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1. Introduction.

Recently, for a Green potential v on the unit ball of R”, Gardiner [1]
studied the limiting behavior of #,(v, r), which is the p-th order mean of v
over the sphere of radius r centered at the origin. In this paper we are con-
cerned with Green potentials Gf in the half space D={x=(x’, x,)ER" 'XR*;
x.>0}, where n=2 and f is a nonnegative measurable function on D satisfying

S 8 f(x)dx < oo,
D

where ¢=1 and a<2¢—1. For >0 and a nonnegative Borel measurable function
u on D, define M,(u, r)*——(SRn_lu(x’, r)pdx’)”p; in case p=oo, define M (u, r)=
sup{u(x’, r); x’=R™"'}. Our aim in this paper is to prove that
limg, o x 720 DIPM(GS, x,) =0,
or, more weakly,
liminf, o x P 2F/e = DIPM (G, x,) =0

for p satisfying a suitable condition; the power of x, is shown to be best
possible. In case ¢g=1, our theorems below give versions of Gardiner’s results
in to the half space.

2. Preliminary lemmas.

Now we give some notation and terminologies needed later. Let G(x, y)
denote the Green function in the half space D, that is,

12-n

|x—i
log(|x—y|/lx—y|) in case n=2,

—]X—9y]*"™ in case n=3,
G(x, y):‘{

where £=(x’, —x,) for x=(x', x,). We define the Green potential Gy of a
nonnegative (Radon) measure g on D by setting



2 Y. Mizura

Gp(x) = SDG(x, Vdp(y).

If ¢ has a density fe Li, (D), then we write Gf instead of Gp.
It is easy to see that GuzEco if and only if

SD(l_I" [yl )'"ynd‘u(y) < o,

The symbols K, K,, K,, ---, will be used to denote various constants inde-
pendent of the variables in question. We use the convention that 1/0=oco.
First we show a fundamental tool in our discussions.

LEMMA 1. If (n—1)/n<p<(n--1)/(n—2), then
1/p
(1,60, 927dx)" £ Konyalrat yay e,
if n>2 and (n—1)/(n—2)<p, then
1/p
(1, p01GCx, 372"
é Kxnyn{(xn+yn)_n+(n—1)/p+ lxnﬁyn12—n+<n*1)/p(xn+yn>-2} ;
if n>2 and p=n—1)/(n—2), then
1/

(Sgn—lG(x’ y)pdx/) ’ = Kxnyn(xn“‘yn)ﬁz{l‘*‘DOg(<xn+yn>/|xn_ynl):lllp} »

where K is a positive constant independent of x and y.

PrOOF. First we give a proof in case »=3. In this case

G(x, ) S Kixayalx—3[* " Z—y|72,
and hence

<Snn—1G<x’ y)de,>I/p

< Karava( |, L0832 [ Gt ) T2 )
< Kixayal(a, b),
where a=|x,—Yal, b=|xa+yx| and
Ia, ) = (| T+ arr+oya10rmar) ™.
If (n—1)/n<p<(n—1)/(n—2), then, since a<bh, we have
I(a, )= (| [+ ar- 40y 2ar)

1p

+([ o+ aro+or12r-var)
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< b—z(Sbr(z—n)p+n—zdr)l/p+(S“’r_np+n_2dr)1/p
b

0
< K3b—n+(n~1)/p .

The remaining cases can be proved similarly.
In case n=2, for any ¢>0, we can find K(¢)>0 such that

G(x, y) < K(e)xeyalx—y| 5| X—y |72,

Thus the same arguments as above are also applicable to obtain the required
result.

For 0<B<n, we define an outer capacity by setting
Cs(E)=inf y(R"), ECR",
where the infimum is taken over all nonnegative measures g on R™ such that

|x—y|f"dp(y)=1 for every x<E.
In case B=n, for a set ECR", define

C¥P(E)=inf wW(R™),
where the infimum is taken over all nonnegative measures ¢ on R™ such that
SB 1>[log(2/|x—yl)]1”’dy(y) =1 for every x € E.
(xz,

Here B(x, a) denotes the open ball with radius a and center at x.
For simplicity, let R, denote the open interval (0, oo),

LEMMA 2. Let 0<B<1 and p be a nonnegative measure on R, such that
U(R)<oco. Then there exists a set ECR, such that

lim, o sen, 5 2], 12 =31 *dp(z) =0
+

and _
D 28C g(E;) < o0,

where E; ={x€E; 277 < x <2774},

ProoF. For x>0, we write Slx~y]‘ﬁd)u(y):ux(x)+u2(x), where

(x) = § |x—y|~*dp(y)

(yilz-yi<z/2)

and
wa(x) :S lx—y| " Pdu(y).

(yeR 1z-ylzz/2)
If |[x—y|=x/2, then xf|x—y| #<2? so that we can apply Lebesgue’s domi-
nated convergence theorem to obtain
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lim, o xPus(x) =0.

For each positive integer 7, we define
E;={x; 277<x <2774, 2778y (x)>a7'},
where {a;} is a sequence of positive integers so chosen that
limj.a;=co and 3 a;u(Dj)<eo with D;= (27771 277+2),
Then it follows from the definition of C,_s that
Cip(Ep) = a277Fp(Dy).
If we set E=\U,FE;, then we see easily that £ has the required properties.
Let I,=1[277,27")., Then we have

.
0

Sz,-] x—y|Pdx < zg e fdr =2 (1—B) (218 = A,20BD,
It Slx——yl"ﬂd/«!(y)ZI on I, then
J,dxs§, (1e=vi-tapo)dz = (], 151" Fax)dpcy)
< A2 Dp(Ry),

which implies that 2/C,_g(I;)= A5'>0. Thus I,—E;# o for large j, and hence
gives the following result.

COROLLARY. If g and B are as in Lemma 2, then

liminf,,, xﬁgR |x—y| Pdp(y) =0.
+

Similarly, we can prove the following results, which deal with the case §=0.

LEMMA 3. Let p>0 and let p be a nonnegative measure on R, such that
u(R,)<oo. Then there exists a set ECR, such that

lim, o, ser, -2, Llog( 241/ 2=y 1)]"*dp(3) =0

and
20 CIP(E;) < oo,

COROLLARY. If p and p are as in Lemma 3, then

liminf, .o}, Clog(|x+y1/]x—y1)]"*dp(s) = 0.
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3. p-th order hyperplane mean.

For a number p=1, let p’=p/(p—1). We begin with giving versions of
Theorems 1 and 2 in [1] in the case of half space. We give proofs of our
results for the sake of completeness.

THEOREM 1. Let g be a nonnegative measure on D such that Sbyﬁdﬂ(y)< oo,
If 1<p<(n—1)/(n—2) and —(n—1)/p'<a=<l, then

lim o 7= DIP @ DN (G ) = 0.

Proor. First, by Minkowski’s inequality, we have

MG, x = [ ([, 160, 9077ax) " dps)

and hence Lemma 1 yields

My(Gp, xn) < Klgptxny;:“(xn+yn>-”+<”‘w]y%dy<y).

Since x P~ V/P @Dy yl=a(y Ly ) mH?®-D/PT g pot larger than 1 and it tends
to zero as x,—0 for fixed y., Lebesgue’s dominated convergence theorem im-
plies that x" D/t @"DM (Gp, x,) tends to zero as x,—0.

THEOREM 2. Let p be as in Theorem 1. If n=3, (n—1)/(n—2)<p<(n--1)/
(n—3) and —(n—1)/p’'<a=l, then

liminf, ., r<» P/ OM (Gu, r)=0.
ProoF. We give a proof only in case p>(n—1)/(n—2). By Minkowski’s

inequality and Lemma 1, we obtain

MG = | ([, L6, »17dr) Tdpy)

Rn-1

and

1/
<SRn-1G(x’ y)pdx/> 4 é lenyn[(xn+yn>—n+(n—1)/p

+(xn+yn)_2l Xn—Yn | 2~n+(n-1)/p:[ .
Hence we establish

xR @ DM (Gp, x7) < Ki[Li(x0)4+1x2)],
where

L) = | a0 210 1 3a ] DI T py)

and

I(x7) = SD[L‘L"“’“"*‘“yh"“(xn-l—yn)“zlxn—ynlz'""‘"“””’]y%dﬂ(y)-



6 Y. Mizuta

In view of the proof of we see that I,(x,) tends to zero as x,—0.
On the other hand, if 0<y,<2x,, then

P TDIP YL gy Y |2TRIDI (g y )R S stétlxn"ynl-ﬁ,
where f=n—2—(n—1)/p; if y,>2x,, then

x;}n-l)/p'ﬂty;l—aIxn_ynI2—n+(n—1)/p(xn+yn)—2 é K4(xn/yn)(n—l)/p'+a g KS-

Here note that 0<8<1. Consequently, by the [Corollary| to [Lemma 2 and Le-
besgue’s dominated convergence theorem, we find that liminf, ., I.(x)=0 (cf.
Proof of Lemma 2).

LEMMA 4. If 0<p<n/(n—2), a+p>—1 and 1—n-+(a+n)/p<0, then
1/p
(SDG(x, y)”y%dy) = Kogrrermir
with a positive constant K independent of x.
PRrooF. Consider the sets

D(x)={yeD; y.>2x,} and E(x)={y&D; y.<2x.}.

If yeD(x), then G(x, y)SKx.(yr—x2)]x—y|™™, so that we have by polar
coordinates with the origin at x

1/

(SD(:)G(x’ y)pygdy)up = le"(SDu)[(y"_x")I x—y|_"]p(3’n—xn)“dy) ’

g K2Xn<gw r(l_n)p+arn_ld7’)l/p
é Kgx%—n+(a+n)/p.

On the other hand, if ye E(x)—B(x, x,/2), then, letting z=(x’, 0), we see that

G(x, Y)SKixnya(lz—3|+x4)"", so that

(SE(x)G(x’ y)py%dyy/p = st%/p(g | x—y]| p“"”dy)”p

B(x,xp/2)
1/p
+ Koo Dvallz=y1+xa) "1 1dy)
E(x)
o i/p
< Kax%~n+(a+n)/p+K6xn<So(T+xn)—nprp+a+n-1dr>
é K7x%—-n+(a+n)/p .

Thus is proved.
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Now we give our main theorems.
THEOREM 3. Let 1=<¢=<p, a<2¢—1 and
(n—2¢)/q(n—1) < 1/p < (n—q+a)/g(n—1).

If f is a nonnegative measurable function on D such that Soyﬁ fy)Ydy<co, then

lim, o x {2081 =DID M (G, 1) = 0.

PrROOF. The case ¢=1 was proved by [Theorem 1, so we assume that ¢>1.
Let (0, B) be taken so that

gn—10+g—n < B < g(n—1)0+a—q(n—1)/p,

a—qd < B < —go+2¢—1
and

(n—2q)/q(n—2) < 6 < (n—1)/p(n -2).
Then note that

(1—0)y < [1—(n—2q)/q(n—2)]¢' = n/(n—2),

(1-0)g’—Bq’/qg > —1
and '

(1=nX1—0)g'—Bq’/q+n <O0.
Hence, by Holder’s inequality and we have

1/g

Gf(x) = (SDG(x, y)-oe y;ﬂQ’/Qdy)”q'(SDG(x, y)a‘ly'%f(y)qdy)
élehz-mu-ann/q'-ﬁ/q(g G(x, y)aqy%f(y)qdy>”q_
D

Using Minkowski’s inequality, we obtain

M(Gf, x2)* < K [x @™ 0-0+n/a~Bia]e
a/p
XSD(SM_IG(L y)"”dx’) Y8 f(y)dy.

Since (n—1)/n<dp<(n--1)/(n—2), by Lemma 1, we find

!
(§iGCx 97745 ) < KL paCaatyaymren-orrpin,
so that

My(Gf, xa)t £ K| {Lxgpmo-ene-piege
D

X[XnYn(Xntya) "HOD0PPayEma) Y2 f(y) dy .
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Therefore,

-2 - - - - - — -
xR DIPM (G ox,) < K“(SD{[xén D@-1/Py+a=p/q] yd—Ca=F/q

X [(tntya) P02 ] ey f(yydy) .

Noting that (n—1)0—1/p)+(a—B)/¢>0, we can show that the left hand side
tends to zero as x,—0, as in the proof of [Theorem 1.

THEOREM 4. Let n=3, 1=q¢<p, a<2q¢—1,
(n—=3)n—2g)/q(n—1)Yn—2) < 1/p < (n—q+a)/q(n—1)
1/p < (n—29)/q(n—1).

If f is a nonnegative measurable function on D such that Sby% f(y)idy<oo,
then

and

liminf, .o, x{*720+®/e =DM (GS, %2) = 0.

PROOF. Since the case g=1 was proved by [Theorem 2, we may assume
that ¢>1. Let (0, B) be chosen so that

g(n—10+g—n<B<g(n—1d+a—qg(n—1)/p,

a—go<B<—qgo+29—1
and

(n—2¢)/g(n—2)<d<min{(n—1)/p(n—3), 1/q(n—2)+(n—1)/p(n—2)}.
By the proof of [Theorem 3, we have
My(Gf, xa)* < K \[x@ ma-d+nrie-Bia]e
XSD(SM_IG(X, y)al’dx’)wp 8 f(y)dy
and, since (n—1)/(n—2)<p(n—2¢)/q(n—2)<op<(n—1)/(n—3),

(SRn—1G(x; y)5pdx’)q/p é Kz[?Cnyn( l Xn——ynIz‘n+(n—1)/5p(xn+yn)—2

H(Entya) DI
Consequently,

x;"_zq“”/q_““””’Mp(Gf, Xn)
= Ki(] {Lxgpmnamumcepragyice (g, y )iy f(y)dy

| {(Laggroamm e iyl i, 4y, )

1/gq
X | Ha Y ETHRD12) 4 £y Yidy )
= K,[L(xn)+Lxn)]".
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In the proof of [Theorem 3, we proved that I,(x,) tends to zero as x,—0.
Letting y=0g(n—2)—q(n—1)/p, we note that 0<y<1l. If y,<2x,, then

[xgr D@1 ra-Blyde=ca=B(y 49,1729 x,—y, | 77 < K [xh | x0—Ya] 7]
and if y,=2x,, then

[xgr D@ tpyra=§ydg-Ca=D( x4y, )20 x,,—y, |7

<K%/ 9N n PO D < K

Hence, by the Corollary| to [Lemma 2 and Lebesgue’s dominated convergence
theorem, we see that liminf, , o/y(x,)=0. Thus is established.

4. The case p=co.

If ¢ is a nonnegative measure on D such that GuzEco, then there exists a
set FCD such that F is thin at D and

limgz 0, zep—r 23711+ 1x])"Gu(x) =0;

see Mizuta [2]. To define the thinness, we use the capacity Cg(E)=inf p(D),
where the infimum is taken over all nonnegative measures g on D such that
Gpz#co and Gu(x)=1 for every x=E.

In the present situation we have

THEOREM 5. Let 1—n<a=<l. If p is as in Theorem 1, then there exists
a set ECD such that

limg .0, zep-5 X3 2" *Gp(x) =0
and
22" C(Ey) < o0,

where E;={x=(x', x2)EE; 277 <x,<277%}}.

In if we let E* be the projection of E to the half line [,=
{0} X R,, then we derive the following result.

COROLLARY 1. If n=2, —1<a=<1 and p is as in Theorem 1, then there
exists a set E*Cl, such that

limz, o0, o, zppety-mr XEMAGp, x5) =0
and
2 Co(EY) < oo

This gives the following result, which implies the result of
Stoll [4].
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COROLLARY 2. [If n=2, —1<a=l and p is as in Theorem 1, then

liminf,, o x§M(Gp, x2) = 0.

In case ¢ has a density f such that Spy%f(y)qdy<oo, we know the follow-
ing fact (see Mizuta [3]). We also refer the reader to for the definition
of capacity C.,q. ‘

THEOREM 6. Let 1<qg=n/2 and g—n<a<2¢—1. If f is a nonnegative
measurable function on D such that SDy;'f(y)qdy<oo, then there exists a set ECD
with the following properties:

(i) lima, o zepp 2P ONRGHx) = 0;
(ii) 3327 *0C, (E;NGy; D;NGy)<co for any bounded open sets G, and
G, such that G,CG,,
where D;={xED; 2771 x,<277%%},

REMARK. If 2¢>n, then, in [Theorem 6, £ can be taken as the empty set.

Letting E* be the projection of £ and noting the contractive properties of
C, . we can establish the following result.

COROLLARY. Let 29>n—1 and g—n<a<2q—1. If f is as in Theorem 6,
then there exists a set E*Cl, with the following properties:

(i) limxn—m, 0,z ,)ELL—E¥ xfPPEDIIM (G, xa) = 0.

(ii) ;27 C, (EXNG,; D;NG.)<co for any bounded open sets G, and
G, such that G,CGy;

in case 2g>n, E* can be taken as the empty set.
This also implies that

liminf, ,o x4 ONMA(GS, x2) = 0.

5. Best possibility.

REMARK 1. Our theorems are best possible as to the power of x,.

For this, consider the function f(y)=y%/|y|® for yeDNB(0, 1) and f(y)=0
elsewhere. Here a=—(a-+1)/¢+0d, b=(n—1)/g and 6>0 is chosen sufficiently
small. Then, Sby%f(y)qdy<oo. If xeDNB(0, 1/2), then

Gz K\, 1x=3I*"f()dy

B(x,zp/

= Kot 217 lx— |y = Koxa x| ™.
B(x,x,l2
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Hence, for a number p>0 and a point x satisfying 0<x,<1/4, we obtain

M(GF, x) 2 Kxe*(| (1212 x3) )"

(1x'1<1/4)
> K4x%+2-b+(n-1)/p:K4x;(n—2q+a)/q+(n—1)/p+6 ;

similarly,
MG, x,) = K,x7M-2a+adia+d,

These facts imply the best possibility of our theorems as to the power of x,.

REMARK 2. If 1/p<(n—2q)/g(n—1), then there exists a nonnegative mea-
surable function f on D such that §Dy,‘: f(y)Ydy<o and

lim sup, o 7720t/ =DIPM (Gf, ¥) = co.
For this, let
éT:(O, "'yO, T')ED, O<ar<1/4: A(”)ZB(eT’ (17-7’),

and consider the functions
ly—e,| ™ log(r/4|y—e, )] if yeA@)
0 elsewhere

fAy)= {
for B>1/¢q. Then

Sy%fr(y)qdy = K’raszﬂ[108(7/4t)]“3qt“dt = Kyre[log(1/4a,)] P4+,
If xA(r) and x,=r, then
Gfm) 2 K, 1x—=1*"f()dy
= Kix—e, | " " mallog(r/4t)] Pt
= K| x—e,|* ™ [log(r/4| x—e, )],
Hence, in case (2—n/¢)p+n—1<0, we obtain

My(Gf,, 1) 2 K| |5’ @m0 [log(r/4] x' D] FPdx’) | = oo

(z'ERM- 112" |<arT}

and in case (2—n/g)p+n—1=0,
My(Gf., r) = Ki[log(1/4a,)] #+7.

If 1/p<(n—2q)/q(n—1), then let r=277, a,=1/8 and f=3f,-1. If 1/p=(n—2q)/
g(n—1), then let b;=277*/9[log(1/4a,-7)]"#*¥? and note

S YEf-i(y)Ydy < K,277°[b,20%/a]¢- Ba+0I¢-B+1/)
D

< Kzz‘ja(llq—l/p)b;ﬂQ"l)(ﬁ‘I/P) .
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Now choose a,-7 so that b;=j, and let f=>); f,-7. Then f satisfies the required
conditions.

(1]
£2]
L3]
[4]
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