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1. Introduction.

The aim of this paper is to refine the results of Okabe [13] on the Alder-
Wainwright effect for KMO-Langevin equations. Here by the Alder-Wainwright
effect, we mean the long-time tail behaviors $(\propto t^{-(p+1)}, p>0)$ of autocorrelation
functions for stationary processes of non-Markovian type. This long-time tail
was first observed by Alder and Wainwright in their computer experiment of
molecular dynamics ([1] and [2]). Their numerical calculation suggested that
the slowly developing viscous flow around a particle could explain the long-
time tail behaviors.

The usual Langevin equation of Ornstein-Uhlenbeck type is not adequate
for this Brownian particle because its autocorrelation function decays exponen-
tially. This equation neglects the effect of the fluid flow around the particle
which is generated by the accelerated motion of the particle. The appropriate
hydrodynamic drag force on a spherical particle moving arbitrarily in $R^{3}$ has
been calculated by Stokes and Boussinesq by solving the linearlized Navier-
Stokes equation ([7]). Then, the Langevin equation with this drag force be-
comes

(1.1) $m^{*} \frac{dX(t)}{dt}=-6\pi r\eta X(t)-6\pi r^{2}(\frac{\rho\eta}{\pi})^{1/2}\int_{-\infty}^{t}\frac{1}{\sqrt{}\overline{t-s}}\frac{dX(s)}{ds}ds+W(t)$ ,

where $m^{*}$ is an effective mass given by $m^{*}=m+(2/3)\pi r^{3}\rho$ . Here we consider
the motion of a sphere of radius $r$ and mass $m$ moving with an arbitrary velo-
city $X(t)$ at time $t$ in a fluid with viscosity $\eta$ and density $\rho$ subject to a random
force $W(t)$ at time $t$ . The second term of the right-hand side of (1.1) corre-
sponds to the effect of the accelerated fluid flow around the particle. It has
been shown ($e.g$ . $[6]$ and [15]) that the correlation function $R(t)$ of the stationary
solution $X$ of (1.1) has a long-time tail $\propto t^{-3/2}$ as $tarrow\infty$ , which agrees with the
above experiment. We remark that now the Alder-Wainwright effect has been
observed by not only a computer experiment but also a physical experiment
([14]).
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In their study of (1.1) ([6] and [15]), the noise $W$ is considered to be not
a white noise but a colored noise such as

(1.2) $X(t)= \frac{1}{kT}\int_{-\infty}^{t}R(t-s)W(s)ds$ ,

where $k$ is the Boltzman constant and $T$ is the temperature of the fluid. The
requirement (1.2) to the noise $W$ comes from the Kubo’s linear response theory
([5]) and tberefore, Okabe ([8] and [9]) called it a Kubo noise and studied it
rigorously.

The solution of (1.1) does not have a Markovian property but has a weaker
Property called the reflection positivity: the correlation function $R$ is of the
form (2.9) below. Noticing this fact, Okabe [8] derived, as a generalization of
(1.1), the first and second KMO-Langevin equations which describe the time
evolution of real stationary Gaussian processes with reflection positivity. Here
the first implies that the random noise is a white noise, while in the second
KMO-Langevin equation the random noise is a Kubo noise. Furthermore, in
[13], he showed, with a collaboration of Tomisaki, the Alder-Wainwright effect
for both first and second KMO-Langevin equations as a correspondence between
the decay $\propto t^{-(p+1)}$ of the correlation function $R$ and decay $\propto t^{-p}$ of the delay
coefficient $\gamma(0<p<1)$ . For the Stokes-Boussinesq-Langevin equation (1.1), we
have $p=1/2$ because $\gamma(t)=const.\chi_{(0.\infty)}(t)t^{-1/2}$ .

In this paper, we refine the results of Okabe [13] on tbe Alder-Wainwright
effect for KMO-Langevin equations in two points. First we generalize the
region of the index $P$ of the decay of the delay coefficient $\gamma$ from $(0,1)$ to $(0, \infty)$ .
Secondly we fill a gap of [13] in deriving the decay of the delay coefficient $\gamma$

from that of the correlation function $R$ for the first KMO-Langevin equations.
In the first problem, we adopt a way which is different from the proof of [13]
because their way can not be aPPlied to the case $p\geqq 1$ straightway. Our Proof
is based on the differentiation compared to that of [13] being based on the
integration. In our proof, we need to use a more general Tauberian condition
than the monotonicity.

So far we consider only the time continuous case. In [10], [11] and [12],
Okabe developed the theory of discrete KMO-Langevin equations which describe
the time evolution of real, time-discrete and stationary Gaussian processes with
reflection positivity. The Alder-Wainwright effect for the discrete KMO-
Langevin equations also exist and will be discussed in a forthcoming paper ([4]).

2. Statements of Results.

We consider the first KMO-Langevin equation:
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$\langle$ 2.1) $\dot{X}=-\beta_{1}X-\lim_{\text{\’{e}}\downarrow 0}\gamma_{1}$ . $.*\dot{X}+\alpha_{1}\dot{B}$

and the second KMMO-Langevin equation:

(2.2) $\dot{X}=-\beta_{2}X-\lim_{\epsilon\downarrow 0}\gamma_{2}$ . $.*\dot{X}+\alpha_{2}I$ .

Here for $j=1,2$ ,

(2.3) $\alpha_{j}>0$ and $\beta_{j}>0$

and for $t\in R$ and $\epsilon>0$ ,

(2.4) $r_{j,\epsilon}(t)=^{\chi_{(0.\infty)(t)\int_{\epsilon}^{\infty}e^{-t\lambda}\rho j(d\lambda)}}$

with a Borel measure $\rho j$ on $[0, \infty)$ satisfying

$\langle$2.5) $\rho_{i}(\{0\})=0$ , $\int_{0}^{\infty}(\lambda+1)^{-1}\rho j(d\lambda)<\infty$ .

$\dot{B}$ is a stationary Gaussian random tempered distribution with a spectral measure
$\langle$ 2.6) $\Delta_{\dot{B}}(d\xi)=d\xi$

and $I$ is a stationary Gaussian random tempered distribution with a spectral
measure

(2.7) $\Delta_{I}(d\xi)=\sqrt{\frac{2}{\pi}}\frac{1}{\alpha_{2}}(\beta_{2}+\xi^{2}\int_{0}^{\infty}\frac{1}{\lambda^{2}+\xi^{2}}\rho_{2}(d\lambda))d\xi$ .

The random noise $I$ is called a Kubo noise, which is related to $X$ through
the following relation (Theorem 8.3 in [8]):

(2.8) $X( \emptyset)=\frac{1}{R(0)}\int_{0}^{\infty}R(t)\alpha_{2}I(\phi(\cdot+t))dt$ $(\phi\in S(R))$ ,

where $R$ is the correlation function of $X$ . For the detailed theory such as the
existence and uniqueness of solutions for KMO-Langevin equations, see [8].

Let $X_{1}=(X_{1}(t);t\in R)$ (resp. $X_{2}=(X_{2}(t);t\in R)$ ) be the unique real stationary
Gaussian solution of (2.1) (resp. (2.2)) with mean $0$ and covariance $R_{1}$ (resp. $R_{2}$ )

of the form:

(2.9) $R_{J}(t)= \int_{0}^{\infty}e^{-|t\lambda}|\sigma_{j}(d\lambda)$ $(t\in R)$ $(]^{=1,2)}$ ,

where $\sigma_{j}(J^{=1},2)$ is a non-zero bounded Borel measure on $[0, \infty)$ satisfying

(2.10) $\sigma_{1}(\{0\})=0$ , $\int_{0}^{\infty}(\lambda+\lambda^{-1})\sigma_{1}(d\lambda)<\infty$ ,

(2.11) $\sigma_{2}(\{0\})=0$ , $\int_{0}^{\infty}\lambda^{-1}\sigma_{2}(d\lambda)<\infty$ ,

respectively. Let us given a slowly varying function $L$ at infinity: $L$ is a
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positive measurable function, defined on some neighborhood [X, $\infty$ ) of infinity,
and satisfying

$L(\lambda x)/L(x)arrow 1$ $(xarrow\infty)\forall\lambda>0$ .
We put for $t\in R$ ,

(2.12) $\gamma_{j}(t)=\chi_{\mathfrak{c}0.\infty)}(t)\int_{0}^{\infty}e^{-t\lambda}\rho j(d\lambda)$ $(]^{=1},2)$ .

We then have

THEOREM 2.1. Let $0<p<\infty$ . Then the following (2.13) and (2.14) are equi-
valent:

(2.13) $\gamma_{1}(t)\sim t^{-p}L(t)$ as $tarrow\infty$ ,

(2.14) $R_{1}(t) \sim\frac{\alpha_{1}^{2}p}{\beta_{1}^{3}}t^{-(1+p)}L(t)$ as $tarrow\infty$ .

THEOREM 2.2. Let $0<p<\infty$ . Then the following (2.15) and (2.16) are equi-
valent:

(2.15) $\gamma_{2}(t)\sim t^{-p}L(t)$ as $tarrow\infty$ ,

(2.16) $R_{2}(t) \sim\frac{\sqrt{}\overline{2\pi}\alpha_{2}p}{\beta_{2}^{2}}t^{-(1+p)}L(t)$ as $tarrow\infty$ .

The Stokes-Boussinesq-Langevin equation (1.1) with a white noise or a Kubo
noise as a random force is a special case of the above with $p=1/2$ (see \S 4).

$(2.13)\Rightarrow(2.14)$ and $(2.15)e(2.16)$ both with $0<p<1$ were proved by Okabe
[13]. He also proved $(2.14)\Rightarrow(2.13)$ with $0<p<1$ under the condition

(2.17) $\int_{0}^{\infty}\lambda^{-1}\rho_{1}(d\lambda)<\infty$

but according to Theorem 3.4 in [8] and (5.21) in [9], the Stokes-Boussinesq-
Langevin equation (1.1) with a white noise as a random force does not satisfy
(2.17) and in fact, it will be found that (2.13) and (2.17) never hold at the same
time if $0<p<1$ (Lemma 3.1). Thus what are new in this paper are (2.13)0
(2.14) with $p\geqq 1,$ $(2.15)\Rightarrow(2.16)$ with $p\geqq 1$ and $(2.16)\Rightarrow(2.15)$ with $p>0$ .

3. Preliminaries.

LEMMA 3.1. Let $\rho_{1}$ be a Borel measure on $[0, \infty)$ which satisfies (2.5) and
define a function $\gamma_{1}$ on $R$ by (2.12). We assume $0<p<1$ and (2.13). Then

(3.1) $\int_{0}^{\infty}\lambda^{-1}\rho_{1}(d\lambda)=\infty$ .
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PROOF. We assume (2.13). Then, by the Karamata’s Tauberian theorem
(Theorem 1.7.1’ in [3]),

(3.2) $U(a)\sim a^{p}L(1/a)/\Gamma(p+1)$ as $a\downarrow 0$ ,

where $U(a)=\rho_{1}([0, a])$ . On the other hand, for any $a>0$ ,

(3.3) $\int_{0}^{\infty}\lambda^{-1}\rho_{1}(d\lambda)\geqq\int_{0}^{a}\lambda^{-1}\rho_{1}(d\lambda)\geqq a^{-1}\int_{0}^{a}\rho_{1}(d\lambda)=U(a)/a$

and so, letting $a\downarrow 0$ , we obtain (3.1). $\blacksquare$

The following two lemmata are easily proved by induction.

LEMMA 3.2. Let I be an oPen interval of $R,$ $n\in N$ and $f\in C^{\infty}(I)$ . Then

(3.4) $( \frac{1}{f(\eta)})^{(n)}=-\frac{f^{(n)}(\eta)}{f(\eta)^{2}}+\frac{F_{n}(\eta)}{f(\eta)^{n+1}}$ ,

where $F_{n}$ is a polynomial in $\{f^{(l)} ; l=0,1, \cdots , n-1\}$ .

LEMMA 3.3. Let I be an open interval of $R,$ $n\in N$ and $f,$ $g\in C^{\infty}(I)$ . Then

(3.5) $( \frac{g(\eta)}{f(\eta)})^{(n)}=\frac{g^{(n)}(\eta)}{f(\eta)}+\frac{G_{n}(\eta)}{f(\eta)^{2}n}$ ,

where $G_{n}$ is a polynomial in $\{g^{(l)} ; l=0,1, \cdots , n-1\}$ and $\{f^{(l)} ; 1=0,1, \cdots , n\}$ .

LEMMA 3.4. Let 7 be a locally integrable function on $[0, \infty)$ . If $\lim_{tarrow\infty}\gamma(t)$

$=0$ , then

(3.6) $\lim_{\eta\downarrow 0}\eta\int_{0}^{\infty}e^{-\eta\iota}\gamma(t)dt=0$ .

PROOF. Choose $M>0$ so large that $|\gamma(t)|$ Ss for any $t\geqq M$. Then

$| \eta\int_{0}^{\infty}e^{-\eta t}\gamma(t)dt|\leqq\eta\int_{0}^{M}e^{-\eta t}|\gamma(t)|dt+\epsilon$

and so

$\lim_{\eta\downarrow 0}\sup\eta\int_{0}^{\infty}e^{-\eta t}\gamma(t)dt\leqq\epsilon$ .

Since $\epsilon$ is arbitrary, we obtain (3.6). $\blacksquare$

LEMMA 3.5. Let $U\in L_{1oc}^{1}[0, \infty),$ $\rho\in R,$ $\epsilon>0$ and $q\geqq 0$ . We assume $q-\rho-\epsilon$

$<-1$ and

(3.7) $U(t)\sim t^{-\rho}L(t)$ as $tarrow\infty$ .
Then

(3.8) $\lim_{\eta\downarrow 0}\eta^{\epsilon}\int_{0}^{\infty}e^{-\eta t}t^{q}U(t)dt=0$ .
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PROOF. Choose $\delta>0$ and $M>0$ so that $t\geqq M$ implies $|U(t)|\leqq(1+\delta)t^{-\rho}L(t)$

and $t^{(q-\rho-\epsilon+1)/2}L(t)\leqq 1$ . Now

$| \eta^{\epsilon}\int_{0}^{\infty}e^{-\eta t}t^{q}U(t)dt|\leqq\eta^{\epsilon}M^{q}\int_{0}^{M}|U(t)|dt+\int_{M}^{\infty}\eta^{\epsilon}e^{-\eta t}t^{q}|U(t)|dt$ .

On the integrand of the second term, we have for some constant $c_{1}>0$ ,

$\eta^{\epsilon}e^{-\eta t}t^{q}|U(t)|\leqq(1+\delta)(\eta t)^{\epsilon}e^{-\eta t}t^{(q-\rho-\epsilon-1)/2}(t^{(q-\rho-\epsilon+1)/2}L(t))\leqq c_{1}t^{(q-\rho-\epsilon-1)/2}$ .
Since $t^{(q-\rho-\text{\’{e}}-1)/2}$ is integrable over $[M, \infty)$, the integral tends to $0$ . $\blacksquare$

Let $X\in R$ . A function $f:[X, \infty)arrow R$ is called slowly increasing if

(3.9) $\lim_{\lambda\downarrow 1}\lim_{xarrow\infty}\sup_{t}\sup_{\in[1.\lambda]}\{f(tx)-f(x)\}\leqq 0$ (hence $=0$ )

(see [3]). We will use the following Tauberian condition:

(3.10) $U$ is eventually positive and $\log U$ is slowly increasing.

LEMMA 3.6. Let $f$ be a positive non-increasing function on $[0, \infty)$ and $\rho>0$ .
Then $x^{\rho}f(x)$ satisfies the Tauberian condition (3.10).

PROOF. For any $t\in[1, \lambda]$ and $x>0$ , we have

(3.11) $\log(tx)^{\rho}f(tx)-\log x^{\rho}f(x)=\rho\log t+\log f(tx)-\log f(x)\leqq\rho\log t$ .

The lemma follows easily from this. $\blacksquare$

The following Karamata’s Tauberian Theorem plays a crucial role in our
proof of Theorems 2.1 and 2.2.

THEOREM 3.7. (Theorem 1.7.6 in [3]) Assume $U(\cdot)\geqq 0,$ $\rho>-1,$ $L$ is slowly
varying at infinity and

(3.12) $\hat{U}(s):=s\int_{0}^{\infty}e^{-sx}U(x)dx$ ,

is convergent for $s>0$ . Then

(3.13) $U(x)\sim x^{\rho}L(x)/\Gamma(1+\rho)$ as $xarrow\infty$ ,

implies

(3.14) $O(s)\sim s^{-\rho}L(1/s)$ as $s\downarrow 0$ .
Conversely, (3.14) implie$s(3.13)$ if $U$ satisfles the Tauberian condition (3.10).

LEMMA 3.8. If $E$ is a non-negative non-increasing and integrable function
on $[0, \infty)$ , we $p_{uf}$

(3.15) $R(t)= \frac{1}{2\pi}\int_{0}^{\infty}E(t+s)E(s)ds$ $(t\geqq 0)$ ,
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(3.16) $c= \frac{1}{2\pi}\int_{0}^{\infty}E(s)ds$ .

Then if $p>0$ and $L$ is slowly varying at infiinity,

$\langle$ 3.17) $E(t)\sim t^{-p}L(t)$ as $tarrow\infty$ ,

if and only if
(3.18) $R(t)\sim ct^{-p}L(t)$ as $tarrow\infty$ .

PROOF. Since $E$ is non-increasing, it follows that for any $i\geqq 0$ and $a\geqq 0$ ,

(3.19) $R(t) \leqq\frac{E(t)}{2\pi}\int_{0}^{\infty}E(s)ds=cE(t)$ ,

and

(3.20) $R(t) \geqq\frac{E(t+a)}{2\pi}\int_{0}^{a}E(s)ds$ .

NOW, we suppose (3.17). Then, using (3.19) and (3.20), we have

$\frac{1}{2\pi}\int_{0}^{a}E(s)ds\leqq\lim_{tarrow\infty}\inf\frac{R(t)}{t^{-p}L(t)}\leqq\lim_{tarrow}\sup_{\infty}\frac{R(t)}{t^{-p}L(t)}\leqq c$

and so, letting $aarrow\infty$ , we obtain

$\lim_{tarrow\infty}\frac{R(t)}{t^{-p}L(t)}=c$ .

This shows (3.18).

Conversely, we assume (3.18). Then, again from (3.19) and (3.20) we have

$1 \leqq\lim_{tarrow\infty}\inf\frac{E(t)}{t^{-p}L(t)}\leqq\lim_{tarrow}\sup_{\infty}\frac{E(t)}{t^{-p}L(t)}\leqq c(\frac{1}{2\pi}\int_{0}^{a}E(s)ds)^{-1}$

and so, letting $aarrow\infty$ , we obtain

$\lim_{tarrow\infty}\frac{E(t)}{t^{-p}L(t)}=1$ .

This shows (3.17) and completes the proof of the lemma. $\blacksquare$

REMARK. It is in the proof of $(3.18)\Rightarrow(3.17)$ that the assumption (2.17) was
used in [13]. We remark that, in Lemma 3.8, (2.17) is not assumed.

4. Proof of Theorems 2.1 and 2.2.

THEOREM 4.1. Let $U\in L^{1}[0, \infty),$ $\gamma\in L_{\iota oc}^{1}[0, \infty),$ $\alpha>0,$ $\beta>0,$ $p>0$ and $L$ be
a slowly varying function at infinity. Assume that $U$ and 7 are positive, non-
increasing, tend to zero as $tarrow\infty$ and satisfy for any $\eta>0$ ,
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(4.1)
$\int_{0}^{\infty}e^{-\eta t}U(t)dt=\overline{\varphi\pi}\alpha\frac{1}{\beta+\eta+\eta\int_{0}^{\infty}e^{-\eta t}\gamma(t)dt}$

.

Then

(4.2) $\gamma(t)\sim t^{-p}L(t)$ as $tarrow\infty$

if and only if

(4.3) $U(t) \sim\frac{\sqrt{}\overline{2\pi}\alpha p}{\beta^{2}}t^{-(1+p)}L(t)$ as $tarrow\infty$ .

PROOF. It follows from Lemma 3.4 and (4.1) that

(4.4) $\lim_{\eta\downarrow 0}\int_{0}^{\infty}e^{-\eta t}U(t)dt=\int_{0}^{\infty}U(t)dt=\frac{\sqrt{}\overline{2\pi}\alpha}{\beta}$

We put $n=[P]$ , where $[p]$ is the greatest integer not greater than $p$ .
We first assume (4.2). The idea of the proof is to differentiate both sides

of (4.1) $n+1$ times with respect to $\eta$ so that we can apply Theorem 3.7 to our
problem. By Lemma 3.2, we obtain

(4.5) $\int_{0}^{\infty}e^{-\eta^{c}}t^{n+1}U(t)dt=(-1)^{n+1}\sqrt{}\overline{2\pi}\alpha\{-\frac{f^{(n+1)}(\eta)}{f(\eta)^{2}}+\frac{F_{n+1}(\eta)}{f(\eta)^{n+2}}\}$ ,

where

(4.6) $f( \eta)=\beta+\eta+\eta\int_{0}^{\infty}e^{-\eta t}\gamma(t)dt$

and $F_{n+1}$ is a polynomial in $\{f^{(l)} ; l=0,1, , n\}$ . From (4.6), we see that for
any $l=1,2,$ $\cdots$

(4.7) $f^{(l)}( \eta)=\delta_{l1}+(-1)^{\iota}\eta\int_{0}^{\infty}e^{-\eta t}t^{\iota}\gamma(t)dt+(-1)^{\iota-1}l\int_{0}^{\infty}e^{-\eta t}t^{\iota-1}\gamma(t)dt$ .

Since $n+1-p>0$ and

$t^{n+1}\gamma(t)\sim t^{n+1-p}L(t)$ , $t^{n}\gamma(t)\sim t^{n-p}L(t)$ as $tarrow\infty$ ,

it follows from Theorem 3.7 that

(4.8) $f^{(n+1)}(\eta)\sim(-1)^{n}\{(n+1)\Gamma(n+1-P)-\Gamma(n+2-p)\}\eta^{-(n+1-p)}L(1/\eta)$

$=(-1)^{n}\Gamma(n+1-p)P\eta^{-(n+1-p)}L(1/\eta)$ as $\eta\downarrow 0$ .

On the other hand, let $1=1,2$ , , $n$ and $\epsilon>0$ . Since $l-1-\epsilon-p<-1$ , it
follows from Lemma 3.5 and (4.7) that

(4.9) $\lim\eta^{\epsilon}f^{(l)}(\eta)=0$

$\eta\downarrow 0$

and therefore
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(4.10)
$\lim_{\eta\downarrow 0}\eta^{\epsilon}F_{n+1}(\eta)=0$ .

Furthermore, by Lemma 3.4 we have

(4.11) $l^{imf(\eta)=\beta}$ .

NOW we return to (4.5). From (4.8), (4.10) and (4.11) we obtain

$\eta\int_{0}^{\infty}e^{-\eta t}t^{n+1}U(t)dt\sim\sqrt{2\pi}\alpha\eta^{p-n}L(1/\eta)\{\frac{\Gamma(n+1-p)p}{\beta^{2}}+\frac{\eta^{(n+1-p)/2}F_{n+1}(\eta)}{\eta^{-(n+1-p)/2}L(1/\eta)\beta^{n+2}}\}$

$\sim\frac{\sqrt{}\overline{2\pi}\alpha\Gamma(n+1-p)p}{\beta^{2}}\eta^{p- n}L(1/\eta)$ as $\eta\downarrow 0$ .

Since $n-p>-1$ , we have from Lemma 3.6, Theorem 3.7 and the above,

$t^{n+1}U(t) \sim\frac{\sqrt{}\overline{2\pi}\alpha p}{\beta^{2}}t^{n-p}L(t)$ as $tarrow\infty$ .

Thus (4.3) follows.
Next, to prove the other part, let us assume (4.3). By (4.1), (4.4) and the

integration by parts, we see that for any $\eta>0$ ,

(4.12) $\int_{0}^{\infty}e^{-\eta t}\gamma(t)dt=\frac{\sqrt{}\overline{2\pi}\alpha}{\eta\int_{0}^{\infty}e^{-\eta t}U(t)dt}-\frac{\beta}{\eta}-1=\frac{\beta\int_{0}^{\infty}dte^{-\eta^{\iota}}\int_{t}^{\infty}U(\tau)d\tau}{\int_{0}^{\infty}e^{-\eta t}U(t)dt}-1$ .

The idea of the proof is similar to that of the first half. This time we differ-
entiate both sides of (4.12) $n$ times with respect to $\eta$ . Then from Lemma 3.3
we obtain

(4.13) $\int_{0}^{\infty}e^{-\eta t}t^{n}\gamma(t)dt=(-1)^{n}\beta\frac{h^{(n)}(\eta)}{g(\eta)}+\frac{G_{n}(\eta)}{g(\eta)^{2}n}-\delta_{0n}$ ,

where

(4.14) $g( \eta)=\int_{0}^{\infty}e^{-\eta t}U(t)dt$ , $h( \eta)=\int_{0}^{\infty}dte^{-\eta t}\int_{t}^{\infty}U(\tau)d\tau$

and $G_{n}$ is a polynomial in $\{h^{(l)} ; 1=0,1, , n-1\}$ and $\{g^{(l)} ; l=0,1, , n\}$

(nlllll). When $n=0$ , we put $G_{n}=0$ . On the right hand side of (4.13), the first
term will be found to be the main term.

First by (4.4),

(4.15) $l^{img(\eta)=}\sqrt 2Za/\beta$ .

For any $l=0,1,$ $\cdots$ and $\eta>0$ , we have

(4.16) $g^{(l)}( \eta)=(-1)^{\iota}\int_{0}^{\infty}e^{-\eta t}t^{l}U(t)dt$ , $h^{(l)}( \eta)=(-1)^{\iota}\int_{0}^{\infty}dte^{-\eta t}t^{\iota}\int_{t}^{\infty}U(\tau)d\tau$ .

By the monotone density theorem (cf. Theorem 1.7.2 in [3] and its remark),



524 A. INOUE

$\int_{t}^{\infty}U(\tau)d\tau\sim\frac{\sqrt{}\overline{2\pi}\alpha}{\beta^{2}}t^{-p}L(t)$ as $tarrow\infty$ .

Therefore, since $n-p>-1$ , it follows from Theorem 3.7 that

$\langle$4.17) $h^{(n)}( \eta)\sim(-1)^{n}\frac{\sqrt{}\overline{2\pi}\alpha\Gamma(n-p+1)}{\beta^{2}}\eta^{p-n-1}L(1/\eta)$ as $\eta\downarrow 0$ .

On tbe other hand, for any $\epsilon>0andl=0,1$ , , $n-1$ , noting $l-\epsilon-p<-1$ ,

we have from Lemma 3.5
$\lim_{\eta\downarrow 0}\eta^{\epsilon}h^{(l)}(\eta)=0$ .

In the same way, we see that for any $1=0,1,$ $\cdots$ , $n$ and $\epsilon>0$ ,

$\lim_{\eta\downarrow 0}\eta^{\epsilon}g^{(l)}(\eta)=0$ .

Therefore it holds that for any $\epsilon>0$ ,

$\langle$ 4.18)
$\lim_{\eta\downarrow 0}\eta^{\epsilon}G_{n}(\eta)=0$ .

NOW we return to (4.13). By (4.15), (4.17) and (4.18), we see that

$\eta\int_{0}^{\infty}e^{-\eta t}t^{n}\gamma(t)dt\sim\eta^{p-n}L(1/\eta)\{\Gamma(l-p+1)+(\frac{\beta}{\sqrt{}\overline{2\pi}\alpha})^{2}\frac{\eta^{(n+1-p)/2}G_{n}(\eta)}{\eta^{-(n+1-p)/2}L(1/\eta)}\}n$

$\sim\Gamma(n-p+1)\eta^{p-n}L(1/\eta)$ as $\eta\downarrow 0$ .

By Lemma 3.6, we can apply Theorem 3.7 to the above and obtain

$t^{n}\gamma(t)\sim t^{n-p}L(t)$ as $t \frac{>}{}\circ\circ$ .

This shows (4.2) and compeltes the proof of Theorem 4.1. $\blacksquare$

PROOF OF THEOREM 2.2. By (2.9), (2.11), (2.4), (2.5) and Lemma 2.8 in [8],

we see that $R_{2}\in L^{1}[0, \infty),$ $\gamma_{2}\in L_{1oc}^{1}[0, \infty)$ and both $R_{2}$ and $\gamma_{2}$ are positive, de-
creasing and tend to zero as $tarrow\infty$ . Furthermore, it follows from Theorem 8.5
in [8] that for any $\eta>0$ ,

(4.19)
$\int_{0}^{\infty}e^{-\eta t}R_{2}(t)dt=\sqrt{}\overline{2\pi}\alpha_{2}\frac{1}{\beta_{2}+\eta+\eta\int_{0}^{\infty}e^{-\eta t}\gamma_{2}(t)dt}$

.

Then Theorem 2.2 follows immediately from Theorem 4.1. $\blacksquare$

PROOF OF THEOREM 2.1. First, as in the case of $\gamma_{2}$ , we see that $\gamma_{1}$ is a
positive, decreasing and locally integrable function on $[0, \infty)$ . Let $E_{1}$ be the
canonical representation kernel of $X_{1}$ . By Theorems 2.1 and 2.2 in [8], $E_{1}$ is
a positive, decreasing and integrable function on $[0, \infty)$ and satisfies for any
$\eta>0$ ,
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(4.20)
$\int_{0}^{\infty}e^{-\eta t}E_{1}(t)dt=\sqrt{}\overline{2\pi}\alpha_{1}\frac{1}{\beta_{1}+\eta+\eta\int_{0}^{\infty}e^{-\eta t}\gamma_{1}(t)dt}$

.

Then it follows from Theorem 4.1 that (2.13) is equivalent to

(4.21) $E_{1}(t) \sim\frac{\sqrt{}\overline{2\pi}\alpha_{1}p}{\beta_{1}^{2}}t^{-(1+p)}L(t)$ as $tarrow\infty$ .

On the other hand, by (E.4) in [8] and Lemma 3.4, we have

(4.22) $R_{1}(t)= \frac{1}{2\pi}\int_{0}^{\infty}E_{1}(t+s)E_{1}(s)ds$ $(t\geqq 0)$ ,

(4.23) $\frac{1}{2\pi}\int_{0}^{\infty}E_{1}(s)ds=\frac{\alpha_{1}}{\sqrt{}\overline{2\pi}\beta_{1}}$

Then by Lemma 3.8, we see that (4.21) is equivalent to (2.14). This completes

the proof. $\blacksquare$

5. ExamPles.
Let $P$ be an arbitrary positive constant and $L$ a slowly varying function

at infinity. In addition to the condition (2.5), we assume that $\rho_{j}(]=1,2)$ has
a density $\rho_{j}(\lambda)(]=1,2)$ with

(5.1) $\rho_{j}(\lambda)\sim\lambda^{p-1}L(1/\lambda)/\Gamma(p)$ as $\lambda\downarrow 0$ .

Then, by the Karamata’s Tauberian theorem (a version of Theorem 3.7 with
$x\downarrow 0,$ $sarrow\infty)$ , the function $\gamma_{1}$ (resp. $\gamma_{2}$ ) defined by (2.12) satisfies (2.13) (resp.

(2.15) $)$ and hence (2.14) (resp. (2.16)) holds. Especially,
a) If we put $p_{j}(\lambda)=\lambda^{p-1}e^{-\lambda}/\Gamma(p)$ , then we get $\gamma_{j}(t)=(t+1)^{-p}(0<p<\infty)$ .
b) If we put $\rho_{j}(\lambda)=\lambda^{p-1}/\Gamma(p)$ , then we get $\gamma_{j}(t)=t^{-p}$ . Here this time we

assume $0<p<1$ . The Stokes-Boussinesq-Langevin equation (1.1) is essentially
this case with $p=1/2$ .
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