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1. Introduction.

Fatou’s theorem, which asserts that every bounded holomorphic function in
the unit disc $\Delta$ has non-tangential limits almost everywhere in the unit circle
$\partial\Delta$ , plays an important role in the theory of bounded holomorphic functions.
Of course, this theorem does not hold on all holomorphic mappings of the unit
disc into general complex manifolds. One of the most typical examples is given
by universal covering maps. Namely, let $S$ be a hyperbolic compact Riemann
surface, and let $\pi$ : $\Deltaarrow S$ be a holomorphic universal covering map. Then, as
is well-known (cf. [Ts] Chapter XI), every point in $\partial\Delta$ is a point of approxi-
mation, that is, for every point $e^{i\theta}\in\partial\Delta$ and for every point $p\in S$ there exists
a sequence of points $\{a_{n}\}$ in $\pi^{-1}(p)\subset\Delta$ converging to $e^{t\theta}$ in a Stolz sector.
Accordingly, the boundary behavior of $\pi$ : $\Deltaarrow S$ is quite complicated.

However, for a certain holomorphic mapping $f$ : $\Deltaarrow S$ , the boundary behavior
remains to be simple. Assume that there exists a non-trivial deformation of $f$

with a complex analytic parameter (see Section 2 for an exact definition). Then
it is easy to see that the holomorphic mapping $f$ has radial limits almost every-
where in $\partial\Delta$ (cf. Section 2). This example indicates that the rigidity of a holo-
morphic mapping of $\Delta$ into a complex manifold is closely connected with the
boundary behavior. The boundary behavior is related to analytic properties of
the target manifold.

In this paper, we shall investigate holomorphic mappings of $\Delta$ into C-hyper-
bolic manifolds with some additional conditions. In Section 2, we shall give
a sufficient condition of a domain $M\subset C^{m}$ under which every holomorphic proper
mapping of $\Delta$ into $M$ is rigid, or, under which every non-rigid holomorphic
mapping of $\Delta$ into $M$ behaves tamely near $\partial\Delta$ . Some examples are shown in
Section 3. In Section 4, we shall investigate non-rigid mappings. In Section
5, we shall investigate a manifold on which the Carath\’eodory pseudodistance is
a distance and study holomorphic mappings of $\Delta$ into such a manifold. There,
we introduce an ideal boundary of a manifold following the manner of com-
pactification of a Riemann surface.
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2. Rigidity of holomorphic mappings of the unit disc.

In this paper $\Delta$ denotes the unit disc $\{z\in C; z|<1\}$ . A subset $R$ of a
complex manifold $M$ is Pluripolar (resp. analytic) if for every point $p\in R$ there

$\xi$ exist a neighborhood $U$ of $p$ in $M$ and a plurisubbarmonic function $s$ on $U$

(resp. finite set of holomorphic functions $\varphi_{1},$
$\cdots$ , $\varphi_{n}$ on $U$ ) such that $U\cap R=$

$\{q\in U;s(q)=-c\circ\}$ (resp. $U\cap R=\{q\in U;\varphi_{1}(q)=\cdots=\varphi_{n}(q)=0\}$ ).

We begin with the definition of rigidity.

DEFINITION. Let $M$ be a complex manifold. A holomorphic mapping $f$ : $\Delta$

$arrow M$ is said to be rigid if there exists no holomorphic mapping $\hat{f}:\Delta\cross\Deltaarrow M$

such that $\hat{f}(\cdot, 0)=f(\cdot)$ on $\Delta$ and that $\hat{f}(\cdot, 0)\not\equiv\hat{f}(\cdot, \zeta)$ for some $\zeta\in\Delta$ .
Namely, a holomorphic mapping $f$ : $\Deltaarrow M$ is rigid if there exists no non-

trivial deformation with a complex analytic parameter.
Let $M$ be a bounded domain in $C^{m}$ . Then every holomorphic mapping

$f$ : $\Deltaarrow M$ has non-tangential limits almost everywhere in $\partial\Delta$ . If a holomorphic
proper map is deformed with a complex analytic parameter, then the non-
tangential limits will be also deformed with the complex analytic parameter.
In order to get a domain $M$ such that every holomorphic proper mapping $f$ : $\Delta$

$arrow M$ is rigid, therefore, it is natural to consider conditions about analytic sub-
sets in $\overline{M}$ . However, as we shall see in an example in the next section (Ex-

ample 3.4), there exists a rigid holomorphic proper mapping $f$ whose boundary
values are surrounded by analytic sets in $\partial M$. Hence we give another type of
condition beside that.

THEOREM 2.1. Let $M$ be a bounded domain in $C^{m}$ . Assume that there exists
a countable set of pluripolar sets $\{R_{k}\}_{k=1}^{\infty}$ in $C^{m}$ with $R_{k}\cap M=\emptyset$ for all nafural
number $k$ such that for each point $p \in\partial M\backslash \bigcup_{k=1}^{\infty}R_{k}$ one of the followings takes
place:

(i) every holomorphic mapping $h:\Deltaarrow\overline{M}$ with $h(O)=p$ is a constant map.
(ii) for every sequence $\{p_{i}\}\subset M$ with $\lim_{iarrow\infty}p_{i}=p$ and for every positive

number $\alpha$ , the Euclidean diameters of the hyperbolic balls $\{q\in M;d_{M}(p_{i}, q)<\alpha\}$

converge to $0$ as $iarrow\infty$ , where $d_{M}$ is the Kobayashi distance.
Then every holomorphic proper mapffing $f$ : $\Deltaarrow M$ is rigid. In fact, every

non-rigid holomorphic proper mapping has radial limits in $M$ (not in $\partial M$ ) almost
everywhere in $\partial\Delta$ .

Before proving this theorem we note the following fact: if for any two
points $P$ and $q$ in $M$ the Kobayashi distance $d_{M}(p, q)$ is realized by one holo-
morphic mapping $\varphi:\Deltaarrow M$, then the condition (i) implies the condition (ii).
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In order to prove Theorem 2.1, we need the following lemma.

LEMMA 2.2. Let $M$ and $\{R_{k}\}$ be as in Theorem 2.1. Then for every holo-
morPhic mapping $f$ : $Harrow M$ there exists a subset $E\subset R$ with mes$(E)=0$ such that
the mapping $f$ has a non-tangential limit outside $\bigcup_{k=1}^{\infty}R_{k}$ at every Point $x\in R-E$ .
Here, $H$ is the upper half plane in $C$, and mes $(\cdot)$ stands for the one dimensional
Lebesgue measure.

PROOF. For a holomorphic mapping $f$ : $Harrow M$ and a point $x\in R$ at which
$f$ has a non-tangential limit, let $f_{*}(x)$ denote the non-tangential limit at $x$ . By
Fatou’s theorem $f_{*}(x)$ exists at almost every point $x\in R$ . Hence it is sufficient
to show that for each natural number $k$ the set

$E_{k}=\{x\in R;f_{*}(x)\in R_{k}\}$

has measure $0$ . (Note that $E_{k}$ is measurable, since $f_{*}$ is measurable.)

Assume that mes$(E_{k})>0$ for some natural number $k$ , and fix one of such
numbers, say $k$ . We may assume that $R_{k}$ is represented by a negative pluri-
subharmonic function defined in an open set $U$ in $C^{m}$ ; $R_{k}=\{p\in U;s(p)=-\infty\}$ .

For each $x\in R$ and $y>0,$ Put
$S_{x}^{y}=\{z\in H;\pi/4<arg(z-x)<3\pi/4, {\rm Im} z<y\}$ .

Then, from the definition of $E_{k}$ , for each point $x\in E_{k}$ there exists a positive
number $y$ such that $f(S_{x}^{y})\subset U$. For each $x\in E_{k}$ , Put

$y(x)= \sup\{y;f(S_{x}^{y})\subset U\}$ .

Then it is easy to see that the assignment $xarrow y(x)$ is an upper semicontinuous
function on $E_{k}$ . Therefore, the subset $E^{n}\subset E_{k}$ defined by

$E^{n}=\{x\in E_{k} ; y(x)>1/n\}$

is a measurable set for each natural number $n$ . Since

$E_{k}= \bigcup_{n=1}^{\infty}E^{n}$

and $E_{k}$ is of Positive measure, there exists a natural number $m$ such that
mes$(E^{m})>0$ . Fix such a number $m$ . Since mes$(E^{m})>0$ , there exists a compact
set $K$ in $E^{m}$ such that mes$(K)>0$ . Set

$\Omega=\bigcup_{x\in K}S_{x}^{1/m}$

Then $\partial\Omega\cap R=K$, since $K$ is ccmpact. Choose a component $\Omega_{0}$ of $\Omega$ such that
mes$(\partial\Omega_{0}\cap R)>0$ . Note that $\partial\Omega_{0}\cap R$ is a compact subset of $K$, since different
components of $\Omega$ are away from each other near $R$ . Therefore, $R\backslash \partial\Omega_{0}\cap R$ is
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a disjolnt union of open intervals;

$R \backslash \partial\Omega_{0}\cap R=\bigcup_{n=1}^{\infty}l_{n}$ , $I_{n}=(a_{n}, b_{n})$ , $n=1,2,$ $\cdots$ .

Let $w_{n}$ denote the harmonic measure of $I_{n}$ with respect to the upper half plane
$H$ that is, the Poisson integral of the characteristic function of $I_{n}(n=1,2, \cdots)$ .
In the same way, let $w$ denote the harmonic measure of $R \backslash \partial\Omega_{0}\cap R=\bigcup_{n=1}^{\infty}I_{n}$ .
Then

$w(z)= \sum_{n=1}^{\infty}w_{n}(z)$ , $z\in H$ .

AS is well-known in the theory of bounded harmonic functions, $u$ has radiaI
limits $w_{*}(x)$ at almost all points $x\in R$ and $w_{*}(x)=1$ almost everywhere in $R\backslash \partial\Omega_{0}$

$\cap R$ and $w_{*}(x)=0$ almost everywhere in $\partial\Omega_{0}\cap R$ . Hence by the assumption
mes$(\partial\Omega_{0}\cap R)>0,$ $w$ is not a constant function.

NOW we show that $w$ is bounded away from $0$ uniformly on $\partial\Omega_{0}\cap H$ Indeed,
$\partial\Omega_{0}AH$ is decomposed as follows:

$\partial\Omega_{0}\cap H=(\bigcup_{n=1}^{\infty}l_{n})\cup(\partial\Omega_{0}\cap\{{\rm Im} z=1/m\})$ ,

where $l_{n}$ is the union of two sides of the triangle with base $I_{n}$ :

$l_{n}=$ { $z\in H;arg(z-b_{n})=3\pi/4$ or $arg(z-a_{n})=\pi/4,$ ${\rm Im} z\leqq(b_{n}-a_{n})/2$ }

if $a_{n}^{\wedge}\sim-\infty$ and if $b_{n}\neq\infty$ , and

$l_{n}=\{z\in H, arg(z-b_{n})=3\pi/4, {\rm Im} z\leqq 1/m\}$ , if $a_{n}=-\infty$ ,

$l_{n}=\{z\in H;arg(z-a_{n})=\pi/4, {\rm Im} z\leqq 1/m\}$ , if $b_{n}=\infty$ .

If a point $z\in\partial\Omega_{0}\cap H$ belongs to $l_{n}$ , then

$w(z) \geqq w_{n}(z)=\frac{1}{\pi}arg\frac{z-b_{n}}{z-a_{n}}>1/2$ .

Since $\partial\Omega_{0}\cap\{{\rm Im} z=1/m\}$ is a compact set in $H$

$\inf\{w(z);z\in\partial\Omega_{0}, {\rm Im} z=1/\uparrow n\}>0$ .
Hence we have

$\inf$ { $w(z);z\in\partial\Omega_{0}$ A $H$ } $=a>0$ .

NOW, $s\circ f$ is a negative subharmonic function on $\Omega_{0}$ , and that for each $z\in$

$\partial\Omega_{0}\cap R,$ $\lim_{\Omega_{0}\ni\zetaarrow z^{S}}\circ f(\zeta)=-\infty$ . Note that $s\circ f\not\equiv-\infty$ , since $R_{k}\cap M=\emptyset$ . There-
fore for each positive number $\epsilon$ ,

$w(z)-ES^{\circ}f(z)>a$ , on $\partial\Omega_{0}$ .

Hence by the minimal principle for superharmonic functions,
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$w(z)-\epsilon s\circ f(z)>\alpha$ , on $\Omega_{0}$ .
Since $\epsilon$ is arbitrary,

$w>\alpha$ on $\Omega_{0}$ .

On the other hand, as noted above, there exists a point $x\in\partial\Omega_{0}\cap R$ with
$\lim_{yarrow 0}w(x+iy)=0$ . This is the desired contradiction. $\square$

PROOF OF THEOREM 2.1. Let $f$ : $\Deltaarrow M$ be a holomorphic proper mapping.
Let $\hat{f}$ :AXA– $M$ be a holomorphic mapping with $\hat{f}(\cdot, O)=f(\cdot)$ . We shall show
that $\hat{f}(\cdot, \zeta)=\hat{f}(\cdot, O)=f(\cdot)$ for every $\zeta\in\Delta$ . Fix a point $\zeta\in\Delta$ arbitrarily. From
Lemma 2.2, for almost every $e^{i\theta}\in\partial\Delta$ the non-tangential limit $f_{*}(e^{t\theta})$ at $e^{i\theta}$

exists and satisfies the condition (i) or (ii).

Assume that $f_{*}(e^{i\theta})$ satisfies (i). Let $\{z_{n}\}\subset\Delta$ be a sequence converging to
$e^{i\theta}$ in a Stolz sector. We may assume, taking a subsequence if necessary, that
the sequence of mappings $\{\hat{f}(z_{n}, \cdot):\Deltaarrow M\}$ converges to a holomorphic mapping
$h:\Deltaarrow\overline{M}$ . Then we have

$h(0)= \lim_{narrow\infty}\hat{f}(z_{n}, 0)=\lim_{narrow\infty}f(z_{n})=f_{\star}(e^{\ell\theta})$ .

Since $f_{*}(e^{i\theta})$ satisfies (i), $h$ is a constant map. It follows that

$\lim_{narrow\infty}f(z_{n}, \zeta)=h(\zeta)=f_{*}(e^{i\theta})$ .

Since $\{z_{n}\}$ is an arbitrary sequence converging to $e^{t\theta}$ in a Stolz sector, $\hat{f}(\cdot, \zeta)$

has a non-tangential limit $\hat{f}_{*}(e^{i\theta}, \zeta)$ at $e^{\dot{t}\theta}$ and that $\hat{f}_{*}(e^{\iota\theta}, \zeta)=f_{*}(e^{\iota\theta})$ .
Assume that $f_{*}(e^{i\theta})$ satisfies (ii). Let $\{z_{n}\}\subset\Delta$ be a sequence converging to

$e^{i\theta}$ in a Stolz sector. Then

$d_{M}(\hat{f}(z_{n}, \zeta),\hat{f}(z_{n}, 0))\leqq d_{\Delta\cross\Delta}((z_{n}, \zeta),$ $(z_{n}, 0))=d_{\Delta}(\zeta, 0)$ .

Since $\lim_{narrow\infty}\hat{f}(z_{n}, 0)=\lim_{narrow\infty}f(z_{n})=f_{*}(e^{i\theta})$ satisfies (ii), $\lim_{narrow\infty}\hat{f}(z_{n}, \zeta)=f_{*}(e^{\mathfrak{i}\theta})$ .
It follows that $\hat{f}(\cdot, \zeta)$ has a non-tangential limit $\hat{f}_{\star}(e^{\iota\theta}, \zeta)$ at $e^{i\theta}$ and that
$f_{*(e^{i\theta}},$ $\zeta)=f^{*}(e^{t\theta})$ .

NOW, the holomorphic mappings $\hat{f}(\cdot, \zeta):\Deltaarrow M$ and $f$ : $\Deltaarrow M$ have the same
non-tangential limits almost everywhere in $\partial\Delta$ . Therefore, by Riesz’ theorem

$\hat{f}(\cdot, \zeta)\equiv f(\cdot)$ on $\Delta$ .
Hence $f$ is rigid.

The above argument implies that if there exists a positive measure set
$E\subset\partial\Delta$ such that $f_{*}(e^{i\theta})\in\partial M$ for all $e^{4\theta}\in E$ then $f$ is rigid. It follows tbat for
a non-rigid mapping $f$ : $\Deltaarrow M$ the non-tangential limits $f_{*}(e^{t\theta})$ at almost all $e^{\iota\theta}$

$\in\partial\Delta$ belong to M. $\square$

COROLLARY 2.3. Let $N$ be a complex manifold with a covering space $11I$
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satisfying the $assu?nption$ of Theorem 2.1. $T$ en every non-rigid holomorphic
mapping of $\Delta$ into $N$ has non-tangential limits almost everywhere in $\partial\Delta$ .

3. Examples.

EXAMPLE 3.1. Let $S$ be a hyperbolic Riemann surface of finite analytic
type. Then the Teichm\"uller space $T(S)$ of $S$ is identified with a bounded do-
main in $C^{m}$ via the Bers embedding, and satisfies the assumption of Theorem
2.1. See [Ta] for details and applications. In this case, the sets $\{R_{k}\}_{k=1}^{\infty}$ are
analytic sets dePned by holomorphic functions which are defined globally on $C^{m}$ .
For this reason, the proof for $T(S)$ is much simpler than that of Theorem 2.1,
in which each $R_{k}$ is defined only locally.

The following example shows that Theorem 2.1 can not be extended to all
manifolds $M$.

EXAMPLE 3.2. Let $l_{1},1_{2},$ $l_{3}$ and $l_{4}$ be complex lines in general position in
$P_{2}(C)$ , and let $l_{0}$ be the line through $l_{1}\cap l_{2}$ and $l_{3}\cap l_{4}$ . Put $M=P_{2}(C) \backslash \bigcup_{i=0}^{4}l_{i}$ .
Then $M$ is complete hyperbolic and hyperbolically embedded in $P_{2}(C)$ (cf. [K]

Chapter VI). The boundary of $M$ is of course the finite union of analytic sets
$\bigcup_{i=0}^{4}l_{i}$ . However, all non-rigid holomorphic mappings do not have radial limits
almost everywhere in $\partial\Delta$ . Note that $M$ is biholomorphic to the direct product
of thrice punctured spheres. Let $\pi$ : $\Deltaarrow C\backslash \{0,1\}$ denote a holomorphic universal
covering map. Then the holomorphic mapping $f$ : $\Deltaarrow(C\backslash \{0,1\})\cross(C\backslash \{0,1\})$

defined by
$f(z)=(\pi(z), 1/2)$ , $z\in\Delta$

is non-rigid, since $f:\Delta\cross\Deltaarrow(C\backslash \{0,1\})\cross(C\backslash \{0,1\})$ defined by

$f(z, \zeta)=(\pi(z),\frac{\zeta+1}{2})$ $(z, \zeta)\in\Delta\cross\Delta$

gives a deformation of $f$ with a complex analytic parameter. However, $f$ has
radial limits nowhere in $\partial\Delta$ except for a null set, since $\pi$ has radial limits
nowhere except for a null set.

More generally, let $S_{1}$ and $S_{2}$ be hyperbolic Riemann surfaces of finite
analytic type and let $M$ be the product $S_{1}\cross S_{2}$ . Then the product of a universal
covering map and a constant map is non-rigid holomorphic mapping which has
radial limits nowhere except for a null set in $\partial\Delta$ . On the other hand, the pro-
duct $S_{1}\cross S_{1}$ minus a suitable analytic set is a manifold to which Corollary 2.3
is applied;

EXAMPLE 3.3. Let $S$ be a hyperbolic Riemann surface of finite analytic
type with no non-trivial conformal automorphism. Set
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$M=S\cross S\backslash \{(p, q)\in S\cross S;p=q\}$ .

Then every non-rigid holomorphic mapping of $\Delta$ into $M$ has radial limits almost
everywhere in $\partial\Delta$ . In fact, the universal covering space is a subvariety of
$T(S)$ as follows (cf. [BR] p. 269). Let $X_{1}$ and $X_{2}$ be distinct points in $S$ and
set $\dot{S}=S-\{x_{1}\},\dot{S}=S-\{x_{1}, x_{2}\}$ . Let $\pi_{2}$ : $T(\dot{S})arrow T(\dot{S})$ and $\pi_{1}$ : $T(\dot{S})arrow T(S)$ be the
Bers fiber spaces over $T(\dot{S})$ and $T(S)$ respectively (see [B]). Put $(\pi_{2^{\circ}}\pi_{1})^{-1}(0)$

$=V$ , where $0$ is the base point of $T(S)$ . Each point $[\mu]$ in $V$ determines a
quasiconformal mapping $w^{\mu}$ : $Sarrow S$ . Now set

$\varphi([\mu])=(w^{\mu}(x_{1}), w^{\mu}(x_{2}))$ , $[\mu]\in V$ .

Then $\varphi$ is a well-defined holomorphic mapping of $V$ onto M. Let $\Gamma$ be a
Fuchsian group representing the Riemann surface S. The group $\Gamma$ is identified
with a subgroup of the modular group Mod$(S)$ and acts on $V$ . Let $I’$ be the
subgroup of $\Gamma<Mod(S)$ consisting of all modular transformations $[\omega]_{*}$ induced
by quasicoformal self-mappings $\omega$ of $S$ fixing $x_{1}$ and $x_{2}$ point-wise. Then, by

the same argument as in [BR], the holomorphic mapping $\varphi:Varrow M$ is a cover-
ing map with covering group $\Gamma’$ . It is easy to see that $V$ is simply connected,

hence is the universal covering space. It is also easy to see, from the defini-
tion of the Bers fiber space, the inclusion map $VcT(S)$ is proper. Therefore
Corollary 2.3 is applied to $M$ .

This example indicates that removing a countable union of analytic sets in
a manifold may change the property of holomorphic mappings of $\Delta$ into the
manifold. In fact, by the above argument, every holomorphic proper mapping
of $\Delta$ into $\Delta\cross\Delta\backslash U_{\gamma\in\Gamma}\{(p, \gamma(p));p\in\Delta\}$ is rigid, although there are non-rigid
proper mappings of $\Delta$ into $\Delta\cross\Delta$ . Note that the domain $\Delta\cross\Delta\backslash \bigcup_{\gamma\in\Gamma}\{(p, \gamma(p))$ ;
$p\in\Delta\}$ itself does not satisfies tbe assumption of Theorem 2.1.

EXAMPLE 3.4. Let $M$ be the product

$M=(A\backslash [-1/2,1/2])\cross\Delta$ .

Let $\pi$ : $\Deltaarrow(\Delta_{3/4}\backslash [$ 1/2, 1/2] $)$ be a holomorphic universal covering map, where
$\Delta_{s/4}=\{z\in\Delta;|z|<3/4\}$ . Then the holomorphic mapping $f$ : $\Deltaarrow M$ defined by

$f(z)=(\pi(z), z)$ , $z\in\Delta$

has radial limits $f_{*}(e^{i\theta})$ at almost all points $e^{t\theta}\in\partial A$ . Note that for each radiaI
limit $f_{*}(e^{i\theta})$ there exists a holomorphic injection $h:\Deltaarrow\partial M$ with $/i(O)=f_{*}(e^{i\theta})$ .
Hence no $f_{*}(e^{t\theta})$ satisfies the condition (i). However, it is easy to see that $f$

is rigid. The rigidity of $f$ is due to the following fact: there exists a positive
measure set $F\subset\partial\Delta$ such that $f_{*}(e^{\ell\theta})\in[-1/2,1/2]\cross\partial\Delta$ for each $e^{t\theta}\in F$ and every
point in $[-1/2,1/2]\cross\partial\Delta$ satisfies the condition (ii).



138 H. $TA_{-}\backslash IGA\backslash \backslash A$

4. Rank of deformation.

In tbis section we investigate non-rigid mappings.

DEFINITION. Let $f$ : $\Deltaarrow M$ be a holomorphic mapping. We shall say $f$ has
deformation of rank $r$ if there exists a holomorphic mapping $\hat{f}:\Delta\cross\Delta^{r}=$

$\Delta\crossarrow M\frac{\Delta\cross\cdots\cross\Delta}{\mathcal{T}times}$
with $\hat{f}(\cdot, \frac{0}{r}, 0)=f(\cdot)$ on $\Delta$ such that for some $z\in\Delta$ the

Jacobian matrix of $\hat{f}(z$ , $\cdot$ $)$ : $\Delta^{r}arrow M$ at some $\zeta\in\Delta^{r}$ is of rank $r$ .
Let $M$ be a bounded domain such that the maximal dimension of analytic

subsets contained in $M$ is $l$ . Professor Y. Imayoshi showed that the rank of
deformation of each proper holomorphic mapping of $\Delta$ into $M$ is at most 1 using
Jacobian matrices (oral communication). Note that we have shown in Lemma
2.2 that a countable union of pluripolar sets is negligible. Combining Lemma
2.2 wlth his idea, we shall extend that result.

Another rigidity property of certain holomorphic mappings on condition
about boundary components appears in Sunada [S].

DEFINITION. Let $M$ be a bounded domain in $C^{m}$ . Assume that the union
of analytic sets of dimension greater than $l$ contained in $\partial M$ is covered by a
countable union $\bigcup_{-1}^{\infty}R_{k}$ of pluripolar sets with $R_{k}\cap M=\emptyset(k=1,2, \cdots)$ and
that the union of analytic sets of dimension $l$ contained in $\partial M$ is not covered
by such a countable union of pluripolar sets. Then we shall say that the
essential maximal dimension of analytic sets contained in $\partial M$ is $l$ .

THEOREM 4.1. Let $M$ be a complete hyperbolic bounded domain in $C^{m}$ and
assume that the essential maximal dimension of analytic sets contained in $\partial M$ is $l$ .
Then for each proper holomorphic mapping $f$ : $\Deltaarrow M$ the rank of deformation is
at most $l$ .

PROOF. Let $f$ : $\Deltaarrow M$ be a holomorphic proper mapping, and let $f:\Delta\cross\Delta^{r}$

$arrow_{\wedge}hl$ be a holomorphic mapping with $f(\cdot, O)=f$ on $\Delta$ . Assume that $r>l$ . We
shall show that each $r\cross r$ minor of Jacobian matrix of $\hat{f}(z, \cdot)$ vanishes identically
on $\Delta^{r}$ for every $z\in\Delta$ .

Note that for all $\zeta\in\Delta^{r},$ $f( \cdot, \zeta):\Delta\frac{>}{}M$ is proper. In fact, for each sequence
$\{z_{n}\}\subset\Delta$ with no accumulation points in $\Delta,$ $\{f(z_{n}, 0)\}$ has no accumulation points
in $M$, and that

$d_{1f} \int(J^{\wedge}(z_{n}\wedge, 0),\hat{f}(z_{n}, \zeta))\leqq d_{\Delta^{r}}(0, \zeta)$ .

Hence the sequence $\{f(z_{n}, \zeta)\}\subset M$ has no accumulation points in the complete
hyperbolic domain $M$.

Let $\{\zeta_{k}\}_{k=1}^{\infty}$ be a countable dense subset in $\Delta^{r}$ . Let $\{R_{h}\}_{h=i}^{\infty}$ be a sequence
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of pluripolar sets which covers the union of analytic sets of dimension greater
than 1 in $\partial M$. Since each $\hat{f}(\cdot, \zeta_{k})$ is proper, there exists a subset $E_{k}$ in $\partial\Delta$

with measure $0$ such that $\hat{f}(\cdot, \zeta_{k})$ has radial limits in $\partial M\backslash \bigcup_{h=1}^{\infty}R_{h}$ everywhere
in $\partial\Delta\backslash E_{k}$ . Set $E= \bigcup_{k=1}^{\infty}E_{k}$ .

Take an $r\cross r$ minor $g_{z}$ of the Jacobian matrix of $\hat{f}(z, \cdot)$ : A– $M$, where $z\in\Delta$ .
Then the minor $g_{z}(\zeta)$ at $\zeta$ depends on $z\in\Delta$ and $\zeta\in\Delta^{r}$ holomorPhically, hence
$g_{z}(\zeta)$ is a holomorphic function on $\Delta\cross\Delta^{r}$ . Let $e^{\dot{t}\theta}$ be a point of $\partial\Delta\backslash E$ and let
$\{z_{n}\}_{n=1}^{\infty}\subset\Delta$ be a sequence converging to $e^{i\theta}$ non-tangentially. Then, taking a
subsequence if necessary, we may assume tbat $\{\hat{f}(z_{n}, \cdot)\}_{n\Leftarrow 1}^{\infty}$ converges to a
holomorphic mapping of $\Delta^{r}$ into $\partial M$. For each $k$ , the sequence $\{g_{z_{n}}(\zeta_{k})\}_{n}^{\infty}=1$

converges to an $r\cross r$ minor of the Jacobian matrix of this mapping at $\zeta_{k}$ . Now,
$\hat{f}_{*}(e^{i\theta}, \zeta_{k})=\lim_{narrow\infty}\hat{f}(z_{n}, \zeta_{k})$ belongs to $\partial M\backslash \bigcup_{h=1}^{\infty}R_{h}$ . Hence by tbe assumption
$r>l$ , it foilows that the $r\cross r$ minor $\lim_{narrow\infty}g_{z_{n}}(\zeta_{k})$ is equal to $0$ for each $k$ . Note
that $g$ . $(\zeta_{k})$ is a bounded holomorphic function on $\Delta$ . Hence $g_{z}(\zeta_{h})=0$ for all
$z\in\Delta$ and for each $k$ . Since $\{\zeta_{k}\}$ is dense in $\Delta^{r},$ $g_{z}(\cdot)\equiv 0$ on $\Delta^{r}$ for all $z\in\Delta$ . $\square$

5. Manifolds with Carath\’eodory distances.

First we recall the following fact (cf. [CC] pp. 96-98). Let $M$ be a com-
plex manifold and let $Q$ be a class of continuous functions on $M$. Then there
exists a compact topological space M\S \supset M, called a $Q$-compactification of $M$,

with the following properties:
(i) $M$ is dense in $M_{Q}^{*}$ .
(ii) The topology induced from $M_{Q}^{*}$ coincides with the topology of $M$.
(iii) Every function in $Q$ is continuously extended to $M \int$ .
(iv) Any two distinct points $a,$

$b$ in $M\delta\backslash M$ are separated by $Q$ . Namely,
there exists a function $f\in Q$ such that $f(a)\neq f(b)$ .

We sketch the construction of $M_{Q}^{*}$ . See [CC] for details. For each $f\in$

$Q\cup C_{0},\hat{C}_{f}$ denote a copy of $\hat{C}$ . Here, $C_{0}=C_{0}(M)$ is the class of all continuous
functions on $M$ with compact support. Put

$\hat{C}^{Q\cup C_{0}}=\prod_{f\in Q\cup C_{0}}\hat{C}_{f}$ ,

equipped with the product topology. Define a mapping $\psi:Marrow\hat{C}^{Q\cup C_{0}}$ by

$\psi(a)=\{f(a)\}_{f\in Q\cup c_{0}}$ ,

where $a\in M$ . Then it is easy to see that $\psi$ is injective and continuous from
the definition of the topology of $\hat{C}^{Q\cup C_{0}}$ . Put $M^{*}=\overline{\psi(M}$ ). Then $\psi:Marrow\psi(M)$ is
an open map, and under the identification of $M$ with $\psi(M),$ $M^{*}$ has the pro-
perty (i) and (ii). For each $f\in Q\cup C_{0}$ , let $\pi_{f}$ : $\hat{C}^{Q\cup C_{0}}arrow\hat{C}_{f}$ be a projection. Then,

under the ide: tification of $Ilf$ with $\psi(M),$ $\pi_{f}$ is a continuous extension of $f$, and
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for any two distinct points $a,$ $b\in M^{*}\backslash M$, there exists a function $f\in Q$ with
$\pi_{f}(a)\neq\pi_{f}(b)$ . Hence $M^{*}$ has the desired properties. Note that such a com-
pactification is unique up to homeomorphisms which are the identity on $\Lambda I$.

NOW, assume that $M$ is a complex manifold on which the Carath\’eodory

pseudo-distance $c_{M}$ is a distance. Take a countable dense subset $L=\{(a_{n}, b_{n})\}_{n=1}^{\infty}$

in $M\cross M$ and choose a holomorphic function $g_{n}$ : $1Warrow\Delta$ realizing the Carath\’eo-
dory distance $c_{M}(a_{n}, b_{n})$ for each $n$ . Put $Q=\{g_{n}\}_{n=1}^{\infty}$ . Then we have the Q-
compactification $M \int$ of $M$. Note that $M_{Q}^{*}$ may depend on the choice of $Q=\{g_{n}\}$ .

If $M$ is a relatively compact subset of a complex manifold $N$ on which the
Carath\’eodory pseudo-distance $c_{N}$ is a distance, then we have a compactification
$\overline{M}$ in $N$ beside the compactification $M_{Q}^{*}$ . For the dense subset $L=\{(a_{n}, b_{n})\}_{n=1}^{\infty}$

as above, choose a holomorphic function $h_{n}$ : $Narrow\Delta$ realizing the Carath\’eodory

distance $c_{N}(a_{n}, b_{n})$ for each $n$ . Put $Q_{0}=\{h_{n}\}_{n}^{\infty}=1$ . Then, the $Q_{0}$-compactification
$M_{Q_{0}}^{*}$ is homeomorphic to $\overline{M}$ . In fact, by the uniqueness of the $Q_{0^{-}}compactifica-$

tion it is sufficient to show that $Q_{0}$ separates distinct points on $\overline{M}$ . Let $a,$
$b\in\overline{M}$

be distinct points. Then there exists a subsequence $\{(a_{n_{i}}, b_{n_{i}})\}\subset L$ with
$\lim_{iarrow\infty}(a_{n_{i}}, b_{n_{i}})=(a, b)$ . Since $c_{N}(a, b)>0$ , we may assume that there exists a
positive number $\alpha$ such that $c_{N}(a_{n_{i}}, b_{n_{i}})>\alpha$ for every $i$ . Let $\rho$ denote the
Poincar\’e distance of $\Delta$ . If $h(a)=h(b)$ for every $h\in Q_{0}$ ,

$0<a<c_{N}(a_{n_{i}}, b_{n_{i}})=\rho(h_{n_{i}}(a_{n_{i}}), h_{n_{i}}(b_{n_{i}}))$

$\leqq\rho(h_{n_{i}}(a_{n_{i}}), h_{n_{i}}(a))+\rho(h_{n_{i}}(a), h_{n_{i}}(b))+\rho(h_{n_{i}}(b), h_{n_{i}}(b_{n_{i}}))$

$=\rho(h_{n_{i}}(a_{n_{i}}), h_{n_{i}}(a))+\rho(h_{n_{\ell}}(b), h_{n_{i}}(b_{n_{i}}))$

$\leqq d_{N}(a_{n_{i}}, a)+d_{N}(b_{n_{i}}, b)$ .

Here, $d_{N}$ is the Kobayashi distance on $N$. This is a contradiction since
$\lim_{arrow\infty}d_{N}(a_{n_{i}}, a)=\lim_{iarrow\infty}d_{N}(b_{n_{i}}, b)=0$ . This argument also shows that $Q=\{g_{n}\}_{\gamma\iota}^{\infty}=1$

separates distinct points in $M$.
Note that $\overline{M}$ and $M \int$ are not necessarily the same compactification. For

example, let $M$ be a simply connected relatively compact region in $\Delta$ and let
$f$ : $Marrow\Delta$ be a conformal mapping. Then, since the Carath\’eodory distance on
$M$ is the pull back of the Poincar\’e distance $\rho$ via $f,$ $M_{Q}^{*}$ is realized by $f\overline{(M)}=\overline{\Delta}$

for any choice of $Q$ . On the other hand, the mapping $f$ : $Marrow\Delta$ extends to a
homeomorphism of $\overline{M}$ onto $\overline{f(M}$) $=\overline{\Delta}$ if and only if $M$ is a Jordan domain. Hence
$\overline{M}$ and M\S are the same compactification if and only if $M$ is a Jordan domain.

We also note that $M_{Q}^{*}$ is metrizable in the above situation. Take a sequence
of functions $\{]_{k}\}_{k=1}^{\infty}\in C_{0}(M)$ with $|| \oint k||_{\infty}<1$ for each $k$ such that for each $a\in M$

there exists a function $j_{k}$ with $i_{k}(a)\neq 0$ . Then $Q\cup\{]_{k}\}_{k=1}^{\infty}$ separates distinct
points in $M_{Q}^{*}$ . It follows that the function $d:$ M\S $\cross$ M\S \rightarrow R defined by
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$d(a, b)= \sum_{k=1}^{\infty}\frac{1}{2^{k}}|g_{k}(a)-g_{k}(b)|+\sum_{k=1}^{\infty}\frac{1}{2^{k}}|j_{k}(a)_{-]_{k}}(b)|$

is a distance on $M_{Q}^{*}$ , since $Q$ separates $M \int$ . It follows that $M_{Q}^{*}$ is separable.

LEMMA 5.1. Let $M$ be a complex mamfold on which the Carath\’eodory pseudo-
distance $c_{M}$ is a distance. Let $\{(a_{n}, b_{n})\}_{n\Leftarrow 1}^{\infty}$ be a countable dense subset of $M\cross M$,
and let $Q=\{g_{n}\}_{n=1}^{\infty}$ be a sequence of holomorphic functions on $M$ such that
$g_{n}$ : $Marrow\Delta$ realizes the Carath\’eodory distance $c_{M}(a_{n}, b_{n})$ for each $n$ . Then every
holomorphic mapping $f$ : $\Deltaarrow M$ has non-tangential limits in the Q-compactification
M\S almost everywhere in $\partial\Delta$ . If $M$ is a relatively compact region in a complex

mamfold $N$ on which the Carath\’eodory pseudo-distance $c_{N}$ is a distance, then every
holomorphic maplnng $f$ : $\Deltaarrow M$ has non-tangential limits in $\overline{M}\subset N$ almost every-
where in $\partial\Delta$ .

In either case, if two holomorphic mappings $f_{1}$ : $\Deltaarrow M$ and $f_{2}$ : $\Deltaarrow M$ have the
same non-tangential limits in a positive measure set in $\partial\Delta$ , then $f_{1}\equiv f_{2}$ on $\Delta$ .

PROOF. For the sake of simplicity of notation, we shall give a proof witb
respect to radial limits. The statement for non-tangential limits is proved in
the same way. Let $f$ : $\Deltaarrow M$ be a holomorphic mapping. For each $e^{i\theta}\in\partial\Delta$ ,
put

$A_{f}( \theta)=\bigcap_{r0<<1}\overline{\{f(r’e^{i\theta});1>r’>r}\}$ ,

where the closure is taken in $M \int$ .
For each $g_{n}\in Q$ , there exists a subset $E_{n}\subset\partial\Delta$ with mes$(E_{n})=0$ such that

the holomorphic mapping $g_{n}\circ f$ : $\Deltaarrow\Delta$ has a radial limit $(g_{n}\circ f)_{*}(e^{i\theta})$ at every point
$e^{i\theta}\in\partial\Delta\backslash E_{n}$ . Set $E=U_{n=1}^{\infty}E_{n}$ , and fix a point $e^{t\theta}\in\partial\Delta\backslash E$ arbitrarily. For each
point $p\in A_{f}(\theta)$ , there exists a sequence $\{r_{m}\}_{m=1}^{\infty}\subset(0,1)$ with $r_{m}\nearrow 1$ such that
$\lim_{marrow\infty}f(r_{m}e^{\iota\theta})=p$ . Since each $g_{n}$ is continuous on $M_{Q}^{*},$ $(g_{n^{\circ}}f)_{*}(e^{i\theta})= \lim_{marrow\infty}g_{7b}$

$\circ f(r_{m}e^{i\theta})=g_{n}(\lim_{marrow\infty}f(r_{m}e^{i\theta}))=g_{n}(p)$ . Hence we have

$A_{f}( \theta)\subset\bigcap_{n=1}^{\infty}\{p\in M\int;g_{n}(P)=(g_{n}\circ f)_{*}(e^{t\theta})\}$ .

Assume that $A_{f}(\theta)$ contains two distinct points $a$ and $b$ . Then, since $A_{f}(\theta)$ is
connected, we may assume that both of $a$ and $b$ belong to $M$ or both of $a$ and
$b$ belong to $M5$ . In either case, there exists a function $g_{n}\in Q$ such that $g_{n}(a)$

$\neq g_{n}(b)$ . On the other hand, since $a,$ $b\in A_{f}(\theta),$ $g_{n}(a)=g_{n}(b)=(g_{n}\circ f)_{*}(e^{i\theta})$ . This
is a contradiction. Hence $A_{f}(\theta)$ consists of exactly one point, say $a_{\theta}$ . It fol-
lows that $f$ has a radial limit $a_{\theta}$ at every point $e^{i\theta}\in\partial\Delta\backslash E$.

If $M$ is a relatively compact region in $N$, define $A_{f}(\theta)$ using the closures
in $\overline{M}$ instead of closures in M\S , and take a holomorphic function $h_{n}$ : $Narrow\Delta$ re-
presenting the Carath\’eodory distance $c_{N}(a_{n}, b_{n})$ , instead of $g_{n}$ for each $n$ .
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Since, as noted before, the sequence $\{h_{n}\}_{n=1}^{\infty}$ separates distinct points of $\overline{M}$ , an
exactly parallel argument shows that each holomorphic mapping $f$ : $\Deltaarrow M$ has
non-tangential limits in $\overline{M}$ almost everywhere in $\partial\Delta$ .

NOW assume that two holomorphic mappings $f_{1}$ : $\Deltaarrow M$ and $f_{2}$ : $\Deltaarrow M$ have
the same non-tangential limits in $M \int$ (resp. in $\overline{M}$ ). If $f_{1}\not\equiv f_{2}$ on $\Delta$ , there exists
a point $a\in\Delta$ such that $f_{1}(a)\neq f_{2}(a)$ . Hence there exists a holomorphic function
$g:Marrow\Delta$ with $g(f_{1}(a))\neq g(f_{2}(a))$ which extends continuously to M\S (resp. $\overline{M}$ ).

On the other hand since $g$ is continuous on $M \int$ (resp. $\overline{M}$ ) and since the non-
tangential limits of $f_{1}$ and $f_{2}$ coincide in a positive measure set, so do the non-
tangential limits of $g\circ f_{1}$ and $gof_{2}$ . Hence $g^{\circ}f_{1}\equiv g\circ f_{2}$ on $\Delta$ . This is a contra-
diction. $\square$

This lemma enable us to extend Theorem 2.1. Indeed, in the proof of
Theorem 2.1, we used the fact that the target $M$ is a bounded domain in $C^{m}$

only to show a holomorphic mapping $f$ : $\Deltaarrow M$ has non-tangential limits almost
everywhere in $\partial\Delta$ .

THEOREM 5.2. Let $M$ be a relatively compact domain in a complex manifold
$N$ on which the Carath\’eodory pseudo-distance $c_{N}$ is a distance. Assume that there
exists a countable set of plunpolar sets $\{R_{k}\}_{k=1}^{\infty}$ in $N$ with $R_{k}\cap M=\emptyset$ for all
natural number $k$ such that for each point $p \in\partial M\backslash \bigcup_{k=\iota}^{\infty}R_{k}$ one of the followings
takes place:

(i) every holomorphic mapping $h:\Deltaarrow\overline{M}$ with $h(O)=p$ is a constant map.
(ii) for any two sequences $\{p_{i}\}$ and $\{q_{i}\}$ such that $\lim_{iarrow\infty}p_{i}=p$ and that

$d_{M}(p_{i}, q_{t})<\alpha$ for some positive number $\alpha$ independent of $i,$ $\{q_{i}\}$ also converges to
$p$ , where $d_{M}$ is the Kobayashi distance on $M$.

Then every holomorphic proper mapping $f$ : $\Deltaarrow M$ is rigid. In fact, every
non-rigid holomorphic proper mapping has non-tangential limits in $M$ (not in $\partial M$ )

almost everywhere in $\partial\Delta$ .
Let $M$ be a complex manifold on which the Carath\’eodory pseudo-distance

$c_{M}$ is a distance, and let $Q=\{g_{n}\}_{n=1}^{\infty}$ be as in Lemma 5.1. We shall say a sub-
set $R \subset M\int$ is pluripolar if for every point $p \in M\int$ there exist a neighborhood
$U$ of $p$ in $M_{Q}^{*}$ and a plurisubharmonic function $s$ on $U\cap M$ such that $U\cap R=$

$\{q\in U;\lim_{M\cap U\ni q’arrow q}s(q’)=-\infty\}$ . With this terminology, we have the following:

THEOREM 5.3. Let $M$ be a complex manifold on which the Carath\’eodory

pseudo-distance is a distance. Let $Q=\{g_{n}\}$ be the sequence of holomorphic func-
tions as in Lemma 5.1, and let M\S be a $Q$-compactification of M. Assume that
there exists a countable set of pluripolar sets $\{R_{k}\}_{k=1}^{\infty}$ in M\S with $R_{k}\cap M=\emptyset$ for
all natural number $k$ such that each point $p\in\partial M\backslash U_{k=1}^{\infty}R_{k}$ satisfies the following:

for any two sequences $\{p_{i}\}$ and $\{q_{i}\}$ such that $\lim_{iarrow\infty}p_{i}=p$ and that $d_{M}(p_{i}, q_{i})<\alpha$
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for some positive number $\alpha$ independent of $i,,$ $\{q_{i}\}al$so converges to $p$ .
Then every holomorphic proper mappng $f$ : $\Deltaarrow M$ is rigid. In fact, every

non-rigid holomorphic proper mapping has non-tangential limits in $M$ (not in $\partial M$ )

almost everywhere in $\partial\Delta$ .
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