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Introduction.

V. Jones constructed his celebrated theory on index for type II, factors
by using the notion of coupling constant. Kosaki extended Jones’ index
theory to that for conditional expectations between arbitrary factors based on
Connes’ spatial theory [9] and Haagerup’s theory on operator valued weights
[17]. For von Neumann algebras M22N, let &(M, N) denote the set of all
faithful normal conditional expectations from M onto N, and &(M) the set of
all faithful normal states on M. When M2N is a pair of factor and sub-
factor with &(M, N )+ @, Kosaki’s index Index E varies depending on E<&(M, N).
But it was shown in (independently by Longo [27]) that if Index E<
for some E=&(M, N), then there exists a unique E,=&(M, N) which minimizes
Index E for E<&(M, N). So we can define the minimum index [M: N ],=
Index E, for a pair M2 N. :

Starting with the von Neumann entropy, we have at present several Kinds
of entropies in noncommutative probability theory (see [3, 4, 10, 11, 12, 29, 41,
43] for instance). Pimsner and Popa exactly estimated the entropy
H(M|N) of a type II, factor M relative to its subfactor N in terms of Jones’
index. This entropy extends the conditional entropy in commutative probability
theory, and was first used by Connes and Stgrmer [12] to study the Kolmogorov-
Sinai entropy of automorphisms of finite von Neumann algebras. As the natural
generalization of H(M|N) for finite von Neumann algebras, Connes defined
the entropy H,(M|N) for general von Neumann algebras M2N and a normal
state ¢ on M by using the notion of relative entropy. Here the relative entropy
of normal positive functionals was first studied by Umegaki in the semi-
finite case, and was extended by Araki [3,4] to the general case. On the
other hand, taking account of Pimsner and Popa’s estimate of H(M|N), we
introduced in another entropy K,(M|N) of a von Neumann algebra M
relative to its subalgebra N and ¢=&(M) such that E€&(M, N) with ¢ E=¢
exists. For factors M2N and E€&(M, N), we write Kg(M|N) for K, (M|N)
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which is independent of ¢ with ¢<E=¢. The relation between the minimum
index [M: N7, and the entropy Kgy(M|N) was established in [19]. Also
Kawakami introduced the same entropy as K, (M|N) in a restricted situ-
ation and obtained some related results.

In this paper, we continue to study the relation between index and entropy.
This time, we mainly consider the entropies H,(M|N) and Hz(M|N), where
the entropy Hgz(M|N) relative to E<=&(M, N) is defined as the supremum of
H(M|N) for p=&M) with ¢-E=¢. §1 contains definitions on index and
entropy. In §2, we present several basic properties of entropies H,(M|N) and
Hx(M|N). In §3, we further discuss H,(M|N) related with the relative
commutant N'N\M. In §§4 and 5, the entropies Hx(M|N) and KzM|N) are
investigated in connection with tensor products and crossed products. It is
shown that Hz(M|N) and KzM|N) are well behaved under taking tensor
products and crossed products in some cases. In §6, when N is a factor, we
estimate Hz(M|N) compared with Kz(M|N) and show that Hy(M|N)XKg{M|N)
for all E€&(M, N). Moreover using the results in §§4 and 5 all together, we
prove the equality Hg(M|N)=KzM|N) when N is an infinite factor and
KgM|N)<oo. In §7, let M2N be a pair of factor and subfactor with
[M:NJe<oo., The results in concerning the relation between [M: N,
and Kzg(M|N) are combined with the estimates in §6. Consequently we have
Hy(M|N)<log[M: N], for all E=€&(M, N) and characterize E=&(M, N) with
Index E=[M: N)}, by means of the entropy Hz(M|N). Finally in §8, the
formulas of entropies for basic constructions are given including some examples.

1. Definitions and preliminaries.

In this paper, von Neumann algebras are always assumed to be o-finite.
Let M be a von Neumann algebra on a Hilbert space 4 and N a von Neumann
subalgebra of M. We denote by &(M) the set of all normal states on M and
by &(M) the set of all faithful normal states on M. Let &€(M, N) denote the
set of all faithful normal conditional expectations from M onto N. For each
Ece(M, N), the operator valued weight E-! from N’ to M’ is uniquely deter-
mined by the equation d¢-E/d¢p=d¢/d¢-E" of spatial derivatives where ¢ and
¢ are any faithful normal semifinite weights on N and M’ respectively ([17,
Theorem 6.13], [36, 12.11]). Now let M2 N be a pair of factor and subfactor.
Kosaki’s index IndexE of F<=&(M, N) is defined by Index E=E-Y1) ([25]).
This index value depends on the choice of E€&(M, N). But when Index E<
for some E=&(M, N) (hence Index E< for all E=&(M, N)), we proved in
(also [27]) that there exists a unique E,=&(M, N) such that

Index Ey=min{Index E : E€&(M, N)},
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and E, is characterized by the condition

E7NIN'NM =(Index E))E,|N'N\M.
Furthermore E, N’M becomes a trace on N’NM. Thus we define the
minimum index [M:N7], for a pair M2N by [M: N],=Index E,. Also let
M:N]y=w if &M, N)=¢@ or Index E=co for all E=&(M, N). Properties
of the minimum index were presented in [19].

For a pair of general von Neumann algebras M2N and ¢<=&(M), the
entropy H,(M|N) of M relative to N and ¢ introduced by Connes is
defined by

H,(M|N) = sup ;{S(w, 0i)—S(@|N, ¢:IN)},

where the supremum is taken over all finite families (¢;, =, @a) Of ;€M
with p;=¢. Here S(p, ¢) denotes the relative entropy of ¢, p=Mi ([3, 4).
In particular, let M be a finite von Neumann algebra with a faithful normal
trace 7, 7(1)=1, and Ey be the conditional expectation M—N with respect to
7 ([40]). Then HM|N)=H.(M|N) is given by
H(MIN) = sup SHe(nEx(x)~(5(x)}

where 7(t)=—tlogt on [0, o) and the supremum is taken over all finite families
(%1, =+, xa) Of x;€M, with S x;=1. For a pair of type II, factors M2 N, the
entropy H(M|N) was extensively developed by Pimsner and Popa [33] in
connection with Jones’ index [M: N] (=Index Ey).

Let M2N be general von Neumann algebras again. Given E€&(M, N),
we define the entropy Hz(M|N) relative to E by

Hg(M|N) =sup{H,(M|N): p=&M), p-E = ¢} .

For o=&(M) such that E€&(M, N) with ¢-E=¢ exists, we introduced in
another entropy K, (M|N) relative to N and ¢ by

K (MIN) = —S(6, o),

where w=¢|N'N\M and é=¢-(E"'|N'\M). Here, since E'|N’'"\M is not
necessarily bounded, the relative entropy S(&, w) is given by

S(®, w) = inf{S(@’, w): ' s(N'NM)}, o' <6} .
Also for E€&(M, N), we define
Kg(M|N) = sup{K,(M|N): p=&(M), p- E=0¢}.

But when N is a factor, K, (M|N) is independent of the choice of p=&(M)
with ¢-E=¢ and we can write

Ke(M|N)= —S(E<«(E"*|N'"\M), EIN'NM),
because E|N'NM and E-(E-'|N'"\M) are scalar-valued.
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Let M2 N be factors and E€&(M, N). Then Kz(M|N) is exactly estimated
in terms of Kosaki’s index as follows ([19]): If N’ M has a nonatomic part,
then Kzg(M|N)=c., If N’'"\M is atomic and {e,} is a set of atoms in the
centralizer (N'"\M)g of E with 3e,=1, then

Index E.,

E(e.) ’
where E.,c&(M,,, N,,) is defined by E.(x)=E(e,)'E(x)e;, x&EM,,. This
estimate is completely analogous to that of H(M|N) for type II, factors ([33]).
Furthermore Kx(M|N)<log[M: N7J,, and the equality holds if and only if
Index E=[M: N1, (i.e. E=E)).

However the entropy Kz(M|N) is defined by using E~' and restricting on
the relative commutant N’NM, which is more closely connected with Index F
than H,(M|N) or Hg(M|N). In fact, when N'N\M=C, it is clear by definition
that Kz(M|N)=IlogIndex E. But the same equality for Hy(M|N) is not at all
clear. The main purpose of this paper is to investigate the entropies H (M|N)
and Hy(M|N) related with the minimum index [M: N], and compared with
the entropy Kz(M|{N).

Kg(M|N) = Zk] E(es)log

2. General properties of entropy.

In this section, let M be a von Neumann algebra and N a von Neumann
subalgebra of M. We present general properties of entropies H,(M|N) for
e=&(M) and Hg(M|N) for E<&(M, N).

PROPOSITION 2.1. If a is an isomorphism of M onto a(M), then:
(1) H M|N)=H,, a-(a(M)|a(N)) for all p=&(M),
(2) HgM|N)=H,.goa-1(a(M)|a(N)) for all E€&(M, N).

Proor. (1) is immediate since S(g-a™!, ¢gea™)=S(p, ¢) for ¢, p=Mj.
(2) follows from (1). O

PROPOSITION 2.2. Let L be a von Neumann algebra with L2M23N. If
0=S(L), then:

(1) H(LIN)=< H,(L|M)+H,u(M|N),

(2) H(L|N)z= H,(L|M),

(3) H(LIN)Z Hyu(M|N) whenever FE&(L, M) with ¢-F=¢ exists.

If Fe&(L,M) and E<&M, N), then:

(4) Hg,s(LIN)= He(L|M)+HgM|N),

(5) Hg,s/(L|N)z= Hg(M|N).

PrOOF. (1) is obvious. (2) follows from the monotonicity of relative entropy
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([24, 39]). Toshow (3), let ¢, ---, po=Mfand Dp;=¢|M. Taking ¢,=¢,-F,
we have 3¢,=¢ so that

H(LIN) 2 33{5(p, p)—S(@| N, : N)} 2 ZHS(¢| M, $:)—S(p| N, ¢:| N)}

by monotonicity. Hence (3) holds. Moreover (4) and (5) are immediate from
(1) and (3), respectively. O

PROPOSITION 2.3. Let M=$,M, and N=@,N, for countable families
{M,} and {N,} of von Neumann algebras with My2N,. If ¢=@,,¢, where
2: 20, 22,=1, and ¢, =S(M,), then

HAMIN) = S0 H, (My | Ny).

PrOOF. Let ¢y, -, ¢o=ME and SP;=¢. Writing ¢;=PB,2,¢;x with
i €M)k and i =¢,, we have

;{S(SD, Qbi)—S(QDIN, ¢i|N)} = %M?{S(?k, Qbik)“S(SDk | Ne, ¢ik [N}
é ;Zkak(Mk[Nk)

by the additivity of relative entropy for direct sums and by the scaling property
of relative entropy ([4, Theorem 3.6]). Hence H (M|N)<Z2,H, (M;|Np).
The reverse inequality is similarly shown. [

PROPOSITION 2.4. If o=&(M) and H(M|N)=0, then M=N.

Proor. Let ¢=&(M) and suppose H, (M|N)=0. If ¢=&(M) satisfies
¢=cp for some ¢>0, then

1 1
s(o120 Lo1) =5(o. L),
so that by [4, Theorem 3.6]
S(@|N, ¢IN) = S(p, ¢)<eo,
i.e. N is weakly sufficient for {¢, ¢} in the sense of [31]. Hence due to [31,
Theorem 4], we have ¢ E,=¢ where E,: M—N is the Accardi-Cecchini gener-
alized conditional expectation with respect to ¢. Because M, is the closed

linear span of {¢p=&(M): ¢p=ce for some ¢>0}, we get E,=idy. This shows
M=N. O

PROPOSITION 2.5. The function ¢—H,(M|N) is lower semicontinuous in norm
on S(M).

PrROOF. Let ¢., ¢=&(M) and [l¢,—¢||—0. Taking the standard represent-
ation of M ([2, 16]), we have &, and & in the natural positive cone such that
0n=(-£,1&:) and ¢=(-£16). Then [&,—&l=<llp,—¢|'*—0 by [2, Theorem 4]
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({16, Lemma 2.10]). Let ¢y, -+, ¢, =M% and ¢P;=¢. For 1=i<k, there
exists a unique aj=M’ such that 0=a;<e’ and ¢;=(-ai|§), where ¢’ is the
projection onto ME&. Since S¢,=¢ implies Xa;=e’, by replacing ai with
ai+(1—e’), we can choose ai, ---, az=M} with a;=1 such that ¢;=(-ai§l§),
1<i<k. Define ¢ny, =+, PnrEML by ¢Pni=(-aién1§x). Then 3idn.=¢. and
ldni—¢:ill—0 as n—oo, so that by [4, Theorem 3.7]

SHUS(p, g0—S(@IN, il N)} = lim TS(@n, $u)—S(gal N, $uil N}
< lirﬁcicnf H, (M|N).
Therefore H,(M|N)=lim inf, . .H, (M|N). O
The next lemma will be very useful in the sequel.
LEMMA 2.6. If o=&(M) and there exists E€&(M, N) with ¢°-E=¢, then
H,MIN) = sup S3S(g:oE, 90),
where the supremum is taken over all ¢,, -+, po<EM5% with Z¢;=¢.

PROOF. According to [32, Theorem 2] (extending [30, Theorem 5]), we
get for g M}

S(p, §)=S(¢|N, ¢IN)+S(¢-E, ¢).
This shows the desired formula. [
PROPOSITION 2.7. If E€&(M, N), then H,(M|N) is concave on {oE&(M):
€D°E:¢}-

PrROOF. Let ¢, ¢=&(M), p-E=¢, ¢-E=¢, and 0<A<1. For ¢,, -+, onE
Mj with 3p:=¢ and ¢, -, goEM with Zd;=¢, since Zilp;+32,(1—p;=
Ap-+(1—2)p, we have by

Hypra-ng(MIN) = ZilS(lgowE, Zgoi)+§s((1—2)¢j°E, (1—=2)¢;)
= X;S((Pi"E, ¢i)+(1—])§j]5(¢'j°E, ¢'j),
showing the conclusion required. O

REMARK 2.8. If N is a finite dimensional factor with the normalized trace
7, then Hg(M|N)=H. g(M|N) for all E€c&(M, N). Indeed for any ¢=&(N), ¢
is in the convex hull of the unitary orbit of ¢, i.e. =X, u,¢u¥ with 2,>0,
SAr=1land u,<N unitary. Then e E=X1,u,(¢-E)u¥, so that by Propositions
2.7 and 2.1(1)

H.,g(M|N) = ZAeHyypomu(ue MuF| up Nuf) = Hy, g(M|N),

as desired.
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PROPOSITION 2.9. For every E&(M, N)
Hy(M|N) < log| E-Y(D)I[,
where |E~Y(1)||=oc0 if E~Y(1) is unbounded.
PROOF. Suppose E~}1) is bounded and let A=[|E£-¥1)|"'. Then it follows
from [19, Proposition 1.9] that
E(x)= E-Y(1)'x = 4x, xeEM,.

Let ¢p=&(M) and ¢@-E=¢. For each ¢, -, o, €M} with J¢,=¢, since
¢ E=2¢;, we have by [4, Theorem 3.6]

;S(QDPE, 0= ;S(Z(Pi’ (pi)Z—;goi(l)lOgZ:—lOgl.
Therefore H,(M|N)=<-—log by Lemma 2.6, so that Hi(M|N)<—logi. O

In fact, the above proposition was given at the end of without proof.
When M2N is a pair of factor and subfactor, this shows that Hgz(M|N)Z
log Index E for all E<&(M, N). But we shall establish a stronger inequality
in [Corollary 7.1|

The notion of commuting squares plays a fundamental role in index theory
for type II, factors ([15]). In the next lemma, we show the monotonicity of
entropies H,(M|N) and Hg(M|N) for a commuting square.

LEMMA 2.10. Let M,2 N, be von Neumann algebras with M,SM and N,EN.
Let pe&(M), Ec&M, N), E,=&(M, N,) and F,e&(M, M,) be such that ¢°E=
o E\=@-Fi=¢. If the commuting square condition E-F\=E, holds, then:

(1) H,(M|N) = Hyu,(My|Ny),
(2) He(M|N)Z Hgy,(M;[N)).
Proor. (1) Let ¢y, -, ¢go=(M))i and J;=¢|M,. Taking ¢,, -, p,SMj
with J¢;=¢ by ¢;=¢;°F;, we have
H(MIN) 2 2S(gi-E, ¢2) = Do E)| M, ¢:1 M)
= S(@i=(EIMy), ¢)
by and monotonicity. This implies H,(M|N)=H, (M| N)).
(2) For each ¢, =&(M,) with ¢«(E|M;)=¢,, letting ¢=¢,-E,, we have
Qo E=¢oEcE=¢-E=¢,
Qo Fy=¢oE-F==- E,=¢).
Hence by (1) applied to ¢, we get
He(M|N) = Hy(M|N) = Hy (M| Ny),
implying Hg(M|N)=Hgy (M| N,). O



354 F. Hial

We end this section with martingale type convergence properties of entropies.
Let {M,} and {N,} be increasing sequences of von Neumann subalgebras of M
with M,2N, such that M=\/, M, and N=\/,N,.

PROPOSITION 2.11. For every ¢=S(M)
H,(M|N) < liminf Hy 5y (M, | N,).

Proor. Given ¢y, -+, opo€M§ with X¢;=¢, by the martingale conver-
gence of relative entropy ([4, Theorem 3.9], [24, Theorem 4.1]), we have

Ei{S(tp, 0)—S(@IN, ¢;|N)} = Liglozi](s(wlz‘fn, ©i| My)—S(@| N, 0| Nudt
< lim inf Hy (M, | Ny),

implying the desired inequality. O

PROPOSITION 2.12. Let ¢o=&(M) and assume that there exist E,<=&(M, N,)
with e E,=¢@ and Foe&(M, My) with ¢oFro=¢. If E,..oF,=FE, for all n, then"

(1) H(M|N)=limg,.oH, (M| Ny) increasingly,

(2) Hy(M|N)=lim,.wHg, 1, (M| Ny) increasingly where Ec&(M, N) with
pE=¢.

PROOF. By and [7, Lemma 2], there exists E<&(M, N) such that
¢E=¢ and E,(x)—E(x)strongly for all x=M. We get E,-E,=FE, for m>n
by induction, so that E-F,=FE, and particularly E|M,=FE,|M,. Hence (1)

follows from Lemma 2.10(1) and Proposition 2.11. Also for each ¢g=&(M) with
¢oE=¢, we get by [Proposition 2.11]

Hy(M|N) < lim inf Hy,y, (M, | N,) = lim inf Hg_ s (M, | N,),

since (| My)o(En|My)=¢|M,. Hence
He(M|N) < liminf Hg 1y, (M| Ny).

This together with Lemma 2.10(2) implies (2). [J

3. Relative commutant and entropy.

Given o=&(M) such that E€&(M, N) with ¢- E=¢ exists, it was shown
in [19, §4] that if either Z(M) or Z(N) is atomic and if K (M|N)<co, then
N’'NM is atomic. In this section, we similarly discuss the relation between
the entropy H,(M|N) and the relative commutant N'"\M when N is a factor.

To begin with, we give the complete estimate of H,(M|C) as follows:

PrOPOSITION 3.1. (1) If M has a nonatomic part, then H, (M|C)=oo for
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every oE&(M).

(2) Assume that M is atomic. Let tr be the faithful normal semifinite trace
on M such that tr(g)=1 for every minimal projection q in M. If o=&(M) and
a=deo/dtr, then H,(M|C)=tr(za).

PrOOF. (1) Let M, be the centralizer of ¢<=&(M). First let us prove that
if M, has a nonatomic part with the support projection e+0, then H,(M|C)=co.
For each nz=1, there are projections ey, ---, e, in M, such that 3e;=e and
ole;)=¢(e)/n. Taking ¢, -+, op.&M§ with J¢;Z¢ by ¢;=¢(e;+), we have by
and monotonicity

H,(MIC) 2 3 S(pd Dy, ¢.)

‘,Di(ez'> . n
oiDplen ~ PlO08 oy

v

izZ:l ¢p(e;)log

showing H,(M|C )=co.

Now suppose H,(M|C)<oo for some o=&(M). Then M, and hence Z(M)
are atomic. So let {p;} be the set of all atoms in Z(M) and @;=¢(p;)"' | Mp;.
Thanks to M=@;Mp; and Z(M)=@;Cp;, we get by Propositions 2.2(2) and 2.3

o> H,M|C)z H(M|Z(M)) = %_‘,gp(pj)H(/,j(J\lijC).

Thus to show the atomicness of M, we can assume that M is a factor. If M
is a nonatomic semifinite factor, then M, includes a maximal abelian sub-
algebra A of M because ¢¢ is inner. Also if M is a type IlI; factor with
0=<2<1, then it is known [36, 29.9] that M, includes a maximal abelian sub-
algebra A of M. In these cases, since A is nonatomic, we have H,(M|C)=
H,4(A|C)=co by [Proposition 2.2(3) and the assertion proved first. Next let
M be a type IllI, factor. Take projections ¢,, -, e, in M such that >le;=1
and ¢(e;)=1/n, and define ¢€&(M) by ¢(x)=3¢(e;xe;), x€M. Since e;EM,,
it follows as in the first argument that Hy(M|C)=logn. Furthermore, by
(the homogeneity of &(M)), there is a sequence {u,} of unitaries in M such
that |¢—unpu¥|—0. Hence

HyM|C) £ liminf Hy ,.5(M|C) = H(M|C)

by Propositions and 2.1(1), so that H,(M|C)=oco. Thus we conclude that
M is atomic.
(2) For ¢y, =+, pn €M% with Jp;=¢, letting a;=d¢;/d tr, we get

};S(soi(l)so, i) = tr(f;a)ﬂ'—‘iz]{n(tr<ai))~tr(vai)} < tr(na),

because tr(na,)=n(tr(a;)). Now we write a=312,¢, with minimal projections
g, 2qx=1, and take ¢, =M% such that d¢,/dtr=2,9,. Then since 2}, <0,
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HMIC)Z 5 S@Dp, g) = 3 72 —> tr(na)
as n—oo. Hence H,(M|C)=tr(ga). O

The above (2) was given in [10, Théoréme 5(D)] in the finite dimensional
case. The entropy H,(M|N) coincides with the von Neumann entropy parti-
cularly when M=B(#) and N=C, so that the function ¢—H,(M|N) is not
necessarily continuous (see [43]). As for the entropy K,(M|C), we note [19,
Example 4.6] that K, (M|C)=2tr(na) if M=B(%) and a=dg/dtr. Hence the
entropies H,(M|N) and K, (M|N) are not identical in general.

PROPOSITION 3.2. Assume that N is a factor. If N'N\M has a nonatomic
part, then H,(M|N)=co for every o=&(M) such that E€&(M, N) with ¢ E=¢
exists.

ProoF. Let p=&(M) and E€&(M, N) be such that go-E=¢. Because
o N'N\M)Y=N'"M as well as %N )=N for all teR, there exists F&
&M, N'N\M) with ¢-F=¢ ([37]). Then E-F=¢ since N is a factor. Hence
we can apply Lemma 2.10(1) to M;=N’"M and N,=C, so that
H,M|N)z Hy,y nul N'NM|C).

Thus [Proposition 3.1] shows the conclusion required. [J

PROPOSITION 3.3. Assume that N is a factor and &M, N)+=@. If N'N\M
is infinite dimensional, then H (M|N )=co for some ¢ =&(M ) such that E€&(M, N)
with ge E=¢ exists.

Proor. By assumption, there is a sequence {e¢,} of nonzero projections in
N’'NM with Je,=1. Let {1.} be a sequence of positive numbers such that
>4r=1 and 39(Ax)=c. Choosing an w=&(N'NM), we define

sl’(x):; w?;k>w(ekxek), xeN'NM.

Then ¢=&N’'NM) and e, (N’'NM),. According to [6, Théoréme 5.3], there
exists E€&(M, N) such that E[N’'NM=¢. Choose a ¢,=&(N) and let
o=@ E. Then p€&(M), ocE=¢ and ¢|N'"\M=¢. For each n=1, we can

take ¢y, -+, . EME with Jp. = by ¢r=¢(e,-) because (N'NM),=(N'NM )z
&M,. Then

2 L8 orler) &
Hgo(MlN)Z k2=1 S(proE, o) = ]?:1 @k(ek)IOgm = A (Ax),

showing H,(M|N )==co. [J
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4. Entropy for tensor products.

In this section, we investigate the entropies H,(M|N) and Hg(M|N) under
taking tensor products. The addition formula of the entropy K (M|N) for
tensor products was given in [19, Proposition 3.6]. In the following, let M2 N
and P2Q be two pairs of von Neumann algebras.

LEMMA 4.1. Let o€&(M) and ¢=&S(P). For every ¢o'€Mi with '=e
and ¢’ =P with ¢'<¢,
S, ¢’ Q¢P’) = ¢'(1S(@, ¢")+¢'(1)S(P, ¢').

PROOF. By restricting ¢ on M;,, and ¢ on Py, where s(¢p) is the support
projection of ¢, we can assume that p=&(M) and ¢=&(P). For 0<e<1, let
i=(1—e)p'+ep and P.=(1—e)p’+e¢p. Since ¢. and ¢ are faithful, the
formula in [30, p. 70] implies that

S(e®¢, Q) = ¢e(1)S(p, @)+ 1)S(P, ¢e).
Taking the limits as ¢—0 by [4, Theorem 3.7], we get the desired formula.
PROPOSITION 4.2. (1) For every o=@&(M) and $=&(P)
H,o,(MRPINKQ) = H,(M|N)+Hy(P|Q).
(2) For every Ec&(M, N) and F=&(P, Q)
Hpeor(MQP|NQQ) = He(M|N)+Hg(P| Q).

PROOF. Given ¢, -+, pnEM{ with X¢;=¢ and ¢y, -+, $oEP§ with

2¢;=¢, since i, ;0:Q0¢;=¢Q¢ and ¢:Q¢;| NQQ=(¢:| N)X¢;|Q), we have
by

Hyoy( MOPINQQ) = ZHS(0&4, ¢::)—S(eQPI NQQ, ¢:&¢;I NOQ)}
= 31{S(p, 9)—S(I N, i N)}+33{S($, ¢)—S(p1Q, ¢51Q)},

implying (1). (2) is immediate from (1). O

The following is a particular case of [Proposition 4.242):
Hpgiap MQP|NQP) = Hy(N|N).

Now we establish the equality in the above when N is an infinite factor and P
is an injective factor. To do this, we give the next lemma.

LEMMA 4.3. Assume that N is an infinite factor.
(1) If e is an infinite projection in N, then

Hgiyu (M| N;) = Hi(M|N).
(2) If Fis a type 1 factor, then
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Hpgia f(MOFINQF) = Hg(M|N).

ProoOF. (1) By assumption, there is a v& N such that v*v=1 and vv*=e.
Then M,=vMv*, N,.=vNv* and E(x)=vEQ@*xvv*, x<M, Hence
2.1(2) shows the desired equality.

(2) Choose a minimal projection e in F. Then M=(M QF )1g., N=(NQF)ge
and E=(EQRidr)|(MQF),s. under the obvious identification. Hence (2) follows
from (1). O

PROPOSITION 4.4. If N is an infinite factor and P is an injective factor
with separable predual, then

Beeiapf(MQP|INQP) = Heg(M|N)

for every E€&(M, N).
PROOF. Let us show that

Hpgiap(MQP|NQP) < Hi(M|N).
Because P is approximately finite dimensional ([8]), we can choose an increasing
sequence {F,} of finite type I subfactors of P such that P=\/,F, (see [14]).
Let pc&(MQP) and ¢-(EQRidp)=¢. Given ¢, -+, ¢, €(MRP); with Z¢;=¢,
since

(| MQF,)(EQRidr,) = ¢ | MQF,,

(0:i| MRF,)-(EQRidr,) = ¢:-(EQidp) | MRF,,

Lemmas 4.3(2) and 2.6 imply that

Hy(M|N) = Hgeiap, (MRFn| NQF2) = 25(pie(EQidp) | MR Fa, ¢:i| MQFa).

Since MRP=\/,(MQF,), we get
Hg(M|N) = ;S(SDP(E@MP)» SDi)

by the martingale convergence of relative entropy. This shows the conclusion
required. O

REMARK 4.5. The above equality does not hold in the finite dimensional
case. For instance, let M,=M,(C) be the nXn matrix algebra with the
normalized trace 7,. As for the conditional expectation z,Qidy, : MaQM,—
CQM, with respect to0 T,,=7,&7,, we have by Remark 2.8 and [33, Theorem
6.2]

logm*,  m=n,
H, o1y (Ma@M, | CQM,) = { logmn,  m>n

which is not equal to H; (M,|C)=logm whenever m, n>1.
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Now suppose M is a factor on a Hilbert space 4. If E<&(M, N) and
E-Y(1)<co (E7%(1) is a scalar), then E'=&(N’, M’) is defined by E'=E- 1)*E-*.

PROPOSITION 4.6. Under the above situation, Hg:(N'|M') is independent of
the choice of a Hilbert space H where M’ is infinite. (In particular, if M is a
type W1 factor, then Hg(N'|M') is independent of any choice of 4.)

ProoF. It suffices to show the following: If @ is an isomorphism of M
onto a(M) where M and a(M) are acting respectively on 4 and 4, such that
M’ and a(M) are infinite, then

Heopoa-vy(alNY |a(M)) = Hp:(N'|M").

We may separately consider an amplication, an induction and a spatial isomor-
phism. Let a: x&eM—xXR1=MKC where 4,=H QK. Then a-E-a '=ERide,
so that (acE-.a™'Y=FE'Qidgcx, by [19, Proposition 1.7]. Hence we can apply
Lemma 4.3(2). Let a: x&M—xe<Me where e is an infinite projection in M.
Then (a°E-.a ')xe)=E(x)e for x&M, so that (a-E-a'Y=E'|N, by [19,
Proposition 1.5]. Hence we can apply [Lemma 4.3(1). For a spatial isomorphism,
the desired equality is immediate from [Proposition 2.1(2). [

Based on the special properties of type III; factors, we have:

ProOPOSITION 4.7. (1) If N is a type lll; factor and E=&M, N), then
Hg(M|N)=H,(M|N) for every =@M ) with ¢-E=¢.

(2) Let N be an infinite factor and R. the injective type NI, factor with
separable predual (i.e. the Araki-Woods factor). If E&(M, N), then Hg(M|N)
=H,0o( MQR|NQR.) for every w=&(R..) and o=&(M) with ¢°E=¢.

Proor. (1) Let ¢, o=&(M) be such that ¢-E=¢ and ¢-E=¢. Let
0o=¢|N and ¢,=¢|N. By [13], there is a sequence {u,} of unitaries in N
such that [[o—unpouk]—0. Then we get |¢—unpuk—0, so that Hy(M|N)<
H,(M|N) by Propositions and 2.1(1). Hence HyM|N)=H,(M|N) by
symmetry of ¢, ¢.

(2) Because N®R., is a type III, factor, Proposition 4.4] and the above (1)
imply that

Hg(M|N) = Hggiag (MQR.| NQR.) = Hpgol MOR.| NQR..)

for every we&(R.,) and o=&(M), p-E=¢. [

It is known [20, Lemma 4.4] that if N is a type IIl factor and ¢, p=&(N),
then ¢ is in the closed convex hull of the unitary orbit of ¢. So in view of
Proposition 2.7, it seems possible that [Proposition 4.7(1) is true even when N
is any type III factor.
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5. Entropy for crossed products.

In this section, we investigate the entropies Hz(M|N) and Kg(M|N) under
taking crossed products. Let M2N be von Neumann algebras on a Hilbert
space 4 and G a locally compact group. Let a be an action of G on M such
that a,(N)=N for all geG. The crossed products M=Mx,G of M by a and
N=Nx,G of N by a|N are defined as follows:

M = {z o (M)UARAe)} 2 N = {m o N)UARA)}",
where 7, is the representation of M2N corresponding to a on L*G, 4)=
HQLYG) and 2 is the left regular representation of G on L*G). See [28, 36]
for duality theory of crossed products. In the following, we suppose the second
axiom of countability for G, so that the von Neumann algebras appearing are
all o-finite.

Now let Ec&(M, N) and suppose E commutes with a, i.e. Eea,=a,°E,
g<G. Then since

(EQidprzcern malx)) = m(E(x)), xeM,
we can define EEG(M, I by E:E@)idmm(a))lﬂ, which satisfies E(na(x))z

TtlE(x)), x=M. We call E the canonical extension of E.

THEOREM 5.1. If E€&M, N) commutes with a and E is the canonical
extension of E, then
Hz(MX  ,G|NX,G) = Hy(M|N).
Movreover if N is an infinite factor, then
Hy(Mx ,G|NX,G)= Hg(M|N).

PROOF. For each neighborhood V of the unit ls of G, we choose an
fve LYG)+ whose support is included in V and such that |fy[,=1. Define
oy ES(B(LYG)) by ¢y=(-f/*| f¥*). Furthermore take a ¢=&(B(L*G))) and
let ¢y, .=(1—e)py+e¢ for 0<e<l. Now, for any p=&(M) with ¢-E=¢, let
0, v, enEMYE and X¢;=¢. Define SEV'EES(M) and ¢V,E,iEM1 by @y..=
¢®¢V.8|M and 95V,s,1390i®¢v,elﬂ- Then ¢V,s°E:¢V,s and 2i@v.c,i =@y,
Hence

Hy(M|N) = 53S0, fr.) Z SS@r.cioEoma, r.eioma)
by monotonicity. We get for every x&M

Gy o, Tal)) = <1—e>§gpi<ag~1<x>>fy<g>dg+s<goi®¢><m<x>>,

Bl Ema0) = 1= o) gl BE)) S @)dg+ (@) mal B(r)),
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$0 that @y, ome—¢; and @y . °Eema—@;°E in the (M, M)-topology as
V—{lg} and ¢—0. Therefore

Hy(M|N) = 53S(pioE, 1)

by the joint ¢(My, M)-lower semicontinuity of relative entropy ([247]). This
implies Hz(M|N)=Hz(M|N).

Next let us prove the second part. Let a: ]\7I—>M®.C(G) be the dual co-
action of @ where £(G)={4,: g=G}”. Then &|N is that of a|N. So the
crossed products M=Mx3G of M by & and N=Nx;G of N by a|N are
defined as follow5'

= {a(M)U1g@ LGN} 2 N = {a(N)U(1x@ L(G))}” .
If x€M and g=G, then
(E®id e X a(m(x)X1R2,)))
= (E®id £ 6, (T al2 (1R2,)R2)=1 o E(x)X1R2)R2,
= a(z L ECOYIR2)=a(E(m (2 )1®4,)),

so that (E@id_[(a))°a’:a°ﬁ (i.e. E is a-invariant). This shows that E=e, N)
can be defined by §:E®idB(L2(G))IA7, which satisfies Eca=a-L. For each
compact subset K of G, letting &x=p(K ) '*Ax where p(K) is the left Haar
measure of K, we define ¢x=&(B(L¥G))) by ¢x=(-6x|éx). Then for every
gei

w(KNgK)

Pr(dg) = S§K<g‘1h)$K(h)dh: o 1
as K—G. Take a ¢&B(LYG)) and let ¢x,.=(1—e)px+ed for 0<e<l,
Now, for any ge&(M) with g-E=¢, let ¢, =, gn=M4 and S¢,=¢._ Define

(PK-ECS(M) and gDK,MEM by (/)K,E—SD®¢K.81A7 and SzDK,s.i:¢i®¢’K,€]J\7. Then
@K.s"E:S%K.s and ZiS%K,E,izéK,go Hence

Hi(ﬁ|ﬁ) = Eis((zK,s,i"Ey Ok, e i) = Zi]S((ﬁK.e.ﬂE"&, Pr.ci°).

We get for every x&M and g=G
Px.e. i@ (xX1QA,)))
= (1—&)gi(ma(x 1R NP x(Ag) TG (T a(x N1RANP(A,),
P, e E(ama(x)1Q2)))
= (1= )@ E(xa(x X LR NP x(A)+ e g E(malx XIRANMNA,)

so that ¢x,. °ca—¢@; and fox,e,ioﬁ‘oa—@ioﬁ in the 0(1\71*, J\7I)—t0pology as K—-G
and ¢—0. Therefore

v

Hy(M|N) = 535(5:- £, 61,
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implying Hz(M|N)=Hx(M| ).

Furthermore let 7: M—MQB(L*G)) be the isomorphism giving the duality
M~MRQB(L¥G)). Then 7|N gives the duality N=NRB(L¥G)). If x=M,
g€G and fe L(G), then

7(E(a(m(2)X1R@AN1a® 1)) = 7(a(m L E(x)IRA)N 12 f))
= T (E(x)(1Q2)1QS) = (EQRidprzcen (T a(x ) 1R IR )
= (ERidpcr2o» 7(a(m (XY IRANA 2R 1)) .
This shows 7 E=(EQidgpc2cy)°7. Thus by [Proposition 2.1(2)
Hy(M|N) = Hroidgeroc, MOB(LYG)| NQB(LXG))).

Since N is an infinite factor, Lemma 4.3(2) implies Hz(M|N)=HgzM|N), so
that Hz(M|N)=Hx(M|N). O

COROLLARY 5.2. If N is an infinite factor and E€&(M, N), then for o<
EM) with g-E=¢
Hz(MX ,0R|NX ,0R) = Hg(M|N).

Proor. Thanks to ¢°E=¢, it follows that ¢%(N)=N and ¢%-E=E-g¥% for
all tcR. Hence we can apply [Theorem bl.1. ]

REMARK 5.3. In the situation of the corollary, let ¢ be the canonical trace
on Mx,.R satisfying z-0,=e¢ 'z, t< R, where @ is the dual action. An import-
ant fact shown in [27, §4] is that E is the conditional expectation with respect
to <.

A finite family {a,, ---, a,} in M is called a basis for E=&(M, N) if
x=3)a;E(a¥x) for all x=M ([33, 42]). The next lemma is a slight extension
of [42, 2.5.3 and Remark].

LEMMA 5.4. (1) If {a. <+, an} in M is a basis for Ec&(M, N), then
E-Y(1) ¢s bounded and E-Xx)=3a;xa¥f for x=N'.

(2) Assume that N is a factor. If E€e(M, N) and E~Y(1) is bounded, then
there exists a basis {a,, -+, a,} in M for E.

PrOOF. (1) The conclusion was proved in when M2N are acting on
the standard Hilbert space determined by ¢o°E, ¢, =&(N). Here note that the
factorness assumption for M=22N is unnecessary. Moreover we can show that
the conclusion holds independently of the choice of 4 (see the proofs of [19,
Proposition 3.2]] and [Proposition 4.6).

(2) The proof is the same as that of [42, 2.5.3] (based on [25, Corollary
3.4]) when we check the following : If N is finite, then so is N’ in the stand-
ard representation of M. So let us prove this. The boundedness of E~(1)
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means that E is of finite index in the sense of [5]. Hence N’'NM is finite
dimensional by [5, Corollaire 3.19] (this is seen also from [25, Proposition 4.37).
The finiteness of N implies the semifiniteness of N’. Since E’'=E-}1)E"!
belongs to &(N’, M’), M’ and hence M are semifinite ([36, 10.217). Thus
applying [5, Lemma 3.23] to £ and again to E’ because E’'~}(1)=E(E-*1)) by
[19, Proposition 1.2], we conclude that N’ is finite. O

THEOREM 5.5. Assume that N is a factor. If E€&(M, N) commutes with
a and if (N'NM)EEM®, the fixed point algebra of a, and E-*(1) is bounded,

then
Ka(MX,G|NX,G) < Kg(M|N).

PROOF. Since N is a factor and E-*1) is bounded, w=FE|N’'"M and
d=E-(E-*|N'"\M) are faithful positive functionals on N’'"\M. It follows from
[19, Theorem 3.3] that (N'"\M)g is sufficient for {0, @} in the sense of [21].
Hence by {21, Theorem 4.17 (also [31, Theorem 4]), we obtain

Kg(M|N)= —S(@|(N'"\M)g, @|(N'"\M)g).
If xe(N'"\M)g, then for every yeM
E(ra(x)ma(3)) = To( E(xy)) = Ta(E(y%)) = E(ma(y)ma(x)),
and since xeM?, for every geG
E(zo(xX1®2,)) = E(1Q2)ma(x)),

so that z.(x)e(N'NM)z. Hence m (N'"M)s)S(N'NM);. By Lemma 5.4(2),
there exists a basis {a,, *-+, a,} in M for E. Then as shown in the proof of
[19, Theorem 2.8], {ma(ay), -, 7al(aa)} is a basis for E, so that by Lemma 5.4(1)

E-Yx)= ?aixa;", xeN?,
E-YX)=Snoa)Xna(ad), X=N’.

Given ¢E€(M) with ¢°E:¢, we get for every x&(N'\M)g
Fma(x)) = FE(ma(x)) = g(za(E(x)) = w(x),
S(E ma(x) = G(E(Smaaixal))) = $lma( BEx)) = a(x).
Therefore by monotonicity
Ky(M|N) = —S(@eE-| N' NN, | N'NIT)

< =S(goEtema | (N'NM)g, Gomal(N'NM)g)

= —S@|(N'NM)g, o|(N'NM)z) = K(M|N),
implying Kz(M|N)SKgM|N). O

Under additional assumptions, we obtain the following exact result which
serves our purpose to connect Hy(M|N) with Kg(M|N).
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THEOREM 5.6. Assume that G is abelian and that M, N, Mx,G and Nx .G
are all factors. If E€&(M, N) commutes with a and if (N'N\M)=EM* and
Kg(M|N)<oo (this is the case if Index E< o), then

KM x ,GINX,G)= Kg(M|N).
PROOF. Given a nonzero projection e in (N'"\M )z, since e=M*, the action

a® of G on M, can be defined by a%=a,|M,, so that a4(N,)=N,, g=G. More-

over let é=x,(e), which belongs to (N "M )% as shown in the proof of The-
orem 5.5. Then the following (1)-(4) hold:

(1) Ms= M,X .G and N; = N,% .G,
(2) E, commutes with a® and F?g is the canonical extension of E,,
(3) Index E; = Index E,,
@) (N NMe)z; = oN'NM)ze.
In fact, 1\7[g = M, X .G is seen from
8w a(xY1RA))E = maelexeeRAy), x=M, geG.
The other in (1) is analogous. Since
Eaf(x)) = E(e) ' E(ay(x))e = E(e) 'a(E(x)e)
= a4(Ex)), xeM, g=G,
E, commutes with a®. So let (E,)~ be the canonical extension of E,. Since
E@)=r (E(e))=E(e), we get for every x&M and g
Efe(za(x)1®2,))8) = E(e) " E(malexe)X1R4,))
= E(e) 'n(E(exe)1QA)¢ = E(e) ' qo(E(exe)e)e®A,)
= o Efexe)e@A;) = (Ee) (waelexe)e@A,)),
so that ENJg:(Ee)~, implying (2). Because Index(E,)*=Index E, (see the proof
of [19, Theorem 2.8]), (3) follows. For every XcN{N\M; and Y M, since
E(XY)e = E(Xevew = E@)E(XeYe),
E(y X)e = E@eYeX)e = E@)E«eYeX),
it follows that E(XY)=E(Y X) if and only if EyXeY8)=Ex6Y2X). This shows
(4) by [6, Corollaire 3.107].
Since Kz(M|N)<oco, N'N\M and hence (N'"\M)z; are atomic ([19, Theorem
4.27). So let {e,} be a set of atoms in (N'"\M)z with 3le,=1. Then we
have by [19, Theorem 4.2]

Index E,,
E(e,?

so that Index E,,<<oo for all k. Furthermore each e, is an atom in N'N\M
too, because ¢f is inner by a one parameter unitary group in N'"\M by [6,

Kg(M|N) = %E(ek)l()g
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Proposition 3.11]. Hence N;,NM,,=C for all k. This together with (3) above
implies that

Index £, = Index E,, = [M,,: N,, o

~

where é‘k:na(ek), But since G is abelian and M; k;ﬁgk are factors, we have
[]\Nlek:lyek](,:[MékN: Ng, 1o by [19, Theorem 2.8] am} (1)’~S° that Index E;, =
[M;,: N, 1o (i.e. E, gives the minimurP indeNX for M;,2N;,). Now partition
each 2, into atoms fii, -, fin, in (N§,NM;,)5,,. Then it follows from (4)
that {f.;: 1<k<m, 1=<7<n,} is a set of atoms in (1\7’/\1\71)3 with 3, 3355 fr;=1.
Noting E I j:(ﬁék)f ¢ We get by [25, Proposition 4.2] and [18, Theorem 1]
Index £, = Es (f1)X(Ez,)(f+,) = (Index By ) Es (f4,)"

= (Index £; )E(2:)2E(f 1,7,

so that
Index E~fkj _ IndexE;,k _ Index E,,

E(fiy — E@F  Eley

for all # and 1=<7<n,. Thus using [19, Theorem 4.2] again, we obtain

~ ~ g ~ II]deXENf .
HM|N)= E Nog ———2F
K518 =32 3 E(fuplog—5 =
L Index E,,
= j:lE(f”m)g_W
Index E,
=§E(8k)logW:KE(M[N). |

COROLLARY 5.7. If M2N are type I, factors, E€&(M, N) and Kz(M|N)
< oo, then for o=&(M) with ¢-E=¢

Ki(Mx 9R|NX ;o R)=Kg(M|N).

PrROOF. Since (N'"\M)sEM,(=M°?) and Mx,sR2NX,¢R are I,
factors ([38]), we apply [Theorem 5.6. [J

6. Estimates of entropy.

The aim of this section is to estimate the entropies H,(M|N)and Hg(M|N)

in comparison with Kz(M|N) when N is a factor. For this sake, we first give
some lemmas.

LEMMA 6.1. Let M2N be von Neumann algebras and {f,} a sequence of
projections in N with f,11. If oc&(M) and ¢a=¢(f2) @\ M, , then

H/(M|N) < lim inf H, (M,,|N;.).
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PROOF.  Given ¢y, -, gp =M with Zige=¢, let gni=@(f2)"¢il My,.
Since [lor—¢[—0 and [¢ni—¢:|—0 as n—oco where ¢r=0¢n(fr:f2) andi¢n:=
¢nifn- fn), we have

Z{S(p, ¢)—S(@IN, ¢:| N} = lim Z3{S(¢n, $ni)—=S(pa| N, fn:| N)}

= hm E{S<(Pn, ¢nz)—S((Pn l ]an; ¢’ni [ an)} § llﬂinf prn(an | an )7

Nsoo 1

as desired. O

LEMMA 6.2. Let M be a semifinite von Neumann algebra and o=&(M). If
{ex} 7s a set of projections in M, with Xe,=1, then

Hy(MIDM.,) = Zin(ples))-

Proor. By Lemma 6.1, we can assume that {¢,} is a finite set {e,, -, en}
and further that M is finite with a faithful normal trace z, z(1)=1. Moreover
it may be supposed by Proposition 2.5 that a=d¢/dr is bounded. We get ae,=¢;a
since e,&M,. Also E€&WM, D.M.,) with ¢eE=¢ is given by E(x)=3le,xe,,
xe&M. Thus it suffices to prove that

@S(gozoE, o) = §7)(90(ek))

for each ¢y, -, &M% with Z¢,=¢. The proof in the following is a modi-
fication of that of [33, Lemma 4.3]. Let b,=a"'*(d¢,/dz)a™*/*. For any &>0,
by spectral decomposition, we write b;=33;8:;f1;+¢; for some B,;=0, projections
fi; in M and 0=Zc¢;<e. Define ¢y, oi&Mi by de¢ij/dr=pi;a"%f;0'"® and
do,/dr=a'*c,a®. Since ¢;=3];p:;+w;, we have

S(SDL"E; SDI) = ;S((Pu"’E; SDIj)‘f‘S(CUPE, ;).

Noting z-E=7, we get for ¢=<(]|alle)™
S(wi°E, w) = t(nE(a'?c;a'*)—t(n(a**c,a'’?)) < y(|lale).

Now write (¢;) for (¢i;),; and d¢;/de=p;a'?f;a*® with 8;=0 and projections
fi:in M. Then
0 é 1_—218‘Lf1 g ne,

SIS(gioE, ¢1) S DS@eoE, p+3e),

where 0,(¢)—0 as &—0.
As in the proof of [33, Lemma 4.3], there exist projections g;; in M and
a,:;=20 such that 33,;g:;=f; and
0 < gijaer8ij—@rij81j < €415

for all k&, ¢, . Define ¢y;=M% by d¢i;/de=p:a*?g:;a*. Then
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Sz E, ¢iy) = t(nE(Bia'®gi;a' ) —(n(Bia'/*gi;a"?))
= Pule(n(Zera'?gi 0t er))—(n(at?gi;a"*))
= BulZe(n(gi;aex8:)—(1(g:;08:))} .
We get for e<(me)™*
2(9(gi;0€:8:7) = t(P(@rip)+7(9(egis)) = t(gin(@ris)+n(e)},
©(1(g:;a8:7) Z T(N((Dtri;tme)gis)—w(n(megis)
= t(gi){n(Zers;+me)—n(me)},

since
0= g,-jagij——(%akij)gij = megyy.

Therefore
i‘ZjS(SL‘iﬁE, Gig) = %‘Bif(gij){%n(akﬁ)"l—mn(e)—‘n(%akij+m5)+77(me>}
= %ﬁif(gij){%]n(akij)-‘v(%akij)} +04(¢),

where 0,(¢)—0 as e—0 because X:;B8:7(g:;)<1 and J,a.=lal.
Now let
Yirij — akijﬁi‘l'(gij),

Spij = (i%,aki'j’ﬁi’f(gi’j’))( kE, ak'ij‘BiT(gij))~

Then the direct calculation shows that

Veij
2B(gi (@) — (i)t = 9(Zreip)— 23 7rijlog ¢ -
1,7 k k k i, 7 k1,7 Spij
Since
ﬁD(ek)‘—iEjBtT(gijaekgij) = t(e, aek)'—'izjﬁif(ekallzgijallzek)
= T(ekallz(l_;ﬁifi)allzek),
we get
0= @(ek)“izjﬁif(gijaekgij) = ne.
Also
0= izjﬁﬂ(gijaekgij)—iEjrkij = siEjﬁir(gu) =e,
so that

0L @(ek)—grkij < (n41l)e.

This implies that
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Eklﬂ(izjf’k i) = %ﬂ(?(ek))-l—t?s(s),
where §,(¢)—0 as ¢—0. Furthermore since

DSk =( 2D 1)l =
k, 1,7 k, %, 7

2] Trij»
1,

k,i,7

we get

Vrij
Z]Vrkijlog ZO,
k,i,j Skij

because this is the relative entropy of (r,;;) and (s;:;). By the above estimates
altogether, we have

ZZS(S01°E, SDL) = §5(¢ij°E, ¢‘ij)+51(5)

= Z;J‘ﬂ(so(ek))+51(s)+52(8)+5s(6),
implying the desired inequality as e—0. [
LEMMA 6.3. Let M be a general von Neumann algebra and o<=&M). If
{ex} is a set of projections in M, with Se,=1, then
Hg,,(Ml@Mek = ;v(sa(ek))-
PrROOF. We can assume by that {e,} is a finite set. Let

N=@,M,,. Since ¢%(N)=N for all tcR, we take the crossed products
M=Mx,sR and N=Nx,sR. Let &,=n,(e;) where 6=0¢%. Since

mo(Serren)1QL) = D0u(w (1@AN%,  xEM, 1R,

it follows that N=@,M,,. Moreover Ece(M, N) given by E(X)=30,X2,
XEJVI, is the canonical extension of E(x)=3Xe,xe;, x<M. For each ¢;, -, ¢n

My with Z¢;=¢, define 95;,,568(]\7[) and gby_s,iEMi as in the first paragraph
of the proof of [Theorem 5.1. Then

3@y .o Eoma, @r.eciomo) = Hy, (MIN) = Sip(gv (20)

by Lemma 6.2 due to the semifiniteness of M. Letting V—{lg} and ¢—0,
since ¢y,(¢:)—¢(e;), we have as in the proof of

§5(¢i°E, ©:) < ;n(go(ek)),

as desired. [

In the sequel of this section, let M2N be von Neumann algebras and
assume always that N is a factor. We are now in a position to prove the
next theorem.

THEOREM 6.4. Let pc&M) and E€E(M, N) with ¢-E=¢. If {ex} is a
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set of projections in (N'N\M)g with Je,=1 and if or=¢(er) '@ M,,, then:
D) HfMIN) 2 Sn(plen)+SplenH, (M, 1 N.,),

@) HyMIN) < 259(plen)+Dp(e ) Hy (Mo, IN.,).

PrRoOF. (1) For each &, let ¢,;&(M,, )% 1=7<n,, be given with 3;0,,=
¢r. Define ¢,;&M{ by @i =0¢(er)rer-e;). Then 327k ¢r;=¢ since

%:Eigokj(x):%}go(ekxek):go(x), x=M.
Hence for each m=1, we get
HMINZ § 5S@ueE )z 3 BSurBiM, oul M),
But ¢.;| M., = ¢(ex)pr; and @2 E|M,, = ¢(e;)’¢r;°E,, since

e (E(x)) = gler)pr (E(x)er) = (es)PrEe (%)),  x=M,

ep -
Therefore

S

k

> S((P(ek)zébkaek, 90(ek)¢kj)

M3z

Hy(M|N)=

k=

-
<,
o

I
M3

npedt B plen) 3 S@ar By d)-

k=1

I

Thanks to ¢,°E,,=¢;, taking the supremum over (¢,;) for each 1<k<m, we
obtain

HMIN)Z 3 n(glen)+ 3 plenHy (MeyIN.,),

implying the desired inequality as m—oo.
(2) Letting ¢'=¢|@:M,, and ¢”"=¢|D:N,,, we have by Proposition 2.2(1)

Hy(M|N) £ Hy(MIOM, )+ Hp (DM, | BN )+ Hol PN, | V).

Moreover we have by
Hga(Ml@Mek) = %v(so(ek)),

and by [Proposition 2.3
H¢'(@Mek | Ne,) = %@(ek)[{q)k(jweklNek)-

Now let ¢y, -, Pa=(Dr N, )% and ¢:=¢”. Since

Pi(E(ery)) = olen)d(y) = oler)Pery),  YEN,
we get ¢i°E|Ne,=¢(er)p:| N, for all . Therefore
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SS@e(BIDN.), ¢ = 2 DS N.yy ¢il Ney)
= ? %S(@(ek)sbilfvek) Sl’f]Nek) = —‘; %kbi(ek)l()g ole,) = ;ﬂ(?(ek)):

so that
Ho (DN, IN) = 337(g(ex)).

Thus we obtain the desired inequality. O

THEOREM 6.5. Let {p;} be a set of projections in Z(M) with >p;=1.
(1) If o=&(M) and there exists Ec&(M, N) with @°E=¢, then

where @;=¢(p;) | Mp;.
(2) Assume that N is infinite. Then for every EcE(M, N)

Hy(M|N) = zj‘lW(E(Pj))-F%}E(pj)HEpj(Mﬁjl Npj).

ProoF. (1) Since Z(M)S(N’'N\M)g, it suffices by 1) to show
that

H,(M|N) = Ej)W(SD(Pj))'+§§D(Pj)H¢J—(MPj]ij)-
But by [Proposition 2.21)

where ¢”=¢|@®;Np;. Thanks to M=@;Mp;, we have by [Proposition 2.3
Hga(MIGjaij) = %?(PJ)H%(MPJ'INM),

and as in the proof of [Theorem 6.4
HW(@N;DJ-IN) = ;77(90(151))-

(2) Apply (1) above to {p;RQ1} in Z(MRR.) and ¢Q@w where wc=&(R.)
and p=&(M) with ¢-E=¢. Then we have by [Proposition 4.7(2)

Ho(MIN) = H,ei( MOR.|NQR.)
= ;n(go(p.]))-i_;gp(p])H(pJ@w(AlpJ@Rw1le]®Roo)

= %3W(E(Pj))‘F%}E(Pj)HEpj(MPjINPJ'),
because Np; is infinite and ¢;°E,,=¢; O
THEOREM 6.6. For every E€&(M, N)
Hy(M|N) < Kg(M|N).
Proor. If N’"\M has a nonatomic part, then Hg(M|N)=Kz(M|N)=c by
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IProposition 3.2 and [19, Theorem 4.3]. So suppose N'\M is atomic. If {p;}
is the set of all atoms in Z(M), then by [Theorem 6.5(2)

He(M|N) = %J_,‘ﬂ(E(pj))"i"]Z_E(pj)HEpj(A{pj{ij)y

and by [19, Theorem 4.1]
Keg(M|N) = ;yi(E<pj>)+]2E<:bj)KEpj(ij]Ifo)-

Thus we may assume that M as well as N is a factor. Choose a set {e;} of
atoms in (N'"\M)g with 3e,=1. Then for any ¢c&(M) with ¢-E=¢, we
deduce by [Theorem 6.42), [Proposition 2.9 and [19, Theorem 4.2] that

Index E,
—Wk‘ = Kg(M|N). O

H,(M|N) = Sg(es)log

COROLLARY 6.7. Assume that M is a finite von Neumann algebra with a
faithful normal trace v, t(1)=1. If Ey: M—N is the conditional expectation with
respect to t, then Hg, (M|N)=H{M|N). Moreover if M is of type 1I,, then
Hy (M| N)=Kp (M| N).

PrOOF. It was shown in [19, Corollary 4.5] that if M is of type II;, then
Key(MIN)=H(M|N). When N is finite dimensional, Hg,(M|N)=H(M|N)
follows from Remark 2.8. When N is of type II, (hence so is M), by

6.6
H(M|N) < Hg(M|N) £ Kgy(M|N)= H(M|N). O

THEOREM 6.8. Assume that N is infinite. If E€&(M, N) and Kg(M|N )< co,
then
Hy(M|IN)= Kg(M|N).

ProoOF. It suffices by to prove Hy(M|N)=KzM|N). We
can assume as in the proof of that M as well as N is a factor.
Let M=MQR., N=N®R.. and E=EQids_. Then M2N are type III, factors.
Associated with ¢=&(M) such that ¢-E=¢, we further take the crossed
products M=Mx,¢R and N=Nx,¢R together with the canonical extension £
of E. Since M2N are type L. factors, we can write M=M,QF and N=N,QF
where ¢ is a finite projection in N and F is a type L. factor. Then the
canonical trace 7 on M is written as r=7,trr where z, is the normalized
trace on M, and try is the usual trace on F. Because E is the conditional
expectation with respect to 7 (see Remark 5.3), we have E=E #,Qidr where
Eg, is the conditional expectation Me—ﬁ\]\A/"e with respect to 7,. Now we deduce
as follows:

Hx(M|N)= HyM|N) (Proposition 4.4)
= Hx(M|N) (Corolfary 5.2)
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> Hpg (M,|N,)  (Proposition 4.2(2))
= Kgg (M.|K.)  (Corollary 6.7)

= Kx(M|N) ([19, Proposition 3.61)
= K3(M|N) (Corollary 5.7)
= Kg(M|N) ([19, Proposition 3.6]). O

It is an open problem whether the conclusion of Theorem 6.8 holds when
N is a type II, factor, also when Kz(M|N)=co.

7. Minimum index and entropy.

Throughout this section, let M2N be a pair of factor and subfactor such
that [M: Nl,=Index E,<o where E,=&M, N). In [19, §6], we established
the relation between the minimum index [M: N], and the entropy Kgz(M|N).
In this section, combining the results in [19] with the estimates in §6, we
have the same relation between [M: N1, and Hx(M|N).

Although the following is a corollary of Theorem 6.6 and [19, Proposition
6.1 and Theorem 6.3], we give a direct proof which may be interesting.

COROLLARY 7.1. For every E€&(M, N)
Hg(M|N)<log[M: N],
and if He(M|N)=log[M: N], then E=E,.
PrOOF. Let 7=FE,|N'"\M which is a trace by [18, Theorem 1]. For each
Ec&(M, N), let a=d(E|IN'N\M)/dr. For any o=&(M) with ¢ E=¢, let ¢, -,

=M} be given with J¢,=¢. Suppose for the moment that ¢, -+, ¢, are
all faithful. Then according to [30, Theorem 4], we have

|
S(SDk°E, 0r) = ltl_.lirol 7§Dk([D§0k°E : Do, 1:—1),

where [Dy,-E: D¢,] is the Connes cocycle derivative of ¢,<F and ¢,. Further-
more since by [6, Propositions 4.1 and 5.1]
[Dpi-E: DSDk]z = [DSDk°E : D(Pk°Eo]t[DSDk°Eo: Dol
=[DE: DEo]t[DSDk°E03 DQDk]t = a“[DSDk°EoZ DSDk]t ,
we get :

S(prE, ¢r) = S(@°E,, vr)—¢r(log a),
so that

> Slpee By o) = 2 S(preEo, pr)—¢(log a).

Therefore by the proof of Proposition 2.9
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:j S(proE, ¢r) S log[M: N]o+z(na).

When ¢,, -+, ¢, are not necessarily faithful, taking (1—e)p.+e¢ where 0<e<1
and letting ¢—0, we have the above inequality by the lower semicontinuity of
relative entoropy. This implies that

Hg(MIN) = log [M: N]o+7(na).

Hence Hx(M|N)<log[M: N], because 7(na)<7(r(a))=0. Moreover if Hz(M|N)
=log[M: N],, then 7(na)=0 so that a=1, implying E=E, by [6, Théoréme
53]. O

In addition to several characterizations in [18, 197 for E=&(M, N) having
the minimum index, and [19, Theorem 6.3] show the following:

COROLLARY 7.2. Assume that N is infinite. Then the following conditions
for E€&(M, N) are equivalent:

(i) Index E=[M: N, i.e. E=FE,;

(ii) Hg(M|N)=log[M: Nl,;

(iii) Hg(M|N)=log Index E.

REMARK 7.3. Let N be not necessarily infinite. Then Theorem 7.2 holds
when (ii) and (iii) are replaced by the following (ii)’ and (iii) where P is any
infinite factor:

(i) Hgeeia (MQPINQP)=log [M: Nl;

ity Hmidp(M@PIN@P) = log Index E.

COROLLARY 7.4. If E€&(M, N) and N'N\M=C (this is the case if Index E
<4), then
Hy(M|N)= Kg(M|N)=log Index E.

Proor. By assumption, £(M, N) consists of one element E. Hence Kz(M|N)
=log Index E by [19, Theorem 6.3]. When N is infinite, implies
Hy(M|N)=KgM|N). When N is of type II,, sois M (see the proof of
5.4) and E is the conditional expectation with respect to the normalized trace
7z on M, so that implies Hy(M|N)=KzM|N). When N is finite
dimensional, the conclusion is trivial since N’ "\M=C forces M=N. O

All other results in [19, §6] can be translated by replacing Kiy(M|N) with
Hz(M|N) due to or 6.8, while we omit the details.

8. Basic constructions and entropy.

As in §7, let M2N be a pair of factor and subfactor with [M: N],<oco.
Given Ec&(M, N), repeating the basic constructions started from E, we
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obtain the tower of factors:
NgMo:MnggMzg

with E,€&(M,, M,_;), n=1, satisfying Index E,=Index E. Concerning the
entropies Hg (M,|M,_,) and Kg (M,|M,_,), we have:

PROPOSITION 8.1. For every n=1,
(1) Hg,,(Msy| Msy_y)=Hg(M|N),
(2) Hgpyprof(Maopsy| Men)=Hg (M| M),
3 KEzn(MZn | Moy _1)=Kg(M|N),
(4) Kg,py (Mo s | Mon)=Kg (M| M).
Moreover if ey, -+, en are atoms in (N'N\M)g with Je,=1, then

E~Ye,) Index E)¥Index E,,)
Ke, (M| M) = Zk] IndexkE log : E~Ye,? -

ProoF. It suffices for (1)-(4) to prove the case n=1. Let J and J, be the
modular conjugations determined respectively by ¢o.cE and ¢o°E-E;, where ¢,&
&(N). Then we have by the method of basic construction

JM] =M = J\M;],, JNJ=Mi= .M.,
JE(J- )] = (Index E)'ET' = JLEo(J1- D1
Hence Proposition 2.1(2) implies that
Hg (M| M) = Handex >-12;(M" | M1) = Hg(M|N).

The proof of Hg(M;| My)=Hg,(M,| M) is analogous. Next since
JIN'NM)] = M'NM, = J(MiNM) ],
E(J-DIMNM, = (Index EY*ET* | M'N\M, = Ey(J,-J)I|M'NM,,

EJ-DIM'NM; = (Index E)E,| M'N\M, = E3*(J,JO|M'N\M,,
we get
K (M| My) = —S(Ez' | MiNM,, E.| MiNM,)

= —S(E'IN'N\M, EIN'NM)= Kg(M|N),

and analogously Kg (M| M,;)=Kg (M| M).
Now let us show the formula of Kz (M,|M) required. Because o¥=0Z%; !
for t€R by [17, Theorem 6.13], it follows that

JIN'NM)e] = JINN\M)g-1] = (M'N\My)g, .

Hence Je,J, -+, JenJ are atoms in (M'N\M,)z,. Furthermore we have by [25,
IProposition 4.2[]

Index (E1)se,s = Ei(Jer J)ET(JerJ)
= (Index E)™'E~%(¢;)Index E)E(e;) = Index E., .
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Thus by [19, Theorem 4.2]
Index (E1)JekJ
E(Je.J)

E"Yey) o (Index E)¥(Index E,,)
Index E °% E ey :

Ke (M| M) =3 E(Je:])log

k

The following examples show that Hg (M| M)=Hg(M|N) does not generally
hold.

EXAMPLE 8.2. Let M=R be the hyperfinite type I, factor with the nor-
malized trace rz. For m=2, choose nonzero projections e,, ---, e, in M with
>ter=1 such that a,=1(e;), 1<k<m, are all different. Taking isomorphisms

't M —M,, for 2<k<m, we define a subfactor N of M by

N={xDP0x)D - BOn(x): xEM,,}.
Then it is easy to check that
NNM=Ce,+ - +Ce, .

Let Ey: M—N be the conditional expectation with respect to z, and Ey: M;—M
be that with respect to the normalized trace 7, on M,. Note that Ey
coincides with the conditional expectation obtained by the basic construction
from Ey. Then since M,,=N,,, we get by [25, Theorem 4.4]

[M: N]=Index Exy = ;a;‘ )
[M: N7, = Index E, = m?,
and by
Hp y(MIN) = Kg (M|N)= H(M|N) = 22}3} N(a).

Here E,=&(M, N) having the minimum index m?is given by E(ex)=1/m, 1=k
<m. Hence Ey=a'2E,a'® (=Ea'?-a''?)) where a=3ma,e,. Because Ex'=
a”V*E3'a™® by [19, Proposition 1.2] and Ej%¥e,)=m by [18, Theorem 1], we
get

Ejer) = Efm™az'le,) = a5, 1sk=m.

Therefore by [Proposition 8.1l

Hyy (M| M) = Ky (Ms| M) = 23 7 (er) -

1

For instance, if we take m=3 and (a,, @, a;)=(1/6, 1/3, 1/2), then Hg, (M| M)
#Hpg (M|N). According to [33], Jones’ subfactor R; of R in where A=
[R:R;17'<1/4 is an example of the case m=2. In [35], a subfactor of a
type II, factor is called a locally trivial subfactor if it has the above form of
the case m=2. Also choosing a sequence e,, ¢;, --- of projections in M with
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Ser=1 and a,=1(e;), 3 p(a;)<o, and defining N as above, we obtain a sub-
factor N of M such that [M: N]=oco but Hg (M|N)<co.

ExaMPLE 8.3. Let M be an infinite factor. For m=2, choose nonzero pro-
jections ey, -+, en in M with Je,=1. Taking v,€M, 2<k<m, such that
v¥v,=e, and v,v¥=e,, we define a subfactor N of M by

N = {xDvexviD - Qumavh: xEM,}.

Then the following are easily shown:

N'AM= 5 Cows = Mu(C)

i.5=

where v,=¢,. For a,, -, an>0 with S a,=1, define
m
E(x)= X ayvixvot, xeM.
i, 5=1

Then E=&(M, N) is directly checked. Since e, &(N'NM)z and M, ,=N,,, we
get
Index £ = JJa;?,
k

[M: N, = Index E, = m?,
and by
Hy(M|N) = Kf(M|N) = 25 y(axs).

Here E,=&(M, N) is defined as E above with a,=1/m, 1<k<m. Since E=
a'?E,a'’®* where a=>Xmae,, we get E~Y(e)=a;*, 1=k <m, so that Hg (M| M)
=Kz, (M| M) is given by the same formula as in Example 8.2.

PROPOSITION 8.4. [If there exist a projection e in M and an isomorphism
0: M, —M,_. such that N={xDO(x): x &M}, then [M: N]o=4 and Kg (M| M,_,)
=Kg(M|N) for every E€&(M, N) and n=1.

ProoF. By assumption, either N’'N\M=Ce+C(1—e) or N’'\M=My,C)
occurs. In either case, [M: N],=Index E,=4 as in Examples 8.2 and 8.3, where
EJN'N\M is a trace with Eye)=FE(1—e)=1/2. For the second assertion, it
suffices by [Proposition 8.1 to show that Kg,(M,|M)=Kg(M|N) for every E&
&(M, N). Replacing E by uFEu* with a unitary « in N'"\M, we may assume
that ¢ and 1—e are atoms in (N'N\AM)g. Then E=a'?E,a** for some
a=2ae+2a,(1—e) with a,, «,>0, a;+a,=1. Hence the calculation in Examples
8.2 and 8.3 implies that

K (M| M) = 277(??%;?%21;(‘“51—_1)

= 2n(az)+29(a;) = Kg(M|N). O
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Finally let M_,=NE M,=MZS M,S M,< --- be the basic constructions with
E.ce(M,, M,_,) started with E=E, having the minimum index [M: N],<co.
It is proved in that [M,: N]o=[M: N]?** for all n=1, or equivalently
EyoE,° --- o F, gives the minimum index for M,=22N. This result enables us to
prove the next theorem.

THEOREM 8.5. Under the above situation, the following assertions hold :
(1) For every n, k=0

Ki o orpsy(Mnsr| Mp_y) = (k+1)log[M: N],.
(2) If N is infinite or if N'\M=C, then for every n, k=0
HEn°"'En+k(M"+k I Mn-—l) = (k +l)10g[1\4: N:[o.

Proor. (1) For each n, k=0, we see by the result stated above that
E,o - oE,.; gives the minimum index for M,.,=2M,_,. Hence by [19, The-
orem 6.3]

Kepoo omes(Mase| Ma_y) = logl Mass : Ma_iJo = (k-+1)log[M: N,

(2) When N is infinite, the desired equality follows from and
the above (1). When N is of type II, (hence so is M) and N'"M=C, each E,
is the conditional expectation with respect to the normalized trace on M,.
Therefore by corollary 6.7 and [34, Theorem 3.1]

H’Eno... °E’n+k<Mn+kllwn_l)zlog[Mn.{.k . Mn_1]:log[ZWn+k .l n—l]O-

Finally the case of N being finite dimensional is trivial, because N’'"\M=C
forces M=N. [

ACKNOWLEDGEMENT. The author would like to thank Professor H. Kosaki
who suggested to him that the approach with type I, factors is useful.
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