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1. Introduction.

In order to get good descriptions of the properties of dynamical systems,
we often exclude some set of systems which seem to have singular properties.
In such cases, it is important whether we can ignore the excluded set of systems
or not. For example, when we consider discrete smooth dynamical systems,
we often neglect the systems which have non-hyperbolic periodic points, and
the transversality theorem [3] says that such systems are exceptional. In fact,
systems with non-hyperbolic periodic points form a countable union of stratified
subsets of codimension one in the space of mappings in some sense [3]. But,
in recent studies of dynamical system theory, we frequently consider complicated
subsets such as Cantor sets in the space of mappings or in the parameter spaces
of parameter families. (See [2], [4] and [5].) And there is no established idea
to judge whether we can neglect such subsets or not. The argument that we
can neglect the complements of open dense subsets (or residual sets) has been
used in some cases and it was useful in the early stage of dynamical system
theory. But recent developments show that this idea is not satisfactory one.
Let us see the following examples.

EXAMPLE 1. Let $D^{r}(S^{1})$ be the set of $C^{r}$ -diffeomorphisms on the unit circle
$S^{1}=R/Z$ . Then it is easy to see that the set of diffeomorphisms with periodic
points contains open dense subset in $D^{r}(S^{1})$ for any $r\geqq 0$ . But M. R. Herman
showed in [4] that the Lebesgue measure of the set { $t\in[0,1]|f_{t}$ has $no;periodic$

point.} is Positive for any C’-family $\{f_{t}\}_{t\in[0.1]}$ in $D^{3}(S^{1})$ with $\rho(f_{0})\neq\rho(f_{1})(\rho$ :
rotation number).

EXAMPLE 2. In [5], S. Newhouse gave a result that the systems with
infinitely many periodic sinks form residual set $E$ in the parameter space for a
certain class of one-parameter families of $C^{2}$-diffeomorphisms. This result im-
plies that the set of systems with infinitely many periodic sinks contains a
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residual set on an open set in the space of $C^{2}$-diffeomorphisms and has had
serious influence on the later developments in dynamical system theory. But it
is still unknown whether the Lebesgue measure of the set $E$ is positive or not
(and is conjectured to be zero [6].)

These facts suggest that we need another framework which has some rela-
tions to the Lebesgue measure on the parameter spaces of parameter families.
It would be desirable if there existed a canonical a-finite measure on the space
of mappings such as the Lebesgue measure on Euclidean spaces. But, from the
theory of measures on infinite dimensional sPace, it seems to be imPossible [10].
In this paper, we consider a class of probability measures on the space of
mappings with some smoothness with respect to parallel translations, and pro-
pose a framework to decide negligible subsets in the space of smooth mappings
by using them. Of course, we do not claim that our framework is the unique
one or the absolute one. There may not be any deductive way to decide such
subsets. But we claim that our system is consistent (Theorem B) and that a
version of Thom’s transversality theorem holds in our framework (Theorem C).

For applications of our framework, see [8] and [9].

2. Measures on the space of mappings.

Let $M$ be a compact $C^{\infty}$ manifold of dimension $m$ and let $\pi:Varrow M$ be a
$C^{\infty}$ vector bundle of dimension $P$ over $M$. We denote the set of $C^{r}$ sections
of the vector bundle $V$ by $\Gamma^{r}(V)$ , which is endowed with the $C^{r}$ norm and $C^{r}$

topology. Then there are natural inclusions of Banach spaces:

$\Gamma^{0}(V)\supset\Gamma^{1}(V)\supset\Gamma^{2}(V)\supset\cdots$ .
In this sequence of Banach spaces, each space is dense in the bigger spaces and
the Borel $\sigma$-algebra on it coincides with the restriction of those on the bigger
spaces.

Let $\tau_{\varphi}$ : $\Gamma^{0}(V)arrow\Gamma^{0}(V)$ be the translation by $\varphi\in\Gamma^{0}(V)$ i. e. $\tau_{\varphi}(f)=f+\varphi$ . We
say a Borel probability measure $\mu$ on $\Gamma^{0}(V)$ is quasi-invariant along the sub-
space $\Gamma^{r}(V)$ if $\tau_{\varphi}(\mu)$ is equivalent to $\mu$ for any element $\varphi\in\Gamma^{r}(V)$ , and we de-
note the set of such measures by $\mathscr{M}_{r}$ . Put $\mathscr{M}_{\infty}=\bigcup_{r<+\infty}\mathscr{M}_{r}$ .

REMARK 1. The set $\mathscr{M}_{\tau}$ is not empty for sufficiently large $r$ . (See the
proof of Lemma A in section 4.)

REMARK 2. On Euclidean spaces, a $\sigma- finite$ measure is equivalent to the
Lebesgue measure if and only if it is quasi-invariant along the whole space.
But it is known tbat there is no such measure for infinite dimensional case [10].

So it is natural to consider the measures which are quasi-invariant along dense
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subspaces. This is one reason why we consider the class of measures above.
For another reason, see section 5.

Let us define

$\tilde{Z}(\Gamma^{r}(V))=$ { $E\in B(\Gamma^{r}(V))|\mu(E)=0$ for any $\mu\in \mathscr{M}_{\infty}$ }

where $B(\Gamma^{r}(V))$ denotes the Borel $\sigma$-algebra on $\Gamma^{r}(V)$ . And then put

$Z( \Gamma^{r}(V))=\bigcap_{\psi\in D(V)}\psi_{*}(\tilde{Z}(\Gamma^{r}(V)))$

where $D(V)$ is the group of $C^{\infty}$ diffeomorphisms $\psi:Varrow V$ satisfying $\pi\circ\psi=\pi$

and $\psi_{*}$ is the action of the element $\psi\in D(V)$ on $\Gamma^{r}(V)$ such that

graph $(\psi_{*}(\phi))=\psi(graph(\emptyset))$ , $\phi\in\Gamma^{r}(V)$ .

Next let us consider the space $C^{r}(M, N)$ of $C^{r}$ mappings from $M$ to a $C^{\infty}$

manifold $N$ of dimension $p$ . Choose a $C^{\infty}$ Riemannian metric on $N$ and define,
for $f\in C^{\infty}(M, N)$ , a homeomorphism

$\Phi_{f}$ : $\Gamma^{r}(f^{*}TN)arrow C^{r}(M, N)$

by $\Phi_{f}(h)(x)=\exp_{f_{x}}(h(x))$ on a neighborhood $U_{f}$ of the zero section. Then the
coordinate system $\{(\Phi_{f}, U_{f}), f\in C^{\infty}(M, N)\}$ makes $C^{r}(M, N)$ a Banach manifold.
([1])

For the space $C^{r}(M, N)$ , let $Z(C^{r}(M, N))$ be the family of Borel subsets
$E\subset C^{r}(M, N)$ such that the set $\Phi_{f}^{-1}(E\cap\Phi_{f}(U_{f}))$ belongs to $Z(\Gamma^{r}(f^{*}TN))$ for
every $f\in C^{\infty}(M, N)$ . Since $Z(\Gamma^{r}(V))$ is invariant under the action of $D(V)$ , the
definition of $Z(C^{r}(M, N))$ does not depend on the choice of $C^{\infty}$ Riemannian
metric on $N$ or the choice of $U_{f}’ s$ . In this paper, we propose to regard a set
of systems $E\subset C^{r}(M, N)$ as negligible when $E$ belongs to $Z(C^{r}(M, N))$ . As
for this family $Z(C^{r}(M, N))$ , we have the following basic facts.

LEMMA A. (1) Countable union of elements of the family $Z(C^{r}(M, N))$ is
also contained in $Z(C^{r}(M, N))$ . And if a Borel set $E$ is contained in a set $E’\in$

$Z(C^{r}(M, N))$ , then $E\in Z(C^{r}(M, N))$ ,

(2) Any subset $E\in Z(C^{r}(M, N))$ has no interior with respect to the $C^{r}$ topo-
logy.

From (1) above, we can define a measure $m$ on $C^{r}(M, N)$ in the following
way

$m(E)=\{$

$0$ if $E\in Z(C^{r}(M, N))$ ;

$\infty$ otherwise.

REMARK. We can introduce a measure $m$ on the space of vector fields
$\Gamma^{r}(TM)$ in the same manner $i$ . $e$ .
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$m(E)=\{$

$0$ if $E\in\tilde{Z}(\Gamma^{r}(TM))$ ;

$\infty$ otherwise.

3. Properties of the measure $m$ .
AS for $n$ -parameter families, we have the following:

THECREM B. If $m(E)=0$ for a Borel subset $E\subset C^{r}(M, N)$ , then, for any
probabiliiy measure $\lambda$ on $[0,1]^{n}$ , we have $m(S_{E.\lambda})=0$ where

$S_{E,\lambda}=\{F(x, t)\in C^{r}(M\cross[0,1]^{n}, N)|\lambda\{t\in[0,1]^{n}|F(\cdot, t)\in E\}>0\}$

and $m$ is the measure on $C^{r}(M\cross[0,1]^{n}, N)$ which is constructed as above.

Also the following version of Thom’s transversality theorem [3] holds.

THEOREM C. Let $X$ be a $C^{1}$ submanifold of the jet bundle $J^{r}(M, N)$ . Then
we have $m$ ( $\{f\in C^{r+1}(M,$ $N)|j^{r}f$ is not transversal to $X\}$ ) $=0$ .

REMARK. See [3] for the definition of jet bundles.

The following fact shows that the measure $m$ is compatible with the
Lebesgue measure (the class of measures which is equivalent to the smooth
Riemannian volume) in a sense.

THEOREM D. Let $X$ be a Borel subset of $J^{q}(M, N)$ with Lebesgue measu$re$

zero. Then $m$ { $f\in C^{r}(M,$ $A^{\gamma})|(J^{q}f)^{-1}(X)$ has positive Lebesgue $measure$ } $-0$ for
$0\leqq q\leqq r$ .

4. Proof of theorems.

In the proof below, we always assume $N=R^{p}$ , and consequently $C^{r}(M, N)$

$=\Gamma^{r}(M\cross R^{p})$ where we consider $M\cross R^{p}$ as a trivial vector bundle over $M$. It
is a routine to extend our proof to the case $N\neq R^{p}$ .

PROOF OF LEMMA A. The clalm (1) is self-evident. In order to prove (2),

let us introduce Sobolev spaces of sections of the vector bundle $V=M\cross R^{p}$ :

$W^{r}(V)=$ { $f\in\Gamma^{0}(V)|D^{\alpha}f\in L^{2}$ for any multi-index $|\alpha|\leqq r$ }

where we consider $D^{\alpha}f$ in every local trivialization. If $s$ is sufficiently larger
than $r$ , then the inclusion map $W^{S}(V)\subset W^{r}(V)$ is a Hilbert-Schmidt operator.
Therefore, we can construct a Gaussian measure on the space $W^{r}(V)$ which is
quasi-invariant along the space $W^{S}(V)$ and takes positive value for every open
set on $W^{r}(V)$ . (See [7] or the proof of Lemma $E$ in the last section.) By
Sobolev’s embedding theorem, we have the continuous inclusions
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$\Gamma^{r-[m/2]-1}(V)\supset W^{r}(V)\supset W^{s}(V)\supset\Gamma^{s}(V)$ ,

and therefore we can get the claim (2).

PROOF OF THEOREM B. Let uS define maps

$\xi:C^{0}(M\cross[0,1]^{n}, R^{p})\cross[0,1]^{n}arrow C^{0}(M, R^{p})$

and
$\xi_{t}$ : $C^{0}(M\cross[0,1]^{n}, R^{p})arrow C^{0}(M, R^{p})$ $r\in[0,1]^{n}$

by $\xi(F(\cdot, \cdot),$ $t)=F(\cdot, t)$ and $\xi_{t}(F(\cdot, ))=F(\cdot, t)$ . For any Borel probabillty lnea-

sure $\mu$ on $C^{0}(M\cross[0,1]^{n}, R^{p})$ which is quasi-invariant along $C^{r}(M\cross[0,1]^{n}, R^{p})$ ,

the measure $\xi_{t}(\mu)$ on $C^{0}(M, R^{p})$ is quasi-invariant along $C^{r}(M, R^{p})$ . This is
because, for any $\varphi\in C^{r}(M, R^{p})$ , the following diagram commutes:

$C^{0}(M\cross[0,1]^{n}, R^{p})C^{0}(M, R^{p})\underline{\xi_{t}}$

$C^{0}(M\cross[0,1]^{n}\downarrow\tau_{\tilde{\varphi}}R^{p})C^{0}(M,R^{p})\underline{\xi_{t}}\downarrow r_{\varphi}$

where $\tilde{\varphi}=\varphi\circ\pi’\in C^{r}(M\cross[0,1]^{n}, R^{p})$ . ( $\pi’$ : $M\cross[0,1]^{n}arrow M$ is the projection.)

Let $\psi$ be an element of $D((M\cross[0,1]^{n})\cross R^{p})$ and put $\tilde{\psi}=\pi’\circ\psi\circ c_{t}\in D(M\cross R^{p})$

where $\pi’$ : $M\cross[0,1]^{n}\cross R^{p}arrow M\cross R^{p}$ is the projection and $c_{t}$ : $M\cross R^{p}arrow M\cross[0,1]^{n}$

$\cross R^{p}$ is the map defined by $c_{t}(x, v)=(x, t, v)$ . (Here we consider $M\cross[0,1]^{n}$

$\cross R^{p}$ and $M\cross R^{p}$ as trivial vector bundles with $R^{p}$ their fiber.) Then the
following diagram commutes:

$C^{0}(M\chi[0,1]^{n}, R^{p})C^{0}(M, R^{p})\underline{\xi_{t}}$

$\downarrow\psi*$ $\downarrow\tilde{\psi}*$

$C^{0}(M\chi[0,1]^{n}, R^{p})C^{0}(M, R^{p})\underline{\xi_{t}}$

and hence we have
$\psi_{*}(\mu)(\xi_{t}^{-1}(E))=\xi_{t}(\mu)(\tilde{\psi}_{*}^{-1}(E))=0$ .

Therefore, for any Borel probability measure $\lambda$ on $[0,1]$ , we have

$\psi_{*}(\mu)\cross\lambda(\xi^{-1}(E))=0$

and then, by Fubini’s theorem, $\psi_{*}(\mu)(S_{E.\lambda})=0$ . This implies the theorem.

PROOF OF THEOREM C. Take a chart $\varphi:Varrow R^{m}$ on an open set $V\subset M$

and let $U$ be an open set whose closure is contained in $V$ . Let $\rho:R^{m}arrow[0,1]$

be a $C^{\infty}$ function on $R^{m}$ such that

$\rho(x)=\{$

1 on a neighborhood of the closure of $\varphi(U)$ ;

$0$ on $R^{m}-\varphi(V)$ .
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We denote by $B$ the space of polynomial mappings of $R^{m}arrow R^{p}$ of degree $r$ ,

and define a map
$\Phi:B\cross C^{r+1}(M, R^{p})arrow C^{r+1}(M, R^{p})$

by

$\Phi(b, f)(x)=\{$

$f(x)+\rho(\varphi(x))b(\varphi(x))$ if $x\in V$ ;

$f(x)$ otherwise.

For any $f\in C^{r+1}(M, R^{p})$ , the map

$\Psi_{f}$ : $B\chi Uarrow J^{r}(U, R^{p})\subset J^{r}(M, R^{p})$

defined by $\Psi_{f}(b, x)=_{J^{r}}(\Phi(b, f))(x)$ is a submersion. Therefore, the set

$X_{f}=\{(b, x)\in B\cross U|\Psi_{f}(b, x)\in X\}$

is a $C^{1}$ submanifold in $B\cross U$ . Remark that the map $j^{r}(\Phi(b, f))$ is transversal
to $X$ on $U$ if and only if the point $b$ is a regular value for the map $p$ : $X_{f}arrow B$

which is the restriction of the projection $B\cross Uarrow B$ to $X_{f}$ . From Sard’s theorem,
we have

$\lambda$ { $b\in B|j^{r}(\Phi(b,$ $f))$ is not transversal to $X$ on $U$ } $=0$

for any $f\in C^{r+1}(M, R^{p})$ , where $\lambda$ is a probability measure on $B$ which is equi-
valent to the smooth Riemannian volume. Therefore,

$\Phi(\lambda\cross\mu)$ { $f\in C^{r+1}(M,$ $R^{p})|j^{r}f$ is not transversal to $X$ on $U$ }

$=\lambda\cross\mu$ { $(b,$ $f)\in B\cross C^{r+1}(M,$ $R^{p})|j^{r}(\Phi(b,$ $f))$ is not transversal to $X$ on $U$ }

$=0$

for any Borel probability measure $\mu$ on $C^{r+1}(M, R^{p})$ . On the other hand, in
case $\mu\in \mathscr{M}_{\infty},$ $\Phi(\lambda\cross\mu)$ is equivalent to $\mu$ , because

$\Phi(\lambda\cross\mu)(E)=\int_{B}\mu(\tau_{-(\rho\cdot b)_{\circ\varphi}}(E))d\lambda(b)$

for any Borel set $E$ in $C^{r+1}(M, R^{p})$ . Therefore, we have PrOved that the set

$T_{X.U}=$ { $f\in C^{r+1}(M,$ $R^{p})|j^{r}f$ is not transversal to $X$ on $U$ }

belongs to $Z\sim(C^{r+1}(M, R^{p}))$ . Since our argument above does not change under
the action of $D(M\cross R^{p})$ , the set $T_{X.U}$ belongs to $Z(C^{r+1}(M, R^{p}))$ . From this
and lemma A (1), the theorem follows.

PROOF OF THEOREM D. Let $U,$ $V,$
$\varphi,$ $\rho,$

$B,$ $\Phi$ be those in the proof of
theorem $C$ above and let $\lambda$ be a probability measure on $M$ which is equivalent
to the smooth Riemannian volume. For sufficiently small $y\in R^{m}$ , we can define
a diffeomorphism $t_{y}$ : $Marrow M$ by
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$t_{y}(x)=\{$

$\varphi^{-1}(\rho(\varphi(x))\cdot y+\varphi(x))$ if $x\in V$ ;

$x$ otherwise.

For $v=(y, b)\in R^{m}\cross B$ with $y$ sufficiently small, let us define a mapping

$\gamma_{v}$ : $M\cross C^{r}(M, R^{p})arrow M\cross C^{r}(M, R^{p})$

by $\gamma_{v}(x, f)=(t_{y}^{-1}(x), \Phi(b, f))$ . Then, there exists a $C^{\infty}$ diffeomorphism

$\gamma_{v}’$ . $J^{q}(M, R^{p})arrow J^{q}(M, R^{p})$

such that the following diagram commutes:

$M\cross C^{r}(M, R^{p})J^{q}(M, R^{p})\underline{\alpha}$

$\downarrow\gamma_{v}$ $\downarrow\gamma_{v}’$

$M\cross C^{r}(M, R^{p})J^{q}(M\underline{a}R^{p})$

where $\alpha$ is a map defined by $\alpha(x, f)=_{J^{q}f(X)}$ . From this, we can see that

$\gamma_{v}’(\alpha(\lambda\cross\mu))\sim\alpha(\lambda\cross\mu)$

for any $v=(y, b)\in R^{m}\cross B$ with $y$ sufficiently small and $\mu\in \mathscr{M}_{\infty}$ . Since the map
$\gamma_{v}’$ in the local coordinate on $J^{q}(U, R^{p})$ is nothing but the translation by the
vector $v$ , the above equivalence implies that $\alpha(\lambda\cross\mu)$ is equivalent to the smooth
Riemannian volume on $J^{q}(U, R^{p})$ . For each $\psi\in D(M\cross R^{p})$ , there exists a $C^{\infty}$

diffeomorphism
$J_{\psi}^{q}$ : $J^{q}(M, R^{p})arrow J^{q}(M, R^{p})$

which makes the following diagram commute:

$M\cross C^{r}(M, R^{p})J^{q}(M, R^{p})\underline{\alpha}$

$\downarrow id\cross\psi*$ $\downarrow J_{\psi}^{q}$

$M\cross C^{r}(M, R^{p})J^{q}(M\underline{\alpha}R^{p})$

Thus we have
$\lambda\cross(\psi_{*}\mu)(\alpha^{-1}(X))=\alpha(\lambda\cross\mu)((J_{\psi}^{q})^{-1}(X))=0$

and, by Fubini’s theorem,

$\psi_{*}\mu$ { $f\in C^{r}(M,$ $R^{p})|(j^{q}f)^{-1}(X)$ has positive Lebesgue measure} $=0$

for any $\psi\in D(M\cross R^{p})$ and any $\mu\in \mathscr{M}_{\infty}$ . This implies the theorem.

5. A remark.

For $\varphi\in C^{\infty}(M, R^{p})$ , let us consider one parameter families of the form
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$f+t\cdot\varphi$ $t\in R,$ $f\in C^{r}(M, R^{p})$ .
Then such set of one parameter families can be considered as a (measurable)
partition of the space $C^{r}(M, R^{p})$ into one dimensional subspaces. The important
is the fact that, for $\mu\in \mathscr{M}_{\infty}$ , the conditional measures on each one dimensional
subspaces are equivalent to the Lebesgue measure because they are quasi-invariat
under the translation. This fact implies that we can get estimates of the value
$\mu(E)$ for some $E\subset C^{r}(M, R^{p})$ from the Lebesgue measure of the set of param-
eter values, $\{t\in R|f+t\cdot\varphi\in E\}$ . This is one of the good points of our frame-
work. The following lemma will be useful in proving $m(E)=0$ for some subset
$E\subset C^{r}(M, N)$ . (cf. [8]) We denote by $\mathscr{M}_{r}’$ the set of Borel probability measures
$\mu\in \mathscr{M}_{r}$ satisfying the following condition $(*)$ :

$(*)$ For any $e>0$ , there exists $\delta>0$ such that

$| \frac{d\tau_{\varphi}\mu}{d\mu}-1|<\epsilon$ , $\mu-a.e$ .

for any $\varphi\in\Gamma^{r}(V)$ with $||\varphi||_{C^{r}}<\delta$ .

LEMMA E. For any measure $\mu\in \mathscr{M}_{r}$ , we can find a measure $\mu’\in \mathscr{M}_{r+[(5/2)m]3}’+$

which is equivalent to $\mu$ .

PROOF. For $s=r+[m/2]+1$ , let us consider the Sobolev space $W^{S}(V)\subset$

$C^{r}(V)$ as in the proof of lemma A. If there exists a probability measure $\nu$

such that

(1) $\nu\in \mathscr{M}_{r+[(5/2)m]+3}’$

and

(2) $v(W^{S}(V))=1$ ,

then the convolution $\mu’=\mu*\nu$ is also an element of $\mathscr{M}_{r+[(\overline{0}/2)m]+3}’$ and is equi-
valent to the measure $\mu$ . Therefore let us show the existence of such a mea-
sure $\nu$ . First let us consider the case

$M=T^{m}=(R/Z)^{m}$ ( $m$-torus), $V=T^{m}xR$.

In this case, we can identify $W^{S}(V)$ with the Sobolev space of functions,

$W^{s}(T^{m})=$ { $f\in C^{0}(T^{m},$ $R)$ $D^{a}f\in L^{2}(T^{m})$ for any multi-index $|\alpha|\leqq s$ },

with the inner Product

$\langle f, g\rangle_{W^{S(}T^{7n)}}=\sum_{|\alpha|\leq s}\int_{T^{m}}D^{\alpha}f\cdot D^{\alpha}gdx_{1}dx_{2}\cdots dx_{m}$ .

Then we can take the following orthonormal basis of the space $W^{s}(T^{m})$ :
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$e(n_{1}, n_{2}, \cdots n_{m})=\frac{e’(n_{1},n_{2}.’\cdots,n_{m})}{||e’(n_{1},n_{2},\cdot\cdot,n_{m})||_{Ws(T^{m})}}$ $n_{j}\in Z$,

where
$e’(n_{1}, n_{2}, \cdots , n_{m})(x_{1}, x_{2}, \cdots , x_{m})=e’(n_{1}, x_{1})e’(n_{2}, x_{2})\cdots e’(n_{m}, x_{m})$

and

$e’(n, x)=\{$

1 if $n=0_{j}$

$\sin(2\pi nx)$ if $n>0$ ;

$\cos(2\pi nx)$ if $n<0$ .
Consider the product space

$R^{\infty}=(n_{1}\ldots..n_{m})\Pi\langle e’(n_{1}, \cdots n_{m})\rangle_{R}$ .

Then we can identify $W^{s}(T^{m})$ with the following subspace of $R^{\infty}$ :

$\{\sum_{(n_{1}\ldots..n_{m})}x(n_{1}, \cdots n_{m})e(n_{1}, \cdots n_{m})\in R^{\infty}|\sum_{(n_{1}\ldots..n_{m})}x(n_{1}, \cdots n_{m})^{2}<+\infty\}$ .

Let $\mu(n_{1}, \cdots , n_{m})$ be a probability measure on the one dimensional subspace
$\langle e(n_{1}, n_{2}, \cdots , n_{m})\rangle_{R}$ of the form

$( \frac{a}{2})\exp(-a\cdot|x|)dx$

where $a=( \max_{j}n_{j})^{m+1}$ , and consider the product

$\nu_{1}=\prod_{(n_{1}.\cdots.n_{m})\in Z^{m}}\mu(n_{1}, \cdots n_{m})$

on $R^{\infty}$ . Put, for $c>0$ ,

$B_{c}= \{\sum_{(n_{1}\ldots..n_{m})}x(n_{1}, \cdots , n_{m})e(n_{1}, \cdots , n_{m})|x(n_{1}, \cdots , n_{m})<c\cdot(\max_{f}n_{j})^{-m}\}$ .
Then it is easy to see that $W^{s}(T^{m})\supset B_{c}$ for any $c>0$ and that

$v_{1}(B_{c})= \prod_{(n_{1\cdot\prime}n_{m})}\{1-\exp(-c\cdot\max_{j}n_{j})\}arrow 1$ as $carrow+\infty$ .

Therefore we have $\nu_{1}(W^{s}(T^{m}))=1$ . If $f=\Sigma x(n_{1}, , n_{m})e(n_{1}, , n_{m})$ is con-
tained in $W^{S+2m+2}(T^{m})$ , then

$\sum_{(n_{1}\ldots..n_{m})}\{(\max_{j}n_{j})^{2m+2}x(n_{1\prime}\ldots n_{m})\}^{2}<c$

for some constant $c$ . And we have, for such $f$,
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esssup $( \frac{d\tau_{f}v_{1}}{d\nu_{1}})\leqq\prod_{(n_{1}\ldots..n_{m})}$ esssup $( \frac{d\tau_{x(n_{1}.\cdots.n_{m})e(n_{1}.\cdots..n_{m})}\mu(n_{1}}{d\mu(n_{1},\cdot\cdot,n_{m})}$

, $n_{m}$ )
$)$

$\leqq\exp\{\sqrt{c}\sum_{(n_{1}\ldots..n_{m})}(\max_{i}n_{i})^{-m-1}\}$

$arrow 1$ as $||f||_{W^{S+2m+2_{(T^{m})}}}arrow 0$ $(carrow 0)$ .

(For the calculation of Radon-Nikodim derivative, see [7, Chapter 3].) Since
$C^{r+[(6/2)m]+3}(T^{m})\subset W^{s+2m+2}(T^{m})$ , we have $\nu_{1}\in \mathscr{M}_{r+[(6/2)m]+3}’$ . Therefore $\nu=v_{1}$

satisfies the conditions (1) and (2).

In the case
$M=T^{m}$ , $V=T^{m}\cross R^{p}$ ,

we have
$W^{s}(V)=W^{s}(T^{m})\cross^{p\mathfrak{t}imes}\cross W^{s}(T^{m})$ .

Therefore $\nu_{p}=v_{1}\cross^{ptimes}\cross\nu_{1}$ satisfies the conditions (1) and (2).

Finally, let us consider the general case. Take an open covering $\{U_{j},$ $j=$

$1,2,$ $\cdots$ , $d$ } of $M$ so that there exist $C^{\infty}$ vector bundle isomorphisms

$\psi_{j}$ : $\pi^{-1}(U_{j})arrow V_{j}\cross R^{p}$

where $V_{j}$ is an open set on $T^{m}$ . And, using a partition of unity $\{\phi_{j}\in C^{\infty}(M)\}_{J^{=1}}^{d}$

subordinate to the covering $\{U_{j}\}$ , define the following embedding

$\Psi:W^{s}(V)arrow\bigoplus_{j=1}^{a}W^{s}(T^{m}\cross R^{p})$

$f$ $arrow\bigoplus_{j=1}^{a}\psi_{j}(\phi_{f}\cdot f)$

Then the measure $v=\Psi^{-1}(p(\Pi_{j=1}^{d}\nu_{p}))$ satisfies the conditions (1) and (2), where

$p: \bigoplus_{j=1}^{a}W^{s}(T^{m}\cross R^{p})arrow\Psi(W^{s}(V))$

is the orthogonal projection.
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