquare$

PROPOSITION (7.4.4). The notation and the conventions being as above, the
specialization mappings(7.2.1) commute with $T^{*}(r)$ and $T^{*}(q, q)$ for all $d\geqq 0$ .

PROOF. We again give the proof under the assumption that $N$ is divisible
by $l$ , for $sp$ and $sp_{C}$ . We first note that $S^{a}(Z/l^{n}Z):=S^{a}(Z_{l})/l^{n}S^{a}(Z_{l})$ is a
$\Delta_{1}(N)$-module by (the same formula as) $p_{\dot{a}}$ ; and that the mapping (6.1.1) (with

$m_{0}=\{\begin{array}{l}10\end{array}\})$ is obtained by taking projective limit from:

$Z_{\iota}[\Gamma_{1}(N)/\Gamma_{1}(Nl^{n})]arrow S^{(f}(Z/l^{n}Z)$

which sends $\gamma\Gamma_{1}(Nl^{n})\in\Gamma_{1}(N)/\Gamma_{1}(Nl^{n})$ to $\rho_{a}(\gamma)m_{0}mod l^{n}S^{a}(Z_{l})$ . But from the
definition of the action of $\Delta_{1}(N)$ on $Z_{\iota}[\Gamma_{1}(N)/\Gamma_{1}(Nl^{n})]$ , it is easy to see that
the mapping above is a homomorphism of $\Delta_{1}(N)$-modules; and hence our con-
clusion follows. $\blacksquare$
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7.5. The action of the Iwasawa algebra. We keep the notation of pre-
vious subsections, and put

(7.5.1) $R:=\{\{\begin{array}{ll}a 00 a^{-1}\end{array}\}\in \mathfrak{G}\}$ .

Since $R$ normalizes $\mathfrak{U}$ , we can consider $H^{1}(\mathfrak{F}, A/\mathcal{A}I_{\mathfrak{U}}),$ $H_{P}^{1}(\mathfrak{F}, \mathcal{A}/\mathcal{A}I_{\mathfrak{U}})$ and
$Hom_{c.\mathfrak{F}}(9_{0}, \mathcal{A}/\mathcal{A}I_{\mathfrak{U}})$ as St- or $Z_{l}[[R]]$ -modules (2.6, 3.4 and 5.5). We can identify

$R$ with $Z_{l}^{\cross}$ (resp. $1+NZ_{l}$ ) via the correspondence: $\{\begin{array}{ll}a 00 - 1a\end{array}\}rightarrow a$ when $l$ I $N$ (resp.

$l|N)$ ; and hence consider the groups above as modules over the Iwasawa alge-
bra $Z_{l}[[Z_{\iota}^{\cross}]]$ (resp. $Z_{\iota}[[1+NZ_{\iota}]]$ ).

PROPOSITION (7.5.2). Let $q$ be a Positive integer which is Prime to 1 and

congruent to 1 $mod$ N. Then the action of $\{\begin{array}{ll}q 00 q^{-1}\end{array}\}\in ff$ above coincides with

$T^{*}(q, q)$ .

PROOF. By our assumption, $T^{*}(q, q)=[\Gamma_{1}(N)\{\begin{array}{ll}q 00 q\end{array}\}\Gamma_{1}(N)]^{*}$ , and hence

$T^{*}(q, q)$ send $s$ $cl(u)\in H^{1}(\mathfrak{F}, Z_{l}[\Gamma_{1}(N)/\Gamma_{1}(Nl^{n})])$ to $cl(\{\begin{array}{ll}q 00 q\end{array}\}\cdot u)$ . If $\Gamma_{1}(N)=$

$\square _{i}a_{i}\Gamma_{1}(Nl^{n})$ , and $\sigma_{q}$ is an element of $SL_{2}(Z)$ satisfying $q\cdot\sigma_{q}\equiv\{\begin{array}{l}1*q^{2}0\end{array}\}mod Nl^{n}$ .
$M_{2}(Z)$ , we have:

$[_{0}$ $0]a_{t}=(a_{i}\sigma q^{1})(\sigma_{q}[00])$

with $a_{i}\sigma_{q}^{-1}\in\Gamma_{1}(N)$ and $\sigma_{q}\{\begin{array}{ll}q 00 q\end{array}\}\in\Delta_{1}(Nl^{n})$ . This means that the oPerator $T^{*}(q, q)$

on $H^{1}(\mathfrak{F}, \sim A/AI_{\mathfrak{U}})\cong 1i\underline{m}{}_{n\in N}H^{1}(\mathfrak{F}, Z_{\iota}[\Gamma_{1}(N)/\Gamma_{1}(Nl^{n})])$ is induced from the action

(2.6) of $\{\begin{array}{ll}q 00 q^{-1}\end{array}\}\in R$ . This proves our assertion for $H^{1}(\mathfrak{F}, \mathcal{A}/\mathcal{A}I_{11})$ and

$H_{P}^{1}(\mathfrak{F}, \mathcal{A}/\mathcal{A}I_{u})$ . The assertion for $Hom_{c.\mathfrak{F}}(9_{0}, \mathcal{A}/\mathcal{A}I_{\mathfrak{U}})$ is also clear from the
argument above. $\blacksquare$

Since $T^{*}(q, q)$ is multiplication by $q^{d}$ on $H^{1}(\mathfrak{F}, S^{\dot{a}}(Z_{l})),$ $H_{P}^{1}(\mathfrak{F}, S^{a}(Z_{l}))$ and
$Hom_{c.\mathfrak{F}}(9_{0}, S^{a}(Z_{\iota}))$ for $q$ as in the proposition, we see from (7.4.4) that the
specialization mappings (7.2.1) factor through the maximal quotient of the left

hand side of (7.2.1) on which any $\{\begin{array}{ll}a 00 a^{-1}\end{array}\}\in f\partial$ acts as multiplication by a.

7.6. Congruence relations. Having checked various compatibilities for
Hecke operators in 7.3 and 7.4, it is now an easy matter to formulate the
Eichler-Shimura congruence relation on our parabolic cohomology groups:
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THEOREM (7.6.1). The representation of $G_{Q}$ on $H_{P}^{1}(\mathfrak{F}, \mathcal{A}/iI_{\mathfrak{U}})$ is unramified
outside $Nl$ . If we denote by $F_{p}\in G_{Q}$ a Frobenius element at $p$ for a prime $p$

not dividing $Nl$ , and also its image in Aut $(H_{P}^{1}(\mathfrak{F}, \mathcal{A}/\mathcal{A}I_{\mathfrak{U}}))$ , we have:

$T^{*}(p)=F_{p}^{-1}+pT^{*}(p, p)\cdot F_{p}$

$in$ End $(H_{P}^{1}(\mathfrak{F}, \mathcal{A}/\mathcal{A}I_{11}))$ .

PROOF. Let $J_{1}(Nl^{n})$ be the Jacobian variety of $X_{1}(Nl^{n})$ defined over $Q$ .
Then we know that $H_{P}^{1}(\mathfrak{F}, \mathcal{A}/AI_{\mathfrak{U}})\cong\varliminf_{n\in N}T_{l}(J_{1}(Nl^{n}))(-1)$ as $G_{Q}$-modules (3.3.4).

It is therefore unramified outside $Nl$ by Igusa’s theorem.

Let $\xi$ be the endomorphism of $J_{1}(Nl^{n})$ corresponding to $\Gamma_{1}(Nl^{n})\{\begin{array}{ll}1 00 p\end{array}\}\Gamma_{1}(Nl^{n}\rangle$

in the sense of [Shl] 7.2; $i.e.,$ $\xi$ is the covariant action of the algebraic cor-
respondence of $X_{1}(Nl^{n})$ attached to the above double coset. Then via the iso-
morphism: $H_{P}^{1}(\mathfrak{F}, Z_{l}\overline{L}\Gamma_{1}(N)/\Gamma_{1}(Nl^{n})])\cong H^{1}(X_{1}(Nl^{n})\otimes_{Q}\overline{Q}, Z_{l})\cong T_{\iota}(J_{1}(Nl^{n}))(-1)$ , it
is easy to see that the operators $T^{*}(p)$ on the left two groups correspond with
$T_{l}(\xi)\otimes id$ on the right hand side. Therefore Shimura’s congruence relation
[Shl] Theorem 7.9 reads as:

$T^{*}(p)=F_{p}^{-1}+pT^{*}(p, p)\cdot F_{p}$

in End
$(H_{P}^{1}(\mathfrak{F}, Z_{\iota}[\Gamma_{1}(N)/\Gamma_{1}(Nl^{n})]))\blacksquare$

for all $n\geqq 0$ . Our assertion follows from this
by taking projective limit.

COROLLARY (7.6.2) (Deligne; cf. [D]). For any non-negative integer $d$ , the
representation of $G_{Q}$ on $H_{P}^{1}(\mathfrak{F}, S^{d}(Z_{l}))\otimes_{Z_{l}}Q_{\iota}$ is unramified outside $Nl$ ; and we
have:

$T^{*}(p)=F_{p}^{-1}+pT^{*}(p, p)\cdot F_{p}$

$in$ End $(H_{P}^{1}(\mathfrak{F}, S^{a}(Z_{l}))\otimes z_{1}Q_{l})$ for all Primes $p$ not dividing $N$ .

PROOF. Since the cokernel of the specialization mapping $sp_{P}$ : $H_{P}^{1}(\mathfrak{F}, -A/\mathcal{A}I_{\mathfrak{U}})$

$arrow H_{P}^{1}(\mathfrak{F}, S^{d}(Z_{\iota}))$ is finite (7.2.2), and $sp_{P}$ commutes with $T^{*}(p),$ $T^{*}(p, p)$ and the
action of $G_{Q}$ , the assertion follows from the theorem above immediately. $\blacksquare$

REMARK (7.6.3). By the same method as $\overline{L}01$], using the Poincar\’e duality
theorem for $H_{P}^{1}(Y_{1}(N)\otimes_{Q}\overline{Q}, F_{S}a_{(z_{l})})\otimes_{Z_{l}}Q_{l}$ , one can derive from (7.6.2) the
equality:

$\det(1-F_{p}^{-1}X|H_{P}^{1}(Y_{1}(N)\otimes_{Q}\overline{Q},$ $F_{S^{d_{(Z_{l})})\otimes_{Z_{l}}Q_{\iota})}}$

$=\det(1-T^{*}(p)X+pT^{*}(p, p)X^{2}|S_{d+2}(\Gamma_{1}(N)))$ ,

for all primes $P$ not dividing $Nl$ , which is due to Deligne.
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