
J. Math. Soc. Japan
Vol. 43, No. 4, 1991

Decomposition of non-decreasing slowly varying
functions and the domain of attraction

of Gaussian distributions

By Takaaki SHIMuRA

(Received June 5, 1990)
(Revised Nov. 2, 1990)

1. Introduction.

The class of non-decreasing slowly varying functions is a significant sub-
class of the class of slowly varying functions. Such functions appear as the
truncated variances of distributions in the domain of attraction $D(2)$ of Gaus-
sian distributions and the slowly varying function parts of their normalizing
constants are also asymptotically equal to non-decreasing ones. Let us call a
function $g(x)$ a component of a non-negative non-decreasing function $f(x)$ , if
both $g(x)$ and $f(x)-g(x)$ are non-negative non-decreasing. A non-zero com-
ponent of a non-decreasing slowly varying function is not necessarily slowly
varying. But, there are slowly varying functions of which all non-zero com-
ponents are slowly varying. In this paper, we will give a simple criterion for
a function to have this property. We will also consider some properties of
components of non-decreasing slowly varying functions. We will then apply
the results to a topic of the domain of attraction of Gaussian distributions. Our
purpose is to study a conjecture of Tucker’s. The conjecture says that every
non-trivial factor of a distribution in $D(2)$ will also belong to $D(2)$ . In general,
this conjecture is not true, as a counter-example in [4] shows. This problem
is connected with the general results of decomposition of non-decreasing slowly
varying functions. Using the results, we supply a general method to construct
counter-examples. Main consequence is the existence of distributions, none of
which belongs to $D(2)$ but the convolution of which belongs to it. We also give
a sufficient condition for all non-trivial factors to be in $D(2)$ .

2. Preliminaries.

First we introduce some notations. The totality of all probability measures
on real numbers $R^{1}$ is denoted by $P(R^{1})$ . We call a delta distribution trivial
distribution. For $\mu,$ $\nu\in P(R^{1}),$ $\mu*\nu$ denotes the convolution of $\mu$ and $\nu$ . A dis-
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tribution $\mu_{1}$ is called a factor of a distribution $\mu$ , if $\mu=\mu_{1}*\nu$ with some $\nu\in$

$P(R^{1})$ . A distribution $\mu_{1}$ is called a non-trivial factor of $\mu$ if $\mu_{1}$ is a factor of
$\mu$ and $\mu_{1}$ is not a trivial distribution. Two functions $f_{1}(x)$ and $f_{2}(x)$ are said
to be asymptotically equal if $\lim_{xarrow\infty}f_{1}(x)/f_{2}(x)=1$ . The set of all positive inte-
gers is denoted by $N$

All the facts in this section are proved in [1], [2], [3] and [7].

DEFINITION 2.1. A function $f(x)$ is said to be slowly varying (at infinity)

if it is real-valued, positive and measurable on $[A, \infty)$ for some $A>0$ and if

(2.1) $\lim_{xarrow\infty}f(kx)/f(x)=1$ for each $k>0$ .

REMARK. If $f(x)$ is non-decreasing, (2.1) is equivalent to the following
([7] p. 37 Lemma 1.15):

(2.2) $\lim_{xarrow\infty}f(2x)/f(x)=1$ .

Slowly varying functions have the following representation ([7] p. 2 Theo-
rem 1.2).

PROPOSITION 2.2. A function $f(x)$ defined on $[A, \infty),$ $A>0$ , is slowly vary-
ing, if and only if there exists a positive number $B\geqq A$ such that for all $x\geqq B$

we have

(2.3) $f(x)=c(x) \exp(\int_{B}^{x}\epsilon(t)t^{-1}dt)$ ,

where $c(x)$ is a bounded positive measurable function on $[B, \infty)$ such that $\lim_{xarrow\infty}c(x)$

$=c(0<c<\infty)$ , and $\epsilon(t)$ is a continuous function on $[B, \infty)$ such that $\lim_{tarrow\infty}\epsilon(t)=0$ .
We call this $\epsilon(t)$ an $\epsilon$ -function of $f(x)$ .

DEFINITION 2.3. For $\nu\in P(R^{1})$ , we define the truncated variance of $\nu$ by

(2.4) $V(R)= \int_{|x|<R}|x|^{2}\nu(dx)$ .

The truncated variance of the distribution of a random variable $X$ is denoted
by $V_{X}(R)$ .

DEFINITION 2.4. Let $X,$ $X_{1},$ $X_{2}$ , $\cdot$ .. , $X_{n}$ , $\cdot$ .. be $R^{1}$-valued $i$ . $i$ . $d$ . (independent

and identically distributed) random variables with distribution $\nu$ . If, for suitably
chosen constants $B_{n}>0$ and $A_{n}\in R^{1}$ , the distribution of

$\langle$2.5) $S_{n}=B_{n}^{-1} \sum_{k=1}^{n}X_{k}-A_{n}$

converges to a distribution $\mu$ as $narrow\infty$ , then we say that $\nu$ is attracted to $\mu$ .
We call the totality of distributions attracted to $\mu$ the domain of attraction of $\mu$ .
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We say that $\nu$ belongs to the domain of partial attraction of a distributlon
$\mu$ if tbere is an increasing sequence $m_{n}$ of positive integers such that, for some
constants $A_{n}\in R^{1}$ and $B_{n}>0$ , the distribution of

(2.6) $S_{n}=B_{n}^{-1} \sum_{k=1}^{m_{n}}X_{k}-A_{n}$

converges to $\mu$ as $narrow\infty$ .
It is well-known that a distribution has a non-empty domain of attraction

if and only if it is stable. We denote by $D(2)$ the domain of attraction of
Gaussian distributions (stable with index 2) on $R^{1}$ . The following facts on
$D(2)$ are known.

PROPOSITION 2.5. A non-trivial distribution $\nu$ on $R^{1}$ belongs to $D(2)$ if and
only if its truncated variance is slowly varying, which is equivalent to that

(2.7) $\lim^{x^{2}\nu(R^{1}\backslash [-x},$ $x])/V(x)=0$ .

If $\nu\in D(2)$ , then $E|X|^{2-\epsilon}<\infty$ for every $\epsilon>0$ and the normalizing constants $B_{n}$

and $A_{n}$ in (2.5) are of the form

$\langle$2.8) $\{A_{n}=B_{n}=n^{1/2}(h(n))^{-1}EX+c(n)n^{1/2}h(n)$

,

where $h(x)$ is a slowly varying function and $\lim_{narrow\infty}c(n)=c(c\in R)$ .

The slowly varying $h(x)$ appearing in (2.8) is called the slowly varying
function part of the normalizing constant $B_{n}$ .

PROPOSITION 2.6. Let $h(x)$ be a slowly varying function. Then there exists
a distribution in $D(2)$ with normalizing constants (2.8), if and only if $h(x)$ is
asymptotically equal to a non-decreasing slowly varying function. ([9]; see Ap-
pendix for the proof.)

A characterization of the domain of partial attraction of Gaussian distribu-
tions is known.

PROPOSITION 2.7. A non-trivial distribution $\nu$ on $R^{1}$ belongs to the domain
of partial attraction of Gaussian distributions on $R^{1}$ if and only if
$\langle$2.9) $\lim_{xarrow}\inf_{\infty}x^{2}\nu(R^{1}\backslash [-x, x])/V(x)=0$ .

3. Decomposition of non-decreasing slowly varying functions.

In this section, a general result on decomposition of a non-decreasing slowly
varying function into the sum of non-decreasing functions is given. Here is
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our main theorem.

THEOREM 3.1. Let $f(x)$ be a non-negative non-decreas $ing$ function on $[A, \infty)$ ,

not identically zero.
(1) If $f(x)$ satisfies

(3.1) $\lim_{xarrow}\sup_{\infty}(f(2x)-f(x))<\infty$

and $f(x)$ is rePresented as the sum of two non-negative non-decreasing functions
$f_{1}(x)$ and $f_{2}(x)$ , then each of $f_{1}(x)$ and $f_{2}(x)$ is slowly varying or identically zero.

(2) If $f(x)$ satisfies
(3.2) $\lim_{xarrow}\sup_{\infty}(f(2x)-f(x))=\infty$ ,

then we can construct two non-negative non-decreasing functions $f_{1}(x)$ and $f_{2}(x)$

which are not slowly varying and not identically zero and satisfy

$f(x)=f_{1}(x)+f_{2}(x)$ .

PROOF. (1) Since

$f(2x)-f(x)= \sum_{j=1}^{2}(f_{j}(2x)-f_{j}(x))\geqq f_{j}(2x)-f_{j}(x)$

for each $J,$ $\sup_{x\geq A}(f_{j}(2x)-f_{j}(x))<\infty$ . Hence, if $f_{j}(x)$ is not identically zero,
$\lim_{xarrow\infty}(f_{j}(2x)-f_{j}(x))/f_{j}(x)=0$ . This implies that $f_{j}(x)$ is a slowly varying
function.

(2) Let $x_{0}$ be a point such that $f(x_{0})>0$ . It follows from (3.2) that there
exists $x_{1}>x_{0}$ such that $f(2x_{1})-f(x_{1})\geqq 2^{-1}f(x_{0})$ . For $x_{0}\leqq x\leqq x_{1}$ , we define $f_{1}(x)$

and $f_{2}(x)$ as
$f_{1}(x)=2^{-1}f(x_{0})$ , $f_{2}(x)=f(x)-2^{-1}f(x_{0})$ .

There exists $x_{2}$ such that $x_{2}>2x_{1}$ and

$f(2x_{2})-f(x_{2})\geqq f_{2}(x_{1})$ .

For $x_{1}<x\leqq x_{2}$ , define $f_{1}(x)$ and $f_{2}(x)$ as

$f_{1}(x)=f(x)-f_{2}(x_{1})$ , $f_{2}(x)=f_{2}(x_{1})$ .
Similarly, choose $x_{3}$ such that $x_{3}>2x_{2}$ and $f(2x_{3})-f(x_{3})\geqq f_{1}(x_{2})$ . Define, for
$x_{2}<x\leqq x_{3}$ ,

$f_{1}(x)=f_{1}(x_{2})$ , $f_{2}(x)=f(x)-f_{1}(x_{2})$ .
Repeating this Procedure, we define $f_{1}(x)$ and $f_{2}(x)$ in the following way.
Given $x_{2k-1}$ , choose $x_{2k}$ such that $x_{2k}>2x_{2k-1}$ and

$f(2x_{2k})-f(x_{2k})\geqq f_{2}(x_{2k-1})$ .
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For $x_{2k-1}<x\leqq x_{2k},$ $f_{1}(x)$ and $f_{2}(x)$ are defined as
$f_{1}(x)=f(x)-f_{2}(x_{2k-1})$ , $f_{2}(x)=f_{2}(x_{2k-1})$ .

Next choose $x_{2k+1}$ such that $x_{2k+1}>2x_{2k}$ and

$f(2x_{2k+1})-f(x_{2k+1})\geqq f_{1}(x_{2k})$ .
For $x_{2k}<x\leqq x_{2k+1},$ $f_{1}(x)$ and $f_{2}(x)$ are defined as

$f_{1}(x)=f_{1}(x_{2k})$ , $f_{2}(x)=f(x)-f_{1}(x_{2k})$ .
Then obviously $f(x)=f_{1}(x)+f_{2}(x)$ and each $f_{j}(x)$ is non-negative. In order to
prove non-decrease of $f_{1}(x)$ and $f_{2}(x)$ , it is enough to think about a neighbour-
hood of $x_{n}(n\in N)$ . For sufficiently small $\epsilon>0$ ,

(3.3) $fi(x_{2k}+\epsilon)=f_{1}(x_{2k})$ , $f_{2}(x_{2k-1}+\epsilon)=f_{2}(x_{2k-1})$ .
Since $f(x_{2k-1})\leqq f(x_{2k-1}+\epsilon)=f_{1}(x_{2k- 1}+\epsilon)+f_{2}(x_{2k-1}+\epsilon),$ $(3.3)$ implies $fi(x_{2k- 1})\leqq$

$f_{1}(x_{2k-1}+\epsilon)$ . Similarly, we have $f_{2}(x_{2k})\leqq f_{2}(x_{2k}+\epsilon)$ . Thus $f_{1}(x)$ and $f_{2}(x)$ are
non-decreasing. Since

$f_{i}(x_{2k})Sf(2x_{2k+1})-f(x_{2h+1})$

$=f_{1}(2x_{2k+1})-f_{1}(x_{2k+1})+f_{2}(2x_{2k+1})-f_{2}(x_{2k+1})$

$=f_{1}(2x_{2k+1})-f_{1}(x_{2k+1})$ ,
we have

$f_{1}(2x_{2k+1})/f_{1}(x_{2k+1})\geqq 1+f_{1}(x_{2k})/f_{1}(x_{2k+1})=2$ .

Hence $\lim\sup_{xarrow\infty}f_{1}(2x)/f_{1}(x)\geqq 2$ . Similarly, $\lim\sup_{xarrow\infty}f_{2}(2x)/f_{2}(x)\geqq 2$ . This
implies that neither $f_{1}(x)$ nor $f_{2}(x)$ is slowly varying. $\square$

DEFINITION 3.2. We say that a non-negative non-decreasing function $f(x)$

is dominatedly non-decreasing (undominatedly non-decreas $ing$ ) if $\lim\sup_{xarrow\infty}(f(2x)$

$-f(x))<\infty(=\infty)$ .

REMARK. The class of dominatedly non-decreasing functions is a proper
subset of the class of non-decreasing slowly varying functions. Any component
of a dominatedly non-decreasing function is also dominatedly non-decreasing.

REMARK. The dominated non-decrease of $f(x)$ is equivalent to the domi-
nated variation of $\exp(f(x))$ ( $[7]$ p. 99 Definition A.4). Using this fact and
some known results ([7] p. 99 Lemma A.4, p. 93 Theorem A.1), we can give
a representation of a dominatedly non-decreasing function $f(x)$ as follows:

(3.4) $f(x)=c(x)+ \int_{A}^{x}\epsilon(t)t^{-1}dt$ ,

where $c(x)$ and $\epsilon(t)$ are bounded measurable and $\epsilon(t)$ is non-negative on [ $A$ , co).
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We can give a stronger assertion on decomposition of an undominatedly
non-decreasing function as follows.

PROPOSITION 3.3. If $f(x)$ is an undominatedly non-decreasing function, then,

for each $n\in Nf(x)$ can be represented as $f(x)= \sum_{j=1}^{n}f_{j}(x)$ , where each $f_{j}(x)$ is
unbounded non-negative non-decreasing and the sum of an arbitrary proper subset
of the set $\{f_{j}(x):j=1, \cdots , n\}$ is not slowly varying. Moreover $f(x)$ has a repre-
sentation $f(x)=\Sigma_{j=1}^{\infty}f_{j}(x)$ with the same properties.

PROOF. Let $x_{0}$ be a point such that $f(x_{0})>0$ . Define $f_{j}(x)=n^{-1}f(x_{0})$ for
each $j$ . For $x>x_{0}$ , dePne $f_{j}(x)$ inductively as follows: for given $x_{nk+m}(0\leqq m$

$\leqq n-1)$ , choose $x_{nk+m+1}$ such that $x_{nk+m+1}>2x_{nk+m}$ and

$f(2x_{nk+m+1})-f(x_{nk+m+1}) \geqq\sum_{j=1,j\neq m}^{n}f_{j}(x_{nk+m})$ .

For $x_{nk+m}<x\leqq x_{nk+m+1}$ , each $f_{j}(x)$ is defined as

$f_{m}(x)=f(x)-\Sigma f_{j}(x_{nk+m})n$ $f_{j}(x)=f_{j}(x_{nk+m})$ $(_{J}\neq m)$ .
$j=1$
$j\neq m$

It is easy to see that each $f_{j}(x)$ is non-decreasing. Let $S$ be a proper subset
of $\{1, 2, , n\}$ and $g(x)$ be $\Sigma_{j\in S}f_{j}(x)$ . Take $7n$ such that $m+1(mod n)\in S$ and
$m\not\in S$ . Then, we have

$g(2x_{nk+m+1})-g(x_{nk+m+1})\geqq f_{m+1}(2x_{nk+m+1})-f_{m+1}(x_{nk+m+1})$

$=f(2x_{nk+m+1})- \sum nf_{j}(x_{nk+m+1})-f_{m+1}(x_{nk+m+1})$

$j=1$
$j_{F}m+1$

$=f(2x_{nk+m+1})-f(x_{nk+m+1}) \geqq f\neq m\sum_{j=1}^{n}f_{j}(x_{nk+m})$

and
$g(x_{nk+m+1})\leqq\Sigma f_{j}(x_{nk+m+1})=n\Sigma f_{j}(x_{nk+m})n$

$j=1$ $j=1$
$j\neq m$ $j\neq m$

Thus $g(2x_{nk+m+1})/g(x_{nk+m+1})\geqq 2$ . Hence $\lim\sup_{xarrow\infty}g(2x)/g(x)\geqq 2$ . This implies
that $g(x)$ is not slowly varying.

Next, in order to get decomposition into infinite sum, define $f_{j}(x)(]\in N)$

as follows. First, define a sequence of positive integers $n_{\backslash }^{(}k$ ) $(k\in N)$ as follows:
$n(k)=1$ if $k=i(i+1)/2$ for some $i$ . For $j\geqq 2,$ $n(k)=j$ if $k=_{J}-1+(]+i-1)(]+$

$i-2)/2$ for some $i$ . That is, the sequence $n(1),$ $n(2),$ $\cdots$ is

1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, $\cdots$

Define $f_{j}(x_{0})=2^{-j}f(x_{0})(]\in N)$ . For $x>x_{0}$ , define $f_{j}(x)$ inductively as follows:
for given Xk-l, choose $x_{k}$ such that $x_{k}>2x_{k-1}$ and
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$f(2x_{k})-f(x_{k}) \geqq\sum_{j\neq n(k)}f_{j}(x_{k-1})$ .

For Xk..l $<x\leqq x_{k}$ , each $f_{j}(x)$ is defined as

$f_{n(k)}(x)=f(x)- \sum_{j\neq n(k)}f_{j}(x_{k-1})$ , $f_{j}(x)=f_{j}(x_{k-1})$ $(]\neq n(k))$ .

It is easy to see that each $f_{j}(x)$ is non-decreasing. Let $S$ be a proper subset
of Nand $g(x)$ be $\Sigma_{j\in S}f_{j}(x)$ . Take $k$ such that $n(k+1)\in S$ and $n(k)\not\in S$ . Then,
we have

$g(2x_{k})-g(x_{k})\geqq fn(k+1)(2x_{k})-f_{n(k+1)}(x_{k})$

$=f(2x_{k})-$ $\Sigma$ $f_{j}(x_{k})-f_{n(k+1)}(x_{k})$

$j\neq n(k+1)$

$=f(2x_{k})-f(x_{k}) \geqq\sum_{j\neq n(k)}f_{j}(x_{k-1})$

and
$g(x_{k}) \leqq\sum_{j\neq n(k)}f_{j}(x_{k})=\sum_{j\neq n(k)}f_{j}(x_{k-1})$ .

Thus $g(2x_{k})/g(x_{k})\geqq 2$ . Hence $\lim\sup_{xarrow\infty}g(2x)/g(x)\geqq 2$ . This implies that $g(x\rangle$

is not slowly varying. $\square$

EXAMPLES.
1. The function $f(x)=\log x$ is dominatedly non-decreasing.
2. The function $f(x)=(\log x)^{2}$ is undominatedly non-decreasing.
3. If $f(x)$ and $g(x)$ are dominatedly non-decreasing, then, for any $a,$ $b>0$

and $0\leqq\alpha,$ $\beta\leqq 1,$ $a(f(x))^{\alpha}+b(g(x))^{\beta}$ is dominatedly non-decreasing.
4. If $f(x)$ is dominatedly non-decreasing and $g(x)$ is non-decreasing slowly

varying, then $f(g(x))$ is dominatedly non-decreasing.
NOW we show some facts concerning the dominated non-decrease.

PROPOSITION 3.4. For any unbounded non-decreasing slowly varying function
$f(x)$ , there exists an undominatedly non-decreasing function $f(x)$ asymptotically
equal to $f(x)$ .

PROOF. Given $f(x)$ , we can define $f(x)$ as follows :

(3.5) $f(x)=f(x)+r^{n(x)}$ ,

where $r>1$ is a constant and $n(x)\in N$ such that

$r^{n(x)}\leqq(f(x))^{1/2}<r^{n(x)+1}$ .
Obviously, $\tilde{f}(x)$ is a non-decreasing function and

1 $ $f(x)/f(x)=1+r^{n(x)}/f(x)\leqq 1+(f(x))^{-1/2}$ .
Hence $f(x)$ and $f(x)$ are asymptotically equal. And
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$f(2x)-f(x)=f(2x)-f(x)+r^{n(x)}(r^{n(2x)-n(x)}-1)$ .

Since $\lim_{xarrow\infty}r^{n(x)}=\infty$ and $\lim\sup_{xarrow\infty}r^{n(2x)-n(x)}-1=r-1,\tilde{f}(x)$ is undominatedly
non-decreasing. Thus it is proved that $\tilde{f}(x)$ satisfies all conditions. $\square$

The above proposition shows that the dominated non-decrease is not guar-
anteed by asymptotic growth order. However, we have some conditions con-
cerning asymptotic equality to a dominatedly non-decreasing function.

PROPOSITION 3.5. Let $f(x)$ be a non-decreasing slowly varying function on
$[A, \infty)$ .

(1) If $\lim\sup_{xarrow\infty}f(x)/\log x=\infty$ , then $f(x)$ is undominatedly non-decreasing.
(2) If $\lim\sup_{xarrow\infty}f(x)/\log x<\infty$ and an $\epsilon$-function of $f(x)$ is non-negative and

satisfies $\lim\sup_{xarrow\infty}\int_{x}^{2x}\epsilon(t)t^{-1}dt(\log x)<\infty$ , then there exists a dominatedly non-decreas-

ing function $f(x)$ asymptotically equal to $f(x)$ .

PROOF. (1) Let us show that if $f(x)$ is dominatedly non-decreasing, then
$\lim\sup_{xarrow\infty}f(2x)/\log x<\infty$ . Choose $c(0<c<\infty)$ such that $f(2x)-f(x)<c$ for all
$x$ . Summing up the inequalities $f(2^{k})-f(2^{k-1})<c$ for $k=1,$ $\cdots$ , $n$ , we have
$f(2^{n})<nc+f(1)$ . Hence $\lim\sup_{narrow\infty}f(2^{n})/\log 2^{n}\leqq\lim\sup_{narrow\infty}(nc+f(1))/(n\log 2)=$

$c/\log 2<\infty$ . For $x$ such that $2^{n}\leqq x\leqq 2^{n+1},$ $f(x)/\log x\leqq f(2^{n+1})/\log 2"=\{(n+1)/n\}$ .
$\{f(2^{n+1})/\log 2^{n+1}\}$ . Therefore $\lim\sup_{xarrow\infty}f(x)/\log x\leqq c/\log 2<\infty$ .

(2) By the representation theorem of slowly varying function (Proposition

2.2), $f(x)$ is written as follows.

$f(x)=c(x) \exp(\int_{B}^{x}\epsilon(t)t^{-1})dt$ , $\lim_{xarrow\infty}c(x)=c$ .

By the assumption, there exist positive constants $c_{1}$ and $c_{2}$ such that $f(x)/\log x$

$<c_{1}$ and $\int_{x}^{2x}\epsilon(t)t^{-1}dt(\log x)<c_{2}$ . Now we set

$;(x)=c \exp(\int_{B}^{x}\epsilon(t)t^{-1}dt)$ .
Then

$f(2x)-f(x)=\tilde{f}(x)(f(2x)/f(x)-1)$

$=(;(x)/f(x))f(x)( \exp(\int_{x}^{2x}\epsilon(t)t^{-1}dt)-1)$

$\leqq c_{1}(\log x)(\exp(\int_{x}^{2x}\epsilon(t)t^{-1}dt)-1)(1+o(1))$

$\leqq C{}_{1}C_{2}(1+o(1))$ .
Thus $\tilde{f}(2x)-f(x)$ is bounded. $\square$
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If $\epsilon(t)=\alpha/\log t$ , then $f(x)=c(x)( \log x)^{\alpha}(\lim_{xarrow\infty}c(x)=c(0<c<\infty))$ and this
$\epsilon(t)$ satisfies the condition $\lim\sup_{xarrow\infty}\int_{x}^{2x}\epsilon(t)t^{-1}dt(\log x)<\infty$ in (2). This $f(x)$ is

undominatedly non-decreasing, if $\alpha>1$ , by (1). However the proof of the fol-
lowing proposition shows that $f(x)$ can be dominatedly non-decreasing when
we assume $\epsilon(t)=\alpha/\log t$ with $\alpha>1$ only on a sequence of sets.

PROPOSITION 3.6. Fix $a$ and $b$ such that $0\leqq a<b<\infty$ or $a=b=0$ . Consider
the clas $s$ of non-decreasing slowly varying functions satisfying $\lim\inf_{xarrow\infty}f(x)/\log x$

$=a$ and $\lim\sup_{xarrow\infty}f(x)/\log x=b$ . We can construct two functions $f_{1}(x)$ and $f_{2}(x)$

in this clas $s$ such that $f_{1}(x)$ is dominately non-decreasing, while any non-decreasing
function $;(x)$ asymPtotically equal to $f_{2}(x)$ is undominatedly non-decreasing.

PROOF. Consider the case $0<a<b$ . We make $f_{1}(x)$ and $f_{2}(x)$ oscillate
between $a$ $\log x$ and $b\log x$ . We will choose a sequence $\{x_{k} : k\in N\}$ in a sui-
table manner and make $f_{j}(x)$ flat in $[x_{2k-1}, x_{2k}]$ and increasing in $[x_{2k}, x_{2k+1}]$ .
Thus we make $a\log x\leqq f_{j}(x)\leqq b\log x$ and $f_{J}(x_{2k-1})=b\log x_{2k-1}=f_{j}(x_{2k})=$

a.log $x_{2k}$ . More precisely, choice of $\{x_{k}\}$ and definition of $f_{j}(x)$ are as follows.
We can assume $b=1$ without loss of generality. Fix $x_{1}>1$ . For $x_{1}\leqq x\leqq x_{2}=$

$x_{1}^{1/a}$ , let $f_{j}(x)=f_{J}(x_{1})=\log x_{1}$ . For $x_{2}<x\leqq x_{3}$ , let $f_{j}(x)=f_{j}(x_{2}) \exp(\int_{x_{2}}^{x}\epsilon_{j}(t)t^{-1}dt)$ ,

where $\epsilon_{1}(t)=2(\log t)^{-1}$ and $\epsilon_{2}(t)=r(\log^{2}t)^{-1}$ with $r=2^{-1}\log a^{-1}(>0)$ . Here $x_{3}$ is
determined by

$f_{j}(x_{2}) \exp(\int_{x_{2}}^{x_{3}}\epsilon_{J}(t)t^{-1}dt)=\log x_{3}$ .

For $x>x_{3},$ $f_{j}(x)$ is defined inductively as follows. We assume that $f_{j}(x)$ is
defined on $[x_{1}, x_{2k-1}]$ . $x_{2k}$ is defined to satisfy

$f_{j}(x_{2k-1})=a\log x_{2k}$ .
For $x_{2k-1}<x\leqq x_{2k},$ $f_{i}(x)$ is defined as

$f_{j}(x)=f_{j}(x_{2k-1})$ .
Define $x_{2k+1}$ to satisfy

$f_{f}(x_{2k}) \exp(\int_{x_{2k}}^{x_{2k+1}}\epsilon_{j}(t)t^{-1}dt)=\log x_{2k+1}$ .

For $x_{2k}<x\leqq x_{2k+1},$ $f_{j}(x)$ is defined as

$f_{j}(x)=f_{J}(x_{2k}) \exp(\int_{x_{2k}}^{x}\epsilon_{j}(t)t^{-1}dt)$ .

Let us prove that $f_{1}(x)$ and $f_{2}(x)$ have the desired properties. Since
$\int_{x}^{2x}\epsilon_{1}(t)t^{-1}di(\log x)$ is bounded, $f_{1}(x)$ is dominatedly non-decreasing by Proposition
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3.5 (2). We consider the behavior of $f_{2}(x)$ at $x_{2k}\log x_{2k}$ . Since
$\int_{x}^{xlo_{g}x}(\log^{2}t)^{-1}t^{-1}dt$ is non-decreasing and converges to 1 as $x$ goes to infinity,

we have

$\lim_{karrow\infty}\exp(\int_{x_{2k}}^{x_{2k}\log x_{2k}}(r/\log^{2}t)t^{-1}dt)=e^{r}=a^{-1/2}$

and

a $\log x_{2k}\exp(\int_{x_{2k}}^{x_{2k}\log x_{2k}}(r/\log^{2}t)t^{-1}dt)<\log(x_{2k}\log x_{2k})$ .

This means that $x_{2k}\log x_{2k}<x_{2k+1}$ . Therefore

$f_{2}(x_{2k} \log x_{2k})=f_{2}(x_{2k})\exp(\int_{x_{2k}}^{x_{2k}\log x_{2k}}(r/\log^{2}t)t^{-1}dt)$ .

Thus we get

(3.6) $\lim_{iarrow\infty}f_{2}(x_{2k}\log x_{2k})/f_{2}(x_{2k})=a^{-1/2}$

Assume that $f(x)$ is a non-decreasing function and $\tilde{f}(2x)-f(x)<c<\infty$ . Define
$n_{k}\in N$ as $2^{n_{k^{-1}}}x_{2k}<x_{2k}\log x_{2k}\leqq 2^{n_{k}}x_{2k}$ . Then,

$\tilde{f}(x_{2k}\log x_{2k})-\tilde{f}(x_{2k})$ $ $n_{k}c<(\log^{2}x_{2k}/\log 2+1)c$ .
Hence

$\tilde{f}(x_{2k}\log x_{2k})/\tilde{f}(x_{2k})<1+(a\log x_{2k})^{-1}(\log^{2}x_{2k}/\log 2+1)c$ .

Thus we have

(3.7) $\lim_{harrow\infty}\tilde{f}(x_{2k}\log x_{2k})/f(x_{2k})=1$ .
(3.6) and (3.7) imply that $f(x)$ is not asymptotically equal to $f_{2}(x)$ . Thus we
conclude that if $f(x)$ is non-decreasing and asymptotically equal to $f_{2}(x)$ , then
$f(x)$ is undominatedly non-decreasing.

The case $0=a<b$ can be proved by using $(\log x)^{1/2}$ instead of a $\log x$ . In
the case $a=b=0,$ $(\log x)^{1/2}$ and $2^{-1}(\log x)^{1/2}$ can be used. $\square$

The following proposition gives properties of components in decomposition
of a non-decreasing slowly varying function.

PROPOSITION 3.7. Let $f(x)$ be a non-decreasing slowly varying function.
Suppos $e$ that $f(x)=f_{1}(x)+f_{2}(x)$ , where $f_{1}(x)$ and $f_{2}(x)$ are non-negative non-
decreasing functions.

(1) If $f_{j}(x)$ is not identically zero, then

$\lim_{xarrow}\inf_{\infty}f_{j}(kx)/f_{j}(x)=1$ for every $k>1$ .

(2) If $f_{1}(x)$ is not slowly varying, then
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$\lim_{xarrow\infty}\inf f_{1}(x)/f_{2}(x)=0$ .

Especially, if none of $f_{1}(x)$ and $f_{2}(x)$ is slowly varying, then

$\lim_{xarrow}\inf_{\infty}f_{1}(x)/f_{2}(x)=0$ and $\lim_{xarrow\infty}\sup f_{I}(x)/f_{2}(x)=\infty$ .

PROOF. (1) Suppose that $\lim\inf_{xarrow\infty}f_{j}(kx)/f_{f}(x)>1$ . There exist $\epsilon>0$ and
$x_{0}$ such that $f_{j}(kx)/f_{j}(x)\geqq 1+\epsilon$ for all $x\geqq x_{0}$ . Hence $f_{j}(k^{n}x_{0})/f_{j}(x_{0})\geqq(1+\epsilon)^{n}$

for all $n\in N$ that is,
$f_{j}(k^{n}x_{0})/(1+\epsilon)^{n}\geqq f_{j}(x_{0})>0$ .

select sufficiently small $\delta$ such that $k^{\delta}<1+\epsilon$ . Then

$\lim_{narrow\infty}f_{j}(k^{n}x_{0})/(1+\epsilon)^{n}\leqq\lim_{narrow\infty}\{f(k^{n}x_{0})/(k^{n})^{\delta}\}\{k^{\delta}/(1+\epsilon)\}^{n}=0$ .

This is a contradiction.
(2) Since

$f(2x)/f(x)-1=(f_{1}(2x)/f_{1}(x)-1)/(1+f_{2}(x)/f_{1}(x))$

$+(f_{2}(2x)/f_{2}(x)-1)/(1+f_{1}(x)/f_{2}(x))$

and the left-hand side goes to zero, we have

$\lim_{xarrow\infty}(f_{1}(2x)/f_{1}(x)-1)/(1+f_{2}(x)/f_{1}(x))=0$

and
$\lim_{xarrow\infty}(f_{2}(2x)/f_{2}(x)-1)/(1+f_{1}(x)/f_{2}(x))=0$ .

Hence the assertions follow immediately. $\square$

We close this section with a theorem on another kind of decomposition.

THEOREM 3.8. Let $f(x)$ be an undominatedly non-decreasing slowly varying
function and $r$ be a constant such that $0\leqq r<\infty$ . Then there exist unbounded
non-negative non-decreasing functions $f_{1}(x)$ and $f_{2}(x)$ satisfying $f(x)=f_{1}(x)+f_{2}(x)$

such that $f_{1}(x)$ is slowly varying, $f_{2}(x)$ is not slowly varying and

(3.8) $\lim_{xarrow}\sup_{\infty}f_{2}(x)/f_{1}(x)=r$ .

PROOF. By Theorem 3.1, $f(x)$ is represented as $f(x)=fi(x)+f_{2}(x)$ , where
$f_{1}(x)$ and $f_{2}(x)$ are unbounded non-negative non-decreasing and not slowly
varying. Assume $r>0$ . Define $u$ by $r=u/(1-u)$ . Then, $0<u<1$ . Set $f_{1}(x)=$

$f_{1}(x)+(1-u)f_{2}(x)$ and $f_{2}(x)=uf_{2}(x)$ . Then, $f_{1}(x)$ and $f_{2}(x)$ are unbounded
non-decreasing functions, $f_{2}(x)$ is not slowly varying and $f(x)=f_{1}(x)+f_{2}(x)$ .
NOW we have only to prove that $f_{1}(x)$ and $f_{2}(x)$ satisfy (3.8) and $f_{1}(x)$ is
slowly varying. We have
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$f_{2}(x)/f_{1}(x)=\{uf_{2}(x)/f_{1}(x)\}/\{1+(1-u)f_{2}(x)/f_{1}(x)\}$ ,

and hence $f_{2}(x)/f_{1}(x)\leqq u/(1-u)$ . By Proposition 3.7 (2), $\lim\sup_{xarrow\infty}f_{2}(x)/f_{1}(x)$

$=\infty$ . Thus we get (3.8). Again, by Proposition 3.7 (2), it follows from (3.8)

that $f_{1}(x)$ is slowly varying. The proof in the case $r>0$ is finished. If $r=0$ ,
then define $f_{1}(x)=f(x)-(f_{2}(x))^{1/2}$ and $f_{2}(x)=(f_{2}(x))^{1/2}$ for large $x$ . $\square$

4. Decomposition problem of distributions in $D(2)$ .
In this section, we apply the results in the preceding section to a topic on

$D(2)$ in probability theory. We are interested in properties of factors of dis-
tributions in $D(2)$ . According to [4], H. Tucker made the following conjecture:
if $\mu$ is a distribution in $D(2)$ , then any non-trivial factor of $\mu$ belongs to $D(2)$ .
Hahn and Klass [4] give a counter-example to this conjecture. They show the
existence of two non-trivial distributions $\mu_{1}$ and $\mu_{2}$ such that $\mu_{1}$ and $\mu_{1}*\mu_{2}$

belong to $D(2)$ and $\mu_{2}$ does not belong to $D(2)$ . In their example, $\lim_{Rarrow\infty}V_{2}(R)/$

$V_{1}(R)=0$ holds, where $V_{j}(R)$ is the truncated variance of $\mu j(j=1,2)$ . This
implies that, if $X_{k},$ $Y_{k}(k\in N)$ are independent, $X_{k}$ has distribution $\mu_{1}$ , and $Y_{k}$

has distribution $\mu_{2}$ , then, with some normalizing constant $B_{n}$ , the distribution
of $B_{n}^{-1}\Sigma_{k=1}^{n}(X_{k}-EX_{1})$ converges to Gaussian distribution with mean $0$ and the
distribution of $B_{n}^{-1}\Sigma_{k=1}^{n}(Y_{k}-EY_{1})$ converges to the delta distribution concen-
trated at $0$ . We deal with Tucker’s conjecture from a more general point of
view in connection with the results in the preceding section. First, we will
give a sufficient condition for a distribution to have the property that all non-
trivial factors of it belong to $D(2)$ . The L\’evy-Cram\’er theorem says that any
non-trivial factor of Gaussian distribution is Gaussian. Obviously, any non-
trivial factor of a distribution with finite variance has finite variance, and
hence belongs to the domain of normal attraction of Gaussian distributions.
We extend the above fact: if $\mu$ has a dominatedly non-decreasing truncated
variance, then every non-trivial factor of $\mu$ belongs to $D(2)$ . Second, we will
construct another kind of counter-examples to the conjecture: we give $\mu_{1}$ and
$\mu_{2}$ such that neither $\mu_{1}$ nor $\mu_{2}$ belongs to $D(2)$ but the convolution $\mu_{1}*\mu_{2}$

belongs to $D(2)$ .
We prepare two propositions.

PROPOSITION 4.1. Let $V(R)=V_{X}(R)$ . The following are equivalent:

(4.1) $\lim_{Rarrow}\sup_{\infty}(V(2R)-V(R))<\infty$ .

(4.2) $\lim_{Rarrow\infty}\sup R^{2}P(|X|>R)<\infty$ .

PROOF. (4.2) implies (4.1) because
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$V(2R)-V(R)=EX^{2}1(R\leqq|X|<2R)\leqq 4R^{2}P(R\leqq|X|<2R)\leqq 4R^{2}P(|X|\geqq R)$ .

Conversely, assume (4.1). Then, since $V(2R)-V(R)\geqq R^{2}P(R\leqq|X|<2R)$ , there
exists a positive constant $c$ such that $R^{2}P(R\leqq|X|<2R)<c$ for every $R>0$ .
Therefore we get $4^{n}R^{2}P(2^{n}R\leqq|X|<2^{n+1}R)<c$ for every $n\in N$ Summing up
for all $n$ , we have

$R^{2}P(|X| \geqq R)=\sum_{n=0}^{\infty}R^{2}P(2^{n}R\leqq|X|<2^{n+1}R)<\sum_{n=0}^{\infty}4^{-n}c<\infty$ . $\square$

PROPOSITION 4.2. For an arbitrary non-negative right-continuous non-decreas-
ing slowly varying function $f(x)$ on $[0, \infty)$ , there exists a distribution $\mu$ on $[0, \infty)$

and a constant $B$ such that

$f(x)= \int_{|t1<x}|t|^{2}\mu(dt)$ for all $x\geqq B$ .

Proof is straightforward.
In the following theorem, we give a sufficient condition in order that all non-

trivial factors of a distribution belong to $D(2)$ .
We denote by $C$ the clas $s$ of $dis$tributions on $R^{1}$ with dominatedly non-decreas-

ing truncated variance. Note that any non-trivial distribution in $C$ belongs to $D(2)$ .

THEOREM 4.3. Let $\mu=\mu_{1}*\mu_{2}$ . If both $\mu_{1}$ and $\mu_{2}$ belong to $C$ , then $\mu$ belongs
to C. Conversely, if $\mu$ is in $C$ , then both $\mu_{1}$ and $\mu_{2}$ belong to $C$ .

PROOF. Let $X$ and $Y$ be independent random variables with distributions
$\mu_{1}$ and $\mu_{2}$ , respectively, and set $Z=X+Y$ . Assume that $\mu_{1}$ and $\mu_{2}$ belong to
$C$ . Then,

$P(|X+Y|>R)\leqq P(|X|\vee|Y|>R/2)\leqq P(|X|>R/2)+P(|Y|>R/2)$ .

Hence we get

$\lim_{Rarrow}\sup_{\infty}R^{2}P(|X+Y|>R)\leqq 4\{\lim_{Rarrow}\sup_{\infty}R^{2}P(|X|>R)+\lim_{Rarrow}\sup_{\infty}R^{2}P(|Y|>R)\}$ .

By Proposition 4.1, $\mu_{1}*\mu_{2}$ belongs to $C$ .
Conversely, assume that $\mu=\mu_{1}*\mu_{2}$ is in C. Since

$P(|X|>R)P(|Y|<R/2)=P(|X|>R, |Y|<R/2)\leqq P(|X+Y|>R/2)$ ,

we have

$\lim_{Rarrow}\sup_{\infty}R^{2}P(|X|>R)\leqq\lim_{Rarrow}\sup_{\infty}P(|Y|<R/2)^{-1}R^{2}P(|X+Y|>R/2)$

$ 4 $\lim_{Rarrow}\sup_{\infty}R^{2}P(|X+Y|>R)$ .

By Proposition 4.1, $\mu_{1}$ belongs to $C$ , and similarly for $\mu_{2}$ . $\square$

The class $C$ does not coincide with the class of distributions of which all
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non-trivial factors belong to $D(2)$ . In fact, any indecomposable distribution in
$D(2)\backslash C$ is an example of a distribution with this property (Example 1). There
is also a decomposable distribution in $D(2)\backslash C$ having this property (Example 2).

EXAMPLE 1. Define a discrete probability measure $\mu$ as follows:

$\mu(\{2^{k}\})=ck4^{-k}$ for $k\in N$ where $c=( \sum_{k=1}^{\infty}k4^{-k})^{-1}$

Let $V(R)$ be the truncated variance of $\mu$ . Then,

$V(R)=c \sum_{<kIog_{2}R}k$ .

Hence

$1 \leqq V(2R)/V(R)=1+\sum_{<\log_{2}R\leq kiog_{2}R+1}k/\sum_{k<\log_{2}R}k=1+n/\{n(n-1)/2\}$ ,

where $n$ is the positive integer such that $\log_{2}R\leqq n<\log_{2}R+1$ . This shows that
$V(R)$ is slowly varying. Further, $V(2R)-V(R)=cn$ , hence $\lim_{Rarrow\infty}(V(2R)-V(R))$

$=\infty$ . Thus $\mu$ is in $D(2)\backslash C$ . $lf\mu=\mu_{1}*\mu_{2}$ , then $\mu_{1}$ or $\mu_{2}$ is trivial, since the
support $S=\{2^{k} : k\in N\}$ of $\mu$ has the property that, if $S=S_{1}+S_{2}$ , then $S_{1}$ or
$S_{2}$ is a one-point set.

EXAMPLE 2. Let $\mu$ be the distribution in the Example 1. Then it is easy
to see that $\mu*\mu$ is a distribution in $D(2)$ with undominatedly non-decreasing
truncated variance. Moreover, any non-trivial factor of this distribution is in
$D(2)$ . In fact, we can prove that, if $\mu*\mu=\mu_{1}*\mu_{2}$ (neither $\mu_{1}$ nor $\mu_{2}$ is trivial),

then $\mu=\mu_{1}*\delta_{a}=\mu_{2}*\delta_{-a}$ for some $a$ . It is enough to prove $\mu=\mu_{1}=\mu_{2}$ , assum-
ing that the support of $\mu_{1}$ and that of $\mu_{2}$ both contain 2 as the smallest element.
Comparing the support and the masses of {4, 6, 8, 10} of $\mu*\mu$ with those of
$f^{\ell_{1}}*\mu_{2}$ in detail, we can prove that both supports contain 4 as tbe next smallest
element. Next we can show that the both supports coincide with the support
of $\mu$ . Proof is complicated and omitted. After this is established, it is easy
to prove that $\mu=\mu_{1}=\mu_{2}$ .

The following theorem gives the relation between the truncated variance
of a distribution in $D(2)$ and those of its factors.

THEOREM 4.4. Let $\mu_{i}$ $(i=1, \cdots , n)$ be distributions on $R^{1}$ with truncated
variance $V_{i}(R)$ . The convolution $\mu=\mu_{1}*\cdots*\mu_{n}$ belongs to $D(2)$ if and only if
$\Sigma_{i=1}^{n}V_{i}(R)$ is slowly varying. If the truncated variance $V(R)$ of $\mu$ is an un-
bounded slowly varying function, then

(4.3) $\lim_{Rarrow\infty}\sum_{i=1}^{n}V_{i}(R)/V(R)=1$ .
PROOF. Let $X_{i}$ be independent random variables with distribution $\mu_{i}$ and

set $S=\Sigma_{i=1}^{n}X_{i}$ . If $V_{S}(R)$ converges to a finite limit, the assertion is trivial.
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Let us assume that $V_{S}(R)$ is slowly varying and diverges to infinity. Notice
that, for each $\epsilon>0,$ $E|S|^{2-\epsilon}<\infty$ and, equivalently, $E|X_{i}|^{2-g}<\infty$ for each $i([2])$ .
Decompose $V_{S}(R)$ as

$V_{S}(R)=V_{s}^{1}(R)+V_{s}^{2}(R)$ ,

where $V_{s}^{J}(R)=ES^{2}1(|S|<R$ , the number of $i$ such that $|X_{i}|\geqq R/n$ is at most
one.) and $V_{S}^{2}(R)=ES^{2}1(|S|<R$ , the number of $i$ such that $|X_{i}|\geqq R/n$ is two or
more.). Let $A_{ij}(R)$ be the set determined by the conditions: $|S|<R,$ $|X_{i}|\geqq R/n$

and $|X_{j}|\geqq R/n$ . Then

$V_{S}^{2}(R) \leqq\sum_{i<j}ES^{2}1(A_{ij}(R))\leqq\sum_{i<j}R^{2}P(|X_{i}|\geqq R/n)P(|X_{j}|\geqq R/n)$ .

Integration by parts leads to $R^{2}P(|X_{i}|>R)=2 \int_{0}^{R}tP(|X_{i}|>t)dt-EX_{i}^{2,}1(|X_{i}|\leqq R)$ ,

and we get $\lim_{Rarrow\infty}R^{2-\epsilon}P(|X_{i}|>R)=0$ for arbitrary $\epsilon>0$ . Hence we have
$\lim_{Rarrow\infty}V_{S}^{2}(R)=0$ . Therefore

(4.4) $\lim_{Rarrow\infty}V_{S}(R)/V_{S}^{1}(R)=1$ .

Set $7V(R)=E S^{2}1(\max_{1\leqq k\leqq n}|X_{k}|<R)$ . Then

$W(R/n)\leqq V_{s}^{1}(R)\leqq W((2n-1)n^{-1}R)$ .

By tbis inequality and the slow variation of $V_{S}^{1}(R)$ , we get

(4.5) $\lim_{Rarrow\infty}V_{s}^{1}(R)/W(R)=1$ .
Further,

$W(R)= \sum_{i=1}^{n}EX_{i}^{2}1(\max_{1\leqq k\leqq n}|X_{k}|<R)+2\sum_{ji--1\dot{i},<j}^{n}EX_{i}X_{j}1(\max_{1\leqq k\leqq n}|X_{k}|<R)$

$= \sum_{i=1}^{n}V_{i}(R)\prod_{k=1,k\neq t}^{n}P(|X_{k}|<R)+2\sum_{\triangleleft}^{n}EX_{i}X_{j}1\iota_{i^{j=1}}(\max_{1\leqq k\leqq n}|X_{k}|<R)$ .

Hence

(4.6) $\lim_{Rarrow\infty}W(R)/\sum_{i\Rightarrow 1}^{n}V_{i}(R)=1$ .

From $(4.4)-(4.6)$ , we get (4.3). This means that $\Sigma_{i=1}^{n}V_{i}(R)$ is slowly varying.
We can prove the converse assertion by following the reverse direction.

Namely, assume that $\sum_{i=1}^{n}V_{i}(R)$ is unbounded slowly varying. Then, every $\mu_{i}$

has finite absolute moment of order $2-\epsilon$ . Now we get (4.6) and (4.5) is ob-
tained from (4.6). (4.4) also holds. From $(4.4)-(4.6),$ $(4.3)$ is proved. $\square$

REMARK. Tucker [9] proves that $D(2)$ is closed under convolution. This
result is a consequence of the above theorem since the sum of two slowly

varying functions is also slowly varying ([7] p. 18).
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NOW we can prove the following theorem from Theorem 3.1, Proposition
3.3 and Theorem 4.4 easily.

THEOREM 4.5. There exist distributions $\mu_{1}$ and $\mu_{2}$ such that none of them
belongs to $D(2)$ but $\mu=\mu_{1}*\mu_{2}$ belongs to $D(2)$ . In general, for each $n\in N$ there
exist distributions $\mu_{1},$ $\mu_{2},$

$\cdots$ , $\mu_{n}$ such that $\mu=\mu_{1}*\mu_{2}*\cdots*\mu_{n}$ belongs to $D(2)$ but,

for each proper subset $S$ of $\{$ 1, 2, $\cdots$ , $n\}$ , the convolution of $t\mu_{j}$ : $j\in S$ } does not
belong to $D(2)$ .

PROOF. By Proposition 4.2, we can choose a distribution $\mu$ in $D(2)$ such
that $\lim\sup_{Rarrow\infty}(V(2R)-V(R))=\infty$ . By Theorem 3.1, there exist measures $\mu_{1}^{0}$

and $\mu_{2}^{0}$ on $(0, \infty)$ such that $V(R)=V_{1}(R)+V_{2}(R)$ , where $V_{j}(R)$ is not slowly

varying and $V_{j}(R)= \int_{(0.R)}x^{2}\mu_{j}^{0}(dx)$ for $j=1,2$ and $\mu(R^{1}\backslash \{0\})=\Sigma_{j=1}^{2}\mu_{j}^{0}(0, \infty)$ . We

define probability measures $\mu j(]=1,2)$ on $[0, \infty)$ by $\mu_{j}=\mu_{j}^{0}+\delta_{j}$ , where $\delta_{j}$ is a
measure on $\{0\}$ with point mass $1-\mu_{J}^{0}(0, \infty)$ . Then the truncated variance of
$\mu j$ is equal to $V_{j}(R)$ . We define a probability measure $\tilde{\mu}$ by $\tilde{\mu}=\mu_{1}*\mu_{2}$ . Then,

by Theorem 4.4, $\tilde{\mu}$ belongs to $D(2)$ , but neither $\mu_{1}$ nor $\mu_{2}$ belongs to $D(2)$ .
Similarly, Proposition 3.3 yields the latter half of the theorem. $\square$

PROPOSITION 4.6. Let $0\leqq r<\infty$ . Then we can construct two distributions $\mu_{1}$

and $\mu_{2}$ such that $\mu_{1}$ and $\mu_{1}*\mu_{2}$ belong to $D(2),$ $\mu_{2}$ does not belong to $D(2)$ , and
moreover $\lim\sup_{Rarrow\infty}V_{2}(R)/V_{1}(R)=r$ , where $V_{j}(R)$ is the truncated variance of $\mu j$

$(_{J}=1,2)$ .

PROOF. Use Theorems 3.8 and 4.4 as in the proof of the above theorem.
$\square$

REMARK. We note that the example of Hahn and Klass [4] satisfies
$\lim_{Rarrow\infty}V_{2}(R)/V_{1}(R)=0$ .

We add a general result related to Tucker’s conjecture.

THEOREM 4.7. Any non-trivial factor of a distribution in $D(2)$ belongs to
the domain of partial attraction of Gaussian distributions.

PROOF. Let $\mu$ be in $D(2)$ and let $\mu=\mu_{1}*\mu_{2}$ . Let Xand $Y$ be independent
random variables with distribution $\mu_{1}$ and $\mu_{2}$ , respectively. Set $Z=X+Y$ . By
Proposition2.5, $E|Z|^{\alpha}$ is finite for every $\alpha\in(0,2)$ . Hence $E|X|^{\alpha}$ and $E|Y|$ ’

are finite for every $\alpha\in(0,2)([2])$ . Maller [5] shows that this imPlies that $\mu_{1}$

and $\mu_{2}$ belong to the domain of partial attraction of Gaussian distributions if
they are non-trivial. $\square$
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APPendix.
Proposition2.6 is found in Tucker [9], but his proof seems to be incomplete

(the proof of the monotonicity is not understandable and the statement in $p$ . $r|$

13841. 17-18, which is used in the construction, is erroneous). So we give a
proof to the proposition and add some related remarks.

DEFINITION ([1] p. 15). A function $f(x)$ is called normalized slowly varying
function if it has the form

$f(x)=c \exp(\int_{B}\epsilon(t)t^{-1}dt)$ , $x1A$ ,

where $c$ is a constant $(0<c<\infty)$ and $e(t)$ is a measurable function such that
$\lim_{tarrow\infty}\epsilon(t)=0$ .

PROOF OF PROPOSITION 2.6. Suppose that $\nu$ is in $D(2)$ . Let $h(x)$ be the
slowly varying function part of the normalizing constant $B_{n}$ in (2.8). We can
assume that $h(x)$ is a normalized slowly varying function. The relation between
$B_{n}$ and the truncated variance of $v$ is that

$\lim_{narrow\infty}nV(B_{n})/B_{n}^{2}=1$ .
This is equivalent to that

(1) $\lim_{narrow\infty}V(n^{1/2}h(n))/h(n)^{2}=1$ .

By (1), if $h(x)$ is bounded, then $\nu$ has a finite variance and $h(x)$ converges to
a positive constant, which implies that $h(x)$ is asymptotically equal to a non-
decreasing one. Suppose that $h(x)$ is unbounded. Then $h(x)$ is asymptotically
equal to a non-decreasing function if and only if $h(x)$ satisfies the following:

(2) $\lim_{xarrow\infty}\max_{t\leq x}h(t)/h(x)=1$ .

Set $h(x)= \max_{ts}$ . $h(t)$ . In order to prove (2), we assume $\lim\inf_{xarrow\infty}h(x)/\overline{h}(x)=$

$r<1$ and get a contradiction. There exist sequences $X_{k}$ and $y_{k}$ such that
$\lim_{karrow\infty}x_{k}=\infty,$ $\lim_{karrow\infty}y_{k}=\infty,$ $\lim_{karrow\infty}h(x_{k})/h(y_{k})=r,\overline{h}(x_{k})=h(y_{k})$ , and $y_{k}\leqq x_{k}$ .
By (1),

(3) $\lim_{karrow\infty}\{V(y_{k}^{1/2}h(y_{k}))/V(x_{k}^{1/2}h(x_{k}))\}\{h^{2}(x_{k})/h^{2}(y_{k})\}=1$ .

By a property of normalized slowly varying functions ([1] p. 24 Theorem 1.5.5),

we have $y_{k}^{1/2}h(y_{k})\leqq x_{k}^{1/2}h(x_{k})$ for large $k$ . Therefore

$V(y_{k}^{1/2}h(y_{k}))/V(x_{k}^{1/2}h(x_{k}))$ $ 1 for large $k$ .
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Hence the left-hand side of (3) is not bigger than $r^{2}$ , which is a contradiction.
Let us prove the converse. Let $h(x)$ be a non-decreasing slowly varying

function and let $B(x)=x^{1/2}h(x)$ . We set $V_{0}(x)=h^{2}(B^{-1}(x))$ , where $B^{-1}(x)$ is an
asymptotic inverse of $B(x)$ ( $[7]$ p. 23). It is easy to see that $V_{0}(x)$ is non-
decreasing slowly varying. Therefore there exists a probability measure $\nu$ en
$[0, \infty)$ satisfying $\lim_{xarrow\infty}V_{0}(x)/\int_{0}^{x}t^{2}\nu(dt)=1$ . This $\nu$ satisfies our condition.

REMARK. A similar proposition is correct in the case of d-dimensional
Gaussian distributions. All one-dimensional Gaussian distributions have a com-
mon domain of attraction, but this is not true for Gaussian distributions on $R^{a}$ .
Thus the “if” part of Proposition 2.6 for $R^{f}$( should be as follows: if a slowly
varying function $h(x)$ is asymptotically equal to a non-decreasing one, then,

for any Gaussian distribution $\mu$ on $R^{d}$ , there exists a distribution in the domain
of attraction of $\mu$ with a normalizing constant $B_{n}=n^{1/2}h(n)$ . To prove this
assertion, it is enough to construct the direct product of one-dimensional dis-
tributions constructed in the above proof, because the case of general Gaussian
distributions is reduced by orthogonal transformations to the case of the direct
products of one-dimensional Gaussian distributions. The “only if” part of
Proposition2.6 for $R^{a}$ is a consequence of the case of $R^{1}$ if we consider
marginal distributions.

REMARK. It is well-known that the normalizing constant for a stable dis-
tribution with index $\alpha$ is represented as $B_{n}=n^{1/\alpha}h(n)$ , where $h(x)$ is a slowly
varying function. We have $\lim_{narrow\infty}(\max_{k\leq n}B_{k})/B_{n}=1$ (see [1] p. 23 on monotone
equivalents of regularly varying function). Notice that this fact does not mean
monotonicity of the slowly varying function part. In fact, for any non-Gaussian
stable distribution, every slowly varying function can appear as the slowly
varying function part of the normalizing constant of some distribution in its
domain of attraction ([9] and [8]). This is a big difference between Gaussian
distributions and non-Gaussian stable distributions.
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