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§0. Introduction.

Applications of Brunel-Sucheston’s spreading model are presented. One ap-
plication is to show an alternative theorem concerning weakly null sequences
of Banach spaces, another application is to show an alternative theorem of
summabilities of bounded sequences in Banach spaces and the other one is to
estimate, from above or below, the growth rate of Cesaro means.

1. One application of Brunel-Sucheston’s spreading model is to show that
each weakly null sequence of Banach spaces has a subsequence which is either
“uniformly completely Cesaro summable” or “uniformly completely non Cesaro
summable”.

THEOREM 1. For every weakly null sequence {x,}, of a Banach space X,
one can extract a subsequence {xp}, of {x.}n Such that either

. 1 ¢ ;N
(1) lkl-rg(nl<"'<snukp|ailsl ? E aixni > - 0
or
. . 1 & ,
® wf(,, .t L o) > 0.

2. A real or complex infinite matrix (@, ). = defines a regular method of
summability, if (and only if) the following conditions hold:

ey sgp(éllan.mo < o,
) Lim( élan,m) =1
and

3) lima, =0 (meN).

Let A denote the set of all regular methods of summability and put

*) This author was partially supported by Grant-in-Aid for Scientific Research (No.
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Ay = {(an,m)n,m e 4d: lim<sglp1an,ml> = 0},

n—0

A= {(an‘m)n,m e A4: E:rﬁ(sgzplan,ml) > O}.

A “typical” element of A, is that of Cesaro’s:
C:=(Cn, m)n.m With cn,mzzi(lgmgn) and ¢, »:=0 (1Zn<m).

On the other hand, “the most trivial” element of A, is the identity summability :
I:= (05 m)n,m With 0, »:=1 (n=m) and 0,,»:=0 (n#m).

For a regular method of summability R=(@, =)..m, @ bounded sequence {x,}.

in a Banach space X is called R-summable to an element x,= X if

2 AQp,mXm— Xo|| = 0.

m=1

lim

T =0

Now we introduce stronger notions of summability and non summability as
follows. A bounded sequence {x,}, in a Banach space X is said to be com-
pletely R-summable to an element x,=X if each subsequence of {x,}, is R-
summable to x,. For example, the canonical basis {e,}, of £, is not norm
convergent, but it is completely C-summable to zero. On the other hand, a
bounded sequence {x,}, in a Banach space X is said to be completely non R-
summable if each subsequence of {x,}, is non R-summable. For example, the
canonical basis {e,}, of ¢, is completely non C-summable.

With respect to this definition, we have the following:

THEOREM II. Let {x,}, be a bounded sequence with no norm convergent
subsequence in a Banach space X. Then {x,}, has a subsequence {x,}, which
satisfies one of the following conditions:

(1) {x2}n 7s completely R-summable for every R A, and completely non
R-summable for every R A,.

(2) {xn}n is completely non R-summable for every R A,, and for each
Re A, there is a subsequence {x%}, of {xh}, which is completely non R-summable.

This theorem will be proved in a more precise formulation in §2 (see Theo-
rem 4).

3. In [2], Banach and Saks proved that L,[0,1] (1<p<e) has the so-
called Banach-Saks property by actually showing the following :

Each weakly null sequence {x,}, in L,[0, 1] has a subsequence {x7}, which
satisfies
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53 x| _{ (k') (1<p=2),

e oy (2<p<oo).

We shall show a natural generalization of this result. Recall that a Banach
space X is said to be of type p for some 1< p=2, of cotype q for some 2<g< o0,

if there exists a constant M =1 so that for every finite set of vectors {x;}%-;
C X, we have

1

P

rit)x,

jar = M F1x02)",
respectively,
(S hwde) = [ Zraoxdar,

where {r,}. denotes the sequence of the Rademacher functions, i.e., r,(f)=
sign (sin 2*'znt) (nEN).
Then we have the following:

THEOREM II.

(1) Let X be a Banach space of type p for some 1<p<2. Then from each
weakly null sequence {x,}, in X one can extract a subsequence {xp}, 0f {Xn}n
such that

sup ( sup

k 1< <Np, lajlsl

kl/pzaxni><°°'

(2) Let X be a Banach space of cotype q for some 2<q< . Then from
each weakly null sequence {x,}, with inf,||x,||>0 in X one can extract a sub-
sequence {x4}n of {xa}n such that

)>o0.

This theorem will be proved in a slightly more precise formulation in §3
(see Theorems 5 and 6).

Throughout this paper, X denotes a (real or complex) Banach space with
the dual space X*, N denotes the set of all positive integers and S, denotes
the vector space of all (real or complex) finite scalar sequences with the canonical
unit basis {e,},. Let us agree to write an element in S, in the form (a,)-,
or 2%.,a;e; for the sake of convenience. We may also use {¢,}, to denote
spreading models, since there seems to be no difficulty to understand what {e,},
means. Recall that a Banach space X has the Banach-Saks property if every
bounded sequence {x,}, of X has a subsequence whose Cesaro means converge
strongly, and a Banach space X has the weak Banach-Saks property if every
weakly null sequence {x,}, (i.e., w-lim,..x,=0) of X has a subsequence whose

kl/q E 0 x"z

1nf( inf
k n1<l L g, 1051=1
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Cesaro means converge strongly.

§1. Spreading models and an alternative theorem.

We shall first state some fundamental properties about Brunel-Sucheston’s
spreading model which are needed in the proofs of theorems and lemmas in
this paper. Since Brunel-Sucheston’s spreading model is investigated in detail
by Beauzamy and Lapresté [4], for proofs, we refer to it.

Let {x,}. be a bounded sequence with no norm Cauchy subsequence in a
Banach space X. Suppose that the limit

lim

m-—o0
msn<-<np

k
Z QiXn;
i=1

exists for each (a,)f,=S,. We shall call such a sequence {x,}, a Brunel-
Sucheston sequence. Then we can define the nonnegative function ¥ on S, by

U((a)i):= lim

m-co
men1<-<np

b ; QiXny|l -
li=1
Clearly ¥ defines a seminorm on S,. Furthermore, since {x,}, is assumed to
have no norm Cauchy subsequence, ¥ indeed defines a norm on S, (see Brunel
and Sucheston [6]). Hence we shall write |3%_;a;e;| in place of ¥'((a;)i-,) for
each (a,)t-,=S,. Let E be the completion of [S,, ||-]]. Then {x,}. and
[E, {e.}.] have the following properties (1), (2) and (3) which are referred as
Spreading Model Property in the sequel:

(1) (a) The norm ||-|| for E is invariant under spreading in the sense that
k k
20 Qe = || 2] aien,;
i=1 i=1

holds for each %, n;&N (:=1, 2, ---, k) with n,<n,< --- <n, and (a,)t-,=S,.
(b) {esn-1—e2rn}n 1S @ monotone unconditional basic sequence, i.e.,

2 ay(ei-1—e2)|| =

141

> a(es;-1—@324)
icAdg

for each finite subsets A,, A, of N with A,CA, and (a,);ES..

Moreover if, in addition, {x,}. iS a weakly null sequence, then {e¢,}, is a
monotone unconditional Schauder basis for FE, hence (b) can be improved as
follows:

2 ae;

icd,

<

(b")

2 aqey

1€EAy

for each finite subsets A, A, of N with A;C A, and (a,);=S..
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for every vector (a,)i-,€S,.
(3) For any £>0 and k<N there exists an L(e, k)N so that for every
(ai)?=1ESo and anN(i:]., 2, Tty k) With L(E, k)§n1<n2< b <nk7

(2) lim

m-»co

sny<<np

k
.2 QiXng
i=1

k
IR Y
i=1

1

k k
>l aze; Sax
i=1 i=1

k
2 a;e;l .
i=1

We shall call [E, {e.}.] the spreading model of a Brunel-Sucheston sequence
{x,}.. We pay much attention to the fact that each subsequence of {x,}. is
a Brunel-Sucheston sequence and [E, {e,}.] is (isometrically isomorphic to) the
spreading model of each subsequence of {x,}..

It is easy to see that there is no Brunel-Sucheston sequence in any finite
dimensional Banach space. On the other hand, Brunel-Sucheston sequences in-
deed exist in any infinite dimensional Banach space. This result is due to
Brunel and Sucheston [6]. By using the classical Ramsey’s theorem, they
actually proved the following:

THEOREM (Brunel-Sucheston [6]). In any Banach space, every bounded
sequence with no norm Cauchy subsequence has a subsequence which is a Brunel-
Sucheston sequence.

Now we shall prove the following Theorems 1 and 2 which are main results
in this section and also necessary for our later applications. Theorem 2 will
be formulated free from spreading models. We have first the following lemma.

LEMMA 1. Let {x,}, be a weakly null Brunel-Sucheston sequence in a Banach
space X and [E, {e,}.] be its spreading model. We put

(k)= H%ée (ke N).

Then p:=lim;...p(k) exists and is equal to inf,p(k).

PrOOF. We set y:=inf,p(k), then for all >0 there exists an me N such
that p(m)<y+7%. Take any k=N and decompose as k=pm-+q for some p, g=

{0} with 0=<¢=<m—1. Note that
1 = 1 -1y m 1 k
o) =g e < 2| B evwsn|+5 20 el
RN T pm g
=5 2o + L =2 pom+ L)
<o

)+ leil -
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Letting k—oo, we get

lim p(k) S v+7p  for all >0,
hence we have
lim p(k) < v = inf p(k) < lim p(k).

Therefore p=lim;..p(k) exists and is equal to inf,p(k).
The following well known facts are repeatedly used in the sequel.

LEMMA 2 (Singer [18, p. 499]). For a monotone unconditional basic sequence
{x.}» in a Banach space X, we have

)
21X,
i=1

=4

k
23 bixs
i=1

for all (a;)i=1, (b)k—1ES, with a;|L1b;] (G=1, 2, ---, k). The constant 4 can be
replaced by 2 if the scalars are real.

LEMMA 3 (Bessaga-Pelczynski [5]). Let {x,},. be a weakly null sequence
with M .wl| %] >0 in @ Banach space X. Then for every ¢>0 one can choose a
subsequence of {x,}, which is a basic sequence with basis constant 1.

We shall now state the following proposition concerning the case p>0, of

which (1) follows from Beauzamy together with Lemma 2, and (2) follows
from (3) of Spreading Model Property.

PROPOSITION 1. Let {x,}, be a Brunel-Sucheston sequence in a Banach space
X and [E, {e,},] be its spreading model. Assume that

i el =t Be

i=1

p = lim

k—co

>0.

Then the following statements hold.
(1) E is isomorphic to £,. In fact we have the following inequality :

3

%zmilg

i=1

k
2 a;e;
i=1

for all (a,)%-,€S,.

(2) X contains finite dimensional £,-spaces uhz’formly. More precisely, for
any strictly increasing sequence {j(n)}» of N one can choose a subsequence {x4},
of {x,}n so that

JCRY ,
20 AiXy;
i=1

ﬂj(k) .
8 Eé% |all é;

for all k, n;eN (=1, 2, -+, j(k)) with k<n,<n,< - <nju and (a;}H<S,.
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The following result is the key to our applications of the Brunel-Sucheston’s
spreading model.

THEOREM 1. Let {x,}, be a Brunel-Sucheston sequence in a Banach space
X and [E, {e,}n] be its spreading model. Then for any ¢>0 and integer t=2
one can select a subsequence {x3}, of {x,}n with the following property:

For every k, n,eN (1=1, 2, ---, k) with n,<n,< - <ny and (a,)k-, €S, we
have

(I_S)Hé aie;

\—(2 log‘k)é‘;‘fk‘ a;|sup fxal
(1.1
<

= (1+€)H é aieil

k
> aixn, +(3log.k)sup |a;|sup [|x7] .
i=1 1sisk n

PrROOF. Let 0<e<1 and an integer {=2 be given. By the property (3) of
Spreading Model Property, for any k< N there exists an L(k)= N such that for
all n;eN (=1, 2, ---, k) with L(E)Sn,<n,< --- <n; and (a,)t-,=S,,

(1—¢) <

< (1+e)

k k
2 AiXn, 2 ae; .
i=1 i=1

)
2 aey
i=1

We may assume that {L(k)}, is strictly increasing, and we set

Xni= Xra™ (neN).

We shall show that this subsequence {x,}, meets the requirement. Let &, m
EN Wlth tm§k<tm+1, niEN@.:l, 2, seey, k) With n1< n2< <nk and (a,-)’f=1ESO
be given. We observe the following decomposition :

k m k
2 aix;Ii = ig alx;ll_*_ 2 alx‘/n,z .

i=1 i=m+1

Since X7, =Xrerm+1y, and L(R)< L™+ L™+, it follows that

) k
= (1+5)< lé ae;|+ éaiei )

= (1+¢) Hé‘,laiei

+2m sup |a;| sup |le,||
1gizm lstsm

= (1+e¢) H é ae;

+(2 logzk)lssggkl ailsgp [ x7

and
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Ik

2 ae;

i=1

)

—(logtk)lsstilgkl ailsgp lxall .

k
2 alxﬂl’lub

i=m+1

= (1—o)(|

m
21 0:e;
i=1

= (1—¢) H lz: a.e;

Moreover the following estimate is easily verified:

n !
20 AiXn,
i=1

Hence we get [L.1).
This completes the proof of [Theorem 1.

By using [Theorem 1, we can show an “alternative” theorem concerning
weakly null sequences which is a generalization of Rosenthal’s result [16].

< (logzk)lsgtilgkl ailsgp fxzll .

THEOREM 2. For every weakly null sequence {x,}, in X one can extract a
subsequence {xn}n 0f {Xn}n such that either

) 1 & N
M im(, sw o Staw,|)=0
or
. . 1 &
(2) 1£1f <n1<~<¥g|0i|=1 7 12=1 0:xn, ) >0.

If the case (2) happens, then, in addition to (2), we have the following: for
any strictly increasing sequence {j(n)}. of N, one can choose further a sub-
sequence {x2}, of {xn}. so that

C
Py
i=

3) inf( inf 1

Jk>
B ONESH{<<R (R (@) *7§)la 1
i=1

"
aixni

)>o0.

q

Proor. If {x,}. has a norm convergent subsequence whose limit is neces-
sarily zero, then one can choose a subsequence which satisfies (1). So we may
suppose that {x,}, has no norm convergent subsequence. By virtue of Brunel-
Sucheston’s theorem, [I'heorem 1, Lemma 2 and Spreading Model Property (1)
(b’), there is a subsequence {x}, of {x,}, which is a Brunel-Sucheston sequ-
ence with its spreading model [E, {e.}.] and satisfies the following estimates:

1) - ]
(1.2) 2| B e —@rogmsup 1x1l = | S 0xs,
and

k k
(1.3) Sawn] <5 lg,lei[+<3 log k) sup | x4

for every &k, n,eN (i=1, 2, .-+, k) with n,<n,< --- <n, and (a,)%-;, (6,)-, with
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la;| =1, 16:]=1 (=1, 2, -, k).
We investigate two cases p=0 and p>0, where p is as in Lemma 1], i.e.,

k

Zel —2—281

o = lim

k—oo

)

In the case of p=0, one can obtain from [(1.3),
)

N :
%8eE sup | 41) = 0.

1 & ,
— S auxh,
i=

lim( sup
koo \n1<<np, 1€3151

k
Z

élim( ‘

koo [

For the case p>0, one can get from the inequality that

im(, o, = S0u])
i Ioggk 1
2 tim (5| & e 25 suplxil) = g0 > 0.
Hence there is an me< N such that
. . 1
>
l}ngn (nl<~--<}zl}f|0iq =1 g O, ): 6 o-

We may assume that

=

2
3

m
2 a:e;
i=1

i ’
2 aixni
=1

for all n,eN (=1, 2, ---, m) with n,<n,< - <nn and (a;)%;=S,. Therefore
we have

k
5 20

inf ( inf “ ) = : 1521fn (n1<~~-<izrgt0zl 11

ksm \nj<<ng, |0;1=1

1 ,
7 2 0%

since {e.}, is monotone unconditional, hence we get

k?ﬁ“%

Finally, it is easy to see that the condition (3) is a direct consequence of
Proposition 1. This completes the proof of the theorem.

inf(___inf );%p>o

k ny<<L<np. 1051=1

As a direct consequence, we get the following fact which is a slight gen-
eralization of Partington’s result [14].

COROLLARY 1. Let X be a Banach space with the weak Banach-Saks pro-
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perty. Then every weakly null sequence {x,}, in X has a subsequence {x}},
which satisfies the condition (1) in the above theorem.

§2. Regular methods of summability.

In this section, we shall first prove that the subsequences which are chosen
with respect to the condition (1) or (2) in are closely related to
“complete R-summability” and “complete non R-summability” (see Definition ).
Secondly we show an alternative theorem concerning bounded sequences of
Banach spaces with respect to regular methods of summability.

Recall that a real or complex infinite matrix (@, )z, » is called a regular

method of summability, if given a sequence of scalars {x,}, converging to x,,
then the sequence

Yn = ian,mxm (nEN)
m=1

also converges to x,. It is well known that (@, m)» = iS & regular method of
summability if and only if

® sup (1 an.nl) <.
@ lim (S,ann)=1
and

3) lima, »=20 (meN).

7L =00

For a proof, see DeVito [7, p. 96].

By the conditions (1), (2) and (3), it is easy to see the following fact:

Let (an, m)a,m be a regular method of summability and {x,}. be a sequence
in a Banach space X which converges strongly (resp. weakly) to an element
xo=X. Then the sequence

Yo = E_lan,mxm (nEN)

also converges strongly (resp. weakly) to x,.
Let A denote the set of all regular methods of summability and put

Aoi={(@n whn.m € A: lim (sup|a,.m|) =0},

A= {(an,m)n,m =W E Erh;(s%p[an,mw > 0},
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I:= (5n,m)n.m*2‘ and C:= (cn,m)n.m »

where 0, » denotes the Kronecker delta, and we set ¢, »:=1/n (1<m<n) and
Ca,m:=0 (1=n<m). It is easy to see that A is the disjoint union of 4, and
Ay, C is a “typical” element in A, and I is a “trivial” element in A,. In
order to state the main results of this section, we need more definitions.

DEerFiNITION 1. Let {x,}, be a bounded sequence in X, x, be an element
of X and R=(a, m)». = be an element of A.

(1) We say that {x,}, is R-summable to x, if
=0.

E An, mXm—Xo

m=1

lim

n-—0c0

(2) We say that {x,}, is completely R-summable to x, if each subsequence
of {x,}, is R-summable to x,. ,

(3) We say that {x,}, is completely non R-summable if no subsequence of
{x.}» i8 R-summable.

DEFINITION 2. Let {x,}. be a bounded sequence in X, x, be an element
of X and R=(a,, n)r » be an element of A.

(1) We say that {x,}, is R-summable to x, with respect to the weak topo-
logy, denoted by w-R-summable to x,, if

X, = w-lim ( o an,mxm> .
1

N—oco \M=

(2) We say that {x,}, is completely R-summable to x, with respect to the
weak topology, denoted by completely w-R-summable to x, if each subsequence
of {x,}. is w-R-summable to x,.

(3) We say that {x,}, is completely non R-summable with respect to the
weak topology, denoted by completely non w-R-summable, if no subsequence of
{xa}s is w-R-summable.

In order to clarify the above definitions, we give examples.

ExAMPLE 1 (cf. Theorem 4). Let {e,}, denote the unit vector basis of ¢,.
(1) We put for n, meN,
{ Cm (n=2m),
Xpi=

0 (n#2™).

Then {x,}. is C-summable to zero and has a subsequence {x;»_;},= {0}, which
is completely C-summable to zero. However, {x,}. also has a subsequence
{x4n} n=/{e,}» Which is completely non C-summable (in fact, {e,}, is completely
non w-C-summable).

(2) We put for n, me N,
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Xpi=

{ em (n=2m—1),

—en (n=2m).

Then {x,}. is C-summable to zero. Since every subsequence of {x,}, has fur-
ther a subsequence which is equivalent to {e,},, no subsequence of {x,}, is
completely C-summable.

Now we shall prove lemmas.

LEmMmA 4.

(1) Let {x,}, be a bounded sequence in X, x, be an element of X and R=
(@n, m)n,m be an element of A. Assume that {x,}, is completely w-R-summable
to xo. Then {x,}, converges weakly to x,.

(2) Let {x,}. be a bounded sequencein X, x, be an element of X and R=
(@n m)n,m be an element of A,. Assume that {x,}. is completely R-summable to
Xo. Then {x,}, converges strongly to x,.

PROOF. PRrROOF of (1). Suppose the conclusion is false, then one can choose
an element x*<X* and a subsequence {x}, of {x,}, such that lim,_.x*(x})
exists, but x*(xy)Flm,.-x*(x%). Note that x,=w-lim,.(Xm=18r n¥n), hence
one has

= i e n58) = i [ e e) = i
by the regularity of R=(an, m)n =, Which is a contradiction.

PROOF of (2). Let {x,}. be a bounded sequence in X which is completely
R-summable to x, for some R=(a, n)n.nEA+. BylLemma 4 (1), x,=w-lim,_ .x,
and we may assume without loss of generality that x,=0, hence {x,}. is a
weakly null sequence. Suppose that lim,..||x,]|=0 does not hold, then there
exists a subsequence {x7}, of {x,}, which is a basic sequence with basis con-
stant 2 and L :=inf,{x,|[>0 (cf. Lemma 3J). Therefore we have

sglplan,ml é%—

‘élan,mxén” (neN),

but this contradicts our assumptions

lim U pIICA

n—oco ||Mm=

‘ =0 and Iim supﬂan,ml> >0.
This completes the proof of the lemma.

LEMMA 5.
(1) Let {e,}n be the unit vector basis of £,. Then {e,}, is completely non
w-R-summable for every R A.
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(2) Let {x,}, be a weakly Cauchy sequence in X with no weak limit. Then
{xa}n s completely non w-R-summable for every Re A.

(3) Let {x,}. be a weakly null basic sequence in X with L :=inf,|x,]>0.
Then {x,}, is completely non R-summable for every R A,.

PROOF. PROOF of (1). Let R=(aus m)s,m be an element of /4. Suppose
that for an element x,=(b,),=¢,;, we have

Xo = w-lim ( Z an_mem>.

n-co \M=1
Since weak convergence in ¢, implies coordinatewise convergence, by using the
fact lim,.«a, »=0 (meN), one can see that b,=0 (n=N). But for the ele-
ment x*<£,=¢% whose coordinates are all 1, we have

2 bp = x*(x,) = lim { ilan,mx*(em)} = lim (élan,m) =1,

1 n—oo M= n—co

which is a contradiction. Since every subsequence of {e,}, is equivalent to
{e,}, itself, the conclusion follows.

PROOF of (2). Let R=(a, m)», = be an element of A. Suppose that for a
subsequence {x7}, of {x,}, and an element x,=X, we have

[=-)
Xo = w-lim ( Py an.mx;n)-
m=1

n—00

Take any x*<=X*. Since lim,..x*(x7) exists and R is a regular method of
summability, we have

x*(xe) = lim { i;lan,mx*(x;n)} = lim x*(x7) = lim x*(x,).

This means that x,=w-lim,..x,, which is a contradiction. Hence {x,}, is
completely non w-R-summable for every R A.

PROOF of (3). Let R=(a, m)z. = be an element of A, and M be a basis
constant of {x,},. Since we have

max | c;| é’zﬂ‘l

9
Xy
tsisk L s

for all (¢ )i—;€S, and 1im,..(SUpm|@a m|)>0, no subsequence of {x,}, is R-
summable (to zero), hence {x,}, is completely non R-summable.
Thus we complete the proof of [Lemma b.

Now we will prove [Theorem 3 and 4 which are main results in this section.

THEOREM 3.
(1) Let {x,}. be a bounded sequence in X which satisfies the condition (1)
of Theorem 2, i.e.,
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1 &
— 21 QiXq,

k iz )20'

Then {x,}, is completely R-summable (to zero) for every Re A,.
(2) Let {x,}. be a weakly null sequence in X which satisfies the condition
(2) of Theorem 2, i.e.,

1im< sup
koo \n1 KN, @il S1

l‘ é 0ixn,;

=1

inf( inf

k nilL<np, 1041=1

)>0.

Then {x,}, has a subsequence {x3}, which is completely non R-summable for
each Re A, and for each R A, there is a subsequence {x}, of {xu}. which
is completely non R-summable.

PROOF. PROOF of (1). Let {x,}. be a bounded sequence in X which satisfies

the condition (1) of and R=(a@,, n)a. = be an element of 4,. We put

I4

for any subsequence {x7}, of {x.}n,
Vo 'i= ia"'mx;’” (neN)
and
M := max {supllxnll, sup( 2 lan,m])} < oo,
n n m=1
By our assumption laid on {x,},., for any ¢>0 there exists a 2= N such that

1 =
B &I

sup <e.
< <ngs laglst

Fix any n= N and let h(m) (m=N) be a permutation of N such that

l@nrcol 21 ne | 20| = .

Let x*< X* with || x*|=1. We choose |f,|=1 (m=k+1) such that

[ 2*(Xhemd) | = Omx*(Xhcmd) -

Then we have the following estimates:

|2 £ 3l al xR = 31 @n el $Khcn)]

k L G+ k
=2 ]an,h(m)“xﬂ{(x?l(m))i”_z 2 Ian,h(m)HX*(X;z(m))[
m=1 j=1 m=jk+1

o 1 G+
éMklan,hu)H‘Z<k|an,n(]‘k>1 i > O mXhcm> >
j=1 m=jk+1
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S Mklan rel +€]§1 klaz nigrl £ MER|an nal +€mz_)1| Qn, hemd

< Mk(sgnplan,ml)-i-Ms.

Therefore we get

I92) < Me(suplannl )+ M (nEN),

hence we have
lim [y, = Me
n*m

by virtue of lim,..(SUpn|a@. »|)=0. Since ¢>0 is arbitrary, we get
lim [y, =0,
N—c0

hence {x,}. is completely R-summable.
ProoF of (2). By our assumption, Brunel-Sucheston’s theorem, Theorems
1, 2 and Cemma 3, {x.}. has a subsequence which is still denoted by {x,},
such that {x,}, is a Brunel-Sucheston sequence with its spreading model
[E, {e.}.] with p>0 and is a basic sequence with basis constant 2, where
52

o =lim P

koo

=int5- e

=1

Then, by (3), {xa}a is completely non R-summable for each R=A,.
Let R=(an m)n m be an element of A4, (or 4). Since

lim(ian,m>=1 and lima, » =20 (meN),

N—co \M=1 N —>00

one can choose suitable subsequences {j(k)}:, {A(k)}: of N so as to satisfy

JCk)

1
D larwr,ml = 5 (kEeN).
m=k

Then, by (2), there is a subsequence {x7}, of {x,}, such that

|

for all £, m;eN (=1, 2, -, j(k)) with E=<m,<m,< -+ <mju, and (a,)i® < S,.
Let {x?}, be any subsequence of {x}, and put

p JCk) JCRD ,
g ;1 la;| = Hgaixmi

Vni= An, mXm (neN).

1

EMS

Then we have
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FCRd
z_:klah(k),ml =

m

o
0<16

IA

J (k) "
2 ah(k).mme
m=~k

4
8

é‘luéldnzk),mx%” =4]yrel (keN).

Hence {y,}, is non R-summable, therefore {x,}, is completely non R-summable.

This completes the proof of [Theorem 3.

THEOREM 4. Let {x,}, be a bounded sequence with no mnorm convergent
subsequence in a Banach space X. Then {x,}, has a subsequence {x,}, which
satisfies one of the following three cases:

(1) {xz}n 7s completely R-summable for every Re A, and completely non
R-summable for every R A,.

(2) {xn}n converges weakly and is completely non R-summable for every
Re A, and for each R A, there is a subsequence {x3}, of {xn}. which is com-
pletely non R-summable. Moreover, {x3}, has no subsequence which is completely
non R-summable for every Re A,.

(3) {xn}n is completely non w-R-summable for every R=A.

PrROOF. We rely upon Rosenthal’s ¢,-theorem ([15], Dor for complex
scalars), so we know that {x,}, has a subsequence {x;}, which is either equi-
valent to the unit vector basis of ¢; or a weakly Cauchy sequence. If {x,}, is
either equivalent to the unit vector basis of ¢, or a weakly Cauchy sequence
with no weak limit, then by (1) and (2), {x,}. satisfies the case (3)
of [Theorem 4. Hence we need only to consider the case where {x,}, is a
weakly convergent sequence. We may assume that {x,}, is a weakly null
sequence. Moreover, by and [Theorem 2, we may suppose that {x,},
is a basic sequence with inf,| x| >0 and satisfies one of the conditions stated
in [Theorem 2. If {x7}, satisfies the condition (1) of [Theorem 2, then, by
(1) and (3), {x4}. itself satisfies the case (1) of
4. On the other hand, suppose that {x;}, satisfies the condition (2) of Theo-
rem 2. Then, by virtue of (2), a subsequence of {x,},, which we
still denote by {x}., satisfies the first part of the case (2) of [Theorem 4. Let
{x#}, be any subsequence of {x,},. Since {x)}, converges weakly to zero,
by Mazur’s theorem [13], there is a subsequence {j.}, of N and a sequence

{a;}; of nonnegative real numbers such that

Jp+17? . Jp17?
2 a;=1 (k€N) and lim| 3 a;x7|=0.
1=jp ko0 i=jp

Then, R=(a,, n)n » defined by
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Am  (JaS=Mm<jpy, nEN),
Qn, m — .
0, otherwise,

is a regular method of summability and {x%}, is R-summable (to zero). Hence,
by the first part of the case (2), R belongs to A,. This means that {x,}.

satisfies the second part of the case (2).
Therefore we complete the proof of [Theorem 4.

Before stating some corollaries, we give examples of sequences appeared in
three cases of [Theorem 4.

ExAMPLE 2.
(1) The canonical unit vector basis {e,}, of £, (1<p<eo) or ¢, satisfies the

case (1) of [Theorem 4.
(2) The Schauder basis {e,}, of Baernstein’s space satisfies the case

(2)1of [Theorem 4. More generally, let {x,}, be a weakly null basic sequence
with inf,[lx,|>0 which has no C-summable subsequence. Then {x,}, itself
satisfies the case (2) of [Theorem 4.

(3) By a bounded sequence which is equivalent to the unit vector
basis of ¢4, or a weakly Cauchy sequence with no weak limit satisfies the case

(3) of Mheorem 4. '
The first corollary of is the following:

CoROLLARY 2 (Erdos-Magidor [9]). Let {x,},. be a bounded sequence in X
and R be a regular method of summability. Then there is a subsequence {x;},
of {x.}, such that either

(1) {x%}, is completely R-summable

or
(2) {xh}n is completely non R-summable.

Since, by virtue of (2), a bounded sequence which is completely
R-summable for some R=A, is norm convergent, it is completely R-summable
for every R A, (or A). For A, we have the following:

COROLLARY 3. Let {x,}, be a bounded sequence in X. Suppose that {x,},
is completely R-summable for some ReA,. Then there is a subsequence {x,},
of {x.}n which is completely R-summable for every Re A,.

COROLLARY 4. A Banach space X has the Banach-Saks property if (and only
if) there is an R/ such that every bounded sequence in X has a subsequence
which is R-summable.

By combining [Theorem 4 and [Lemma 4 (1), we have the following:
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COROLLARY 5 (Singer [17]). A Banach space X is reflexive if (and only if)
every bounded sequence in X is w-R-summable for some R< A.

COROLLARY 6. Let X be a Banach space with the weak Banach-Saks prop-
erty. Then for every weakly convergent sequence {x,}, in X, one can choose a
subsequence {xn}, of {x.}» which is completely R-summable for every Rc A,.

§3. Growth rate of Cesaro means.

In [2], Banach and Saks proved that L,[0, 1] (1<p<oo) has the weak
Banach-Saks property by actually showing the following :

Each weakly null sequence {x,}, in L,[0, 1] has a subsequence {x,}, which
satisfies

k
’

{0<k1w> (1<p=2),
T lowy  @<p<o.

Note that this result implies that L,[0, 1] (1<p<eo) has the Banach-Saks
property, since L,[0, 1] (1<p< ) is reflexive. As we stated in the introduc-
tion, a Banach space X is called of type p for some 1<p=2, if there exists a
constant M>1 so that for every finite set of vectors {x;}%_.C X, we have

\

where {r,}. denotes the sequence of the Rademacher functions, i.e., 7,({)=
sign(sin 2"~'nt) (neN). Any constant M satisfying the above inequality is
called a type p constant of X. We note the following equalities:

=73 =),

=Y
It is well known that L,[0, 1] (1<p<oo) is of type min (2, p) (see Linden-
strauss and Tzafriri [11, p. 73]).

The notion of type (and cotype) was first introduced by Hoffmann-Jgrgensen
and was studied extensively by Maurey and Pisier (in particular [12]).
We shall see that the notion of type (and cotype) is closely related to the rates
of convergence of Cesaro means. First we generalize the result of Banach and
Saks with regard to the rates of convergence of Cesaro means.

=1 P

1/p
2

3
glri(t)xi

dt < M( 3 1x.7)

k

> 0%,

i=1

k

k
_E 0:x;
i=1

Agerage dt.

{=%1

rit)x,
1

i=

THEOREM 5. Let X be a Banach space of type p (1< p<2) and M be a type
p constant of X. Then for each weakly null sequence {x,}, with sup,|x,|<1
in X, one can extract a subsequence {xn}n 0f {x,}n So that

é aixn;)| < 78MEV?P
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for every k, n;eN (1=1, 2, ---, k) with n,<n,< --- n, and (a,)t=, with a;|<1
(=1, 2, -, k).

PROOF. Let {x,}, be a weakly null sequence with sup,|x,[|<1 in X. If
{x.}, has a norm convergent subsequence whose limit is necessarily zero, then
one can easily choose a subsequence {x7}, of {x,}, which meets the require-
ment. For example, let {x,}. be chosen so that for all m=n=1,

lxmll < nt/P—(n—1)V7 .

So we may assume that {x,}, has no norm convergent subsequence. By virtue
of Brunel-Sucheston’s theorem and [Theorem I, {x,}. has a subsequence {x7}x

which is a Brunel-Sucheston sequence with its spreading model [E, {e,}.] and
satisfies the following:

k k |
(3.1) i e —2logsk < inf | X 0,x7,
51 iz 1641=1 |} i=1
and
(3.2) |sup1 éaix;,i <5 éei +3 log,%
a;Istil ¢=1 i=1

for each kb, n;eN (=1, 2, ---, k) with n,<n,< -+ <.
We show this subsequence {x;}, has the desired property. By using the
inequality we have

1
5

k
2 e
i=1

—2log:k < A;/erage

i=%1

k
> 0:x]
i=1

< M( 5 1xil )" < Miv,

hence by the inequality and the fact

logsk < kYP (keN),
we obtain

H;fj a5y | < {5BMEYP+10k17)+3k17) < TSMEY?

for all &, n;=N (=1, 2, ---, k) with n,<n,< --- <n, and (a,)%., with |q;|<1
(=12, -, k).
This completes the proof of the theorem.

The following result which is a direct consequence of is also
derived from the works of Rosenthal and Maurey and Pisier [12].

COROLLARY 7. Let X be a Banach space of type p for some 1<p=2. Then
X has the weak Banach-Saks property.
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Recall that a Banach space X is said to be of cotype g (2<g<c0), if there
exists a constant M=1 such that

w(Zisr) "= [ 2

é riD)x,|de

for every finite set of vectors {x;}%.,CX, where {r,}, is the sequence of the
Rademacher functions. Any constant M satisfying the above inequality is called
a cotype ¢ constant of X. For instance, L,[0, 1] (1<p<e) is of cotype
max (2, p) ([11, p. 73D).

We now describe a cotype version of [Theorem Dl

THEOREM 6. Let X be a Banach space of cotype q 2=g<o) and M be a
cotype q constant of X. Then each weakly null sequence {x,}, with inf,|x,}|=1
in X admits of a subsequence {x3}, which satisfies

1
50M

for all b, n,eN ((=1,2, -, k) with n,<n.< - <nm, and (0=, with |6;1=1
(=1, 2, -, k).

PrOOF. Let {x,}, be a weakly null sequence with inf,||x,|[|=1 in X. Since
{x.}» has no norm convergent subsequence, by Brunel-Sucheston’s theorem and
[Theorem 1, one can select a subsequence {x,}, of {x,}, which is a Brunel-
Sucheston sequence with its spreading model [E, {¢,}.] and satisfies the fol-
lowing :

33) |3l -@ogmsw i = ot | 50,0,
and

|4 : :
3.4 sup || 2 a >} e +(3 log k) supil x|l

for all &, n,eN (=1, 2, ---, k) with n,<n,< --- <n,, where an integer {=2 is
chosen so large that

1
sup {175 (log k)sup I} < o

We now see that the subsequence {x,}, meets our requirement. Note that
by the inequality [3.4)] we have

S (ZIxile) " = Average| 3 .1,

t—i

5[5

for all &, n;eN (=1, 2, ---, k) with n,<n,<< --- <n,, hence we obtain
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+@3 Iogzk)sgplllel .

Therefore we get by the inequality [3.3),

k

2 0ix;Li

i=1

inf
18031=1

>1
-5

2 e,|-@logi)sup 41

1 _l. 1/____3_ L — o ’
= {5 (loguk)sup | x4} — (2 log.k)sup | 4|

_ L a3 s L pue

for all &, n,eN (i=1, 2, ---, k) with n,<n,< -+ <n;.

[12]
(13]
[14]
[15]

Thus the proof of the theorem is completed.
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