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\S 1. Introduction.

The symmetric group $\mathfrak{S}_{5}$ on five letters 1, 2, 3, 4, 5 is generated by per-
mutations $s_{i}=(i, i+1)(i=1,2,3,4)$ . As is known, the 2-dimensional comPlex
projective space $P^{2}$ admits a birational action of $\mathfrak{S}_{5}$ in the following manner:

$s_{1}$ : $(\xi_{1} : \xi_{2} : \xi_{3})arrow$ (Si’ : $\xi_{2}^{-1}$ : $\xi_{3}^{-1}$),

$s_{2}$ : $(\xi_{1} : \xi_{2} : \xi_{3})arrow(\xi_{1} : \xi_{1}-\xi_{2} : \xi_{1}-\xi_{3})$ ,

$s_{3}$ : $(\xi_{1} : \xi_{2} : \xi_{3})arrow(\xi_{2} : \xi_{1} : \xi_{3})$ ,

$s_{4}$ : $(\xi_{1} : \xi_{2} : \xi_{3})arrow(\xi_{1} : \xi_{3} : \xi_{2})$ .

Here $\xi=(\xi_{1}:\xi_{2}:\xi_{3})$ means a homogeneous coordinate of $P^{2}$ . Putting $S=$

{ $\xi\in P^{2}$ ; $\xi_{1}\xi_{2}\xi_{3}(\xi_{2}-\xi_{3})(e3^{-\xi_{1})(\xi_{1}-\xi_{2})=0\}}$ , we find that each $s_{i}$ defines an auto-
morphism of $P^{2}-S$ . Moreover, it is known that $\mathfrak{S}_{5}$ coincides with the group
of birational actions $\varphi$ of $P^{2}$ such that $\varphi|(P^{2}-S)$ are automorphisms.

Suggested by a result of [S], N. Takayama showed that there are mutually
disjoint twenty simply connected domains $D_{i}$ $(i=1, \cdots , 20)$ of $P^{2}-S$ such that
their union is open dense in $P^{2}$ and that they are transitive by the $S_{5}$-action.
On the other hand, it is well-known that the alternative group $U_{5}$ of the fifth
degree is the symmetry group of the icosahedron which has twenty faces.

The purpose of the present paper is to give a description of the fundamental
group $\pi_{1}(P^{2}-S)$ in terms of combinatorial properties of the icosahedron. In
particular, we shall introduce a group $B(\gamma)$ consisting of certain equivalence
classes of sequences of the twenty simply connected domains and show that
$z_{1}(P^{2}-S)=B(r)$ . The precise statement is given in Theorem 8.11.

We are going to exPlain the contents of this paper briefly. In \S 2, we shall
define twenty simply connected domains of $P^{2}-S$ and study their properties.
In \S 3, we shall construct the blowing up space $Z$ of $P^{2}$ so that the proper
transform $\tilde{S}$ of $S$ is the union of ten lines whose intersecting points are of
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normal crossing type and in \S 4, we shall determine the boundary components
of the simply connected domains in the space $Z$ . In \S 5, we shall name the
twenty faces of the icosahedron in a natural way and in \S 6, we shall construct
a non-orientable surface $\mathscr{K}$ from the icosahedron by using the results of \S 5.
The surface $\mathscr{K}$ is topologically isomorphic to the connected sum of three Klein
bottles and has a triangular decomposition with twenty triangles. Then we
shall prove the existence of a natural bijective map between the set of twenty
domains of $P^{2}-S$ given above and that of twenty triangles of $\mathscr{K}$ . In this way,
the set of the twenty triangles of $\mathscr{K}$ admits an $\mathfrak{S}_{\overline{o}}$-action and in this sense, $\mathscr{K}$

is regarded as a non-orientable analogue of the icosahedron. In \S 7, we shall
define a group $B(\gamma)$ consisting of certain equivalence classes of sequences of
twenty letters which are in a one to one correspondence with the twenty do-
mains of $P^{2}-S$ introduced above, where $\gamma$ is a letter corresponding to one of
the simply connected domains. In \S 8, after a detailed study of the structure
of the group $B(\gamma)$ , we shall prove that $B(\gamma)\cong\pi_{1}(P^{2}-S)$ .

The author expresses his gratitude to Professors N. Takayama, K. Okubo
and K. Yamaguchi for valuable discussions on this topic.

\S 2. Twenty simply connected open subsets of $P^{2}-S$ .
We begin with introducing polynomials $\varphi_{i}(\xi)(1\leqq i\leqq 5)$ of ${\rm Re}\xi_{j},$ ${\rm Im}\xi_{j}(]=$

$1,2,3)$ defined by
$\varphi_{1}(\xi)={\rm Im}\xi_{2}\overline{\xi}_{3}(\overline{\xi}_{1}-\overline{\xi}_{2})(\xi_{1}-\xi_{3})$ ,

$\varphi_{2}(\xi)={\rm Im}(\overline{\xi}_{1}-\overline{\xi}_{2})(\xi_{1}-\xi_{8})$ ,

$\varphi_{3}(\xi)={\rm Im}\overline{\xi}_{2}\xi_{3}$ ,

$\varphi_{4}(\xi)={\rm Im}\overline{\xi}_{1}\xi_{3}$ ,

$\varphi_{5}(\xi)={\rm Im}\overline{\xi}_{1}\xi_{2}$ .
In spite that $g_{t}(\xi)$ (l$i\leqq 5) are not functions on $P^{2}$ , it is possible to define
open subsets $U_{i}^{\epsilon}(1\leqq i\leqq 5, \epsilon=\pm)$ of $P^{2}$ by

$U_{i}^{\epsilon}=\{\xi\in P^{2} ; \epsilon\varphi_{i}(\xi)>0\}$ .

LEMMA 2.1. Put $0U_{i}^{\epsilon}=U_{i}^{\epsilon}\cap(P^{2}-S)$ . Then

$s_{i}(^{0}U_{j}^{\epsilon})=\{$

$0U_{i+1}^{\epsilon}$ if $j=i$

$0U_{i}^{\epsilon}$ if $j=i+1$

$0U_{j}^{-g}$ otherwise.

This lemma follows from direct computation.
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LEMMA 2.2.
(i) $U_{3}^{+} \bigcap_{1}U_{4}^{-}\cap U_{5}^{+}\subset U_{1}^{-}\bigcap_{1}U_{2}^{+}$ .
(ii) $U_{3}^{+}\cap U_{4}^{-}\cap U_{5}^{+}$ is simply connected.

PROOF. (i) From the equations

$\varphi_{1}(\xi)=-|\xi_{1}|^{2}\varphi_{3}(\xi)+|\xi_{2}|^{2}\varphi_{4}(\xi)-|\xi_{3}|^{2}\varphi_{5}(\xi)$ ,

$\varphi_{2}(\xi)=\varphi_{3}(\xi)-\varphi_{4}(\xi)+\varphi_{5}(\xi)$ ,

we find that $\varphi_{1}(\xi)<0,$ $\varphi_{2}(\xi)>0$ on the set $U_{3}^{+}\cap U_{4}^{-}\cap U_{5}^{+}$ and (i) follows.
(ii) is proved by direct computation (cf. [S]).

Combining Lemmas 2.1, 2.2, we have the following:

$A_{12}=U_{3}^{-}\cap U_{4}^{+}\cap U_{5}^{-}\subset U_{1}^{+}\cap U_{2}^{-}$ , $B_{12}=U_{3}^{+}\cap U_{4}^{-}\cap U_{o}\pm\subset U_{1}^{-}\cap U_{2}^{+}$ ,

$A_{13}=U_{2}^{+}\cap U_{4}^{+}\cap U_{5}^{-}\subset U_{1}^{+}\cap U_{3}^{+}$ , $B_{13}=U_{2}^{-}\cap U_{4}^{-}\cap U_{5}^{+}\subset U_{1}^{-}\cap U_{3}^{-}$ ,

$A_{14}=U_{2}^{+}\cap U_{3}^{-}\cap U_{5}^{-}\subset U_{1}^{+}\cap U_{4}^{-}$ , $B_{14}=U_{2}^{-}\cap U_{3}^{+}\cap U_{5}^{+}\subset U_{1}^{-}\cap U_{4}^{+}$ ,

$A_{1\overline{o}}=U_{2}^{+}\cap U_{3}^{-}\cap U_{4}^{+}\subset U_{1}^{+}\cap U_{6}^{+}$ , $B_{15}=U_{2}^{-}\cap U_{3}^{+}\cap U_{4}^{-}\subset$ UTAUg,

$A_{23}=U_{1}^{+}\cap U_{4}^{-}\cap U_{5}^{+}\subset U_{2}^{+}\cap U_{3}^{-}$ , $B_{23}=U_{1}^{-}\cap U_{4}^{+}\cap U_{5}^{-}\subset U_{2}^{-}\cap U_{3}^{+}$ ,

$A_{24}=U_{1}^{+}\cap U_{3}^{+}\cap U_{5}^{+}\subset U_{2}^{+}\cap U_{4}^{+}$ , $B_{24}=U_{1}^{-}\cap U_{3}^{-}\cap U_{5}^{-}\subset U_{2}^{-}\cap U_{4}^{-}$ ,

$A_{25}=U_{1}^{+}\cap U_{3}^{+}\cap U_{4}^{-}\subset U_{2}^{+}\cap U_{5}^{-}$, $B_{25}=U_{1}^{-}\cap U_{3}^{-}\cap U_{4}^{+}\subset U_{2}^{-}\cap U_{o}\pm$ ,

$A_{34}=U_{1}^{+}\cap U_{2}^{-}\cap U_{5}^{+}\subset U_{3}^{-}\cap U_{4}^{+}$ , $B_{34}=U_{1}^{-}\cap U_{2}^{+}\cap U_{5}^{-}\subset U_{3}^{+}\cap U_{4}^{-}$ ,

$A_{35}=U_{1}^{+}\cap U_{2}^{-}\cap U_{4}^{-}\subset U_{3}^{-}\cap U_{5}^{-}$ , $B_{35}=U_{1}^{-}\cap U_{2}^{+}\cap U_{4}^{+}\subset U_{3}^{+}\cap U_{5}^{+}$ ,

$A_{45}=U_{1}^{+}\cap U_{2}^{-}\cap U_{3}^{+}\subset U_{4}^{+}\cap U_{5}^{-}$ , $B_{45}=U_{1}^{-}\cap U_{2}^{+}\cap U_{3}^{-}\subset U_{4}^{-}\cap U_{5}^{+}$ .

We frequently write $A_{ij}=A_{ji},$ $B_{ij}=B_{ji}$ for simplicity.

THEOREM 2.3.
(i) The action of $\mathfrak{S}_{5}$ on the open sets $0U_{i}^{\epsilon}(1\leqq i\leqq 5, \epsilon=\pm)$ induces that on

the set $9=\{A_{ij}, B_{ij} ; 1\leqq i<_{J}\leqq 5\}$ . The concrete description of the action of $\mathfrak{S}_{5}$

is given in Figure I. In particular, the $\mathfrak{S}_{5}$-action on 9 is transitive.
(ii) $( U_{i\triangleleft}A_{ij})\cup(\bigcup_{i\triangleleft}B_{ij})$ is open dense in $P^{2}$ .

REMARK. The main part of this theorem was first formulated and shown
by N. Takayama whose proof is very complicated. We give here a simpler
proof based on Lemma 2.2.

PROOF. (i) First we determine the isotropy subgroup Iso $(A_{12})$ of $A_{12}$ in
$\mathfrak{S}_{5}$ . It follows from Lemma 2.1 that Iso $(A_{12})$ is contained in $\langle s_{1}, s_{3}, s_{4}\rangle$ . From
this, it is easy to show that Iso $(A_{12})=\langle s_{1}s_{3}, s_{1}s_{4}\rangle$ . Therefore $g=\mathfrak{S}_{5}\cdot A_{12}$ .
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The statement (ii) is a consequence of (1) and Lemma 2.2.

Figure I.

\S 3. The blowing up space of $P^{2}$ .
Following [ST], we shall construct the blowing up space of $P^{z_{K}^{-}}at_{A}^{v}four$

points $($1:0: $0),$ $(0:1 : 0),$ $(0:0:1),$ $(1:1:1)$ . First we introduce the $space_{-}^{arrow}Z$ de-
fined by

$Z=\{((\xi_{1} : \xi_{2} : \xi_{3}), (\eta_{1} : \eta_{2} : \eta_{3}),$ $(\zeta_{1} : \zeta_{2} : \zeta_{3}))\in P^{2}\cross P^{2}\cross P^{2}$ ;

$\xi_{1}\eta_{1}=\xi_{2}\eta_{2}=\xi_{3}\eta_{3}$ , $\xi_{1}\zeta_{1}+\xi_{2}\zeta_{2}+\xi_{3}\zeta_{3}=0$ , $\zeta_{1}+\zeta_{2}+\zeta_{3}=0\}$

and the projection $\pi$ of $Z$ to $P^{2}$ by $\pi(\xi, \eta, \zeta)=\xi$ . Moreover we define ten lines
$L(ij)(1\leqq i<j\leqq 5)$ of $Z$ by

$L(12):\xi_{1}=\xi_{2}=\xi_{3}$ , $\eta_{1}=\eta_{2}=\eta_{3}$ ,

$L(13):\xi_{2}=\xi_{3}=\eta_{1}=0$ ,

$L(14):\xi_{1}=\xi_{3}=\eta_{2}=0$ ,

$L(15):\xi_{1}=\xi_{2}=\eta_{3}=0$ ,

$L(23):\xi_{1}=\eta_{2}=\eta_{3}=0$ ,
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$L(24):\xi_{2}=\eta_{1}=\eta_{3}=0$ ,

$L(25):\xi_{3}=\eta_{1}=\eta_{2}=0$ ,

$L(34):\xi_{1}=\xi_{2}$ , $\eta_{1}=\eta_{2}$ ,

$L(35):\xi_{1}=\xi_{3}$ , $\eta_{1}=\eta_{3}$ ,

$L(45):\xi_{2}=\xi_{3}$ , $\eta_{2}=\eta_{3}$ .

We frequently write $L(ij)=L(ji)(i>])$ for simplicity. From the definition, we
find that

$\pi(L(12))=\{(1:1:1)\}$ ,

$\pi(L(13))=\{(1:0:0)\}$ ,

$\pi(L(14))=\{(0:1:0)\}$ ,

$\pi(L(15))=\{(0:0:1)\}$ ,

$\pi(L(23))=\{(\xi_{1} : \xi_{2} : \xi_{3});\xi_{1}=0\}$ ,

$\pi(L(24))=\{(\xi_{1} : \xi_{2} : \xi_{3});\xi_{2}=0\}$ ,

$\pi(L(25))=\{(\xi_{1} : \xi_{2} : \xi_{3});\xi_{3}=0\}$ ,

$\pi(L(34))=\{(\xi_{1} : \xi_{2} : \xi_{3});\xi_{1}=e_{2}\}$ ,

$\pi(L(35))=\{(\xi_{1} : \xi_{2} : \xi_{3});\xi_{1}=\xi_{3}\}$ ,

$\pi(L(45))=\{(\xi_{1} : \xi_{2} : \xi_{3});\xi_{2}=\xi_{3}\}$ .
We find that $\pi^{-1}(P^{2}-S)$ is biholomorphic to $P^{2}-S$ and the complement of

$\pi^{-1}(P^{2}-S)$ in $Z$ is $\tilde{S}=\pi^{-1}(S)$ which is the union of the lines $L(ij)(i< \int)$ which
intersect at normal crossing points. To explain more precisely, we state the
following which is easy to prove.

LEMMA 3.1. If $L(ij)\cap L(i’j’)\neq\emptyset$ , then $i,$ $j,$ $i’,$ $j’$ are mutually different and
the intersection $L(ij)\cap L(i’j’)$ consists of a unique point at which $L(ij)$ and $L(i’j’)$

intersect normal crossingly.

AS a result, we find that $Z$ is a blowing up space of $P^{2}$ at the four points
$(1: 0:0),$ $(0:1:0),$ $(0:0:1),$ $(1:1:1)$ .

There are holomorphic involutive automorphisms $t_{i}(i=1,2,3,4)$ of $Z$ such
that $\pi\circ i_{i}=s_{i}\circ\pi$ . In particular, $(i, i+1)arrow t_{i}$ implies an isomorphism of $\mathfrak{S}_{6}$ with
the group generated by $t_{1},$ $t_{2},$ $t_{3},$ $t_{4}$ . In this way, $\mathfrak{S}_{5}$ acts on the space $Z$ . If

$\sigma=(t_{1}\sigma_{2}2\sigma_{3}3\sigma_{4}4\sigma_{5}5)$ is a permutation of $\mathfrak{S}_{5}$ , the corresponding automorphism

of $Z$ maps the line $L(ij)$ to $L(\sigma_{i}\sigma_{j})$ .
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We put $\tilde{U}_{i}^{\epsilon}=\pi^{-1}(U_{i}^{\epsilon})(\epsilon=\pm)$ , tf7 $0i^{=\overline{\tilde{U}_{i^{\cap}}^{+}}\overline{0_{i}}}-(i=1, \cdots , 5)$ , $\tilde{A}_{ij}=\pi^{-1}(A_{ij}),\tilde{B}_{ij}=$

$\tilde{B}_{ij}\cong B_{ij}=\pi^{-1}(B_{ij})(i<j)and\Phi=\{\tilde{A}_{ij},\tilde{B}_{\ell j}\}Moreover,wedenotebyZ_{R}therea11ocusofZ,thatItfo11owsfromthedefinitionisthat\tilde{A}_{\ell j}\cong A_{ij}$
,

$Z_{R}=\{((\xi_{1} : \xi_{2} : \xi_{3}), (\eta_{1} : \eta_{2} : \eta_{3}), (\zeta_{1} : \zeta_{2} : \zeta_{3}))\in Z ; \xi_{1}, \xi_{2}, \xi_{3}\in R\}$ .

REMARK. In Terada [T2], the blowing up space $Z$ is constructed in an
alternative way.

\S 4. The boundary components of $\tilde{A}_{ij},$
$B_{i_{J}}$ .

In the sequel, for a closed algebraic set $Y$ of $Z$ and its locally closed subset
$V$ which contains an inner point of $Y,$ $V^{O}$ denotes the interior of $V$ in $Y$ .

The purpose of this section is to study the boundary components of the
sets $\tilde{A}_{ij},\tilde{B}_{ij}$ .

PROPOSITION 4.1.
(i) The six subsets $\partial\tilde{A}_{23}\cap\partial\tilde{B}_{45},$ $\partial\tilde{B}_{23}\cap\partial\tilde{A}_{45},$ $\partial\tilde{A}_{24}\cap\partial\tilde{B}_{35},$ $\partial\tilde{B}_{24}\cap\partial\tilde{A}_{35},$ $\partial\tilde{A}_{25}\cap\partial\tilde{B}_{34}$ ,

$\partial\tilde{B}_{25}\cap\partial\tilde{A}_{34}$ of $Z$ are contained in $C_{1}^{0}$ and their union coincides with $O_{1}^{0}$ . More-
over, their interiors are simply connected and mutually disjoint.

(ii) $Thesixsubsets\partial\tilde{A}_{13}\cap\partial\tilde{A}_{45},$ $\partial\tilde{B}_{13}\cap\partial\tilde{B}_{45},$ $\partial\tilde{A}_{14}\cap\partial\tilde{A}_{35},$ $\partial\tilde{B}_{14}\cap\partial\tilde{B}_{35},$ $\partial\tilde{A}_{15}\cap\partial\tilde{A}_{34}$ ,
$\partial\tilde{B}_{15}\cap\partial\tilde{B}_{34}$ of $Z$ are contained in $C_{2}^{0}$ and their union coincides with $\tilde{U}_{2}^{0}$ . More-
over, their interiors are simply connected and mutually $dis_{J}oint$ .

(iii) The six subsets $\partial\tilde{A}_{12}\cap\partial\tilde{A}_{45},$ $\partial\tilde{B}_{12}\cap\partial\tilde{B}_{46},$ $\partial\tilde{A}_{14}\cap\partial\tilde{A}_{25},$ $\partial\tilde{B}_{14}\cap\partial\tilde{B}_{25},$ $\partial\tilde{A}_{15}\cap\partial\tilde{A}_{24}$ ,
$\partial B_{15}\cap\partial\tilde{B}_{24}$ of $Z$ are contained in $\hat{U}_{3}^{0}$ and their union coincides with $\iota y_{3}0$ More-
over, their interiors are simply connected and mutually $dis_{J}oint$ .

(iv) $Thesixsubsets\partial\tilde{A}_{12}\cap\partial\tilde{A}_{35},$ $\partial\tilde{B}_{12}\cap\partial\tilde{B}_{35},$ $\partial\tilde{A}_{13}\cap\partial\tilde{A}_{25},$ $\partial\tilde{B}_{13}\cap\partial\tilde{B}_{25},$ $\partial\tilde{A}_{15}\cap\partial\overline{A}_{23}$ ,
$\partial\tilde{B}_{16}\cap\partial\tilde{B}_{23}$ of $Z$ are coniained in $C_{4}^{0}$ and their union coincides with $O_{4}^{0}$ . More-
over, their interiors are simply connected and mutually disjoint.

(v) $Thesixsubseis\partial\tilde{A}_{12}\cap\partial\tilde{A}_{34},$ $\partial\tilde{B}_{12}\cap\partial\tilde{B}_{34},$ $\partial\tilde{A}_{13}\cap\partial\tilde{A}_{24},$ $\partial\check{B}_{13}\cap\partial\tilde{B}_{24},$ $\partial\tilde{A}_{14}\cap\partial\tilde{A}_{23}$ ,
$\Psi\lambda\partial\tilde{B}_{14}\cap\partial\tilde{B}_{23}$ of $Z$ are contained in $O_{5}^{0}$ and their union coincides with $\iota y_{5}0$ More-
\S

‘ over, their interiors are simply connected and mutually disjoint.

PROOF. From the definitions of $\tilde{A}_{tj},\tilde{B}_{\ell j}$ , we find that each $C_{i}^{0}$ is contained
in the union of $U_{i<J}(\partial\tilde{A}_{ij}\cup\partial\tilde{B}_{ij})$ . Noting the $\mathfrak{S}_{5}$-action on $Z$ , the proposition
is a consequence of Lemma 4.2 below.

LEMMA 4.2. Take two open sets $C_{1},$ $C_{2}$ of 9. Assume that $C_{1}\neq C_{2}$ . If
$\partial C_{1}\cap\partial C_{2}$ has 3 dimensions over $R$ and contained in $Ug$ , then $\{C_{1}, C_{2}\}$ equals one
of the following six sets $\{B_{14}, B_{23}\},$ $\{A_{14}, A_{28}\},$ $\{A_{13}, A_{24}\},$ $\{B_{13}, B_{24}\},$ $\{B_{12}, B_{34}\}$ ,
$\{A_{12}, A_{34}\}$ . Moreover, $(\partial C_{1}\cap\partial C_{2})^{o}$ is simply connected and disjoint with $S$ .

PROOF. We take $\xi\in U_{5}^{0}$ and assume that $\xi_{2}\neq 0$ for a moment. Then, from
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the assumption, we have
$\xi_{1}\overline{\xi}_{2}=\overline{\xi}_{1}\xi_{2}$ , $\varphi_{1}(\xi)=(\xi_{1}\overline{\xi}_{2}-|\xi_{1}|^{2})\varphi_{3}(\xi)$ ,

$\varphi_{2}(\xi)=\frac{\xi_{2}-\xi_{1}}{\xi_{2}}\varphi_{3}(\xi)$ , $\varphi_{4}(\xi)=\frac{\xi_{1}}{\xi_{2}}\varphi_{3}(\xi)$ .

From these equations, we find the following:

(1) If $\xi_{1}/\xi_{2}>1,$ $\varphi_{3}(\xi)>0$ , then $\varphi_{1}(\xi)<0,$ $\varphi_{2}(\xi)<0,$ $\varphi_{4}(\xi)>0$ .

(2) If $\xi_{1}/\xi_{2}>1,$ $\varphi_{3}(\xi)<0$ , then $\varphi_{1}(\xi)>0,$ $\varphi_{2}(\xi)>0,$ $\varphi_{4}(\xi)<0$ .

(3) If $0<\xi_{1}/\xi_{2}<1,$ $\varphi_{3}(\xi)>0$ , then $\varphi_{1}(\xi)>0,$ $\varphi_{2}(\xi)>0,$ $\varphi_{4}(\xi)>0$ .

(4) If $0<\xi_{1}/\xi_{2}<1,$ $\varphi_{3}(\xi)<0$ , then $\varphi_{1}(\xi)<0,$ $\varphi_{2}(\xi)<0,$ $\varphi_{4}(\xi)<0$ .

(5) If $\xi_{1}/\xi_{2}<0,$ $\varphi_{3}(\xi)>0$ , then $\varphi_{1}(\xi)<0,$ $\varphi_{2}(\xi)>0,$ $\varphi_{4}(\xi)<0$ .

(6) If $\xi_{1}/\xi_{2}<0,$ $\varphi_{3}(\xi)<0$ , then $\varphi_{1}(\xi)>0,$ $\varphi_{2}(\xi)<0,$ $\varphi_{4}(\xi)>0$ .

Moreover, comparing the above inequalities with the definition of $A_{ij},$ $B_{ij}$ we
have the following:

In the case (1), $\{C_{1}, C_{2}\}=\{B_{14}, B_{23}\}$ .
In the case (2), $\{C_{1}, C_{2}\}=\{A_{14}, A_{23}\}$ .

In the case (3), $\{C_{1}, C_{2}\}=\{A_{13}, A_{24}\}$ .

In the case (4), $\{C_{1}, C_{2}\}=\{B_{13}, B_{24}\}$ .
In the case (5), $\{C_{1}, C_{2}\}=\{B_{12}, B_{34}\}$ .

In the case (6), $\{C_{1}, C_{2}\}=\{A_{12}, A_{34}\}$ .

NOW we consider the case $C_{1}=B_{14},$ $C_{2}=B_{23}$ , that is, the case (1). Then,
from the argument above, we find that the set

$M=\{\xi\in P^{2} ; |\xi_{2}|^{2}<\xi_{1}\overline{\xi}_{2}=\overline{\xi}_{1}\xi_{2}<|\xi_{1}|^{2}, {\rm Im}\overline{\xi}_{2}\xi_{3}>0\}$

is an open subset of $(\partial B_{14}\cap\partial B_{23})^{o}$ Since it is easy to show that $(\partial B_{14}\cap\partial B_{23})^{o}$

and $\xi_{2}=0$ are disjoint, we find that $M=(\partial B_{14}\cap\partial B_{23})^{o}$ . On the other hand, put-
ting $x=\xi_{1}/\xi_{2}$ , $y=\xi_{3}/\xi_{2}$ , we find that $M$ is isomorphic to the set { $(x, y)\in C^{2}$ ;
$1<x=\overline{x},$ ${\rm Im} y>0\}$ which is clearly simply connected. Hence $M=(\partial B_{14}\cap\partial B_{23})^{o}$

is simply connected. It is clear from the definition that $M\cap S=\emptyset$ . By an
argument similar to the above case, we can prove that $(\partial A_{14}\cap\partial A_{23})^{o},$ $(\partial A_{13}\cap\partial A_{24})^{o}$ ,
$(\partial B_{13}\cap\partial B_{24})^{o},$ $(\partial B_{12}\cap\partial B_{34})^{o},$ $(\partial A_{12}\cap\partial A_{34})^{o}$ are simply connected and are disjoint
with $S$ .
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From Proposition 4.1, we have the following: Let $j_{1},$ $\cdots$ , $j_{5}$ be numbers
such that $\{j_{1}, \cdots , j_{5}\}=\{1,2,3,4,5\}$ .

(i) The case where $1\in\{j_{1}, j_{2}\}$ .
(i. 1) The union of $(\partial\tilde{A}_{j_{1}j_{2}}\cap\partial\tilde{A}_{j_{3}j_{4}})^{o},$ $(\partial\tilde{A}_{j_{1}j_{2}}\cap\partial\tilde{A}_{j_{3}j_{6}})^{o},$ $(\partial\tilde{A}_{j_{1}j_{2}}\cap\partial\tilde{A}_{j_{4}j_{5}})^{o}$ is

open dense in $\partial\tilde{A}_{j_{1}j_{2}}$ and

$\partial(\partial\tilde{A}_{j_{1}j_{2}})=\partial\tilde{A}_{j_{1}j_{2}}-\{(\partial\tilde{A}_{j_{1}j_{2}}\cap\partial\tilde{A}_{j_{3}j_{4}})^{o}u(\partial\tilde{A}_{j_{1}j_{2}}\cap\partial\tilde{A}_{j_{3}j_{5}})^{o}\cup(\partial\tilde{A}_{j_{1}j_{2}}\cap\partial\tilde{A}_{j_{4}j_{5}})^{o}\}$ .

(i.2) The union of $(\partial\tilde{B}_{j_{1}j_{2}}\cap\partial\tilde{B}_{j_{3}j_{4}})^{o},$ $(\partial\tilde{B}_{j_{1}j_{2}}\cap\partial\tilde{B}_{j_{3}j_{6}})^{o},$ $(\partial\tilde{B}_{j_{1}f_{2}}\cap\partial\tilde{B}_{j_{4}j_{5}})^{o}$ is
open dense is $\partial\tilde{B}_{j_{1}j_{2}}$ and

$\partial(\partial\tilde{B}_{j_{1}j_{2}})=\partial\tilde{B}_{j_{1}j_{2}}-\{(\partial\tilde{B}_{j_{1}j_{2}}\cap\partial\tilde{B}_{j_{3}j_{4}})^{o}\cup(\partial\tilde{B}_{j_{1}j_{2}}\cap\partial\tilde{B}_{j_{3}J_{5}})^{o}\cup(\partial\tilde{B}_{j_{1}j_{2}}\cap\partial\tilde{B}_{j_{4}j_{5}})^{o}\}$ .
(ii) The case where $j_{5}=1$ .
(ii.l) The union of $(\partial\tilde{A}_{j_{1}j_{2}}\cap\partial\tilde{B}_{j_{3}j_{4}})^{o},$ $(\partial\tilde{A}_{j_{1}j_{2}}\cap\partial\tilde{B}_{j_{3}j_{5}})^{o},$ $(\partial\tilde{A}_{j_{1}j_{2}}\cap\partial\tilde{B}_{j_{4}j_{5}})^{o}$ is

open dense in $\partial\tilde{A}_{J_{1}J_{2}}$ and

$\partial(\partial\tilde{A}_{j_{1}j_{2}})=\partial\tilde{A}_{J_{1}J_{2}}-\{(\partial\tilde{A}_{j_{1}j_{2}}\cap\partial\tilde{B}_{j_{3}f_{4}})^{o}\cup(\partial\tilde{A}_{j_{1}j_{2}}\cap\partial\tilde{B}_{f_{3}j_{5}})^{o}\cup(\partial\tilde{A}_{j_{1}j_{2}}\cap\partial\tilde{B}_{j_{4}j_{5}})^{o}\}$ .
(ii.2) The union of $(\partial\tilde{B}_{j_{1}j_{2}}\cap\partial\tilde{A}_{j_{3}j_{4}})^{o},$ $(\partial\tilde{B}_{j_{1}j_{2}}\cap\partial\tilde{B}_{j_{3}j_{5}})^{o},$ $(\partial\tilde{B}_{j_{1}j_{2}}\cap\partial\tilde{B}_{j_{4}j_{5}})^{o}$ is

open dense in $\partial\tilde{B}_{J_{1}J_{2}}$ and

$\partial(\partial\tilde{B}_{f_{1}j_{2}})=\partial\tilde{B}_{j_{1}j_{2}}-\{(\partial\tilde{B}_{j_{1}j_{2}}\cap\partial\tilde{A}_{j_{3}j_{4}})^{o}\cup(\partial\tilde{B}_{j_{1}j_{2}}\cap\partial\tilde{B}_{j_{3}j_{5}})^{o}\cup(\partial\tilde{B}_{j_{1}j_{2}}\cap\partial\tilde{B}_{j_{4}j_{5}})^{o}\}$ .

In the rest of this section, we study the subsets $\partial(\partial A_{ij}),$
$\partial(\partial B_{ij})$ which have

two dimensions.

PROPOSITION 4.3.

$\bigcup_{i<j}(\tilde{U}_{i}^{0}\cap\tilde{U}_{j}^{0})=\bigcup_{i<j}\{\partial(\partial\tilde{A}_{ij})\cup\partial(\partial\tilde{B}_{ij})\}=Z_{R}\cup\{\bigcup_{i<J}L(ij)\}$ .

PROOF. It follows from Proposition 4.1 and the definitions of $\partial(\partial\check{A}_{ij})$ ,
$\partial(\partial\tilde{B}_{ij})$ that

$\bigcup_{i<J}(O_{i}^{0_{\cap\tilde{U}_{j}^{0})=}}\bigcup_{i<j}\{\partial(\partial\overline{A}_{ij})\cup\partial(\partial\tilde{B}_{ij})\}$ .

On the other hand, it is clear from the definition that $Z_{R}$ and $( \bigcup_{i<j}L(ij))$ are
contained in $U_{i<j}\{\partial(\partial\tilde{A}_{ij})\cup\partial(\partial\tilde{B}_{ij})\}$ . The converse inclusion relation follows
from the following lemma.

LEMMA 4.4. If $\{j_{1}, j_{2}, j_{3}, j_{4}, j_{5}\}=\{1,2,3,4,5\}$ , then $\hat{U}_{j_{1}}^{0}\cap\hat{U}_{j_{2}}^{0}\subset$

$Z_{R} \cup(\bigcup_{i<j}L(ij))$ .
PROOF. Noting the $\mathfrak{S}_{5}$-action, it suffices to prove the lemma in the case

where $j_{1}=4,$ $j_{2}=5$ . Then it follows from the definition that $\tilde{U}_{4}^{0_{\cap}}0_{5}^{0}$ is contained
in the set

$\{(\xi, \eta, \zeta)\in Z ; \xi_{1}\xi_{2}=\overline{\xi}_{1}\xi_{2}, \xi_{1}\overline{\xi}_{3}=\overline{\xi}_{1}\xi_{3}, \eta_{1}\overline{\eta}_{2}=\overline{\eta}_{1}\eta_{2}, \eta_{1}\overline{\eta}_{3}=\overline{\eta}_{1}\eta_{3}\}$ .
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Therefore the lemma follows from the definition of $Z$ and that of ten lines.

Next we determine the connected components of $Z_{R}-\tilde{S}$ . For this purpose,
we introduce twelve subsets of $Z_{R}$ defined by

$D(12345)=\{(\xi, \eta, \zeta)\in Z_{R} ; 0<\xi_{1}<\xi_{2}<\xi_{3}\}$ ,

$D(12354)=\{(\xi, \eta, \zeta)\in Z_{R} ; 0<\xi_{1}<\xi_{3}<\xi_{2}\}$ ,

$D(12435)=\{(\xi, \eta, \zeta)\in Z_{R} ; 0<\xi_{2}<\xi_{1}<\xi_{3}\}$ ,

$D(12453)=\{(\xi, \eta, \zeta)\in Z_{R} ; 0<\xi_{2}<\xi_{3}<\xi_{1}\}$ ,

$D(12534)=\{(\xi, \eta, \zeta)\in Z_{R} ; 0<\xi_{3}<\xi_{1}<\xi_{2}\}$ ,

$D(12543)=\{(\xi, \eta, \zeta)\in Z_{R} ; 0<\xi_{3}<\xi_{2}<\xi_{1}\}$ ,

$D(13245)=\{(\xi, \eta, \xi)\in Z_{R} ; \xi_{1}<0<\xi_{2}<\xi_{3}\}$ ,

$D(13254)=\{(\xi, \eta, \zeta)\in Z_{R} ; \xi_{1}<0<\xi_{3}<\xi_{2}\}$ ,

$D(13425)=\{(\xi, \eta, \zeta)\in Z_{R} ; \xi_{3}<0<\xi_{2}<\xi_{1}\}$ ,

$D(13524)=\{(\xi, \eta, \zeta)\in Z_{R} ; \xi_{2}<0<\xi_{3}<\xi_{1}\}$ ,

$D(14235)=\{(\xi, \eta, \zeta)\in Z_{R} ; \xi_{2}<0<\xi_{1}<\xi_{3}\}$ ,

$D(14325)=\{(\xi, \eta, \zeta)\in Z_{R} ; \xi_{3}<0<\xi_{1}<\xi_{2}\}$ .

PROPOSITION 4.5. (i) The twelve sets $D(12345),$ $D(12354),$ $D(12435),$ $D(12453)$ ,
$D(12534),$ $D(12543),$ $D(13245),$ $D(13425),$ $D(13524),$ $D(13254),$ $D(14235),$ $D(14325)$

are simply connected, mutually disjoint. Their union is open dense in $Z_{R}$ and
its complement equals $Z_{R} \cap(\bigcup_{iQ}L(ij))$ .

(ii) The action of $\mathfrak{S}_{5}$ on the set

$\mathcal{E}=\{D(12345),$ $D(12354),$ $D(12435),$ $D(12453),$ $D(12534),$ $D(12543)$ ,

$D(13245),$ $D(13425),$ $D(13524),$ $D(13254),$ $D(14235),$ $D(14325)\}$ .

is transitive. The isotropy subgroup of $D(12345)$ is generated by $w_{1}=s_{1}s_{2}s_{3}s_{4}$ and
$w_{2}=s_{1}s_{2}s_{1}s_{4}$ and is isomorphic to the dihedral group of order 10.

The proof of this proposition is straightforward and so we omit it.
Last we remark on some properties of the set $D(12345)$ . The set $D(12345)$

is simply connected and is surrounded by the lines $L(12)_{R},$ $L(23)_{R},$ $L(34)_{R}$ ,
$L(45)_{R},$ $L(15)_{R}$ , where $L(ij)_{R}=L(ij)\cap Z_{R}$ which is isomorphic to $P^{1}(R)$ , the 1-
dimensional real projective space. More precisely, we have

$s(12345,12)=\overline{D(12345)}\cap\overline{D(12543)}\subset L(12)_{R}$ ,
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$s(12345,23)=D(12345)\cap D(13245)cL(23)_{R}$ ,

$s(12345,34)=\overline{D(12345)}\cap\overline{D(12435)}\subset L(34)_{R}$ ,

$s(12345,45)=\overline{D(12345)}\cap\overline{D(12354)}\subset L(45)_{R}$ ,

$s(12345,15)=\overline{D(12345)}\cap\overline{D(14325)}\subset L(15)_{R}$ ,

and each $s(12345, ij)$ is a segment of the real line $L(ij)_{R}$ . Moreover, there are
five vertices of $D(12345)$ which are defined by

$s(12345,12)\cap s(12345,34)=L(12)\cap L(34)$ ,

$s(12345,34)\cap s(12345,15)=L(34)\cap L(15)$ ,

$s(12345,15)\cap s(12345,23)=L(15)\cap L(23)$ ,

$s(12345,23)\cap s(12345,45)=L(23)\cap L(45)$ ,

$s(12345,45)\cap s(12345,12)=L(45)\cap L(12)$ .

REMARK. The non-orientable surface $Z_{R}$ with the set of faces $\mathcal{E}$ is regarded
as a non-orientable analogue of a dodecahedron admitting an $\mathfrak{S}_{5}$-action. Later,
we shall construct a non-orientable surface $\mathscr{K}$ with a triangular decomposition
with twenty triangles which is regarded as a non-orientable analogue of an
icosahedron (cf. \S 6).

\S 5. Some elementary properties of the icosahedron.

The purpose of this section is to name the twenty faces of an icosahedron
in a natural way.

We begin with giving a 2-1 map from the totality $\mathscr{F}$ of the twenty faces
of an icosahedron to the set $ff=$ { $(i,$ $j)$ ; l$i $<r$ S5}.

Let $f$ be a map of $\mathscr{F}$ to 9 with the following condition:
$(*)$ Take a face $\Delta$ of the icosahedron. Since $\Delta$ is an triangle, there are
three faces $\Delta_{1},$ $\Delta_{2},$ $\Delta_{3}\in \mathscr{F}$ which have common sides with $\Delta$ . Then there is
a permutation $\sigma\in \mathfrak{S}_{5}$ such that

$f(\Delta)=(\sigma(1), \sigma(2))$ ,

$f(\Delta_{1})=(\sigma(4), \sigma(5))$ ,

$f(\Delta_{2})=(\sigma(5), \sigma(3))$ ,

$f(\Delta_{3})=(\sigma(3), \sigma(4))$ .
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Figure II.

It is easy to show that such a map $f$ of $\mathscr{F}$ to 9 is unique up to $\mathfrak{S}_{\overline{o}}$-action. A
concrete correspondence is given in Figure II. In this way, we attach a pair
of the letters 1, 2, 3, 4, 5 to each face of the icosahedron. Then it is possible
to attach one of the five letters 1, 2, 3, 4, 5 to each of thirty sides of the icosa-
hedron in the following manner. Let $s$ be a side of the icosahedron. Then
there are two faces both of which have $s$ as the common side. If $(i_{1}, i_{2}),$ $(i_{3}, i_{4})$

are the pairs of letters which are attached to the faces in question. Then, it
follows from the definition tbat there is a letter $i_{5}$ such that $\{i_{1}, i_{2}, i_{3}, i_{4}, i_{5}\}$

coincides with {1, 2, 3, 4, 5}. Then we attach $i_{5}$ to the side $s$ . Since there are
thirty sides on the icosahedron, there are six sides attached with the same letter.

We are going to decompose the twenty faces into two sets each of which
has ten faces by cutting off along twelve sides of the icosahedron with an
additional condition whicb will be explained soon. We first take six sides
which are attached with the same letter, say 1. Next we choose three letters
from the remaining letters 2, 3, 4, 5, say, 3, 4, 5. Then there is a sequence of

ee sides $s_{1}$ , , $s_{12}$ such that 1, 3, 1, 4, 1, 5, 1, 3, 1, 4, 1, 5 is the sequence of letters
which are attached to $s_{1},$ $s_{2},$ $\cdots$ , $s_{12}$ , respectively. From the definition, we find
that $s_{1},$ $s_{2},$ $\cdots$ , $s_{12}$ decompose the icosahedron into two parts, say, $I_{1},$ $I_{2}$ . Let
$\mathscr{F}_{i}$ be the set of faces belonging to $I_{i}(i=1,2)$ . Then it is easy to see that
both $\mathscr{F}_{i}$ contain ten faces and that the map of $\mathscr{F}$ to if defined above induces
a bijection of $\mathscr{F}_{i}$ to 9 $(i=1,2)$ . We note here that the decomposition of $\mathscr{F}$ to
$\mathscr{F}_{1}$ , $\mathscr{F}_{2}$ does not depend on the permutation of 3, 4, 5 in the choice of the
sequence $s_{1},$ $s_{2},$ $\cdots$ , $s_{12}$ . As a result, we name all the faces of the icosahedron
so that
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$\mathscr{F}_{1}=\{a_{ij} ; 1\leqq i<j\leqq 5\}$ ,

$\mathscr{F}_{2}=\{b_{ij} ; 1; i<j;; 5\}$ ,

where $(i, j)$ is the pairs attached to both of $a_{ij},$ $b_{ij}$ . For later purpose, we
specify the twelve sides $s_{\ell}(1\leqq i\leqq 12)$ in the following manner. We first take
as $s_{1}$ the side of the face $a_{34}$ attached with the letter 1 and next take as $s_{2}$

the side of $a_{14}$ attached with the letter 3 and so on. Then the twelve sides in
question are uniquely determined (cf. Figure II).

\S 6. The connected sum of three Klein bottles.

AS usual, we consider the two dimensional sphere $S^{2}$ on which all the
vertices of the icosahedron in question lie on. Projecting the thirty sides of the
icosahedron to the sphere from the center of $S^{2}$ , we obtain thirty segments and
twenty faces on $S^{2}$ . There is a one to one correspondence between the set of
faces of the icosahedron and that of faces on the sphere obtained as above.
For this reason, we use the same name for the face on $S^{2}$ with that of the
corresponding face of the icosahedron. We now concentrate our attention to the
twelve segments s\’i $(1\leqq i\leqq 12)$ which are obtained by the projection of the sides
$s_{t}(1EIIi\leqq 12)$ given in \S 5. Let $P_{i}$ (resp. $Q_{i}$) be the vertex of $S^{2}$ which is the
end of the segments $s_{2i-1}’$ and $s_{2i}’$ (resp. $s_{2i}’$ and $s_{2i+1}’$ ) $(1\leqq i\leqq 6)$ , where we Put
$s_{13}’=s_{1}’$ . NOW we cut off $S^{2}$ along the six segments $s_{2i}’(1\leqq i\leqq 6)$ . Then we
obtain new segments $t_{2i},$ $t_{2i}’$ whose ends are $P_{i}$ and $Q_{i}$ . Under the specification
of the sides $s_{i}$ given in the last of the previous section, we designate $t_{2},$ $t_{4},$ $t_{6}$ ,
$t_{8},$ $t_{10},$ $t_{12}$ the sides of $a_{14},$ $a_{23},$ $a_{13},$ $a_{25},$ $a_{15},$ $a_{24}$ respectively and designate $t_{2}’,$ $t_{4}’$ ,
$t_{6}’,$ $t_{8}’,$ $t_{10}’,$ $t_{12}’$ the sides of $b_{25},$ $b_{15},$ $b_{24},$ $b_{34},$ $b_{23},$ $b_{13}$ , respectively. In this way, we
obtain a surface $\mathcal{G}$ with six holes.

We are going to construct a non-orientable surface $\mathscr{K}$ from $\mathcal{G}$ identifying
the three pairs of the six holes as follows:

$(**)$ We identify $t_{2t}$ with $t_{2i+6},$ $t_{2i}’$ with $t_{2i+6}’,$ $P_{i}$ with $P_{i+3}$ and $Q_{i}$ with
$Q_{i+3}$ , respectively.

In this way, we obtain a new surface $\mathscr{K}$ which has twenty faces which come
from the icosahedron. Hereafter, we write $a_{ij}’$ and $b_{ij}’$ as faces of $\mathscr{K}$ corre-
sponding to the faces $a_{ij}$ and $b_{ij}$ of the icosahedron, respectively and put $\mathscr{F}’=$

$\{a_{ij}’, b_{ij}’ ; 1\leqq i<j\leqq 5\}$ .

LEMMA 6.1. The surface $\mathscr{K}$ is isomorphic to the connected sum of three
Klein bottles. In particular, X is non-orientable.

This lemma follows from the construction of $\mathscr{K}$ . The following explains
the reason why we introduce the surface $\mathscr{K}$ .
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PROPOSITION 6.2. The map of the set 9 to $\mathscr{F}’$ defined by $\tilde{A}_{ij}arrow a_{ij}’,\tilde{B}_{ij}arrow b_{ij}’$

preserves adjacent relation, that is, if, $C_{1},$ $C_{2}\in\tilde{9}$ are adjacent ( $i$ . $e$ . they have
a common codimension one boundary) and if $c_{i}$ is the corresponding element of
$\mathscr{F}’(i=1,2)$ , then $c_{1}$ and $c_{2}$ have the common side and vice versa.

COROLLARY. The surface $\mathscr{K}$ admits a $\mathfrak{S}_{5}$-action induced from that of $P^{2}$ .

In spite that the icosahedron only permits the $\mathfrak{U}_{5}$-action, the surface $\mathscr{K}$

admits an $\mathfrak{S}_{5}$-action in the above sense. We have defined the $\mathfrak{S}_{5}$-action on $\mathscr{K}$

in a combinatorial way. Therefore we are lead to the following problem.

PROBLEM 6.3. IS there a smooth $\mathfrak{S}_{5}$-action on the surface $\mathscr{K}$ so that the
induced action on the set $\mathfrak{F}’$ coincides with that given above.$p$

AS explained in \S 4, the space $Z_{R}$ with the set $\mathcal{E}$ of its faces is regarded
as a non-orientable analogue of a dodecahedron. Therefore, it is natural to ask
whether there is a duality between $Z_{R}$ and the surface $\mathscr{K}$ something like the
duality between the dodecahedron and the icosahedron or not?

\S 7. An equivalence relation on the set of words.

The purpose of this section is to introduce a group $B(\gamma)$ consisting of equi-
valence classes of certain sequences of letters under an equivalence relation
(see below). In the next section, we shall prove that $B(\gamma)$ is isomorphic to the
fundamental group $\pi_{1}(P^{2}-S)$ .

Let $\alpha_{ij},$
$\beta_{ij}$ ( $1\leqq$ i<j;1$5) be letters which are in a one to one correspondence

with the simply connected domains $\tilde{A}_{ij},\tilde{B}_{if}$ in such a way that $\tilde{A}_{tj}arrow\alpha_{ij},\tilde{B}_{ij}$

$arrow\beta_{tj}$ . We denote by $\delta$ the map of $\overline{9}$ to $\mathcal{L}=\{\alpha_{tj}, \beta_{ij}\}$ thus defined. Then the
action of $\mathfrak{S}_{5}$ on 9 induces that on $\mathcal{L}$ .

DEFINITION 7.1. Take $\gamma,$ $\gamma’\in \mathcal{L}$ . Then $\gamma$ and $\gamma’$ are adjacent in the weak
sense if $r=r’$ or $\delta^{-1}(\gamma)$ and $\delta^{-1}(\gamma’)$ have a common codimension one boundary.

DEFINITION 7.2. (i) A word $\sigma$ is a sequence of a finite number of letters
$\gamma_{1}\gamma_{2}\cdots\gamma_{n}(n>0)$ such that $r_{\iota}\in \mathcal{L}(i=1, \cdots , n)$ and that $\gamma_{i}$ and $\gamma_{i+1}$ are adjacent
in the weak sense $(i=1, \cdots, n-1)$ .

(ii) For any word $\sigma=\gamma_{1}\gamma_{2}$ . $\gamma_{n}$ and $w\in \mathfrak{S}_{5}$ , we define $w\sigma=(w\gamma_{1})(w\gamma_{2})$ ...
$(w\gamma_{n})$ . In this way, $\mathfrak{S}_{5}$ acts on the set of words.

(iii) Let $\sigma=\gamma_{1}\gamma_{2}$ ... $\gamma_{m},$ $\tau=\gamma_{1}’\gamma_{2}’$ .., $\gamma_{n}’$ be two words. If $\gamma_{m}$ and 71 are adjacent
in the weak sense, then $\sigma\tau=\gamma_{1}\gamma_{2}\cdots\gamma_{m}\gamma_{1}’\gamma_{2}’\cdots\gamma_{n}’$ is called the product of $\sigma$ and $\tau$ .
On the other hand, $\sigma^{-1}=\gamma_{m}\cdots\gamma_{2}\gamma_{1}$ is called the inverse of $\sigma$ . By definition,
both $\sigma\tau$ and $\sigma^{-1}$ are words.

DEFINITION 7.3. (i) Let $\sigma=\gamma_{1}\gamma_{2}$ ... $\gamma_{n}$ be a word. If $\gamma_{i}=\gamma_{j}$ for $i<$ ] $<i+3$ ,
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then $\tau=\gamma_{1}\gamma_{2}$ ... $\gamma_{i}\gamma_{i+1}$ ... $\gamma_{n}$ is also a word. Then we write $\sigma_{T}\sim\tau$ or $\tau_{T}\sim\sigma$ .
(ii) Let $\sigma,$ $\tau$ be words. Then $\sigma_{N}\sim\tau$ if there are words $\rho,$ $\rho’$ and $w\in \mathfrak{S}_{5}$

such tbat both the products $\rho\sigma\rho’,$ $\rho\tau\rho’$ are well-defined and that

$\{w(\rho\sigma\rho’), w(\rho\tau\rho’)\}=\{\alpha_{12}\alpha_{35}\alpha_{14}\alpha_{25}\beta_{34}\beta_{12}, \alpha_{12}\alpha_{34}\beta_{25}\beta_{14}\beta_{35}\beta_{12}\}$ .
(iii) Let $\sigma,$ $\tau$ be words. Then $\sigma$ and $\tau$ are equivalent and write $\sigma\sim\tau$ if

there are finitely many words $\sigma_{1}=\sigma,$ $\sigma_{2},$
$\cdots$ , $\sigma_{m}=\tau$ such that $\sigma_{i}\sim\sigma_{i+1}T$ or

$\sigma_{i_{N}}\sim\sigma_{i+1}$ $(i=1, \cdots , m-1)$ . By definition, $\sim$ actually defines an equivalence

relation on the set of words.

The following lemma is a consequence of Definition 7.3 and Proposition 4.1.

LEMMA 7.4. Let $\sigma,$ $\tau$ be words. If $\sigma\sim\tau$ , then $w\sigma\sim w\tau$ for any $w\in \mathfrak{S}_{5}$ .

DEFINITION 7.5. (i) Let $\sigma$ be a word. Then $\langle\sigma\rangle$ denotes the equivalence
classes of $\sigma$ and is called an $e$-word ( $=an$ abbreviation of the equivalence class
of the word $\sigma$ ).

(ii) If $\sigma,$ $\tau$ are words such that the product $\sigma\tau$ is well-defined, then $\langle\sigma\tau\rangle$

depends only on $\langle\sigma\rangle,$ $\langle\tau\rangle$ . So we write $\langle\sigma\tau\rangle=\langle\sigma\rangle\langle\tau\rangle$ and call it the product
of $\langle\sigma\rangle$ and $\langle\tau\rangle$ . Similarly, $\langle\sigma^{-1}\rangle$ depend only on $\langle\sigma\rangle$ . So we write $\langle\sigma\rangle^{-1}=$

$\langle\sigma^{-1}\rangle$ and we call it the inverse of $\langle\sigma\rangle$ .

It follows from Lemma 7.4 that $\mathfrak{S}_{5}$ acts on the set of e-words.

DEFINITION 7.6. For any $\gamma,$ $r’\in \mathcal{L}$ , we define

$B(\gamma, \gamma’)=$ { $\langle\sigma\rangle;\sigma=\gamma_{1}\gamma_{2}\cdots\gamma_{m}$ is a word such that $\gamma_{1}=\gamma,$ $\gamma_{m}=\gamma’$ }

and put $B(\gamma)=B(\gamma, \gamma)$ for any $\gamma\in \mathcal{L}$ .
It follows from the definition that $B(\gamma)$ has a group structure and $\langle\gamma\rangle$ is

the unit element of $B(\gamma)$ .

\S 8. The fundamental group $\pi_{1}(P^{2}-S)$ and the group $B(\gamma)$ .
The purpose of this section is to prove that the group $B(\gamma)$ defined in the

previous section is isomorphic to $\pi_{1}(P^{2}-S)\cong\pi_{1}(Z-\tilde{S})$ .
In the sequel, if $c:[0,1]arrow Z-S$ is a path, we denote by $[c]$ its homotopy

class.
Let $c:[0,1]arrow Z-S$ be a path with the conditions ( $D,$ $D’$ : i), ( $D,$ $D’$ : ii):

( $D,$ $D’$ : i) $c(O)\in D,$ $c(1)\in D’$ .
( $D,$ $D’$ : ii) There is a sequence of a finite number of domains $E_{1}=D$ ,
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$E_{2},$ $\cdots$ , $E_{m}=D’$ and a decomposition $t_{0}=0<t_{1}<\cdots<t_{m}=1$ of the interval
$[0,1]$ such that $E_{j}\in\tilde{9}$ , that $\dim_{R}(\partial E_{j-1}\cap\partial E_{j})=3$ , that $c((t_{j-1}, t_{j}))\subset E_{j}(j=$

$1,$ $\cdots$ , $m$ ) and that $c(t_{j})\in(\partial E_{j}\cap\partial E_{j+1})^{o}(]=1, \cdots , m-1)$ .
Here $D,$ $D’\in\tilde{9}$ . Then we put $\zeta(c)=\delta(D_{1})\delta(D_{2})\cdots\delta(D_{m})$ which is a word and
therefore $\langle\zeta(c)\rangle$ is an $e$-word contained in $B(\delta(D), \delta(D’))$ . In the sequel, we
frequently write $(D:i)$ and ( $D$ : ii) instead of $(D, D:i),$ ($D,$ $D$ : ii) for simplicity.

PROPOSITION 8.1. There are closed paths $c_{1},$
$\cdots$ , $c_{6}$ with the conditions

( $A_{12}$ : i), ( $A_{12}$ : ii) and satisfy the following:
$(i)$ $c_{1}$ (resp. $c_{2},$ $c_{3},$ $c_{4},$ $c_{5},$ $c_{6}$ ) makes a round of the line $L(24)$ (resp. $L(45)$ ,

$L(25),$ $L(35),$ $L(23),$ $L(34))$ .
(ii) $[c_{1}c_{2}c_{3}c_{4}c_{5}c_{6}]=1$ .
(iii) $\zeta(c_{1})=\alpha_{12}\alpha_{35}\alpha_{14}\alpha_{23}\beta_{45}\beta_{12}\beta_{34}\alpha_{25}\alpha_{14}\alpha_{35}\alpha_{12}$ ,

$\zeta(c_{2})=\alpha_{12}\alpha_{35}\alpha_{14}\alpha_{25}\beta_{34}\beta_{15}\beta_{24}\alpha_{35}\alpha_{12}$ ,

$\zeta(c_{3})=\alpha_{12}\alpha_{35}\beta_{24}\beta_{15}\beta_{34}\beta_{12}\beta_{45}\alpha_{23}\alpha_{15}\alpha_{34}\alpha_{12}$ ,

$\zeta(c_{4})=\alpha_{12}\alpha_{34}\alpha_{15}\alpha_{23}\beta_{45}\beta_{13}\beta_{25}\alpha_{34}\alpha_{12}$ ,

$\zeta(c_{5})=\alpha_{12}\alpha_{34}\beta_{25}\beta_{13}\beta_{24}\alpha_{35}\alpha_{12}$ ,

$\zeta(c_{6})=\alpha_{12}\alpha_{35}\beta_{24}\beta_{13}\beta_{45}\alpha_{23}\alpha_{14}\alpha_{35}\alpha_{12}$ .

PROOF. We consider the section $L:\xi_{1}+2\xi_{2}-i\xi_{3}=0$ of $P^{2}$ . Then $L=L’\cup$

$\{(i:0:_{A}^{r}1)\}$ , where $L’=\{(x : 1: -i(x+2));x\in C\}$ . For simplicity, we put $x=$

$x_{1}+ix_{2}(x_{1}, x_{2}\in R)$ and define polynomials $f_{j}(x)=f_{j}(x_{1}, x_{2})(j=1, , 5)$ by

$f_{1}(x)=x_{1}^{3}+x_{1}^{2}x_{2}+x_{1}x_{2}^{2}+x_{2}^{3}+x_{1}^{2}+4x_{1}x_{2}+x_{2}^{2}-2x_{1}+4x_{2}$ ,

$f_{2}(x)=x_{1}^{2}+x_{2}^{2}+x_{1}-x_{2}-2$ ,

$f_{3}(x)=-x_{1}-2$ ,

$f_{4}(x)=-x_{1}^{2}-x_{2}^{2}-2x_{1}$ ,

$f_{5}(x)=-x_{2}$ .
Then, by direct calculation, we find that $\pm\varphi_{j}((x:1:-i(x+2)))>0$ if and only
if $\pm f_{j}(x)>0$ . In the sequel, we identify the $(x_{1}, x_{2})$-space with $L’$ by $x=$

$x_{1}+ix_{2}arrow(x:1:-i(x+2))$ . Then we find that

$L’\cap\pi(L(34))=\{(x_{1}, x_{2})=(1,0)\}$ ,

$L’\cap\pi(L(35))=\{(x_{1}, x_{2})=(-1, -1)\}$ ,

$L’\cap\pi(L(45))=\{(x_{1}, x_{2})=(-2,1)\}$ ,
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$L’\cap\pi(L(23))=\{(x_{1}, x_{2})=(0,0)\}$ ,

$L’\cap\pi(L(24))=\emptyset$ ,

$L’\cap\pi(L(25))=\{(x_{1}, x_{2})=(-2,0)\}$ .

Figure III.

It is easy to construct closed paths $c_{j}$ $(]=1, \cdots , 6)$ with the conditions in the
proposition by looking at the Figure III. For example, we explain how to con-
struct a path $c_{5}$ with the required conditions. From Figure III, it is easy to
construct a path $c_{5}$ in $L’$ which starts at a point $p$ in the intersection $\tilde{A}_{12}\cap L’$

and passes through the domains $\tilde{A}_{12},\tilde{A}_{34},\tilde{B}_{25},\tilde{B}_{13},\tilde{B}_{24},\tilde{A}_{35},\tilde{A}_{12}$ in this order and
ends at the point $p$ and which satisfies (i), (ii), (iii). We can construct paths
$c_{2},$ $c_{3},$ $c_{4},$ $c_{6}$ by a similar way. To construct a path $c_{1}$ , we need a modification.
The point $q=L\cap\pi(L(24))$ is outside of $L’$ and so is regarded as the infinite
point of $L\cong P^{1}$ . For this reason, we construct a path $c_{1}$ which makes a
round of $\infty\in P$ ‘, identifying $L$ with $P^{1}$ . The rest of the argument is similar
to that for the case $c_{5}$ .

LEMMA 8.2. We define
$\mu_{12}=\alpha_{13}\alpha_{25}\alpha_{14}\alpha_{23}\alpha_{15}\alpha_{24}\alpha_{13}$ , $\mu_{13}=\alpha_{12}\alpha_{34}\alpha_{15}\alpha_{23}\alpha_{14}\alpha_{35}\alpha_{12}$ ,

$\mu_{14}=\alpha_{12}\alpha_{34}\alpha_{15}\alpha_{24}\alpha_{13}\alpha_{45}\alpha_{12}$ , $\mu_{15}=\alpha_{12}\alpha_{35}\alpha_{14}\alpha_{25}\alpha_{13}\alpha_{45}\alpha_{12}$ ,

$\mu_{23}=\alpha_{12}\alpha_{34}\beta_{25}\beta_{13}\beta_{24}\alpha_{35}\alpha_{12}$ , $\mu_{24}=\alpha_{12}\alpha_{34}\beta_{25}\beta_{14}\beta_{23}\alpha_{45}\alpha_{12}$ ,

$\mu_{25}=\alpha_{12}\alpha_{35}\beta_{24}\beta_{15}\beta_{23}\alpha_{45}\alpha_{12}$ , $\mu_{34}=\alpha_{13}\alpha_{24}\beta_{35}\beta_{14}\beta_{23}\alpha_{45}\alpha_{13}$ ,

$\mu_{35}=\alpha_{13}\alpha_{25}\beta_{34}\beta_{15}\beta_{23}\alpha_{45}\alpha_{13}$ , $\mu_{45}=\beta_{25}\alpha_{34}\alpha_{15}\alpha_{24}\beta_{35}\beta_{14}\beta_{25}$ .
Then there is a closed path $h_{ij}$ which makes a round of the line $L(ij)$ such
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that $\zeta(h_{ij})=\mu_{ij}(i<])$ .

PROOF. The path $c_{5}$ , for example, makes a round of the line $L(23)$ in the
positive direction and

$\zeta(c_{5})=\alpha_{12}\alpha_{34}\beta_{25}\beta_{13}\beta_{24}\alpha_{35}\alpha_{12}$ .

Considering the $\mathfrak{S}_{5}$-action on the space $Z$ and the set of words, we imply the
lemma.

LEMMA 8.3. Put $\gamma_{j}=\zeta(c_{j})(j=1, \cdots 6)$ . Then

$\langle\alpha_{12}\alpha_{45}\cdot\mu_{12}\cdot\alpha_{45}\alpha_{12}\rangle=\langle\gamma_{1}\gamma_{6}\gamma_{3}\rangle$ , $\langle\mu_{13}\rangle=\langle\gamma_{4}\gamma_{\overline{0}}\gamma_{6}\rangle$ ,

$\langle\mu_{14}\rangle=\langle\gamma_{3}\gamma_{4}\gamma_{5}\rangle$ , $\langle\mu_{15}\rangle=\langle\gamma_{2}\gamma_{3}\gamma_{4}\rangle$ ,

$\langle\mu_{23}\rangle=\langle\gamma_{6}\rangle$ , $\langle\mu_{24}\rangle=\langle\gamma_{1}\rangle^{-1}$ ,

$\langle\mu_{25}\rangle=\langle\gamma_{3}\rangle$ , $\langle\alpha_{12}\alpha_{45}\cdot\mu_{34}\cdot\alpha_{45}\alpha_{12}\rangle=\langle\gamma_{6}\rangle$ ,

$\langle\alpha_{12}\alpha_{45}\cdot\mu_{35}\cdot\alpha_{45}\alpha_{12}\rangle=\langle\gamma_{4}\rangle^{-1}$ , $\langle\alpha_{12}\alpha_{34}\cdot\mu_{45}\cdot\alpha_{34}\alpha_{12}\rangle=\langle\gamma_{2}\rangle^{-1}$

This lemma is an easy consequence of the definition of $\mu_{ij}$ and Definition
7.3.

On the other hand, we have the following.

LEMMA 8.4. There is a closed path $c:[0,1]arrow Z-\hat{S}$ with the conditions
( $\tilde{A}_{23}$ : i), ( $\tilde{A}_{23}$ : ii) such that $[c]=1$ and that

$\zeta(c)=\alpha_{23}\alpha_{15}\alpha_{24}\beta_{35}\beta_{14}\beta_{23}\beta_{15}\beta_{24}\alpha_{35}\alpha_{14}\alpha_{23}$ .

PROOF. We prove this lemma by constructing a path $c$ in an explicit way.
We consider $P^{2}$ instead of $Z$ . We first put

$\xi_{j}=u_{j}+iv_{j}$ $0=1,2,3)$ ,

$\frac{\xi_{2}}{\xi_{1}}=p_{2}+iq_{2}$ , $\frac{\xi_{3}}{\xi_{1}}=p_{3}+iq_{3}$ ,

and define

$f_{1}= \frac{1}{u_{1}^{2}}\{v_{1}^{2}q_{2}q_{3}(q_{2}-q_{3})+2v_{1}q_{2}q_{3}(u_{2}-u_{3})$

$+u_{1}^{2}q_{2}q_{3}(q_{2}-q_{3})+u_{1}(q_{2}u_{3}-q_{3}u_{2})-(q_{2}u_{3}^{2}-q_{3}u_{2}^{2})\}$ ,

$f_{2}= \frac{1}{u_{1}}\{(u_{1}-u_{3})q_{2}+(u_{2}-u_{1})q_{3}\}$ ,

$f_{3}= \frac{1}{u_{1}}(u_{2}q_{3}-u_{3}q_{2})$ , $f_{4}=q_{3}$ , $f_{5}=q_{2}$ .
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Then, by direct computation, we find that

$|\xi_{1}|^{4}f_{1}=\varphi_{1}(\xi)$ ,

$|\xi_{1}|^{2}f_{j}=\varphi_{j}(\xi)$ $(j=2,3,4,5)$ .
NOW we assume that $0<u_{3}<u_{2}<u_{1}$ and $0<v_{1}$ and fix them for a moment.
Moreover, we define a closed path $c_{\epsilon}\sim(t)=(\epsilon\cos(2\pi t-\pi/4), \epsilon\sin(2\pi i-\pi/4))(t\in$

$[0,1])$ on the $(p_{2}, p_{3})$-space for $\epsilon>0$ . From the definition, $c_{\text{\’{e}}}\sim$ is regarded as a
closed path on $Z$ which we denote by $c_{\epsilon}$ . Then, it is possible to show that
for some $(u_{1}, u_{2}, u_{3}, v_{1})$ with the condition above and for some $0<\epsilon\ll 1$ , we
have

$[c_{\epsilon}]=1$ .
$\zeta(c_{\epsilon})=\alpha_{23}\alpha_{15}\alpha_{24}\beta_{35}\beta_{14}\beta_{23}\beta_{15}\beta_{24}\alpha_{35}\alpha_{14}\alpha_{23}$ .

In fact, we take $(u_{1}, u_{2}, u_{3}, v_{1})=(4,3,1,3)$ . Then

$f_{1}= \frac{1}{16}\{25q_{2}q_{3}(q_{2}-q_{3})+12q_{2}q_{3}+3q_{2}-3q_{3}\}$ ,

$f_{2}= \frac{1}{4}(3q_{2}-q_{3})$ ,

$f_{3}= \frac{1}{4}(3q_{3}-q_{2})$ .

Therefore from Figure IV, we can easily see the claim above.

Figure IV.

This lemma has an easy consequence.
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PROPOSITION 8.5. For any $E\in \mathcal{E}$ (for the definition of $\mathcal{E}$ , see ProPosition
4.5.), there is a subset $\{D_{j}$ ; $j=1$ , $\cdot$ .. , 10 $\}$ of $\tilde{9}$ and a closed path $c_{F}$ : $[0,1]arrow Z-S$

with the conditions ( $D_{1}$ : i), ( $D_{1}$ : ii) such that $\dim_{R}(\partial D_{j}\cap\partial D_{j+1})=3(J=1,2, \cdots, 10)$ ,
where we put $D_{11}=D_{1}$ and that

$[c_{F}]=1$ ,

$\zeta(c_{F})=\delta(D_{1})\delta(D_{2})\cdots\delta(D_{10})\delta(D_{11})$ .
We here give a concrete correspondence between the twelve connected

components of $Z_{R}- \bigcup_{i<j}L(ij)$ and words given in Proposition 8.5:

$D(12345)arrow\alpha_{24}\beta_{35}\beta_{14}\beta_{25}\beta_{13}\beta_{24}\alpha_{35}\alpha_{14}\alpha_{25}\alpha_{13}\alpha_{24}$ ,

$D(12354)arrow\alpha_{25}\beta_{34}\beta_{15}\beta_{24}\beta_{13}\beta_{25}\alpha_{34}\alpha_{15}\alpha_{24}\alpha_{13}\alpha_{25}$ ,

$D(12435)arrow\alpha_{23}\beta_{45}\beta_{13}\beta_{25}\beta_{14}\beta_{23}\alpha_{45}\alpha_{13}\alpha_{25}\alpha_{14}\alpha_{23}$ ,

$D(12453)arrow\alpha_{25}\beta_{34}\beta_{15}\beta_{23}\beta_{14}\beta_{25}\alpha_{34}\alpha_{15}\alpha_{23}\alpha_{14}\alpha_{25}$ ,

$D(12534)arrow\alpha_{23}\beta_{45}\beta_{13}\beta_{24}\beta_{1\overline{o}}\beta_{23}\alpha_{45}\alpha_{13}\alpha_{24}\alpha_{15}\alpha_{23}$ ,

$D(12543)arrow\alpha_{24}\beta_{35}\beta_{14}\beta_{23}\beta_{15}\beta_{24}\alpha_{35}\alpha_{14}\alpha_{23}\alpha_{15}\alpha_{24}$ ,

$D(13245)arrow\alpha_{34}\beta_{25}\beta_{14}\beta_{35}\beta_{12}\beta_{34}\alpha_{26}\alpha_{14}\alpha_{35}\alpha_{12}\alpha_{34}$ ,

$D(13254)arrow\alpha_{35}\beta_{24}\beta_{15}\beta_{34}\beta_{12}\beta_{35}\alpha_{24}\alpha_{15}\alpha_{34}\alpha_{12}\alpha_{35}$ ,

$D(13425)arrow\alpha_{23}\beta_{45}\beta_{12}\beta_{35}\beta_{14}\beta_{23}\alpha_{45}\alpha_{12}\alpha_{35}\alpha_{14}\alpha_{23}$ ,

$D(13524)arrow\alpha_{23}\beta_{45}\beta_{12}\beta_{34}\beta_{15}\beta_{23}\alpha_{45}\alpha_{12}\alpha_{34}\alpha_{15}\alpha_{23}$ ,

$D(14235)arrow\alpha_{34}\beta_{25}\beta_{13}\beta_{45}\beta_{12}\beta_{34}\alpha_{25}\alpha_{13}\alpha_{45}\alpha_{12}\alpha_{34}$ ,

$D(14325)arrow\alpha_{24}\beta_{35}\beta_{12}\beta_{45}\beta_{13}\beta_{24}\alpha_{35}\alpha_{12}\alpha_{45}\alpha_{13}\alpha_{24}$ .
We are going to explain the reason why we introduced the relation

$\sim N$
on

the set of words (cf. Definition 7.3, (ii)). We first consider the domains $A_{12}$

and $\tilde{B}_{12}$ . Among the twelve words above, the $wo$rds containing the letters $\alpha_{12}$ ,
$\beta_{12}$ are those corresponding to the sets $D(13245),$ $D(13425),$ $D(13524),$ $D(13254)$ ,
$D(14235),$ $D(14325)$ . NOW we take our attention to the word corresponding to
$D(13245)$ . Then it follows from Proposition 8.5 that there are two paths $\psi_{1}$ ,
$\psi_{2}$ : $[0,1]arrow Z-S$ with the conditions ( $\tilde{A}_{12},\tilde{B}_{12}$ : i), ( $\tilde{A}_{12},\tilde{B}_{12}$ : ii) such that

$\zeta(\psi_{1})=\alpha_{12}\alpha_{35}\alpha_{14}\alpha_{25}\beta_{34}\beta_{12}$ ,

$\zeta(\psi_{2})=\alpha_{12}\alpha_{34}\beta_{25}\beta_{14}\beta_{35}\beta_{12}$ ,

and that
$[\psi_{1}]=[\psi_{2}]$ .

For the remaining cases $D(13425),$ $D(13524),$ $D(13254),$ $D(14235),$ $D(14325)$ , there
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are pairs of paths on $Z-\tilde{S}$ with the conditions similar to the above. Moreover,
taking a pair $\{\tilde{A}_{ij},\tilde{B}_{ij}\}$ instead of $\{\tilde{A}_{12},\tilde{B}_{12}\}$ , we can obtain similar results.
Therefore we have the following proposition which is a consequence of Defini-
tion 7.3 and the argument above.

PROPOSITION 8.6. For any $\langle\gamma\rangle\in B(\alpha_{12})$ , there is a closed path $c:[0,1]arrow$

$Z-S$ with the conditions ( $\tilde{A}_{12}$ : i), ( $\tilde{A}_{12}$ : ii) such that $\zeta(c)=\gamma$ . We put $\tau(\gamma)=[c]$ .
Then $\tau$ is a group homomorphism of $B(\alpha_{12})$ to $\pi_{1}(Z-\tilde{S}, p_{0})$ for $p_{0}\in\tilde{A}_{12}$ .

What we want to prove next is that $\tau$ is an isomorphism. For this pur-
pose, we are going to obtain the relations among $\langle\gamma_{1}\rangle,$ $\langle\gamma_{2}\rangle,$ $\langle\gamma_{3}\rangle,$ $\langle\gamma_{4}\rangle,$ $\langle\gamma_{5}\rangle$ ,
$\langle\gamma_{6}\rangle$ . Before doing this, we define

$CC(\langle\gamma\rangle)=\{\langle\gamma’\rangle\langle\gamma\rangle\langle\gamma’\rangle^{-1} ; \langle\gamma’\rangle\in B(\alpha_{12})\}$

for any $\langle\gamma\rangle\in B(\alpha_{12})$ . As we showed in Lemma 8.3, to each line $L(ij)$ , there
associates an $e$-word. Let $\gamma_{ij}$ be a word which is associated with $L(ij)$ there.
We note here that both $CC(\langle\gamma_{ij}\rangle)$ and $CC(\langle\gamma_{ij}\rangle^{-1})$ are associated with $L(ij)$ .
But it is enough to choose one of them in the subsequent discussion. We put
$CC(ij)=CC(\langle\gamma_{ij}\rangle)$ for simplicity. A concrete correspondence between the ten
lines and the conjugasy classes in $B(\alpha_{12})$ is given as follows (cf. Lemma 8.3):

$CC(12)=CC(\langle\gamma_{1}\gamma_{5}\gamma_{3}\rangle)$ , $CC(13)=CC(\langle\gamma_{4}\gamma_{5}\gamma_{6}\rangle)$ ,

$CC(14)=CC(\langle\gamma_{3}\gamma_{4}\gamma_{5}\rangle)$ , $CC(15)=CC(\langle\gamma_{2}\gamma_{3}\gamma_{4}\rangle)$ ,

$CC(23)=CC(\langle\gamma_{5}\rangle)$ ,

$CC(25)=CC(\langle\gamma_{3}\rangle)$ ,

$CC(35)=CC(\langle\gamma_{4}^{-1}\rangle)$ ,

$CC(24)=CC(\langle\gamma_{1}^{-1}\rangle)$ ,

$CC(34)=CC(\langle\gamma_{6}\rangle)$ ,

$CC(45)=CC(\langle\gamma_{2}^{-1}\rangle)$ .

We now recall the following well-known result:

LEMMA 8.7. Let $D=\{x\in C;|x|<1\}$ be the unit disk and let $(x, y)$ be a
coordinate of $X=D\cross D$ . Put $X’-\{(x, y)\in X;xy\neq 0\}$ . Then $\pi_{1}(X’)$ is
abelian.

Noting this lemma and Lemma 3.1, we can expect that if $L(ij)$ and $L(i’j’)$

intersect at a point, then $\langle\gamma_{ij}\gamma_{i’ j’}\rangle=\langle\gamma_{ij},\gamma_{ij}\rangle$ for some $\langle\gamma_{ij}\rangle\in CC(ij),$ $\langle\gamma_{ij},\rangle\in$

$CC(i’j’)$ . In fact, we have the following.

PROPOSITION 8.8.
$\langle\gamma_{1}\gamma_{2}\gamma_{3}\gamma_{4}\gamma_{\overline{0}}\gamma_{6}\rangle=1$ , $\langle\gamma_{1}\gamma_{4}\rangle=\langle\gamma_{4}\gamma_{1}\rangle$ , $\langle\gamma_{2}\gamma_{5}\rangle=\langle\gamma_{5}\gamma_{2}\rangle$ ,
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$\langle\gamma_{3}\gamma_{6}\rangle=\langle\gamma_{6}\gamma_{3}\rangle$ , $\langle\gamma_{1}\gamma_{2}\gamma_{3}\rangle=\langle\gamma_{2}\gamma_{3}\gamma_{1}\rangle=\langle\gamma_{3}\gamma_{1}\gamma_{2}\rangle$ ,

$\langle\gamma_{3}\gamma_{4}\gamma_{5}\rangle=\langle\gamma_{4}\gamma_{5}\gamma_{3}\rangle=\langle\gamma_{5}\gamma_{3}\gamma_{4}\rangle$ , $\langle\gamma_{5}\gamma_{6}\gamma_{1}\rangle=\langle\gamma_{6}\gamma_{1}\gamma_{5}\rangle=\langle\gamma_{1}\gamma_{5}\gamma_{6}\rangle$ .

PROOF. First we pay attention to the lines $L(12),$ $L(34)$ . They intersect
at a point in a normal crossingly. On the other hand, $CC(\langle\gamma_{1}\gamma_{5}\gamma_{3}\rangle)\in CC(12)$

and $CC(\langle\gamma_{6}\rangle)\in CC(34)$ . Then one can show the relation $\langle\gamma_{1}\gamma_{5}\gamma_{3}\gamma_{6}\rangle=\langle\gamma_{6}\gamma_{1}\gamma_{5}\gamma_{3}\rangle$

by using the equivalence relation $\sim$ . By a similar way, we obtain 15 rela-
tions among the generators $\langle\gamma_{1}\rangle,$ $\langle\gamma_{2}\rangle,$ $\langle\gamma_{3}\rangle,$ $\langle\gamma_{4}\rangle,$ $\langle\gamma_{5}\rangle,$ $\langle\gamma_{6}\rangle$ corresponding to 15
normal crossing points of the lines $L(ij)$ (cf. Lemma 3.1). It is easy to show
that the 15 relations thus obtained combined with the relation $\langle\gamma_{1}\gamma_{2}\gamma_{3}\gamma_{4}\gamma_{5}\gamma_{6}\rangle=1$

are equivalent to the 10 relations in the proposition.

We review the structure of the fundamental group $\pi_{1}(P^{2}-S, p_{0})$ which was
studied in Terada [T2].

PROPOSITION 8.9. The fundamental group $\pi_{1}(P^{2}-S, p_{0})$ is generated by
$\rho(ij)(i<j, i, j=0,1,2,3)$ and the defining relations are

$\rho(01)\rho(02)\rho(12)\rho(03)\rho(13)\rho(23)=1$ ,

$\rho(01)\rho(02)\rho(12)=\rho(02)\rho(12)\rho(01)=\rho(12)\rho(01)\rho(02)$ ,

$\rho(01)\rho(03)\rho(13)=\rho(03)\rho(13)\rho(01)=\rho(13)\rho(01)\rho(03)$ ,

$\rho(02)\rho(03)\rho(23)=\rho(03)\rho(23)\rho(02)=\rho(23)\rho(02)\rho(03)$ ,

$\rho(12)\rho(13)\rho(23)=\rho(13)\rho(23)\rho(12)=\rho(23)\rho(12)\rho(13)$ .

Instead of [T2], we used the notation in [YY, Proposition 2.1]. The defin-
ing relations given in [YY] is slightly different but it is easy to prove that the
relations above are equivalent to those in [YY, Proposition 2.1].

We are now in a position to state the main theorem of this paper.

THEOREM 8.10. The group $B(\alpha_{12})$ is generated by $\langle r_{1}\rangle,$ $\langle r_{2}\rangle,$ $\langle\gamma_{3}\rangle,$ $\langle\gamma_{4}\rangle,$ $\langle\gamma_{5}\rangle$ ,
$\langle\gamma_{6}\rangle$ and $\tau$ is an isomorphism of $B(\alpha_{12})$ to $\pi_{1}(Z-S, p_{0})$ for $p_{0}\in\tilde{A}_{12}$ .

PROOF. Since $\tau$ is surjective, it suffices to show that $Ker\tau=1$ . By direct
computation, we find that, by the correspondence

$\langle\gamma_{1}\ranglearrow\rho(01)$ , $\langle\gamma_{3}^{-1}\gamma_{2}\gamma_{3}\ranglearrow\rho(13)$ , $\langle\gamma_{3}\ranglearrow\rho(03)$ ,

$\langle\gamma_{4}\ranglearrow\rho(23)$ , $\langle\gamma_{5}\ranglearrow\rho(02)$ , $\langle\gamma_{6}\ranglearrow\rho(12)$ ,

the relations given in Proposition 8.8 are equivalent to those given in Proposi-
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tion 8.9. This means that $Ker\tau=1$ .

REMARK. It is clear from the definition that for any $\gamma,$ $\gamma’\in \mathcal{L}$ , there is a
group isomorphism between $B(\gamma),$ $B(\gamma’)$ .

Last in this section, we mention some statements on the relations between
$\pi_{1}(Z-\tilde{S})$ and $\pi_{1}(\mathscr{K})$ which seem interesting. We recall the relation

$\sim T$

“ (cf.

Definition 7.3). Noting that
$\sim_{T}$

is also an equivalence relation on the set of

words, we introduce the set $A(\gamma)$ for $\gamma\in \mathcal{L}$ by

$A(\gamma)=$ { $\langle\sigma\rangle_{T}$ ; $\sigma=\gamma_{1}\gamma_{2}\cdots\gamma_{m}$ is a word such that $\gamma_{1}=\gamma_{m}=\gamma$ },

where $\langle\sigma\rangle_{T}=\{\sigma’$ ; there are finitely many words $\sigma_{1},$
$\cdots$ , $\sigma_{m}$

such that $\sigma=\sigma_{1},$ $\sigma’=\sigma_{m}$ and that $\sigma_{i}\sim\sigma_{i+1}T$ $(i=1, \cdots , m-1)\}$ ,

and in particular, we denote by $A(\alpha_{12})’$ the subgroup of $A(\alpha_{12})$ generated by
$\langle\gamma_{1}\rangle_{T},$ $\langle\gamma_{2}\rangle_{T},$ $\langle\gamma_{3}\rangle_{T},$ $\langle\gamma_{4}\rangle_{T},$ $\langle\gamma_{5}\rangle_{T},$ $\langle\gamma_{6}\rangle_{T}$ .

On the other hand, we recall the set of triangles of the surface X. In
particular, we take a point $q_{0}$ of $a_{12}’$ . Then, to each word $\gamma$ with $\langle\gamma\rangle_{T}\in A(\alpha_{12})$ ,
there associates a closed path $g:[0,1]arrow \mathscr{K}$ such that $g(O)=g(1)=q_{0}$ and satis-
fying the condition similar to ( $\tilde{A}_{12}$ : ii). Let $[g]_{X}$ denote the homotopy class in
$\pi_{1}(\mathscr{K}, q_{0})$ of the path $g$ . Then it seems true that the correspondence $\langle\gamma\ranglearrow[g]_{j\zeta}$

defines a group homomorphism $\tau’$ of $A(\alpha_{12})$ to $\pi_{1}(\mathscr{K}, q_{0})$ . Moreover, it is known
(cf. [M]) that

$\pi_{1}(\mathscr{K})=\langle x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}|x_{1}^{2}x_{2}^{2}x_{3}^{2}x_{4}^{2}x_{5}^{2}x_{6}^{2}=1\rangle$ .
PROBLEM 8.11. Are the following statements true or false.$p$

(i) $A(\alpha_{12})$ is generated by $\langle\gamma_{1}\rangle_{T},$ $\langle\gamma_{2}\rangle_{T},$ $\langle\gamma_{3}\rangle_{T},$ $\langle\gamma_{4}\rangle_{T},$ $\langle\gamma_{\overline{0}}\rangle_{T},$ $\langle\gamma_{6}\rangle_{T}$ , in other
words, $A(\alpha_{12})’=A(\alpha_{12})$ .

(ii) $A( \alpha_{12})\cong\pi_{1}(Z-(Z_{R}\bigcup_{i<J}L(ij)))$ .
(iii) The generators $x_{1},$ $x_{2},$ $x_{3},$ $x_{4},$ $x_{5},$ $x_{6}$ of $\pi_{1}(\mathscr{K}, q_{0})$ given above are so

taken thaf $\tau’(\langle\gamma_{j}\rangle_{T})=x_{j}^{2}(]=1, \cdots , 6)$ .
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