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Introduction.

In this paper we give some density properties for the space of solenoidal
vector fields in exterior domains. Then we shall apply such results to the
stationary problem for the Navier-Stokes equations. Let £ be an exterior do-
main in R® (n=2), i.e., a domain having a compact complement R*/Q, and
assume that the boundary 98 is of class C**# with 0<u<1. Consider the fol-
lowing boundary value problem for the Navier-Stokes equations in £:

—Au+u-Nu+Vp = f in 2,

(N-S) divu=0 in 2,

u=0 on 08,
where #=(u,(x), ---, u(x)) and p=p(x) denote the unknown velocity and pres-
sure, respectively; f=(fi(x), ---, fa(x)) denotes the given external force.

Density properties for solenoidal vector fields, i.e., vector fields u with
div u=0, are essentially important for the Navier-Stokes equations in exterior
domain. The reason is that, compared with the interior problems, the possible
space of test functions for weak solutions of (N-S) is “too small” in unbounded
domains. So, one needs as a wider space as possible for the test functions.
Therefore Masuda [17], Heywood and Giga gave certain types of
density theorems for such vector fields; Masuda applied them to the uni-
queness problem of weak solutions for the mnon-stationary Navier-Stokes equa-
tions. Heywood proved a similar result to ours in L’*-space and applied it
to the uniqueness problem for the stationary Stokes equations.

The purpose of this paper is to give more general density theorems for
solenoidal vector fields in L%spaces on exterior domains and to apply them to
the stationary Navier-Stokes equations. In particular, we will prove global L
bounds and a uniqueness criterion for weak solutions of (N-S). On account of
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the nonlinear term u-Vu, we need such density properties not only in L? but
also in the intersection L!NL™ for 1<g, r<oo, because we have the different
behavior at infinity of Ax and u-Vu for weak solutions u of (N-S) in unbounded
domains. \ ‘

First we shall apply our result to a problem on regularity at infinity of
weak solutions u and its associated pressure p of (N-S). To this end, the same
problem on the linearlized equations of (N-S), i.e., the Stokes equations will be
also investigated. For bounded domains, Cattabriga showed the most general
result in L? on the Stokes equations. Our result clarifies a typical
difference between interior and exterior problems. When n=3, Fujita gave
an explicit representation formula of weak solutions of (N-S) for smooth f
decreasing rapidly at infinity, which seems to give a similar application to ours.
However, our method enables us to treat a much wider class of f. Our second
application is a uniqueness criterion for weak solutions of (N-S). Our criterion
for the stationary problem is closely related to that of Serrin’s for the
non-stationary case.

In this paper we avoid such a complicated tool as the hydrodynamical
potential theory; our method is based on a cut-off procedure. We shall first
prove the corresponding results in bounded domains and the whole space R™.
These results are also interesting in itself. Then the exterior problem in ques-
tion can be treated as perturbation of both cases. To this end, we shall make
fully use of the result on the boundary-value problem divu=g in 2, u=0 on
08, which was given by Bogovski [4, 5] and Borchers-Sohr [6].

1. Results.

Before stating our results we introduce some notations. For 1<g<oo,
q¢'=q/(g—1), || |, and (-, -) denote the usual norm of L%£) and the inner pro-
duct between L) and L%(Q), respectively. H}92) is the completion of
C3(2) with respect to the norm ||Vu|,. Since £ is an exterior domain, H}%Q)
is larger than H3}%). Let A-%Q2):=Hy(Q)%(X*; dual space of X). | |,
denotes the norm of H->%Q) defined by [ f]-1.,:=sup {I<f, /By d=
C3(Q), $+0}, where <-,-> is the duality paring of H-"%Q) and H}7(Q)*.
Ce(2)r, Ly, -, and C()"%, LP(2)"*, --- denote the corresponding spaces
for the vector-valued and the matrix-valued functions, respectively. In such
spaces, we shall also use the same notations | ||, and (-, -). ® () is the set
of all C>-vector functions ¢=(g,, ---, ¢,) such that div ¢=0.

Our results now read:

THEOREM 1. Let XYQ)={usAvAQ)"; divu=0}. Then for all 1<q< oo,
1<r<eo, C3.,(2) is dense in XI(DNXURQ) under the norm [Vulg+|Vul,.
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THEOREM 2. Let g and r satisfy one of the following cases (i) or (ii):
(1) 1<g<n and 1<r<<oo;
(i) n=Zg<r<oo,

Then C%.,(R) is dense XYQYNL7(Q)* under the norm ||Vul,+|ull..

REMARKS 1. In case ¢g=r=2, Heywood showed the same result of
Theorem 1.

2. When @ is the whole space R™ or a bounded domain, Masuda and
Giga proved that C% ,(2) is dense in HLH)NL™(2)", where HyX(Q2) is
the closure of C% ,(2) in H¥2). In Remark after his proof, Giga [12, p. 210]
conjectured that one can prove the same result even in unbounded domains.

We next apply the above results to (N-S). Our definition of a weak solu-
tion of (N-S) is as follows.

DEFINITION. Let feH-'%2)". Then a measurable function u on 2 is
called a weak solution of (N-S) if

(i) u=XAQ);

(i) (Vu, Vo)+(u-Vu, ¢)=<f, ¢> for all g=C%, ().
Concerning the existence of weak solutions, see, e.g., Temam [24, p. 169,
Theorem 1.47. For every weak solution u of (N-S) there is a scalar function
pe LL(2), unique up to an additive constant, such that

Vu, V)+(u-Vu, $)—(p, div ) = <{f, ¢>

holds for all ¢=C5(2)". This means that the pair {u, p} satisfies (N-S) in the
sense of distributions. We call such p the pressure associated with u (see
Fujita [9, Definition 2.3]).

Our result on regularity of weak solutions of (N-S) reads:

THEOREM 3. (1) (associated pressure) Let n=3 and f=H Q). Suppose
that u is a weak solution of (N-S). Then the pressure p associated with u can
be chosen in the class p& L*(Q2)+ L™ 2(Q),

(2) (more regularity) (i) Let n=3 and fEﬁ“'Z(Q)3ﬂﬁ‘1'q(Q)3 for 3=¢g<oo.
Suppose that u is a weak solution of (N-S) and that p is the pressure associated
with u. Then we have

Yues L7(2) for 2<r<g, ue L(2Y® for 65s<co,
pe LiQ).

In particular, if ¢>3, we have also us L=(2)*.
(i) Let n=5 and fEH Q)" NHYQ)" for n/(n—1)<g<n/(n—2). Let
u and p be as above. Then it holds
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Vuc L"(D)"*  for q<r=<2,
ue L) for ng/(n—q)=s<2n/(n—-2), p€LY(Q).

Next we shall proceed to the uniqueness criterion for the weak solutions
of (N-S).

THEOREM 4. Let n=3 and fEﬁ“’z(.Q)”. Let u and v be weak solutions of
(N-S). Suppose also that u satisfies the energy inequality

E.L) INull2 < <f, w

and that ve L™(2)". Then there is a positive constant A such that if |v].<A4,
we have u=v in L.

REMARKS 1. If 2 is a bounded domain in R™ with n<4, then every weak
solution u belongs to L™(£)" and satisfies the energy equality |Vulli=<{f, u).
Hence in such a case, we have u=v under the assumption that ||f|., . is suf-
ficiently small (see Temam [24, p. 167, Theorem 1.3]).

2. In the non-stationary Navier-Stokes equations, Wahl and Masuda
improved Serrin’s uniqueness criterion for the weak solutions on
2%, T) in the spaces C([0, T]; L*(2)*) and L=0, T; L™(2)"), respectively.
So yields a uniqueness criterion for the stationary problem which
is similar to that of Serrin’s for the non-stationary problem.

2. Preliminaries.

Let us recall the spaces H3%2) and H>%R). Since the norms |Vul, and
IVul.(1<q, r<oo) are consistent on C(£2), we can define the two Banach
spaces HY(@)+HLY"(2) and HYY(Q)NHY™(2) as usual (see, e.g., Reed-Simon
[19, p. 35]). In the same way, we denote by F[é'q(R") the closure of CZ(R™)
with respect to the norm |[Vull; gn; || |lggn is the L%norm over R™ Note that
A L9 R™) consists of equivalent classes of all measurable functions whose differ-
ences are only constants in R”. FI“"I(R") is the dual space of ﬁ})'q’(R") whose
norm we denote by | |.1.qre. For simplicity, we shall abbreviate the above
norms and the duality on R™ as || |lg || ll-1.4 (v, +) and <:, -)>, unless it causes
confusions between £ and R". In what follows C denotes a positive constant
which may change from line to line. In particular, C=C(-, -, ---, -) denotes a
constant depending only on the quantities appearing in the parentheses.

2.1. First we consider the boundary-value problem of the equation:
(2.1) divu=7Ff in 2, ©=0 on Q.

The following lemma is essentially due to Bogovski [4, 5]; for the special
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formulation and extension, see Borchers-Sohr [6].

LEMMA 2.1. Let 1<g<oo. (i) There is a bounded operator f—u from
LYQ) to AYAQ)* such that divu=f.

(ii) Let D be a bounded Lipschitz domain in R™. For 0#t=R we set
D, = {rx; x = D}. Then there 1is a linear operator R.:f —R.f from

{ FeCe(D.):; SD f(x)dxzo} to C2D.)" such that

(@) divR.f=f in D,
®) VR frewy = Clif s,  for 1<g<oo,
Here C=C(D, q) is a constant independent of © and f.

Using the well-known closed range theorem and the Sobolev inequality, we
obtain immediately from this lemma the following result.

COROLLARY 2.2. (i) Let 1<g<co and let Xg(.Q)'——{ueﬁé'q(.Q)"; div u=0}.
Suppose that feﬁ‘l'q'(Q)" satisfies {f, ud=0 for all uc XYQ). Then there is
a unique p= LY () such that f=Np, i.e., {f, $>=—(p, div @) for all ¢eﬁ},'q(Q)"
and that ||pllg SCllf|-1,¢ with C independent of f.

(i) Let 1<g<n and let uc L«(R2) with Yus LYQ)". Then there is a con-
stant K, such that u+K,= L™(Q) with 1/¢*=1/q—1/n and |u+K,|=<C|[Vu|,
with C independent of u. Here Q isthe closure of 2 and u<=L%\J(2) means that
us LY(QNB) for all balls BCR™ with QN\B+Q.

For the proof, see Giga-Sohr [13, Corollary 2.2].

2.2. Next we shall characterize the space Flé'q(R"). The following varia-
tional inequality in L¢ is simple but plays an important role for our purpose;
see also Simader-Sohr [22]. ‘

Let 1<g<o. Then there is a constant C=C(n, ¢)>0 such that

2.2) Vulg = Csup {{[(Vu, V9)|/IIVglly; 0+ ¢ = CHR™)}

holds for all uc LL(R™) with Yue LYR™)".

Indeed, note that the space H={A¢; ¢=C7(R")} is dense in LY (R™). Then
using the Calderon-Zygmund inequality [|[VV¢| < CllA¢ly (p=CH(R™)), we have
for each /=1, ---, n

sup{|(Vu, V)| /|Vlly ; 6= CTR™), ¢+0}
= sup{|(Vu, V@) /IVO:Pllg ; ¢=CHR™), ¢p+0}
= Csup{|@su, AY)| /APy ; p=CHR™), p+0}
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= Csup{|(0u, &)!/lgly; g LY(R™), g+0}
= C||o.ul,

with C=C(n, ¢) and follows.

Let L**={uc Li,.(R™); Vus LY{R™"}. For usL"? we denote by [u] the
set of all v L*? such that u—v is constant in R™ and define the space L“%/R
={[u]; usL*? with norm |[[u]|r1qr:=|Vul, Clearly L%/ R is isometric
to the space G,:={Vu; [ule LY/ R}(CLY(R™")"). By the theory of Helmholtz
decomposition (see Simader-Sohr and Miyakawa [18]), G, is a closed sub-
space in L9R™™ Therefore, G, is a reflexive Banach space. Moreover, we
have the following relation:

LEMMA 2.3. Let 1<q<oo. Then the spaces AYYR™, L“¢R and G, are
isometric as Banach spaces; each element of HY(R™) can be identified with some
lule L*%/ R such that Yues G,.

ProOOF. Let ¢;,=CHR") (=1, 2, ---) be a Cauchy sequence with respect to
the norm |[Vull,. There is function we LY(R™)™ such that V¢,—w in LYAR™)".
Since (w, ¢)=1lim;.(V¢;, ¢)=—1lim;..(¢;, div ¢)=0 for all ¢ CT, (R"), it follows
from the Helmholtz decomposition that w has the form w=Vp with some
pe L+ 2,  Clearly, such p is uniquely determined up to an additive constant and
hence we see that HY%R™) is isometrically embedded into G,. To prove the
assertion, it remains to show that the space W={V¢; ¢=C3(R")} is dense in
G,. To this end, let us consider a linear operator B,: Vue G,—B,(Vu)< G,
defined by

<B,(Vu), Yy = (Vu, V) for YZwe Gy,

where <-, -> denotes the duality between G¥ and G,. Then by we see
that B, is injective and that its range is closed in G¥. Since Bf=DB, (T*;
adjoint operator of T), it follows from the closed range theorem that B, is
surjective and hence bijective. Now, suppose that FeG¥ satisfies <F, Vg>=0
for all p=C3(R"). Since B, is also bijective, there is a unique Vu< G, such
that

(F, W)y = <{By(Nu), V) = Nu, V)

holds for all VveG, Then by the assumption and [2.2) we get Vu=0 and
hence F=0, which implies that W is dense in G,. This completes the proof. m

REMARKS. 1. By the proof of this lemma we sse that for every u< L9,
there is a sequence u;=C%H(R") (=1, 2, ---) such that Vu,—»Vu in LY(R™)".
This holds also with R replaced by 2. Simader gave another proof for
the latter convergence by using the Poincaré inequality on annulus domains
and a scaling argument.
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2. The above approximation and the application of the Sobolev inequality
yield the following concrete characterization of the space Hy 4 Q).
(i) For 1<g<n, we have

Ay(Q) = {us L"v*2(Q); Yue LY2)", ul;0=0}.
(ii) For n<q< o, we have

Ay9Q) = {ucs LY (2); Yus LYD)", u|;0=0}.

2.3. Let us consider the Stokes equations:
(2.3) —Au+Vp = f, divu=0 in R”
Recall that X4 R™={ucsH}Y(R™"; divu=0}. Then we have

LEMMA 2.4. Let 1<q<co, 1<r<oco. For every feH " (R""NHA " (R")",
there is a unique pair {u, p} with ue XARHNXI(R™ and p=LY{RNL™(R™)
such that

(2.4) (Nu, Vo) —(p, div ) = <f, ¢
for all = CF(R™)". Such {u, p} is subject to the inequality
(2.5) IVullg+1Vull -+l ol 121 = CAS 1o+ 1 -1 4) s

where C=C(n, q, 7).

PROOF. By the definition of the space H}%(R™), we see that the operator
—V:ﬁé'q'(R")—»Lq'(Rn)n is injective and has a closed range. Hence by the
closed range theorem, the adjoint operator div=(—V)*: LY{R™"—H"YR") is
surjective. Since the null space Ker (div) of div is a closed subspace in LY R")*,
for each A= H"%R™), there is at least one u<L%R™" such that

(2.6) —(u, V) = <h, ¢> for all g=CZ(R™) and that |[u],<C|h]-1q

with C independent of h. Let us recall the space G, and the bijective operator
By: Ge—G¥ in the proof of Lemma 2.3, Since u< LYR™)", the map Vo< Gy
——(u, V¢)= R is an element in G, so we can choose nEﬁé’q(R") so that

2.7) (Vz, Vo) = <B(7), Vo) = —(u, Vp) = <h, ¢>

for all ¢=C%(R™). By such # is uniquely determined by i and so we
can define a bounded linear operator S,: heﬁ‘l'q(R”)ﬁzeﬁ},"l(R") by the
relation [2.7). If in addition, k= H-*"(R"), we have also r= A% "(R™). Indeed,
with ¢ replaced by », we see by the above argument that there is a unique
neHYT(R™=L""/R such that (Vy, V¢)=<h, ¢> for all =C3(R") and V|,
=C|h]..,» with C=C(n, r) independent of 4. Thus we get r= L' peL*"
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and 7—y< Li,(R") satisfies A(r—%)=0 in the sense of distributions. Then it
follows from Weyl’s lemma that #—» is of class C* and harmonic in R™; so

is Vr—Vy. Applying the mean value property and the Ho6lder inequality, we
get

(2.8) |Vz(x)=Vn(x)| = C(IVx | x| 7"+ |V yll | x[~™/7)

for all x(#0)R™ with C independent of x. Then the classical Liouville
theorem yields that Vox—V%=0 and hence w—xn=const. in R”. This shows
that 7= L*" and hence z=HY(RNHL"(R™) for x in From this we
conclude now that S: h—x is a bounded operator from ﬁ‘l'q(R”)ﬂﬁ‘”(R") to
AY(RHNAL(R™) with

INTlo+IVxll- = CUAll-1. g+ 1Al 2),

where C=C(n, ¢, r) is independent of A.
Using S, we give an explicit formula for the pair {u, p} of solution in
(2.3). For each feﬁ“'q(R")”ﬂﬁ“"(R”)", we define {u, p} by

u=Sf+SNdiv Sf), p=—divSy.

Here Sf=S(fi, -, fa)=(Sf1, -+, Sf,) and correspondingly for S(Vdiv Sf).

Now it is easy to see that such {u, p} satisfies To show that div u=0,
we observe that

(div S(Vg)+¢, Ag) =0  for all = LAR™), ¢=C3(R™).

Since the space H={A¢; = C7(R™)} is dense in L¥(R"), the above identity
yields that div S(V¢)=—¢ for all ¢= LY(R™). Then we get divu=0 and see
that the above pair {u, p} has the desired properties.

Now it remains to show the uniqueness. Let {u/, '} with u'e
XYRYNXI(R™ and p’eLYR™NL'(R") satisfy Then #i=u—u', p=
p—p’ satisfies with f=0. Applying the operator div to both sides of the
first equation, we get Ap=0 in the sense of distributions in R". Hence p is
of class C* and harmonic. Since p=LYR"NLT(R™), it follows from the
Liouville theorem that p=0 in R”. Therefore (Vi, V¢)=0 for all = CT(R™)".
From [2.2) we obtain #=0. This completes the proof. m

2.4. In this subsection we show a regularity property at infinity for solu-
tions of the Stokes equations in £2:

—Aut+Vp =1, divu=0 in Q,
(2.9)

u=0 on 082 .

Compared with the case when 2=R", we have a restriction on » in Lemma
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2.4. Let us recall the trace theorem for vector functions. Take R>0 so that
Br={x&R"; |x|<R}D082 and set Qr=02"\Bg, E{(Qr)={ucLy:)";divuc
LY2z)} (1<g<co). Then it follows from Fujiwara-Morimoto [10, Lemma 1]
that the boundary value u-v of the normal component to 0R2;=02U{|x|=R}
exists as element belonging to W-1/%%0Q2,)=W*%%(02z)* and that the following
generalized Stokes formula holds:

(2.10) (div u, ¢)op+(u, Vd)op
= —{u-y, @loodea+<u-vr, @longysn, for geW:¥(Qg).

Here v and vz denote unit outer normals to 642 and 0Bz={|x|=R}, respectively;
{+, ->sp denotes the duality paring of W-24oD) and W'27(gD). Moreover,
the map us E{Qz)—u-veW-12%082z) is surjective. Our regularity result now
reads:

LEMMA 2.5, Let 1<g<oo, and n'(=n/(n—1))<r<co. Let fEFI“'q(Q)”f\
H27(Q)". Suppose that {u, p} = XYQ)x LYLQ) and satisfies (2.9) in the sense of
distributions in 2. Then we have Yucs L™(2)** and p< L7(2). In case 1<q<n,
we have in particular, usX1(2). In case n<r for n=3 and in case 2<r for
n=2, we have also us X1(Q).

PROOF. Step 1. We shall first show the local regularity
(2.11) us H"(2z)", pe L7(2z).

This is trivial if n’<r=<gq. Suppose that ¢<r<oo. Let us first assume that
1/g—1/n<1/r. Choose N(>R) sufficiently large and take X< CH(R™) with 0=
11, X(x)=1 for |x]|EN, X(x)=0 for |x|=N+1. From (2.9) we get the fol-
lowing equation on 2y, =2"\Bx,::

(2.12) —AQu)HVp)=F, divQu)=g in 2y,
Xu=20 on &sz+1 ’

where f:Xf—2VX-Vu—AX-u+VX-;D, g=V%-u. Since 1/¢—1/n<1/r, by the
Sobolev inequality we have the continuous embeddings L2y, . )CH " (2x.1)
(=HY "' (Qy.)*), HY Y2y, )CL(Qy,). Hence from the assumption, fe&

H™ (@) and g€ L7(@y,). Since | gdv=—{ wvas+| tusas=o,
N+1 o OB N +1
it follows from Cattabriga and Kozono-Sohr [15, Proposition 2.10] that Xue
H*"(Qx,)" and Xpc= L™ (2x,1). Since X=1 on £y, we obtain
We next consider the case 1/¢—2/n<1/r<1/g—1/n. From the above argu-

ment we have uc H**(Q2x)" and pe L™(Q2y) with 1/¢g*=1/g—1/n. Taking ¢*
instead of ¢ and then using the same argument as above, we get ucH" " (2y_,)"
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and p=L™(2y_,) for r>n’ with 1/r=1/g—2/n. Proceeding in the same way
to the case 1/r>1/q—2/n, by the bootstrap argument with finite steps, we get
for all r<n’'.

Step 2. Since feHUQ)"NH*7(2)", there is a function Fe L¥2)"N
L7(2)** such that f=div F, i.e., <f, ¢>=—(F, V) holds for all g=C5(2)".

Indeed, HY7(Q)NHL™(R) is dense in HY?(R) and in H:7'(2). Hence
(ALY @)+ Ay () =H+(DNH*"(2) (see Aronszajn-Gagliardo [2, Theorem
8.3]). Consider the bounded operator —V: B2 (Q)+HL ™ (@)— L (2)"4- L™ (2)".
Using the closed range theorem for the adjoint operator div=(—V)*: LY(2)"N
L () —H 1 (QDNH""(2) in a similar manner as in we get a function
Fe LYQ*NL"(2)"* with f=div F.

Now the first equation of (2.9) can be rewritten in the following divergence
form:

(2.13) div (T(u, p)+F)=0 in 2,

where T(u, p)=A{T:;u, p)}1si.jsn; Tifu, p)=—0:p+(0;u;+0,u;). From the
assumption and the argument in Step 1, we see T(u, p)+FSEY{Qr)"NE™(2g)"
and hence we can take HE EY(Qz)"NET(2z)" such that

(2.14) Hylago =(T(u, p)+F)vlee, Hvlizm-ez=0.

Set ﬁ(x):H(x) for x=Qr, H(x)=0 for |x|>R. Then we have He LY2)“*N
L™(@)** with div He LYQ)"\L7(Q)". Take s&(l, o) so that 1/s=1/r+1/n.
Then we have also H= L5(2)"* with div A= L3(2)*, since s<r and since H has
a compact support. Now it follows from Lemma 2.1(i) that there exists G=
Hy#(2)** such that

(2.15) divG=divH in Q.

By the Sobolev inequality we have also GE L7(2)"*. Set V=F—H+G. Then
Vel (2)* and from (2.13)-(2.15) we obtain that

div (T (u, p)+V) =10 in the sense of distributions on £,
(2.16)
(T, p)+V)wloe =0  in WYm7@2)".

~

Let us define the function # on R™ by #i(x)=u(x) for xR, (x)=0 for x
R"/Q. In the same way, we define also § and ¥ on R™ Clearly 4= X4R"),
p=LYR™ and Ve L"(R™™. Moreover, it holds

(2.17) div (T(@, p)+V)=0

in the sense of distributions on R™. To see this, we take a function p= C=(R™)
with 0<9<1 so that 5(x)=0 near R"/2, n(x)=1 for |x|=R. By the gener-
alized Stokes formula and (2.16), we have
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(T(it, P)+V, V®ra = (T(u, p)+V, VWn®)o+(T(u, p)+V,N(L—1)P)ap
= —(T(u, p)+V)-vlsa, Plog> =0

for all @=C(R™™. This implies [2.17),

On the other hand, since VeL7(R™"% it follows from Lemma 2.4 that
there is a pair {u/,p’} with w'€X;(R") and p'€L7(R") satisfying
div(T(w’, p")+V)=0 in the sense of distributions on R™. Applying the theory
of harmonic functions for #=#—u’and p=p—p’ with such an aid of inequality
as we get as in fi=u’ and p=p’. From this it follows that
Yus L™(2)** and p L7(2).

Now it remains to show that ueﬁ},"([})” in case r=n (n=3), r>2 (n=2)
and in case 1<g<n. For the former case, by Remark 2(ii) to we
get usHLY"(2)". Suppose the latter case 1<g<n and n’<r<n (n=3). By the
Sobolev inequality, we have ue L#*(2)* for 1/¢*=1/q—1/n. Moreover it fol-
lows from [Corollary 2.2(ii) that there is a constant vector M<R" such that
ut+Me L))" for 1/r*=1/r—1/n. Since us L))", we see M=0 and hence
ue L™@)". Then again by Remark 2(i) to Lemma 2.3, we get uc=Hy™(Q)
This completes the proof of [

3. Proof of Theorem 1.

3.1. We shall first show the corresponding result to in the
whole space R™.

LEMMA 3.1. Let 1<g<co, 1<r<oco. Then C3..(R™) is dense in XYAR™N
XI(R™ with respect to the norm |Vul+|Vul,.

PrROOF. Let us recall some basic properties of interpolation couples. From
Cemma 2.3 we conclude that A} R") and A} "(R™) are reflexive Banach spaces,
because G, and G, are closed subspaces in L% R")* and L"(R™)", respectively.
Since CH(R™CHYY(R™NHAYT(R™) is dense in Hy(R™ and AL T(R™), if follows
from Aroszajn-Gagliardo [2, Corollary 8.47 that

3.1) (A (RHNA"(R™)* = By« (R)+Hy ™' (R™).
We shall first show that
(3.2) Y = {div (VA¢); ¢=C3(R™)} is dense in A-“y(R™NH""(R").

Suppose the contrary. Then by [(3.1) there exists 0#h=f+g with feHL (R,
g=Hy ' (R™) such that (div(VA@), hp>=0 for all ¢=C(R™). Moreover, by
we can choose f& LV ¥, g=L"" such that
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(3.3) ”h”fi},'Q' +1§‘(1)-T' = llvf+V§]'Lq'+Lr' H
(Vf+Vg, VAg) =0  for all g=C3(R™).

Let J.+(¢>0) denote the well-known Friedrichs mollifier. Then we have by the
Hausdorff-Yang inequality that

10:J eV Fllgr < N0 TelINFllg s 10:T 592l < 18: 111921 -

for /=1, 2, ---, n; this leads to
(3.4) div (J#Vf) e LY(R™), div (JxVg) = L™ (R").

Taking ¢=J.x¢, = CHR™) in [3.3), we have (div (J+(Vf+Vg)), AP)=0, which
implies by Weyl’s lemma that the function div (J*(V/+Vg)) is of class C* and
harmonic in R”. Because of we can apply the same argument as in [2.8)
and conclude that div (J.x(V7+V2))=0 in R*. Hence it holds

(VF+72, V) = lim (Jx(Vj+72), 79)
= lim (div (Jx(V7+72), $)=0  for all = CH(R™).

Again by Weyl’s lemma we conclude that f+g is harmonic in R", so is
V7f+Vg. Since Vi+Vg=LY(R")+ L™ (R™), we can use the same argument as
in and hence V/+Vz=0 in R”. Then from [3.3] we get that A=0, which
causes a contradiction.

Next we consider the operator A with the domain D(A)=(XYARNXI(R™)
X(LYR")NL"(R™)) defined by

for {u, p}eD(A) and ¢cHLY(R™"+Hy"'(R™)". By we see that
A is a bijective bounded operator from D(A) onto ﬁ“'q(R”)“f\l:l"l'T(R”)". We
define now the spaces V,, W and ¥ by V,={—A¢+V(div ¢); ¢=C5(R")"},
W={divAg; ¢=C3(R™)"} and Y={divV(A¢); ¢=C7R")"}, respectively. A
direct calculation yields that AV ,XW)=Y. Now from together with the
bijectivity of A, we can conclude that V, is dense in XYR"HNXI(R™). Since
V,CC% .(R™), we get the desired result. This completes the proof. |

In the next step we go over to the exterior domain £ by using cut-off
procedures. Recall that X42)={usH}%2)"; div u=0}. For a concrete charac-

terization of the space H}%R), see Remark to Lemma 2.3. The following
lemma gives us an approximation property.

LEMMA 3.2. Let 1<g<co, 1<r<co and ucXYQ)NXI(2). Suppose that
4(x)=ulx) for xR, W(x)=0 for x=R"/Q2. Then there is a sequence v;<
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5. o(R™) (j=1, 2, -+-) such that
(3.5) Vv; —> Vi in both LY(R™"™ and L"(R™"*;
(3.6) v;—> @i in both L (R™" and L (R™™.

ProoF. Let us assume that 1<¢<r<oo. Since i L"INL"" with div #i=0
in R*, we have by Lemma 3.1 that there is a sequence v;SC% (R (=1, --+)
satisfying (3.5). Since ¢<r, it is enough to show that we can choose such a
sequence {v;}*-, as

3.7) v, —> i in LioR™".

(i) Let 1<g<r<n. By Remark 2(ii) to Lemma 2.3, ic L™*(R") for 1/r*=
1/r—1/n. Moreover by the Sobolev inequality, we have [jv]|.«<C| Vv, for all
vEHy™(R™) and hence (3.5) yields v;—# in L™(R™)", which leads to [3.7)

(ii) Let 1<g<n<r< o, By the interpolation inequality we see that (3.5)
holds even in L R™)™ for all s with ¢<s<r<oco. So it follows from the
Sobolev inequality as above that v;—# in L*(R") for all s*=ng/(n—¢). In
particular, we get

(ili) Let n<¢<r<oo. First we conclude from (3.5) that there is a sequence
c;ER™ (7=1, 2, ---) such that

(3.8) lvj4+c;—Alzremy —> 0 as j —> oo for all ball BCR™.

To see this take a sequence B,CB,C --- CByC --- of balls in R®, where B;=
{xeR"; |x|<j}. By making use of the Poincaré inequality infcegnlv+cllzray
<KylVvlizrsy> holding for v H""(By), we can choose for each N a sequence
{csV}5 in R™ and a function v*¥>€H'"(By) such that |[v;4c{—v™ | 1reay
—0 as j—co. Since {C{M}%, and {CMV}5, (N<N’) can differ by a constant
in the limit as j—oo and since v¥> and v¥"> can differ at most by a constant
in By, it is possible to redefine the sequence {c{¥, v‘¥’}%-; so that they are
all equal in common regions of definition, thereby, determining a sequence
{¢;}%-1 in R™ and a function ve L™ with property |v;+c;—vll.rz—0 for all
ball BCR". Clearly i—v=const. in R™ and hence [3.8) follows.

Let us first assume that n<<g. Take a function {& CH(R™) satisfying 0=(
<1, {(x)=1 for |x|<140d and {(x)=0 for |x|=2—0d, where 0<d<1/4 and de-
fine {(x)={(x/j) for j=1,2, ---. {{;}5: will be called a sequence of n-dimen-
sional cut-off functions. Then we get |VE;|,<Cj***/? for all j=1, 2, -+, so
there is a subsequence {{jcx}i: of {{;}5=: such that

3.9) lim fee [Vl =0, lim [ey HVEjeesll- =0.

Now let us consider the equations:
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(3.10) divwg = ¢V in Dy,  wr=0 on 0D,

where D;={x=R"™; j(k)<|x|<2j(k)} and 0D;u={x=R"; |x|=j(k), 2j(k)}.
We see that ¢ Ve Co( D) and that SDM
Lemma 2.1(ii) that there exists w,< C(Djry)™ such that holds and that

Cr*Vrrydx=0. It follows from
)

IVwelle.pjcpy = Mlce IV llg
IVwel r.pjepy = Mlck [INGensll»

(3.11)

with M >0 independent of k.
Now we set u;:=vi+ciljcy—ws (=1, ---), where @, denotes the zero
extension of w, to R®». Then from u,=C% ,(R™ and by (3.11) we get

[Vur—Vily < Vo=Vl g-+(M+1D]ce [ Vce
and the same inequality with ¢ replaced by ». From (3.5) and we obtain
VYu, —> Vi in both LYR™*** and L7(R™™.

Moreover we have

N — 8 rey < lvetcr—llremt1cel ”Cj(k)“IHLT<B)+Hwk”LT(B)

for each fixed ball BCR"™ and k=1, 2, ---. Since {;x=1, w,=0 on B for
large &, we obtain from the above and

Uy —> H in LL,(R™™.
Hence we get the desired sequence in case n<gq.

Now it remains to show the case g=n. In this case we have only [|V{;l.
<const. for all j=1,2, .. For each fixed %, let us consider the following
equation in D;={xeR"; j<|x|<2s}:

(312) div 'LU§ = Ck'VCj in Dj s
wi=0 ondD,;= {x&R"; |x|=], 2/},

where ¢, is the same constant in [3.8). Then by Lemma 2.1(ii) we can choose
whe C3(D;)™ satisfying (3.12) with

INwila < KlcelIVGlla,  INwhll- < Klce| VG-,
where K=K (n, r) is a constant independent of £ and ;. It is easy to see that

Ywk —> 0 weakly in L"(R™"  as j—oo;
(3.13)
Vwt —> 0 strongly in L"(R™)"  as j—oco
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holds for each fixed 2. We use now the Mazur theorem [26, p. 120 Theorem
2]; for each fixed k, there are sequences {m?%} 3, and {4} 5., of positive integers
with mi<mf, lim;..mi=oco and #mi—mi+1 real numbers B4=0 (i=m?%, mi4-1,

-, mk) with Zi'ﬁm?ﬁ’;:l such that the functions i?EZ?ﬁmI;ﬁ?Ci, WSZ-EE?'ﬁm?ﬁ’;wi
satisfy ¢,{%—0, Vivt—0 strongly in L(R™)"*N\L"(R™)"* as j—co for each fixed
k. Hence we can choose subsequences {Z%}e: of {4}, and {4} im: of
{0t} ; %=1 so that

(3.14) iV —> 0,  Vihu —> 0
strongly in L*(R™™N\L"(R** as k—co.
Now the desired sequence {u.}5, is defined by
up = v+l — s .

Indeed, we have by (3.12) that u,=C%,,(R") for all £ and it follows from (3.5)
and that

(3.15) VU=Vl nnzr < Ve =il Lrazr+ €2Vl Lrarr+ V@5 | Lanzr
—>0 as £—0.
In the same way, we have

Nr—tlzres £ lvetcr—illire
s mE ey Quil, ok
+|ck’2i=m§(k).8i”Ci_1”LT(B)+Eizmzq(k)ﬁi”wi”LT(B)

for each fixed ball BCR". Since we may assume m%,=k, we see that {;=1,
w¥=0 (F=mke», -, Mliuy) on B for sufficiently large 2. Hence from the above
inequality and it follows that

(3.16) lifrgfoglp log—tlreas =0.

Now (3.15-16) shows that {u,}%, has the desired property. [ ]

3.2. Completion of the Proof of Theorem 1.
Let 1<g<e0, 1<r<oo and us XYDNX1(R). Then we have to show that
there is a sequence u;=C% ,(2) (=1, 2, ---) such that

(3.17) Vu; —> Vu in both LY2)** and L"(2)".

Let #(x)=u(x) for x&9, ii(x)=0 for x&R"/2. Then by there]is
a sequence v;=C%.,(R™ (=1, 2, ---) such that (3.5) and (3.6) hold. Take a
function np=C=(R") satisfying 0<79<1, #9(x)=0 in a neighbourhood of 62,
n(x)=1 for large |x| and take R>0 so that the subdomain 2x=2N{x=R";
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| x| <R} contains supp V. For each j=1, --- we consider the following equa-
tion in 2z:

(318) diVLUj:'Uj'V‘Y] in ‘QR, Wj:O on aQREaQU{IXI:R}

Since v;-VpeC5(2%) and SQ v;*Vy dx=0, it follows from Lemma 2.1(ii) that
R
there is a sequence w;=C(2z)" (=1, ---) such that (3.18) holds and
(Vw;—Vwellq opt+IVw;—Vwell - 0p
= CUlwi=ve) Inllg o+ I(0i—ve) Il 2p)

with C independent of j, k=1,2,--. By (3.6) we obtain a function we
HY(Qp)"NHY(Qg)" satisfying

(3.19) wij—>w in both Hé,q(‘QR)n and H(l),r(‘QR)n;
divw=1#-y in 2z.

Since #|se=ulap=0, we conclude from the assumption on u that (1—x)i+w
belongs to Hy{2z)"NHy ™ (2r)" and that div [(1—75)d+w]=0. Hence there is
a sequence h;ECS (2g) (=1, --+) such that

(3.20) h; —> (1—p)fii+w in both H}%L2z)" and HYy " (2r)"

(see, e.g., [6, Lemma 4.1] and note that £ is bounded). Now the desired
sequence {u;}3-, is obtained by u;i=h+ nu;—w;, where h; and %, denote zero
extensions of s; and w; to 2, respectively. Indeed, by (3.18) we see that u;=

5.2(82). Denoting by @& as the zero extension of w, we obtain from (3.5-6),
(3.19-20).

Vu;—Vull Lacornrrc
= [V, 9v;— @ )= VLA— i+ &+ ii— | Locrnzrea
= IVh;—=VIA— i+ w]l cacopnrrap + Cllvs— il Lacogrnrrcog
+ Vo, =V Leornrred HIINw;—Vw Lecoprnrrcay
—> 0 as j—oo .

This completes the proof of [Theorem 1. n

REMARK 3.3. (i) Taking ¢g=r in [Theorem 1, we get in particular that
(3.21) C3 +(2) is dense in X49).

In case n=3 and ¢=2, (3.21) has been proved by Heywood [14, Theorem 8].
See also [6, Lemma 4.17.
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(ii) Using [Corollary 2.2(i), we conclude from (i) above that for each f&

A-+92)" there is a unique p< LYQ2) satisfying f=Vp if and only if {f, ¢>=0
for all g=C%,.(2).

4. Proof of Theorem 2.
4.1.

We shall first show the corresponding results to in bounded
domains and in the whole space R™.

The assertion in the former case has
been proved by Giga [12, Proposition in Appendix]:
LEMMA 4.1. (Giga) Let D be a bounded domain in R™ with C***-boundary
0<p<]) and 1<g<oo, 1<r<co.

Let Hy4D) be the completion of the space
C%.4(D) in H“YD)*, i.e., with respect to the norm |Vulgp+|ulgp. Then
Cs +(D) is dense in Hy3(D)N\L™(D)".

Giga gave the proof by using his result on the concrete characteriza-

tion of fractional powers of the Stokes operator [11]. Although he proved only
the case ¢=2, we see easily that the parallel argument works even for g
(1, ), so we may omit the detail.

REMARK. Giga conjectured in Remark that the same proof works
even for unbounded domains.

In the whole space R", we have restriction on ¢ and ». The following
lemma is essentially due to Masuda [17, Proposition 1].

LEMMA 4.2. Let 1<q<oo, 1<r< oo satisfy the following cases (i) or (ii):

(1) 1<g<n, 1<r<=;

(i) n=g<r<eo,
Then C= 4(R™) is dense in XA R™NL™(R™)".

—A with domain D(B,)=H*?(R")".
of —A is dense in L?(R"), we have
4.1)

ProOF. We make use of the argument of Masuda [17, Proposition 1].
Let 1<p<e and B=8B,

Since the range
llim By(A+By)'f = f in L?(R™)" for all fe L?(R™)".
Vo
Let us XYRNL™(R™".

By the Sobolev
inequality, we have ue L*(R")"N\L"(R™)" for 1/¢*=1/q—1/n with Vues LY{R™"*.
The approximation {u. ; ;j}i%i; of u is defined by

(i) Case 1<g<n, 1<r<oco.

Ue, 2,i ::(~A+V diV)Cj(Z—}-Bq*)'ljs*u ,

where J.x and {{;{5: denote the Friedrichs mollifier and the sequence of n-
dimensional cut-off functions, respectively (see Lemma 3.2).

Clearly u. ;=
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3..(R™) for all ¢, A>0, j=1, 2, ---. Let us first show that
4.2) Yue 1.;—> Vu. , in LYR™"* as j—oo;
(4.3) Ueg, 2,5 —> Ue, 2 in Lr(Rn)n as ]—-)oo ’

where u. ;:=(—A+V div)(A+B)'Jsu(=B(A+ B) ' J.+u, since div u=0). Indeed,
using |V*{;l.<Cj™* for k=1, 2 and [V°(;|,<Cj™/?~* (V*=(8/0x")*1 --- (0/0x™)*",
a1+ - +a,=k) for 1<p<co with a constant C independent of ;j=1, ---, we
have by the Hélder inequality

IVue, 2, ;—Vue, allq
= CUI@G—DVA+B)'V Jexull g+ I(VE) A+ B) 7'V [ xully
(V) A+B) 'V J exullg+ N (VE A+ B) ™ Jexully)
(4.4) < C{IV¥2+B) 'V exul L% z1>p
UVt IV ll)I(A+B)V  exull g1,a+ IV Gl 1A+ B) " s [lgn}
= C{IV¥@A+B) 'V exul s2azisp+7 7" 1(A+B) 'V ol gt e
+772 1A+ B) " Jotullgat

Since Vus LY R™"* and uc L™*(R™), (4.2) follows from the above inequality.
Similarly since ue L"(R™)", we have

e, 2, 5—se, allr < C{IN*(A+B)7 Jexull razi>p
UVl IVl (A4 B) Jexre|| 1.7}
< C{IN?(A+B) M exull razispt+i - A+ B) Jekul arr
—>0 as j—oo,
This implies (4.3). Now, letting 4—0 and then ¢—0, we have by that
(4.5) Yu. 3 —> Yu in LYR™"*, u.,—>u in L7(R™".

From (4.2-3) and we get the desired result.
(ii) Case n=g<r<o. Compared with the case (i), we may only show

(4.6) ;im N(V3C;)- (A4 B) ™ Jexu| ;=0 for each fixed ¢, A>0,

(see [4.4). Set 1/p=1/g—1/r. Then 1<p<c and we have by the Holder
inequality

Vs (A+B)  Jexully < CIVGllp- 1A+ B)exull» < Cy/P72(A+ B)™* Jexull -

Since n=¢g<r, we have n/p—3=n/q—n/r—3<—2 and hence from the above
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inequality follows. The proof for is quite similar as in case (i), so
we may omit it. This completes the proof. m

4.2. Completion of the Proof of [Theorem 2.
Let (i) 1<g<n, 1<r<o or (ii) n<g<r<oo. LetucXYDNL7(2)". Then
we have to prove that there is a sequence u;=C%, ,(2) (=1, 2, ---) such that

4.7 Vu; —> Vu in LY and wu;—> u in L7(Q)".

Our argument is similar to that of the proof of [Theorem 1. Set #i(x)=u(x)
for x€Q, #(x)=0 for x& R"/Q. Then it follows from [Cemma 4.2 that there
is a sequence v;=C% ,(R™) (j=1, 2, ---) satisfying

(4.8) Yv; —> Vi in LY2)** and v, —> @ in L7(2)".

Together with our assumption on ¢ and » and the Sobolev inequality, yields
that

4.9) vj—> @ in LL(R™)™.
Now, take R>0, the function y=C=(R") and the subdomain £z as in subsec-
tion 3.2. Since v;-VypsC5(L2z) and Sng,--Vndxzo, it follows from Lemma 2.1
(ii) that there exist w;=C%(z)" (=1, ---) satisfying
(4.10) divw;=v;Vy in 2z, w;=0 on 02z.
Moreover, such {w;}%, is subject to the inequality
IVw;—Vwellg epHlwi—well - op
< C(lw—ve) V9l 0+ 1(w;—ve) V7l 1, 0p)

with C independent of j, k=1, 2, ---. Hence from we see that there is a
function we HY Y Rz)"NLT™(2z)" such that

(4.11) Yw;,—> Yw in LYQe)™, w;—> w in L7(2p)",
divw=%-Vy in Qf.

Set h=(1—1n)ii+w. Then we have heHyY Qr)NL"(2r)". Hence it follows

from Lemma 4.1 that there is a sequence h;=C<%.,(2&) (j=1, ---) such that

(4.12) Vh;—>Vh in LY(Rz)", h;—>h in L™(2g)".

Denoting by h; and @, the zero-extensions of h;and w; to 2, respectively, we
define the desired sequence {u;}5-; with as u;:=nv;+h,—w; Clearly by
u;eCs ,(2) and it follows from (4.8-9) and (4.11-12) that
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IVu;—Vul L2+ u—ullre
= V9 — 0l 29+ I (Vo= V)| L9+ | 9(v;— @) reo
+IVh;—=Vh|L9c0p+1h—hlLreog
+INw;— Vw130, +wj—wll Lreog
—>0 as j—oo,

This implies and the proof is complete. ]

REMARK. Our cut-off procedure enables us to prove that C$ ,(2) is also
dense in H}2(@Q)NL™(2)", which has an application to the weak solutions of
the non-stationary Navier-Stokes equations constructed by Masuda [17, Proposi-
tion 17.

5. L4%gradient bounds for the Navier-Stokes equations; Proof of
Theorem 3.

5.1. Let us first recall some fundamental facts for interpolation couples.
For a closed subspace X of a Banach space £ we denote by X* the annihilator
of X, i.e., the set of all continuous linear functionals on F vanishing on X.

By [Corollary 2.2(i), we have
(5.1) Xyt = {fEﬁ’l'q'(.Q)"; f=Vp with pe LY (2)}

for 1<g<oo(q’=¢/(1—¢g)). Moreover by [Theorem I, X42)N\X7(£2) is dense in
X42) and X:1(2)(1<g, r<oo). Hence it follows from Aronszajn-Gagliardo [2,
Theorem 8.3] that

(5.2) (XN X)) = Xy2)*+ X5(2)*.

For Legradient bounds of weak solutions of (N-S), we need the following

variational inequality.

LEMMA 5.1. Let us XYQ) for 1<g<oco. Suppose that
sup{|(Vu, V@)|/|V| . ; 0#p= CF,(2)} < oo

for some r>n'(=n/(n—1)). Then it follows Yuc< L™(2)"*. If in addition 1<
g<n, we have also u= X7 ().

PROOF. Since C3,(2) is dense in XI'(2) and since X7'(2) is a closed sub-
space of A Lri@)r, it follows from the assumption and the Hahn-Banach theorem
that there is a functional feﬁ‘“([))" such that (Vu, Vg)=<f, ¢> holds for all
¢=Cs ,(2). Now by [Theorem 1, C%,(2) is dense in X¢ (DN X;'(2) and there-
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fore, from the above identity, we get (—Au— f, v>=0 for all ve X ()N X' (Q).
Then by and there are functions p,= LYQ) and p,= L7(2) such that
—Au+Vp,=f+Vp, in the sense of distributions on 2. Since f+Vp,=H7(2)
with r>n’, by we get the desired result. m

We next consider the complex interpolation space [ X, Y], 0<0<1. Note
that the norms [Vu|, and |Vu|, are consistent on C%(2) and that the pair
(HY49), Ay 7(2)} is an interpolation couple. Moreover from Remark 2 to
we get the following concrete characterization (see, e.g., Triebel
[25,1.9]):

If 1<g<n, 1<r<n or if n<g<oco, n<r<oo,

[Ay«Q), Ay "(2)]s = Ay *(Q),

where 1/s=(1—80)/q+6/r, 0<6<1. Applying duality argument [25, 1.11.2],
we get

(5.3) [A4Q), A 7(2)1 = A %(82)
for n’<g<oo, n'<r<co, where 1/s=(1—8)/q+68/r, 001,

5.2. Completion of the Proof of

(1) Associated Pressure. Since usX¥Q), we get ——Au—feﬁ'l'z(.Q)". By
the Sobolev inequality we have the continuous embeddings H3 %(Q)C L2»/<-(Q),
Ay (@) L™(R2), so it follows from the Holder inequality that

(- Vu, P < lulenian-oVulel@la = CIVuEIVS 0/

for all gbeﬁé'”/z(Q)" with C independent of u and ¢. This implies that u-Vu&
H-1ma-0(QY and hence we get

(5.4) —Autu-Vu—f € B+¥Q)r+ H-1ma-(Q)n

On the other hand, by [Theorem 1, C5.(2) is dense in X2Q)NX7*Q2). Now
by [5.4) and the definition of the weak solution of (N-S), we get —Au+u-Vu—
fe(XUNXr(R)*. Then it follows from and that there exist
scalar functions p,= L*2) and p,= L™ () such that —Au+u-Vu—f=—Vp,
—Vp,, which means that

(Vu, V) +(u-Vu, ¢)—(p1+pe, divg) = <{f, ¢

for all g=C3(2)". Now we see that p;+p,= L¥2)+ L™ ™"(2) is the pres-
sure associated with u.

(2) More Regularity. (i) Since n=3, we have by [(5.4) that u-‘?ueﬁ“""(!))a
and hence from the assumption on f with the aid of it follows that u-Vu
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—feH%2)?. Now applying Lemma 5.1, we get Vuc L¥R2)*2. By interpola-
tion, Vues L7(2)** for 2<r<3. Since uc L¥RQ), it follows from [Corollary 2.2 (ii)
that u= L3(2)* for all s with 6<s<co. Since 2¢=6, we obtain by integration
by parts and the Holder inequality [(u-Vu, ¢)|=(u -V, u)| Zlul3 |Vl for all
¢=CH(R2), which implies that u-Vu eHA-19Q)». By assumption u-Vu—f &<
H-9Q)* and yields, together with interpolation, Yue L7(2)* for
2<r=q. Now —Au+u-Vu—f belongs to ]LAI“"‘I(Q)3 and vanishes on C% ,(2).
By Remark 3.3 (ii) the pressure p associated with u can be chosen in the class
that pe LYQ).

Suppose in particular that ¢>3. By interpolation we have ue X#(2)NLY(Q)*
for 3<3G<6. Then we have uc L=(2)* because it holds

(5.5) Igle < CIVglglgla=  for all ¢ < XYDNLIQY,

where a=¢§/3(§—2). Indeed, from Gagliardo-Nirenberg inequality (see, e.g.,
Friedman [8, p. 24 Theorem 9.4]), we see that holds for all ¢=C¥% .(2).
Now since C5.(2) is dense in X#(Q2)NLYQ)* (by Theorem 2), we get by
passage to the limit.

(ii) By and the assumption on f, we see as in case (1) that u-Vu—
feﬁ‘l'"“"'z’(g)”. It follows from [Lemma 51 and interpolation that Vue
LT for n/(n—2)<r<2. Since uc L*™ ()" we have by
(i) that usL¥(Q)* for n/(n—3)<y<2n/(n—2), which yields u-VuEﬁ“"’(Q)”
for n/2(n—3)<0<n/(n—2). Since n/2(n—3)<n'<g<n/(n—2), we have in par-
ticular u-VucH-9Q)". Then in the same way as above we have by
5.1 and Remark 3.3 (ii) that Vu< LyQ2)"* and pe LyR). Now, the assertion
follows from interpolation and [Corollary 2.2/(ii). This completes the proof. m

6. Uniqueness for the weak solutions of the stationary Navier-Stokes
equations; Proof of Theorem 4.

As we have seen in the proof of [Theorem 3 (1), it holds |(u-Vu, ¢)| <
C|Vull3|¢l. for all =C5,(R). By MTheorem 2, C3,(2) is dense in XA2)N
L™(2)" and hence by passage to the limit we can insert ve X¥X@)N\L*(Q)" as
a test function ¢ in the definition of weak solution of (N-S). Since (v-Vov, v)=0,
we obtain

6.1) (Nu, Vo)+(u-Vu, v) = {f, v>,
(6.2) (Vulls = <f, v>.

Moreover, we have by the Holder and the Sobolev inequalities that

|-V, @) < [vallVolelGllenicn-2 = ClllalI V][Vl
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for all =C3,(2). By Theorem 1, C5,(f2) is dense in X¥£2) and hence from
the above inequality we can insert us XAQ) as a test function defining the
weak solution ve X2(D)NLY(Q)";

(6.3) Vv, Vu)+@-Vo, u) = {f, uy.
Adding (6.1-3) and (E.l.), we get by integration by parts

IVu—Yoli < (u-Vu, v)+@-Vo, u) = (u-Vu, v)—@w-Vu, v)
= ((u—v)-Yu—v), v).

Here we used ((u—v)-Vv, v)=0. Letting w=u—v and then using the Holder
inequality and the Sobolev inequality HngZn/(n_g)gC*]Ingltz(gbeﬁé' 2 2)), we have
from above

Vw2 < |wllsnsa-IVwllalvlls = CxlNwliEvll, .

Take 0<A<Cz!. Then under the assumption that |v|,<4, we conclude |Vw||}
<0, which implies u=v on 2. This completes the proof. m
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