Minimum index for subfactors and entropy. II

By Fumio HIAI

(Received June 18, 1990)

Introduction.

V. Jones [22] constructed his celebrated theory on index for type II₁ factors by using the notion of coupling constant. Kosaki [25] extended Jones' index theory to that for conditional expectations between arbitrary factors based on Connes' spatial theory [9] and Haagerup's theory on operator valued weights [17]. For von Neumann algebras $M \supseteq N$, let $\mathcal{E}(M, N)$ denote the set of all faithful normal conditional expectations from M onto N, and $\mathcal{E}(M)$ the set of all faithful normal states on M. When $M \supseteq N$ is a pair of factor and subfactor with $\mathcal{E}(M, N) \neq \emptyset$, Kosaki's index Index E varies depending on $E \in \mathcal{E}(M, N)$. But it was shown in [18] (independently by Longo [27]) that if Index $E < \infty$ for some $E \in \mathcal{E}(M, N)$, then there exists a unique $E_0 \in \mathcal{E}(M, N)$ which minimizes Index E for $E \in \mathcal{E}(M, N)$. So we can define the minimum index $[M:N]_0 = \text{Index } E_0$ for a pair $M \supseteq N$.

Starting with the von Neumann entropy, we have at present several kinds of entropies in noncommutative probability theory (see [3, 4, 10, 11, 12, 29, 41, 43] for instance). Pimsner and Popa [33] exactly estimated the entropy H(M|N) of a type II₁ factor M relative to its subfactor N in terms of Jones' index. This entropy extends the conditional entropy in commutative probability theory, and was first used by Connes and Størmer [12] to study the Kolmogorov-Sinai entropy of automorphisms of finite von Neumann algebras. As the natural generalization of H(M|N) for finite von Neumann algebras, Connes [10] defined the entropy $H_{\omega}(M|N)$ for general von Neumann algebras $M \supseteq N$ and a normal state φ on M by using the notion of relative entropy. Here the relative entropy of normal positive functionals was first studied by Umegaki [41] in the semifinite case, and was extended by Araki [3, 4] to the general case. On the other hand, taking account of Pimsner and Popa's estimate of H(M|N), we introduced in [19] another entropy $K_{\varphi}(M|N)$ of a von Neumann algebra M relative to its subalgebra N and $\varphi \in \mathcal{E}(M)$ such that $E \in \mathcal{E}(M, N)$ with $\varphi \circ E = \varphi$ exists. For factors $M \supseteq N$ and $E \in \mathcal{E}(M, N)$, we write $K_{E}(M|N)$ for $K_{\varphi}(M|N)$

This research was partially supported by Grant-in-Aid for Scientific Research (No. 01540091), Ministry of Education, Science and Culture.

which is independent of φ with $\varphi \circ E = \varphi$. The relation between the minimum index $[M:N]_0$ and the entropy $K_E(M|N)$ was established in [19]. Also Kawakami [23] introduced the same entropy as $K_{\varphi}(M|N)$ in a restricted situation and obtained some related results.

In this paper, we continue to study the relation between index and entropy. This time, we mainly consider the entropies $H_{\wp}(M|N)$ and $H_{E}(M|N)$, where the entropy $H_E(M|N)$ relative to $E \in \mathcal{E}(M, N)$ is defined as the supremum of $H_{\varphi}(M|N)$ for $\varphi \in \mathcal{E}(M)$ with $\varphi \circ E = \varphi$. §1 contains definitions on index and entropy. In § 2, we present several basic properties of entropies $H_{\varphi}(M|N)$ and $H_E(M|N)$. In §3, we further discuss $H_{\varphi}(M|N)$ related with the relative commutant $N' \cap M$. In §§ 4 and 5, the entropies $H_E(M|N)$ and $K_E(M|N)$ are investigated in connection with tensor products and crossed products. It is shown that $H_E(M|N)$ and $K_E(M|N)$ are well behaved under taking tensor products and crossed products in some cases. In $\S 6$, when N is a factor, we estimate $H_E(M|N)$ compared with $K_E(M|N)$ and show that $H_E(M|N) \le K_E(M|N)$ for all $E \in \mathcal{E}(M, N)$. Moreover using the results in §§ 4 and 5 all together, we prove the equality $H_E(M|N) = K_E(M|N)$ when N is an infinite factor and $K_E(M|N) < \infty$. In §7, let $M \supseteq N$ be a pair of factor and subfactor with $[M:N]_0 < \infty$. The results in [19] concerning the relation between $[M:N]_0$ and $K_E(M|N)$ are combined with the estimates in §6. Consequently we have $H_E(M|N) \leq \log[M:N]_0$ for all $E \in \mathcal{E}(M,N)$ and characterize $E \in \mathcal{E}(M,N)$ with Index $E=[M:N]_0$ by means of the entropy $H_E(M|N)$. Finally in §8, the formulas of entropies for basic constructions are given including some examples.

1. Definitions and preliminaries.

In this paper, von Neumann algebras are always assumed to be σ -finite. Let M be a von Neumann algebra on a Hilbert space $\mathcal H$ and N a von Neumann subalgebra of M. We denote by $\mathfrak S(M)$ the set of all normal states on M and by $\mathcal E(M)$ the set of all faithful normal states on M. Let $\mathcal E(M,N)$ denote the set of all faithful normal conditional expectations from M onto N. For each $E \in \mathcal E(M,N)$, the operator valued weight E^{-1} from N' to M' is uniquely determined by the equation $d\varphi \circ E/d\psi = d\varphi/d\varphi \circ E^{-1}$ of spatial derivatives where φ and φ are any faithful normal semifinite weights on N and M' respectively ([17, Theorem 6.13], [36, 12.11]). Now let $M \supseteq N$ be a pair of factor and subfactor. Kosaki's index Index E of $E \in \mathcal E(M,N)$ is defined by Index $E = E^{-1}(1)$ ([25]). This index value depends on the choice of $E \in \mathcal E(M,N)$. But when Index $E < \infty$ for some $E \in \mathcal E(M,N)$ (hence Index $E < \infty$ for all $E \in \mathcal E(M,N)$), we proved in [18] (also [27]) that there exists a unique $E_0 \in \mathcal E(M,N)$ such that

Index $E_0 = \min \{ \text{Index } E : E \in \mathcal{E}(M, N) \}$,

and E_0 is characterized by the condition

$$E_0^{-1} | N' \cap M = (\operatorname{Index} E_0) E_0 | N' \cap M.$$

Furthermore $E_0|N'\cap M$ becomes a trace on $N'\cap M$. Thus we define the minimum index $[M:N]_0$ for a pair $M\supseteq N$ by $[M:N]_0=\mathrm{Index}\,E_0$. Also let $[M:N]_0=\infty$ if $\mathcal{E}(M,N)=\emptyset$ or $\mathrm{Index}\,E=\infty$ for all $E\in\mathcal{E}(M,N)$. Properties of the minimum index were presented in [19].

For a pair of general von Neumann algebras $M \supseteq N$ and $\varphi \in \mathfrak{S}(M)$, the entropy $H_{\varphi}(M|N)$ of M relative to N and φ introduced by Connes [10] is defined by

$$H_{\varphi}(M \,|\, N\,) = \sup_{(\varphi_i)} \sum\limits_i \{S(\varphi,\, \varphi_i) - S(\varphi \,|\, N,\, \varphi_i \,|\, N)\}$$
 ,

where the supremum is taken over all finite families $(\varphi_1, \dots, \varphi_n)$ of $\varphi_i \in M_*^+$ with $\Sigma \varphi_i = \varphi$. Here $S(\varphi, \psi)$ denotes the relative entropy of $\varphi, \psi \in M_*^+$ ([3, 4]). In particular, let M be a finite von Neumann algebra with a faithful normal trace τ , $\tau(1)=1$, and E_N be the conditional expectation $M \to N$ with respect to τ ([40]). Then $H(M|N)=H_{\tau}(M|N)$ is given by

$$H(M|N) = \sup_{(x_i)} \sum_i \{ \tau(\eta E_N(x_i)) - \tau(\eta(x_i)) \},$$

where $\eta(t) = -t \log t$ on $[0, \infty)$ and the supremum is taken over all finite families (x_1, \dots, x_n) of $x_i \in M_+$ with $\sum x_i = 1$. For a pair of type II_1 factors $M \supseteq N$, the entropy H(M|N) was extensively developed by Pimsner and Popa [33] in connection with Jones' index [M:N] (=Index E_N).

Let $M \supseteq N$ be general von Neumann algebras again. Given $E \in \mathcal{E}(M, N)$, we define the entropy $H_E(M|N)$ relative to E by

$$H_{E}(M|N) = \sup\{H_{\varphi}(M|N) : \varphi \in \mathcal{E}(M), \varphi \circ E = \varphi\}.$$

For $\varphi \in \mathcal{E}(M)$ such that $E \in \mathcal{E}(M, N)$ with $\varphi \circ E = \varphi$ exists, we introduced in [19] another entropy $K_{\varphi}(M|N)$ relative to N and φ by

$$K_{\omega}(M|N) = -S(\hat{\omega}, \omega),$$

where $\omega = \varphi \mid N' \cap M$ and $\hat{\omega} = \varphi \circ (E^{-1} \mid N' \cap M)$. Here, since $E^{-1} \mid N' \cap M$ is not necessarily bounded, the relative entropy $S(\hat{\omega}, \omega)$ is given by

$$S(\hat{\omega}, \omega) = \inf\{S(\omega', \omega) : \omega' \in (N' \cap M)^+_*, \omega' \leq \hat{\omega}\}.$$

Also for $E \in \mathcal{E}(M, N)$, we define

$$K_{E}(M|N) = \sup\{K_{\varphi}(M|N) : \varphi \in \mathcal{E}(M), \varphi \circ E = \varphi\}.$$

But when N is a factor, $K_{\varphi}(M|N)$ is independent of the choice of $\varphi \in \mathcal{E}(M)$ with $\varphi \circ E = \varphi$ and we can write

$$K_{E}(M|N) = -S(E \circ (E^{-1}|N' \cap M), E|N' \cap M),$$

because $E \mid N' \cap M$ and $E \circ (E^{-1} \mid N' \cap M)$ are scalar-valued.

Let $M \supseteq N$ be factors and $E \in \mathcal{E}(M, N)$. Then $K_E(M|N)$ is exactly estimated in terms of Kosaki's index as follows ([19]): If $N' \cap M$ has a nonatomic part, then $K_E(M|N) = \infty$. If $N' \cap M$ is atomic and $\{e_k\}$ is a set of atoms in the centralizer $(N' \cap M)_E$ of E with $\sum e_k = 1$, then

$$K_E(M|N) = \sum_{k} E(e_k) \log \frac{\operatorname{Index} E_{e_k}}{E(e_k)^2}$$
,

where $E_{e_k} \in \mathcal{E}(M_{e_k}, N_{e_k})$ is defined by $E_{e_k}(x) = E(e_k)^{-1}E(x)e_k$, $x \in M_{e_k}$. This estimate is completely analogous to that of H(M|N) for type II₁ factors ([33]). Furthermore $K_E(M|N) \leq \log[M:N]_0$, and the equality holds if and only if Index $E = [M:N]_0$ (i.e. $E = E_0$).

However the entropy $K_E(M|N)$ is defined by using E^{-1} and restricting on the relative commutant $N' \cap M$, which is more closely connected with Index E than $H_{\varphi}(M|N)$ or $H_E(M|N)$. In fact, when $N' \cap M = C$, it is clear by definition that $K_E(M|N) = \log \operatorname{Index} E$. But the same equality for $H_E(M|N)$ is not at all clear. The main purpose of this paper is to investigate the entropies $H_{\varphi}(M|N)$ and $H_E(M|N)$ related with the minimum index $[M:N]_0$ and compared with the entropy $K_E(M|N)$.

2. General properties of entropy.

In this section, let M be a von Neumann algebra and N a von Neumann subalgebra of M. We present general properties of entropies $H_{\varphi}(M|N)$ for $\varphi \in \mathfrak{S}(M)$ and $H_{E}(M|N)$ for $E \in \mathcal{E}(M,N)$.

Proposition 2.1. If α is an isomorphism of M onto $\alpha(M)$, then:

- (1) $H_{\varphi}(M|N) = H_{\varphi \circ \alpha^{-1}}(\alpha(M)|\alpha(N))$ for all $\varphi \in \mathfrak{S}(M)$,
- (2) $H_{\mathcal{E}}(M|N) = H_{\alpha \circ E \circ \alpha^{-1}}(\alpha(M)|\alpha(N))$ for all $E \in \mathcal{E}(M, N)$.

PROOF. (1) is immediate since $S(\varphi \circ \alpha^{-1}, \psi \circ \alpha^{-1}) = S(\varphi, \psi)$ for $\varphi, \psi \in M_*^{\ddagger}$. (2) follows from (1). \square

PROPOSITION 2.2. Let L be a von Neumann algebra with $L\supseteq M\supseteq N$. If $\varphi \in \mathfrak{S}(L)$, then:

- $(1) \quad H_{\varphi}(L \mid N) \leq H_{\varphi}(L \mid M) + H_{\varphi \mid M}(M \mid N),$
- (2) $H_{\varphi}(L|N) \geq H_{\varphi}(L|M)$,
- (3) $H_{\varphi}(L|N) \ge H_{\varphi \mid M}(M|N)$ whenever $F \in \mathcal{E}(L, M)$ with $\varphi \circ F = \varphi$ exists.

If $F \in \mathcal{E}(L, M)$ and $E \in \mathcal{E}(M, N)$, then:

- (4) $H_{E \circ F}(L | N) \leq H_F(L | M) + H_E(M | N)$,
- (5) $H_{E_0,F}(L|N) \ge H_E(M|N)$.

PROOF. (1) is obvious. (2) follows from the monotonicity of relative entropy

([24, 39]). To show (3), let $\psi_1, \dots, \psi_n \in M_*^+$ and $\sum \psi_i = \varphi \mid M$. Taking $\psi_i = \psi_i \circ F$, we have $\sum \varphi_i = \varphi$ so that

$$H_{\varphi}(\,L\,|\,N) \geqq \sum_{i} \{S(\varphi,\,\varphi_{i}) - S(\varphi\,|\,N,\,\varphi_{i}\,|\,N)\} \geqq \sum_{i} \{S(\varphi\,|\,M,\,\psi_{i}) - S(\varphi\,|\,N,\,\psi_{i}\,|\,N)\}$$

by monotonicity. Hence (3) holds. Moreover (4) and (5) are immediate from (1) and (3), respectively. \Box

PROPOSITION 2.3. Let $M = \bigoplus_k M_k$ and $N = \bigoplus_k N_k$ for countable families $\{M_k\}$ and $\{N_k\}$ of von Neumann algebras with $M_k \supseteq N_k$. If $\varphi = \bigoplus_k \lambda_k \varphi_k$ where $\lambda_k \ge 0$, $\sum \lambda_k = 1$, and $\varphi_k \in \mathfrak{S}(M_k)$, then

$$H_{\varphi}(M|N) = \sum_{k} \lambda_{k} H_{\varphi_{k}}(M_{k}|N_{k}).$$

PROOF. Let $\psi_1, \dots, \psi_n \in M_*^+$ and $\sum \psi_i = \varphi$. Writing $\psi_i = \bigoplus_k \lambda_k \psi_{ik}$ with $\psi_{ik} \in (M_k)_*^+$ and $\sum_i \psi_{ik} = \varphi_k$, we have

$$\sum_{i} \{ S(\varphi, \psi_{i}) - S(\varphi \mid N, \psi_{i} \mid N) \} = \sum_{k} \lambda_{k} \sum_{i} \{ S(\varphi_{k}, \psi_{ik}) - S(\varphi_{k} \mid N_{k}, \psi_{ik} \mid N_{k}) \}$$

$$\leq \sum_{k} \lambda_{k} H_{\varphi_{k}}(M_{k} \mid N_{k})$$

by the additivity of relative entropy for direct sums and by the scaling property of relative entropy ([4, Theorem 3.6]). Hence $H_{\varphi}(M|N) \leq \sum \lambda_k H_{\varphi_k}(M_k|N_k)$. The reverse inequality is similarly shown. \square

PROPOSITION 2.4. If $\varphi \in \mathcal{E}(M)$ and $H_{\varphi}(M|N)=0$, then M=N.

PROOF. Let $\varphi \in \mathcal{E}(M)$ and suppose $H_{\varphi}(M|N) = 0$. If $\psi \in \mathcal{E}(M)$ satisfies $\psi \leq c\varphi$ for some c > 0, then

$$S(\varphi | N, \frac{1}{\epsilon} \psi | N) = S(\varphi, \frac{1}{\epsilon} \psi),$$

so that by [4, Theorem 3.6]

$$S(\varphi | N, \psi | N) = S(\varphi, \psi) < \infty$$

i.e. N is weakly sufficient for $\{\varphi, \psi\}$ in the sense of [31]. Hence due to [31, Theorem 4], we have $\psi \circ E_{\varphi} = \psi$ where $E_{\varphi} : M \to N$ is the Accardi-Cecchini generalized conditional expectation [1] with respect to φ . Because M_* is the closed linear span of $\{\psi \in \mathcal{E}(M) : \psi \leq c\varphi \text{ for some } c > 0\}$, we get $E_{\varphi} = \mathrm{id}_M$. This shows M = N. \square

PROPOSITION 2.5. The function $\varphi \mapsto H_{\varphi}(M|N)$ is lower semicontinuous in norm on $\mathfrak{S}(M)$.

PROOF. Let φ_n , $\varphi \in \mathfrak{S}(M)$ and $\|\varphi_n - \varphi\| \to 0$. Taking the standard representation of M ([2, 16]), we have ξ_n and ξ in the natural positive cone such that $\varphi_n = (\cdot \xi_n | \xi_n)$ and $\varphi = (\cdot \xi | \xi)$. Then $\|\xi_n - \xi\| \leq \|\varphi_n - \varphi\|^{1/2} \to 0$ by [2, Theorem 4]

352 F. HIAI

([16, Lemma 2.10]). Let $\psi_1, \cdots, \psi_k \in M_*^+$ and $\sum \psi_i = \varphi$. For $1 \le i \le k$, there exists a unique $a_i' \in M'$ such that $0 \le a_i' \le e'$ and $\psi_i = (\cdot a_i' \xi \mid \xi)$, where e' is the projection onto $\overline{M\xi}$. Since $\sum \psi_i = \varphi$ implies $\sum a_i' = e'$, by replacing a_1' with $a_1' + (1 - e')$, we can choose $a_1', \cdots, a_k' \in M_+'$ with $\sum a_i' = 1$ such that $\psi_i = (\cdot a_i' \xi \mid \xi)$, $1 \le i \le k$. Define $\psi_{n1}, \cdots, \psi_{nk} \in M_*^+$ by $\psi_{ni} = (\cdot a_i' \xi_n \mid \xi_n)$. Then $\sum_i \psi_{ni} = \varphi_n$ and $\|\psi_{ni} - \psi_i\| \to 0$ as $n \to \infty$, so that by [4, Theorem 3.7]

$$\begin{split} \sum_{i} \{S(\varphi, \, \phi_i) - S(\varphi \, | \, N, \, \phi_i \, | \, N)\} &= \lim_{n \to \infty} \sum_{i} \{S(\varphi_n, \, \phi_{n\,i}) - S(\varphi_n \, | \, N, \, \phi_{n\,i} \, | \, N)\} \\ &\leq \lim_{n \to \infty} \inf_{n \in \mathbb{N}} H_{\varphi_n}(M \, | \, N) \, . \end{split}$$

Therefore $H_{\varphi}(M|N) \leq \liminf_{n \to \infty} H_{\varphi_n}(M|N)$. \square

The next lemma will be very useful in the sequel.

LEMMA 2.6. If $\varphi \in \mathcal{E}(M)$ and there exists $E \in \mathcal{E}(M, N)$ with $\varphi \circ E = \varphi$, then

$$H_{\varphi}(M|N) = \sup_{(\varphi_i)} \sum_i S(\varphi_i \circ E, \varphi_i),$$

where the supremum is taken over all $\varphi_1, \dots, \varphi_n \in M_*^+$ with $\Sigma \varphi_i = \varphi$.

PROOF. According to [32, Theorem 2] (extending [30, Theorem 5]), we get for $\phi \in M_*^+$

$$S(\varphi, \psi) = S(\varphi | N, \psi | N) + S(\psi \circ E, \psi).$$

This shows the desired formula. \square

PROPOSITION 2.7. If $E \in \mathcal{E}(M, N)$, then $H_{\varphi}(M|N)$ is concave on $\{\varphi \in \mathfrak{S}(M): \varphi \circ E = \varphi\}$.

PROOF. Let φ , $\psi \in \mathfrak{S}(M)$, $\varphi \circ E = \varphi$, $\psi \circ E = \psi$, and $0 < \lambda < 1$. For $\varphi_1, \dots, \varphi_m \in M_*$ with $\Sigma \varphi_i = \varphi$ and $\psi_1, \dots, \psi_n \in M_*$ with $\Sigma \psi_j = \psi$, since $\Sigma_i \lambda \varphi_i + \Sigma_j (1 - \lambda) \psi_j = \lambda \varphi + (1 - \lambda) \psi$, we have by Lemma 2.6

$$\begin{split} H_{\lambda\varphi+(1-\lambda)\phi}(M|N) & \geq \sum_{i} S(\lambda\varphi_{i} \circ E, \, \lambda\varphi_{i}) + \sum_{j} S((1-\lambda)\psi_{j} \circ E, \, (1-\lambda)\psi_{j}) \\ & = \lambda \sum_{i} S(\varphi_{i} \circ E, \, \varphi_{i}) + (1-\lambda) \sum_{j} S(\psi_{j} \circ E, \, \psi_{j}), \end{split}$$

showing the conclusion required.

REMARK 2.8. If N is a finite dimensional factor with the normalized trace τ , then $H_E(M|N)=H_{\tau\circ E}(M|N)$ for all $E\in\mathcal{E}(M,N)$. Indeed for any $\phi\in\mathcal{E}(N)$, τ is in the convex hull of the unitary orbit of ϕ , i.e. $\tau=\sum \lambda_k u_k \phi u_k^*$ with $\lambda_k>0$, $\sum \lambda_k=1$ and $u_k\in N$ unitary. Then $\tau\circ E=\sum \lambda_k u_k (\phi\circ E)u_k^*$, so that by Propositions 2.7 and 2.1(1)

$$H_{\tau \circ E}(M|N) \ge \sum \lambda_k H_{u_k(\phi \circ E)u_k^*}(u_k M u_k^* | u_k N u_k^*) = H_{\phi \circ E}(M|N),$$

as desired.

Proposition 2.9. For every $E \in \mathcal{E}(M, N)$

$$H_E(M|N) \leq \log ||E^{-1}(1)||$$

where $||E^{-1}(1)|| = \infty$ if $E^{-1}(1)$ is unbounded.

PROOF. Suppose $E^{-1}(1)$ is bounded and let $\lambda = ||E^{-1}(1)||^{-1}$. Then it follows from [19, Proposition 1.9] that

$$E(x) \ge E^{-1}(1)^{-1}x \ge \lambda x$$
, $x \in M_+$.

Let $\varphi \in \mathcal{E}(M)$ and $\varphi \circ E = \varphi$. For each $\varphi_1, \dots, \varphi_n \in M_*^+$ with $\Sigma \varphi_i = \varphi$, since $\varphi_i \circ E \ge \lambda \varphi_i$, we have by [4, Theorem 3.6]

$$\sum_{i} S(\varphi_i \circ E, \varphi_i) \leq \sum_{i} S(\lambda \varphi_i, \varphi_i) = -\sum_{i} \varphi_i(1) \log \lambda = -\log \lambda$$
.

Therefore $H_{\varphi}(M|N) \leq -\log \lambda$ by Lemma 2.6, so that $H_{E}(M|N) \leq -\log \lambda$. \square

In fact, the above proposition was given at the end of [10] without proof. When $M \supseteq N$ is a pair of factor and subfactor, this shows that $H_E(M|N) \le \log \operatorname{Index} E$ for all $E \in \mathcal{E}(M, N)$. But we shall establish a stronger inequality in Corollary 7.1.

The notion of commuting squares plays a fundamental role in index theory for type II₁ factors ([15]). In the next lemma, we show the monotonicity of entropies $H_{\varphi}(M|N)$ and $H_{E}(M|N)$ for a commuting square.

LEMMA 2.10. Let $M_1 \supseteq N_1$ be von Neumann algebras with $M_1 \subseteq M$ and $N_1 \subseteq N$. Let $\varphi \in \mathcal{E}(M)$, $E \in \mathcal{E}(M, N)$, $E_1 \in \mathcal{E}(M, N_1)$ and $F_1 \in \mathcal{E}(M, M_1)$ be such that $\varphi \circ E = \varphi \circ E_1 = \varphi \circ F_1 = \varphi$. If the commuting square condition $E \circ F_1 = E_1$ holds, then:

- (1) $H_{\varphi}(M|N) \ge H_{\varphi|M_1}(M_1|N_1),$
- (2) $H_{E}(M|N) \ge H_{E|M_{1}}(M_{1}|N_{1}).$

PROOF. (1) Let $\phi_1, \dots, \phi_n \in (M_1)^+_*$ and $\sum \phi_i = \varphi \mid M_1$. Taking $\varphi_1, \dots, \varphi_n \in M^+_*$ with $\sum \varphi_i = \varphi$ by $\varphi_i = \psi_i \circ F_1$, we have

$$H_{\varphi}(M|N) \ge \sum_{i} S(\varphi_{i} \circ E, \varphi_{i}) \ge \sum_{i} S((\varphi_{i} \circ E)|M_{1}, \varphi_{i}|M_{1})$$
$$= \sum_{i} S(\psi_{i} \circ (E|M_{1}), \psi_{i})$$

by Lemma 2.6 and monotonicity. This implies $H_{\omega}(M|N) \ge H_{\omega \mid M_1}(M_1|N_1)$.

(2) For each $\psi_1 \in \mathcal{E}(M_1)$ with $\psi_1 \circ (E \mid M_1) = \psi_1$, letting $\psi = \psi_1 \circ E_1$, we have

$$\psi \circ E = \psi_1 \circ E_1 \circ E = \psi_1 \circ E_1 = \psi,$$

$$\psi \circ F_1 = \psi \circ E \circ F_1 = \psi \circ E_1 = \psi.$$

Hence by (1) applied to ϕ , we get

$$H_{\mathcal{E}}(M|N) \geq H_{\phi}(M|N) \geq H_{\phi_1}(M_1|N_1),$$

implying $H_{E}(M|N) \ge H_{E|M_{1}}(M_{1}|N_{1})$. \square

We end this section with martingale type convergence properties of entropies. Let $\{M_n\}$ and $\{N_n\}$ be increasing sequences of von Neumann subalgebras of M with $M_n \supseteq N_n$ such that $M = \bigvee_n M_n$ and $N = \bigvee_n N_n$.

Proposition 2.11. For every $\varphi \in \mathfrak{S}(M)$

$$H_{\varphi}(M|N) \leq \liminf_{n \to \infty} H_{\varphi \mid M_n}(M_n|N_n).$$

PROOF. Given $\varphi_1, \dots, \varphi_n \in M_*^+$ with $\Sigma \varphi_i = \varphi$, by the martingale convergence of relative entropy ([4, Theorem 3.9], [24, Theorem 4.1]), we have

$$\sum_{i} \{ S(\varphi, \varphi_{i}) - S(\varphi | N, \varphi_{i} | N) \} = \lim_{n \to \infty} \sum_{i} \{ S(\varphi | M_{n}, \varphi_{i} | M_{n}) - S(\varphi | N_{n}, \varphi_{i} | N_{n}) \}$$

$$\leq \liminf_{n \to \infty} H_{\varphi | M_{n}}(M_{n} | N_{n}),$$

implying the desired inequality.

PROPOSITION 2.12. Let $\varphi \in \mathcal{E}(M)$ and assume that there exist $E_n \in \mathcal{E}(M, N_n)$ with $\varphi \circ E_n = \varphi$ and $F_n \in \mathcal{E}(M, M_n)$ with $\varphi \circ F_n = \varphi$. If $E_{n+1} \circ F_n = E_n$ for all n, then

- (1) $H_{\varphi}(M|N) = \lim_{n \to \infty} H_{\varphi|M_n}(M_n|N_n)$ increasingly,
- (2) $H_{\mathcal{E}}(M|N) = \lim_{n\to\infty} H_{\mathcal{E}_n|M_n}(M_n|N_n)$ increasingly where $\mathcal{E} \in \mathcal{E}(M,N)$ with $\varphi \circ \mathcal{E} = \varphi$.

PROOF. By [37] and [7, Lemma 2], there exists $E \in \mathcal{E}(M, N)$ such that $\varphi \circ E = \varphi$ and $E_n(x) \to E(x)$ strongly for all $x \in M$. We get $E_m \circ E_n = E_n$ for m > n by induction, so that $E \circ F_n = E_n$ and particularly $E \mid M_n = E_n \mid M_n$. Hence (1) follows from Lemma 2.10(1) and Proposition 2.11. Also for each $\varphi \in \mathcal{E}(M)$ with $\varphi \circ E = \varphi$, we get by Proposition 2.11

$$H_{\phi}(M|N) \leq \liminf_{n \to \infty} H_{\phi|M_n}(M_n|N_n) \leq \liminf_{n \to \infty} H_{E_n|M_n}(M_n|N_n),$$

since $(\phi | M_n) \circ (E_n | M_n) = \phi | M_n$. Hence

$$H_E(M|N) \leq \liminf_{n \to \infty} H_{E_{n}|M_n}(M_n|N_n).$$

This together with Lemma 2.10(2) implies (2). \Box

3. Relative commutant and entropy.

Given $\varphi \in \mathcal{E}(M)$ such that $E \in \mathcal{E}(M, N)$ with $\varphi \circ E = \varphi$ exists, it was shown in [19, §4] that if either Z(M) or Z(N) is atomic and if $K_{\varphi}(M|N) < \infty$, then $N' \cap M$ is atomic. In this section, we similarly discuss the relation between the entropy $H_{\varphi}(M|N)$ and the relative commutant $N' \cap M$ when N is a factor.

To begin with, we give the complete estimate of $H_{\varphi}(M|C)$ as follows:

Proposition 3.1. (1) If M has a nonatomic part, then $H_{\varphi}(M|C) = \infty$ for

every $\varphi \in \mathcal{E}(M)$.

(2) Assume that M is atomic. Let tr be the faithful normal semifinite trace on M such that tr(q)=1 for every minimal projection q in M. If $\varphi \in \mathcal{E}(M)$ and $a=d\varphi/d$ tr, then $H_{\varphi}(M|\mathbf{C})=tr(\eta a)$.

PROOF. (1) Let M_{φ} be the centralizer of $\varphi \in \mathcal{E}(M)$. First let us prove that if M_{φ} has a nonatomic part with the support projection $e \neq 0$, then $H_{\varphi}(M|\mathbf{C}) = \infty$. For each $n \geq 1$, there are projections e_1, \dots, e_n in M_{φ} such that $\sum e_i = e$ and $\varphi(e_i) = \varphi(e)/n$. Taking $\varphi_1, \dots, \varphi_n \in M_*^+$ with $\sum \varphi_i \leq \varphi$ by $\varphi_i = \varphi(e_i \cdot)$, we have by Lemma 2.6 and monotonicity

$$\begin{split} H_{\varphi}(M|\mathbf{C}) & \geq \sum_{i=1}^{n} S(\varphi_{i}(1)\varphi, \, \varphi_{i}) \\ & \geq \sum_{i=1}^{n} \varphi_{i}(e_{i}) \log \frac{\varphi_{i}(e_{i})}{\varphi_{i}(1)\varphi(e_{i})} = \varphi(e) \log \frac{n}{\varphi(e)}, \end{split}$$

showing $H_{\varphi}(M|\mathbf{C}) = \infty$.

Now suppose $H_{\varphi}(M|C) < \infty$ for some $\varphi \in \mathcal{E}(M)$. Then M_{φ} and hence Z(M) are atomic. So let $\{p_j\}$ be the set of all atoms in Z(M) and $\varphi_j = \varphi(p_j)^{-1} | Mp_j$. Thanks to $M = \bigoplus_j Mp_j$ and $Z(M) = \bigoplus_j Cp_j$, we get by Propositions 2.2(2) and 2.3

$$\infty > H_{\varphi}(M|C) \ge H_{\varphi}(M|Z(M)) = \sum_{\mathbf{j}} \varphi(p_{\mathbf{j}}) H_{\varphi_{\mathbf{j}}}(Mp_{\mathbf{j}}|C)$$
.

Thus to show the atomicness of M, we can assume that M is a factor. If M is a nonatomic semifinite factor, then M_{φ} includes a maximal abelian subalgebra A of M because σ^{φ} is inner. Also if M is a type III $_{\lambda}$ factor with $0 \le \lambda < 1$, then it is known [36, 29.9] that M_{φ} includes a maximal abelian subalgebra A of M. In these cases, since A is nonatomic, we have $H_{\varphi}(M|C) \ge H_{\varphi \mid A}(A|C) = \infty$ by Proposition 2.2(3) and the assertion proved first. Next let M be a type III $_1$ factor. Take projections e_1, \dots, e_n in M such that $\sum e_i = 1$ and $\varphi(e_i) = 1/n$, and define $\varphi \in \mathcal{E}(M)$ by $\varphi(x) = \sum \varphi(e_i x e_i)$, $x \in M$. Since $e_i \in M_{\varphi}$, it follows as in the first argument that $H_{\varphi}(M|C) \ge \log n$. Furthermore, by [13] (the homogeneity of $\mathfrak{E}(M)$), there is a sequence $\{u_m\}$ of unitaries in M such that $\|\varphi - u_m \varphi u_m^*\| \to 0$. Hence

$$H_{\phi}(M|\mathbf{C}) \leq \liminf_{m \to \infty} H_{u_m \varphi u_m^*}(M|\mathbf{C}) = H_{\phi}(M|\mathbf{C})$$

by Propositions 2.5 and 2.1(1), so that $H_{\varphi}(M|C) = \infty$. Thus we conclude that M is atomic.

(2) For
$$\varphi_1, \dots, \varphi_n \in M_*^+$$
 with $\sum \varphi_i = \varphi$, letting $a_i = d\varphi_i/d$ tr, we get
$$\sum_i S(\varphi_i(1)\varphi, \varphi_i) = \operatorname{tr}(\eta a) + \sum_i \{\eta(\operatorname{tr}(a_i)) - \operatorname{tr}(\eta a_i)\} \leq \operatorname{tr}(\eta a),$$

because $\operatorname{tr}(\eta a_i) \geq \eta(\operatorname{tr}(a_i))$. Now we write $a = \sum \lambda_k q_k$ with minimal projections q_k , $\sum q_k = 1$, and take $\psi_k \in M_*^+$ such that $d\psi_k/d \operatorname{tr} = \lambda_k q_k$. Then since $\sum_{k=1}^n \psi_k \leq \varphi$,

$$H_{\varphi}(M|\mathbf{C}) \geq \sum_{k=1}^{n} S(\psi_{k}(1)\varphi, \psi_{k}) = \sum_{k=1}^{n} \eta(\lambda_{k}) \longrightarrow \operatorname{tr}(\eta a)$$

as $n \to \infty$. Hence $H_{\varphi}(M|C) = \operatorname{tr}(\eta a)$. \square

The above (2) was given in [10, Théorème 5(D)] in the finite dimensional case. The entropy $H_{\varphi}(M|N)$ coincides with the von Neumann entropy particularly when $M=\mathbf{B}(\mathcal{H})$ and $N=\mathbf{C}$, so that the function $\varphi\mapsto H_{\varphi}(M|N)$ is not necessarily continuous (see [43]). As for the entropy $K_{\varphi}(M|\mathbf{C})$, we note [19, Example 4.6] that $K_{\varphi}(M|\mathbf{C})=2\operatorname{tr}(\eta a)$ if $M=\mathbf{B}(\mathcal{H})$ and $a=d\varphi/d\operatorname{tr}$. Hence the entropies $H_{\varphi}(M|N)$ and $K_{\varphi}(M|N)$ are not identical in general.

PROPOSITION 3.2. Assume that N is a factor. If $N' \cap M$ has a nonatomic part, then $H_{\varphi}(M|N) = \infty$ for every $\varphi \in \mathcal{E}(M)$ such that $E \in \mathcal{E}(M, N)$ with $\varphi \circ E = \varphi$ exists.

PROOF. Let $\varphi \in \mathcal{E}(M)$ and $E \in \mathcal{E}(M, N)$ be such that $\varphi \circ E = \varphi$. Because $\sigma^{\varphi}(N' \cap M) = N' \cap M$ as well as $\sigma^{\varphi}(N) = N$ for all $t \in \mathbb{R}$, there exists $F \in \mathcal{E}(M, N' \cap M)$ with $\varphi \circ F = \varphi$ ([37]). Then $E \circ F = \varphi$ since N is a factor. Hence we can apply Lemma 2.10(1) to $M_1 = N' \cap M$ and $N_1 = \mathbb{C}$, so that

$$H_{\varphi}(M|N) \geq H_{\varphi|N' \cap M}(N' \cap M|C).$$

Thus Proposition 3.1 shows the conclusion required.

PROPOSITION 3.3. Assume that N is a factor and $\mathcal{E}(M, N) \neq \emptyset$. If $N' \cap M$ is infinite dimensional, then $H_{\varphi}(M|N) = \infty$ for some $\varphi \in \mathcal{E}(M)$ such that $E \in \mathcal{E}(M, N)$ with $\varphi \circ E = \varphi$ exists.

PROOF. By assumption, there is a sequence $\{e_k\}$ of nonzero projections in $N'\cap M$ with $\sum e_k=1$. Let $\{\lambda_k\}$ be a sequence of positive numbers such that $\sum \lambda_k=1$ and $\sum \eta(\lambda_k)=\infty$. Choosing an $\omega\in\mathcal{E}(N'\cap M)$, we define

$$\psi(x) = \sum_{k} \frac{\lambda_k}{\omega(e_k)} \omega(e_k x e_k), \quad x \in N' \cap M.$$

Then $\phi \in \mathcal{E}(N' \cap M)$ and $e_k \in (N' \cap M)_{\phi}$. According to [6, Théorème 5.3], there exists $E \in \mathcal{E}(M, N)$ such that $E \mid N' \cap M = \phi$. Choose a $\varphi_0 \in \mathcal{E}(N)$ and let $\varphi = \varphi_0 \circ E$. Then $\varphi \in \mathcal{E}(M)$, $\varphi \circ E = \varphi$ and $\varphi \mid N' \cap M = \phi$. For each $n \ge 1$, we can take $\varphi_1, \dots, \varphi_n \in M_*^+$ with $\sum \varphi_k \le \varphi$ by $\varphi_k = \varphi(e_k \cdot)$ because $(N' \cap M)_{\phi} = (N' \cap M)_E \subseteq M_{\varphi}$. Then

$$H_{\varphi}(M|N) \geq \sum_{k=1}^{n} S(\varphi_k \circ E, \varphi_k) \geq \sum_{k=1}^{n} \varphi_k(e_k) \log \frac{\varphi_k(e_k)}{\varphi_k(E(e_k))} = \sum_{k=1}^{n} \eta(\lambda_k),$$

showing $H_{\varphi}(M|N) = \infty$. \square

4. Entropy for tensor products.

In this section, we investigate the entropies $H_{\varphi}(M|N)$ and $H_{E}(M|N)$ under taking tensor products. The addition formula of the entropy $K_{\varphi}(M|N)$ for tensor products was given in [19, Proposition 3.6]. In the following, let $M \supseteq N$ and $P \supseteq Q$ be two pairs of von Neumann algebras.

LEMMA 4.1. Let $\varphi \in \mathfrak{S}(M)$ and $\psi \in \mathfrak{S}(P)$. For every $\varphi' \in M_*^+$ with $\varphi' \leq \varphi$ and $\varphi' \in P_*^+$ with $\varphi' \leq \varphi$,

$$S(\varphi \otimes \psi, \varphi' \otimes \psi') = \psi'(1)S(\varphi, \varphi') + \varphi'(1)S(\psi, \psi').$$

PROOF. By restricting φ on $M_{s(\varphi)}$ and ψ on $P_{s(\psi)}$ where $s(\varphi)$ is the support projection of φ , we can assume that $\varphi \in \mathcal{E}(M)$ and $\psi \in \mathcal{E}(P)$. For $0 < \varepsilon < 1$, let $\varphi'_{\varepsilon} = (1-\varepsilon)\varphi' + \varepsilon\varphi$ and $\psi'_{\varepsilon} = (1-\varepsilon)\psi' + \varepsilon\psi$. Since φ'_{ε} and ψ'_{ε} are faithful, the formula in [30, p. 70] implies that

$$S(\varphi \otimes \psi, \varphi'_{\varepsilon} \otimes \varphi'_{\varepsilon}) = \psi'_{\varepsilon}(1)S(\varphi, \varphi'_{\varepsilon}) + \varphi'_{\varepsilon}(1)S(\psi, \psi'_{\varepsilon}).$$

Taking the limits as $\varepsilon \rightarrow 0$ by [4, Theorem 3.7], we get the desired formula. \square

PROPOSITION 4.2. (1) For every $\varphi \in \mathfrak{S}(M)$ and $\psi \in \mathfrak{S}(P)$

$$H_{\varphi \otimes \psi}(M \otimes P | N \otimes Q) \ge H_{\varphi}(M | N) + H_{\psi}(P | Q).$$

(2) For every $E \in \mathcal{E}(M, N)$ and $F \in \mathcal{E}(P, Q)$

$$H_{E \otimes F}(M \otimes P | N \otimes Q) \ge H_{E}(M | N) + H_{E}(P | Q)$$
.

PROOF. Given $\varphi_1, \dots, \varphi_m \in M_*^+$ with $\Sigma \varphi_i = \varphi$ and $\psi_1, \dots, \psi_n \in P_*^+$ with $\Sigma \psi_j = \psi$, since $\sum_{i,j} \varphi_i \otimes \psi_j = \varphi \otimes \psi$ and $\varphi_i \otimes \psi_j | N \otimes Q = (\varphi_i | N) \otimes (\psi_j | Q)$, we have by Lemma 4.1

$$\begin{split} H_{\varphi \otimes \psi}(M \otimes P | \, N \otimes Q) & \geq \sum_{i,\,j} \{ S(\varphi \otimes \psi, \, \varphi_i \otimes \psi_j) - S(\varphi \otimes \psi \, | \, N \otimes Q, \, \varphi_i \otimes \psi_j \, | \, N \otimes Q) \} \\ & = \sum_i \{ S(\varphi, \, \varphi_i) - S(\varphi \, | \, N, \, \varphi_i \, | \, N) \} + \sum_j \{ S(\psi, \, \psi_j) - S(\varphi \, | \, Q, \, \psi_j \, | \, Q) \} \;, \end{split}$$

implying (1). (2) is immediate from (1). \Box

The following is a particular case of Proposition 4.2(2):

$$H_{E \otimes id_{\mathcal{B}}}(M \otimes P | N \otimes P) \ge H_{\mathcal{E}}(N | N)$$
.

Now we establish the equality in the above when N is an infinite factor and P is an injective factor. To do this, we give the next lemma.

LEMMA 4.3. Assume that N is an infinite factor.

(1) If e is an infinite projection in N, then

$$H_{E|M_e}(M_e|N_e) = H_E(M|N)$$
.

(2) If F is a type I factor, then

$$H_{E \otimes id_F}(M \otimes F | N \otimes F) = H_E(M | N)$$
.

PROOF. (1) By assumption, there is a $v \in N$ such that $v^*v=1$ and $vv^*=e$. Then $M_e=vMv^*$, $N_e=vNv^*$ and $E(x)=vE(v^*xv)v^*$, $x \in M_e$. Hence Proposition 2.1(2) shows the desired equality.

(2) Choose a minimal projection e in F. Then $M=(M\otimes F)_{1\otimes e}$, $N=(N\otimes F)_{1\otimes e}$ and $E=(E\otimes \mathrm{id}_F)|(M\otimes F)_{1\otimes e}$ under the obvious identification. Hence (2) follows from (1). \square

PROPOSITION 4.4. If N is an infinite factor and P is an injective factor with separable predual, then

$$H_{E \otimes id_P}(M \otimes P | N \otimes P) = H_E(M | N)$$

for every $E \in \mathcal{E}(M, N)$.

PROOF. Let us show that

$$H_{E \otimes id_P}(M \otimes P | N \otimes P) \leq H_E(M | N)$$
.

Because P is approximately finite dimensional ([8]), we can choose an increasing sequence $\{F_n\}$ of finite type I subfactors of P such that $P = \bigvee_n F_n$ (see [14]). Let $\varphi \in \mathcal{E}(M \otimes P)$ and $\varphi \circ (E \otimes \mathrm{id}_P) = \varphi$. Given $\varphi_1, \dots, \varphi_k \in (M \otimes P)^+_*$ with $\Sigma \varphi_i = \varphi$, since

$$(\varphi|M \otimes F_n) \circ (E \otimes \mathrm{id}_{F_n}) = \varphi|M \otimes F_n$$
,
$$(\varphi_i|M \otimes F_n) \circ (E \otimes \mathrm{id}_{F_n}) = \varphi_i \circ (E \otimes \mathrm{id}_P)|M \otimes F_n$$
,

Lemmas 4.3(2) and 2.6 imply that

$$H_{E}(M|N) = H_{E \otimes id_{F_{n}}}(M \otimes F_{n} | N \otimes F_{n}) \ge \sum_{i} S(\varphi_{i} \circ (E \otimes id_{P}) | M \otimes F_{n}, \varphi_{i} | M \otimes F_{n}).$$

Since $M \otimes P = \bigvee_{n} (M \otimes F_{n})$, we get

$$H_E(M|N) \ge \sum_i S(\varphi_i \circ (E \otimes \mathrm{id}_P), \varphi_i)$$

by the martingale convergence of relative entropy. This shows the conclusion required. \Box

REMARK 4.5. The above equality does not hold in the finite dimensional case. For instance, let $M_n = M_n(C)$ be the $n \times n$ matrix algebra with the normalized trace τ_n . As for the conditional expectation $\tau_m \otimes \mathrm{id}_{M_n} : M_m \otimes M_n \to C \otimes M_n$ with respect to $\tau_m = \tau_m \otimes \tau_n$, we have by Remark 2.8 and [33, Theorem 6.2]

$$H_{\tau_m \otimes \mathrm{id}_{M_n}}(M_m \otimes M_n | C \otimes M_n) = \begin{cases} \log m^2, & m \leq n, \\ \log mn, & m > n, \end{cases}$$

which is not equal to $H_{\tau_m}(M_m|C) = \log m$ whenever m, n > 1.

Now suppose M is a factor on a Hilbert space \mathcal{H} . If $E \in \mathcal{E}(M, N)$ and $E^{-1}(1) < \infty$ ($E^{-1}(1)$ is a scalar), then $E' \in \mathcal{E}(N', M')$ is defined by $E' = E^{-1}(1)^{-1}E^{-1}$.

PROPOSITION 4.6. Under the above situation, $H_{E'}(N'|M')$ is independent of the choice of a Hilbert space \mathcal{H} where M' is infinite. (In particular, if M is a type III factor, then $H_{E'}(N'|M')$ is independent of any choice of \mathcal{H} .)

PROOF. It suffices to show the following: If α is an isomorphism of M onto $\alpha(M)$ where M and $\alpha(M)$ are acting respectively on \mathcal{H} and \mathcal{H}_1 such that M' and $\alpha(M)'$ are infinite, then

$$H_{(\alpha, E, \alpha^{-1})'}(\alpha(N)' | \alpha(M)') = H_{E'}(N' | M').$$

We may separately consider an amplication, an induction and a spatial isomorphism. Let $\alpha: x \in M \mapsto x \otimes 1 \in M \otimes C$ where $\mathcal{H}_1 = \mathcal{H} \otimes \mathcal{K}$. Then $\alpha \circ E \circ \alpha^{-1} = E \otimes \mathrm{id}_C$, so that $(\alpha \circ E \circ \alpha^{-1})' = E' \otimes \mathrm{id}_{B(\mathcal{K})}$ by [19, Proposition 1.7]. Hence we can apply Lemma 4.3(2). Let $\alpha: x \in M \mapsto xe \in Me$ where e is an infinite projection in M'. Then $(\alpha \circ E \circ \alpha^{-1})(xe) = E(x)e$ for $x \in M$, so that $(\alpha \circ E \circ \alpha^{-1})' = E' \mid N'_e$ by [19, Proposition 1.5]. Hence we can apply Lemma 4.3(1). For a spatial isomorphism, the desired equality is immediate from Proposition 2.1(2).

Based on the special properties of type III₁ factors, we have:

PROPOSITION 4.7. (1) If N is a type III_1 factor and $E \in \mathcal{E}(M, N)$, then $H_E(M|N) = H_{\varphi}(M|N)$ for every $\varphi \in \mathfrak{S}(M)$ with $\varphi \circ E = \varphi$.

(2) Let N be an infinite factor and R_{∞} the injective type III_1 factor with separable predual (i.e. the Araki-Woods factor). If $E \in \mathcal{E}(M, N)$, then $H_E(M|N) = H_{\varphi \otimes \omega}(M \otimes R_{\infty}|N \otimes R_{\infty})$ for every $\omega \in \mathfrak{S}(R_{\infty})$ and $\varphi \in \mathfrak{S}(M)$ with $\varphi \circ E = \varphi$.

PROOF. (1) Let φ , $\psi \in \mathfrak{S}(M)$ be such that $\varphi \circ E = \varphi$ and $\varphi \circ E = \psi$. Let $\varphi_0 = \varphi \mid N$ and $\varphi_0 = \psi \mid N$. By [13], there is a sequence $\{u_n\}$ of unitaries in N such that $\|\psi_0 - u_n \varphi_0 u_n^*\| \to 0$. Then we get $\|\psi - u_n \varphi_0 u_n^*\| \to 0$, so that $H_{\psi}(M \mid N) \leq H_{\varphi}(M \mid N)$ by Propositions 2.5 and 2.1(1). Hence $H_{\psi}(M \mid N) = H_{\varphi}(M \mid N)$ by symmetry of φ , ψ .

(2) Because $N \otimes R_{\infty}$ is a type III₁ factor, Proposition 4.4 and the above (1) imply that

$$H_{E}(M|N) = H_{E \otimes id_{R_{\infty}}}(M \otimes R_{\infty}|N \otimes R_{\infty}) = H_{\varphi \otimes \omega}(M \otimes R_{\infty}|N \otimes R_{\infty})$$

for every $\omega \in \mathfrak{S}(R_{\infty})$ and $\varphi \in \mathfrak{S}(M)$, $\varphi \circ E = \varphi$. \square

It is known [20, Lemma 4.4] that if N is a type III factor and φ , $\psi \in \mathfrak{S}(N)$, then ψ is in the closed convex hull of the unitary orbit of φ . So in view of Proposition 2.7, it seems possible that Proposition 4.7(1) is true even when N is any type III factor.

5. Entropy for crossed products.

In this section, we investigate the entropies $H_E(M|N)$ and $K_E(M|N)$ under taking crossed products. Let $M \supseteq N$ be von Neumann algebras on a Hilbert space $\mathcal H$ and G a locally compact group. Let α be an action of G on M such that $\alpha_g(N) = N$ for all $g \in G$. The crossed products $\widetilde{M} = M \rtimes_{\alpha} G$ of M by α and $\widetilde{N} = N \rtimes_{\alpha} G$ of N by $\alpha|N$ are defined as follows:

$$\widetilde{M} = \{\pi_{\alpha}(M) \cup (1 \otimes \lambda_G)\}'' \supseteq \widetilde{N} = \{\pi_{\alpha}(N) \cup (1 \otimes \lambda_G)\}''$$
,

where π_{α} is the representation of $M \supseteq N$ corresponding to α on $L^2(G, \mathcal{H}) = \mathcal{H} \otimes L^2(G)$ and λ is the left regular representation of G on $L^2(G)$. See [28, 36] for duality theory of crossed products. In the following, we suppose the second axiom of countability for G, so that the von Neumann algebras appearing are all σ -finite.

Now let $E \in \mathcal{E}(M, N)$ and suppose E commutes with α , i.e. $E \circ \alpha_g = \alpha_g \circ E$, $g \in G$. Then since

$$(E \otimes \mathrm{id}_{B(L^2(G))})(\pi_{\alpha}(x)) = \pi_{\alpha}(E(x)), \quad x \in M,$$

we can define $\widetilde{E} \in \mathcal{E}(\widetilde{M}, \widetilde{N})$ by $\widetilde{E} = E \otimes \mathrm{id}_{B(L^2(G))} | \widetilde{M}$, which satisfies $\widetilde{E}(\pi_{\alpha}(x)) = \pi_{\alpha}(E(x))$, $x \in M$. We call \widetilde{E} the canonical extension of E.

Theorem 5.1. If $E \in \mathcal{E}(M, N)$ commutes with α and \widetilde{E} is the canonical extension of E, then

$$H_{\widetilde{E}}(M \rtimes_{\alpha} G | N \rtimes_{\alpha} G) \ge H_{E}(M | N)$$
.

Moreover if N is an infinite factor, then

$$H_{\widetilde{E}}(M \rtimes_{\alpha} G | N \rtimes_{\alpha} G) = H_{E}(M | N).$$

PROOF. For each neighborhood V of the unit 1_G of G, we choose an $f_V \in L^1(G)_+$ whose support is included in V and such that $\|f_V\|_1 = 1$. Define $\psi_V \in \mathfrak{S}(\boldsymbol{B}(L^2(G)))$ by $\psi_V = (\cdot f_V^{1/2} | f_V^{1/2})$. Furthermore take a $\psi \in \mathcal{E}(\boldsymbol{B}(L^2(G)))$ and let $\psi_{V,\varepsilon} = (1-\varepsilon)\psi_V + \varepsilon\psi$ for $0 < \varepsilon < 1$. Now, for any $\varphi \in \mathcal{E}(M)$ with $\varphi \circ E = \varphi$, let $\varphi_1, \cdots, \varphi_n \in M_*^+$ and $\Sigma \varphi_i = \varphi$. Define $\tilde{\varphi}_{V,\varepsilon} \in \mathcal{E}(\tilde{M})$ and $\tilde{\varphi}_{V,\varepsilon,i} \in \tilde{M}_*^+$ by $\tilde{\varphi}_{V,\varepsilon} = \varphi \otimes \psi_{V,\varepsilon} | \tilde{M}$ and $\tilde{\varphi}_{V,\varepsilon,i} = \varphi_i \otimes \psi_{V,\varepsilon} | \tilde{M}$. Then $\tilde{\varphi}_{V,\varepsilon} \circ \tilde{E} = \tilde{\varphi}_{V,\varepsilon}$ and $\Sigma_i \tilde{\varphi}_{V,\varepsilon,i} = \tilde{\varphi}_{V,\varepsilon}$. Hence

$$\textstyle H_{\widetilde{E}}(\widetilde{M}\,|\,\widetilde{N}\,) \geq \sum_{i} S(\tilde{\varphi}_{V,\,\varepsilon,\,i}\circ\widetilde{E}\,,\,\tilde{\varphi}_{V,\,\varepsilon,\,i}) \geq \sum_{i} S(\tilde{\varphi}_{V,\,\varepsilon,\,i}\circ\widetilde{E}\circ\pi_{\,\alpha},\,\tilde{\varphi}_{V,\,\varepsilon,\,i}\circ\pi_{\,\alpha})$$

by monotonicity. We get for every $x \in M$

$$\tilde{\varphi}_{V,\,\varepsilon,\,i}(\pi_{\alpha}(x)) = (1-\varepsilon) \int \varphi_i(\alpha_{g^{-1}}(x)) f_V(g) dg + \varepsilon (\varphi_i \otimes \psi)(\pi_{\alpha}(x)),$$

$$\tilde{\varphi}_{V,\,\varepsilon,\,i}(\widetilde{E}(\pi_{\alpha}(x))) = (1-\varepsilon) \int \!\! \varphi_i(\alpha_{g^{-1}}\!(E(x))) f_{V}(g) dg + \varepsilon (\varphi_i \otimes \psi) (\pi_{\alpha}(E(x))) \,,$$

so that $\tilde{\varphi}_{V,\,\varepsilon,\,i}\circ\pi_{\alpha}\to\varphi_{i}$ and $\tilde{\varphi}_{V,\,\varepsilon,\,i}\circ\widetilde{E}\circ\pi_{\alpha}\to\varphi_{i}\circ E$ in the $\sigma(M_{*},\,M)$ -topology as $V\to\{1_{G}\}$ and $\varepsilon\to0$. Therefore

$$H_{\widetilde{E}}(\widetilde{M}|\widetilde{N}) \geq \sum_{i} S(\varphi_{i} \circ E, \varphi_{i})$$

by the joint $\sigma(M_*, M)$ -lower semicontinuity of relative entropy ([24]). This implies $H_{\widetilde{E}}(\widetilde{M}|\widetilde{N}) \ge H_{E}(M|N)$.

Next let us prove the second part. Let $\hat{\alpha}: \widetilde{M} \to \widetilde{M} \otimes \mathcal{L}(G)$ be the dual coaction of α where $\mathcal{L}(G) = \{\lambda_g : g \in G\}''$. Then $\hat{\alpha} \mid \widetilde{N}$ is that of $\alpha \mid N$. So the crossed products $\widetilde{M} = \widetilde{M} \rtimes_{\widehat{\alpha}} G$ of \widetilde{M} by $\hat{\alpha}$ and $\widetilde{N} = \widetilde{N} \rtimes_{\widehat{\alpha}} G$ of \widetilde{N} by $\hat{\alpha} \mid \widetilde{N}$ are defined as follows:

If $x \in M$ and $g \in G$, then

$$(\widetilde{E} \otimes \operatorname{id}_{\mathcal{L}(G)})(\widehat{\alpha}(\pi_{\alpha}(x)(1 \otimes \lambda_{g})))$$

$$= (\widetilde{E} \otimes \operatorname{id}_{\mathcal{L}(G)})(\pi_{\alpha}(x)(1 \otimes \lambda_{g}) \otimes \lambda_{g}) = \pi_{\alpha}(E(x))(1 \otimes \lambda_{g}) \otimes \lambda_{g}$$

$$= \widehat{\alpha}(\pi_{\alpha}(E(x))(1 \otimes \lambda_{g})) = \widehat{\alpha}(\widetilde{E}(\pi_{\alpha}(x)(1 \otimes \lambda_{g}))),$$

so that $(\widetilde{E} \otimes \operatorname{id}_{\mathcal{L}(G)}) \circ \hat{\alpha} = \hat{\alpha} \circ \widetilde{E}$ (i.e. \widetilde{E} is $\hat{\alpha}$ -invariant). This shows that $\widetilde{E} \in \mathcal{E}(\widetilde{M}, \widetilde{N})$ can be defined by $\widetilde{E} = \widetilde{E} \otimes \operatorname{id}_{B(L^2(G))} | \widetilde{M}$, which satisfies $\widetilde{E} \circ \hat{\alpha} = \hat{\alpha} \circ \widetilde{E}$. For each compact subset K of G, letting $\xi_K = \mu(K)^{-1/2} \chi_K$ where $\mu(K)$ is the left Haar measure of K, we define $\psi_K \in \mathfrak{S}(B(L^2(G)))$ by $\psi_K = (\cdot \xi_K | \xi_K)$. Then for every $g \in G$

$$\psi_{K}(\lambda_{g}) = \int \xi_{K}(g^{-1}h)\xi_{K}(h)dh = \frac{\mu(K \cap gK)}{\mu(K)} \longrightarrow 1$$

as $K \to G$. Take a $\psi \in \mathcal{E}(\boldsymbol{B}(L^2(G)))$ and let $\psi_{K,\varepsilon} = (1-\varepsilon)\psi_K + \varepsilon \psi$ for $0 < \varepsilon < 1$. Now, for any $\tilde{\varphi} \in \mathcal{E}(\tilde{M})$ with $\tilde{\varphi} \circ \tilde{E} = \tilde{\varphi}$, let $\tilde{\varphi}_1, \cdots, \tilde{\varphi}_n \in \tilde{M}_+^+$ and $\sum \tilde{\varphi}_i = \tilde{\varphi}$. Define $\tilde{\varphi}_{K,\varepsilon} \in \mathcal{E}(\tilde{M})$ and $\tilde{\varphi}_{K,\varepsilon,i} \in \tilde{M}_+^+$ by $\tilde{\varphi}_{K,\varepsilon} = \tilde{\varphi} \otimes \psi_{K,\varepsilon} | \tilde{M}$ and $\tilde{\varphi}_{K,\varepsilon,i} = \tilde{\varphi}_i \otimes \psi_{K,\varepsilon} | \tilde{M}$. Then $\tilde{\varphi}_{K,\varepsilon} \circ \tilde{E} = \tilde{\varphi}_{K,\varepsilon}$ and $\sum_i \tilde{\varphi}_{K,\varepsilon,i} = \tilde{\varphi}_{K,\varepsilon}$. Hence

$$H_{\widetilde{\mathbf{E}}}(\widetilde{\tilde{M}}\,|\,\widetilde{N}\,) \geqq \sum_{i} S(\widetilde{\tilde{\varphi}}_{K,\,\varepsilon,\,i} \circ \widetilde{E}\,,\,\, \varphi_{K,\,\varepsilon,\,i}) \geqq \sum_{i} S(\widetilde{\tilde{\varphi}}_{K,\,\varepsilon,\,i} \circ \widetilde{\tilde{E}} \circ \hat{\alpha}\,,\,\, \widetilde{\tilde{\varphi}}_{K,\,\varepsilon,\,i} \circ \hat{\alpha}\,)\,.$$

We get for every $x \in M$ and $g \in G$

$$\begin{split} \tilde{\varphi}_{K,\,\varepsilon,\,i}(\hat{\alpha}(\pi_{\alpha}(x)(1 \otimes \lambda_{g}))) \\ &= (1 - \varepsilon)\tilde{\varphi}_{i}(\pi_{\alpha}(x)(1 \otimes \lambda_{g}))\psi_{K}(\lambda_{g}) + \varepsilon\tilde{\varphi}_{i}(\pi_{\alpha}(x)(1 \otimes \lambda_{g}))\psi(\lambda_{g}), \\ \tilde{\varphi}_{K,\,\varepsilon,\,i}(\tilde{E}(\hat{\alpha}(\pi_{\alpha}(x)(1 \otimes \lambda_{g})))) \\ &= (1 - \varepsilon)\tilde{\varphi}_{i}(\tilde{E}(\pi_{\alpha}(x)(1 \otimes \lambda_{g})))\psi_{K}(\lambda_{g}) + \varepsilon\tilde{\varphi}_{i}(\tilde{E}(\pi_{\alpha}(x)(1 \otimes \lambda_{g})))\psi(\lambda_{g}), \end{split}$$

so that $\tilde{\varphi}_{K,\varepsilon,i} \circ \hat{\alpha} \rightarrow \tilde{\varphi}_i$ and $\tilde{\varphi}_{K,\varepsilon,i} \circ \tilde{E} \circ \hat{\alpha} \rightarrow \tilde{\varphi}_i \circ \tilde{E}$ in the $\sigma(\tilde{M}_*,\tilde{M})$ -topology as $K \rightarrow G$ and $\varepsilon \rightarrow 0$. Therefore

$$H_{\widetilde{E}}(\widetilde{\widetilde{M}} | \widetilde{N}) \geq \sum_{i} S(\widetilde{\varphi}_{i} \circ \widetilde{E}, \, \widetilde{\varphi}_{i}),$$

implying $H_{\widetilde{\mathbf{z}}}(\widetilde{\widetilde{M}}|\widetilde{N}) \ge H_{\widetilde{\mathbf{z}}}(\widetilde{M}|\widetilde{N})$.

Furthermore let $\gamma: \widetilde{M} \to M \otimes B(L^2(G))$ be the isomorphism giving the duality $\widetilde{M} \simeq M \otimes B(L^2(G))$. Then $\gamma \mid \widetilde{N}$ gives the duality $\widetilde{N} \simeq N \otimes B(L^2(G))$. If $x \in M$, $g \in G$ and $f \in L^{\infty}(G)$, then

$$\begin{split} \gamma(\tilde{E}(\hat{\alpha}(\pi_{\alpha}(x)(1 \otimes \lambda_{g}))(1_{\tilde{M}} \otimes f))) &= \gamma(\hat{\alpha}(\pi_{\alpha}(E(x))(1 \otimes \lambda_{g}))(1_{\tilde{M}} \otimes f)) \\ &= \pi_{\alpha}(E(x))(1 \otimes \lambda_{g})(1 \otimes f) = (E \otimes \mathrm{id}_{B(L^{2}(G))})(\pi_{\alpha}(x)(1 \otimes \lambda_{g})(1 \otimes f)) \\ &= (E \otimes \mathrm{id}_{B(L^{2}(G))})(\gamma(\hat{\alpha}(\pi_{\alpha}(x)(1 \otimes \lambda_{g}))(1_{\tilde{M}} \otimes f))). \end{split}$$

This shows $\gamma \circ \tilde{E} = (E \otimes id_{B(L^2(G))}) \circ \gamma$. Thus by Proposition 2.1(2)

$$H_{\tilde{\mathbf{E}}}(\tilde{M}|\tilde{N}) = H_{\mathbf{E} \otimes \mathrm{id}_{\mathbf{R}(L^2(G))}}(M \otimes \mathbf{B}(L^2(G))|N \otimes \mathbf{B}(L^2(G))).$$

Since N is an infinite factor, Lemma 4.3(2) implies $H_{\widetilde{E}}(\widetilde{M} | \widetilde{N}) = H_{E}(M | N)$, so that $H_{\widetilde{E}}(\widetilde{M} | \widetilde{N}) = H_{E}(M | N)$. \square

COROLLARY 5.2. If N is an infinite factor and $E \in \mathcal{E}(M, N)$, then for $\varphi \in \mathcal{E}(M)$ with $\varphi \circ E = \varphi$

$$H_{\widetilde{\mathbf{E}}}(M \rtimes_{\sigma \varphi} \mathbf{R} | N \rtimes_{\sigma \varphi} \mathbf{R}) = H_{\mathbf{E}}(M | N).$$

PROOF. Thanks to $\varphi \circ E = \varphi$, it follows that $\sigma_i^{\varphi}(N) = N$ and $\sigma_i^{\varphi} \circ E = E \circ \sigma_i^{\varphi}$ for all $t \in \mathbb{R}$. Hence we can apply Theorem 5.1. \square

REMARK 5.3. In the situation of the corollary, let τ be the canonical trace on $M \rtimes_{\sigma \varphi} \mathbf{R}$ satisfying $\tau \circ \theta_t = e^{-t}\tau$, $t \in \mathbf{R}$, where θ is the dual action. An important fact shown in [27, § 4] is that \widetilde{E} is the conditional expectation with respect to τ .

A finite family $\{a_1, \dots, a_n\}$ in M is called a basis for $E \in \mathcal{E}(M, N)$ if $x = \sum_i a_i E(a_i^*x)$ for all $x \in M$ ([33, 42]). The next lemma is a slight extension of [42, 2.5.3 and Remark].

- LEMMA 5.4. (1) If $\{a_1, \dots, a_n\}$ in M is a basis for $E \in \mathcal{E}(M, N)$, then $E^{-1}(1)$ is bounded and $E^{-1}(x) = \sum_i a_i x a_i^*$ for $x \in N'$.
- (2) Assume that N is a factor. If $E \in \mathcal{E}(M, N)$ and $E^{-1}(1)$ is bounded, then there exists a basis $\{a_1, \dots, a_n\}$ in M for E.
- PROOF. (1) The conclusion was proved in [42] when $M \supseteq N$ are acting on the standard Hilbert space determined by $\varphi_0 \circ E$, $\varphi_0 \in \mathcal{E}(N)$. Here note that the factorness assumption for $M \supseteq N$ is unnecessary. Moreover we can show that the conclusion holds independently of the choice of \mathcal{H} (see the proofs of [19, Proposition 3.2] and Proposition 4.6).
- (2) The proof is the same as that of [42, 2.5.3] (based on [25, Corollary 3.4]) when we check the following: If N is finite, then so is N' in the standard representation of M. So let us prove this. The boundedness of $E^{-1}(1)$

means that E is of finite index in the sense of [5]. Hence $N' \cap M$ is finite dimensional by [5, Corollaire 3.19] (this is seen also from [25, Proposition 4.3]). The finiteness of N implies the semifiniteness of N'. Since $E' = E^{-1}(1)^{-1}E^{-1}$ belongs to $\mathcal{E}(N', M')$, M' and hence M are semifinite ([36, 10.21]). Thus applying [5, Lemma 3.23] to E and again to E' because $E'^{-1}(1) = E(E^{-1}(1))$ by [19, Proposition 1.2], we conclude that N' is finite. \square

THEOREM 5.5. Assume that N is a factor. If $E \in \mathcal{E}(M, N)$ commutes with α and if $(N' \cap M)_E \subseteq M^{\alpha}$, the fixed point algebra of α , and $E^{-1}(1)$ is bounded, then

$$K_{\widetilde{E}}(M \rtimes_{\alpha} G | N \rtimes_{\alpha} G) \leq K_{E}(M | N).$$

PROOF. Since N is a factor and $E^{-1}(1)$ is bounded, $\omega = E \mid N' \cap M$ and $\widehat{\omega} = E \cdot (E^{-1} \mid N' \cap M)$ are faithful positive functionals on $N' \cap M$. It follows from [19, Theorem 3.3] that $(N' \cap M)_E$ is sufficient for $\{\omega, \widehat{\omega}\}$ in the sense of [21]. Hence by [21, Theorem 4.1] (also [31, Theorem 4]), we obtain

$$K_{\mathbf{E}}(M|N) = -S(\hat{\boldsymbol{\omega}}|(N' \cap M)_{\mathbf{E}}, \boldsymbol{\omega}|(N' \cap M)_{\mathbf{E}}).$$

If $x \in (N' \cap M)_E$, then for every $y \in M$

$$\widetilde{E}(\pi_{\alpha}(x)\pi_{\alpha}(y)) = \pi_{\alpha}(E(xy)) = \pi_{\alpha}(E(yx)) = \widetilde{E}(\pi_{\alpha}(y)\pi_{\alpha}(x)),$$

and since $x \in M^{\alpha}$, for every $g \in G$

$$\widetilde{E}(\pi_{\alpha}(x)(1 \otimes \lambda_{g})) = \widetilde{E}((1 \otimes \lambda_{g})\pi_{\alpha}(x)),$$

so that $\pi_{\alpha}(x) \in (\tilde{N}' \cap \tilde{M})_{\tilde{E}}$. Hence $\pi_{\alpha}((N' \cap M)_{E}) \subseteq (\tilde{N}' \cap \tilde{M})_{\tilde{E}}$. By Lemma 5.4(2), there exists a basis $\{a_{1}, \dots, a_{n}\}$ in M for E. Then as shown in the proof of [19, Theorem 2.8], $\{\pi_{\alpha}(a_{1}), \dots, \pi_{\alpha}(a_{n})\}$ is a basis for \tilde{E} , so that by Lemma 5.4(1)

$$\begin{split} E^{-1}(x) &= \sum_i a_i x a_i^*, \qquad x \in N^{\bullet}, \\ \widetilde{E}^{-1}(X) &= \sum_i \pi_{\alpha}(a_i) X \pi_{\alpha}(a_i^*), \qquad X \in \widetilde{N}^{\bullet}. \end{split}$$

Given $\tilde{\varphi} \in \mathcal{E}(\tilde{M})$ with $\tilde{\varphi} \circ \tilde{E} = \tilde{\varphi}$, we get for every $x \in (N' \cap M)_E$

$$\begin{split} \tilde{\varphi}(\pi_{\alpha}(x)) &= \tilde{\varphi}(\tilde{E}(\pi_{\alpha}(x)) = \tilde{\varphi}(\pi_{\alpha}(E(x))) = \pmb{\omega}(x)\,, \\ \tilde{\varphi}(\tilde{E}^{-1}(\pi_{\alpha}(x))) &= \tilde{\varphi}(\tilde{E}(\sum_{i} \pi_{\alpha}(a_{i}x\,a_{i}^{*}))) = \tilde{\varphi}(\pi_{\alpha}(E(E^{-1}(x)))) = \hat{\omega}(x)\,. \end{split}$$

Therefore by monotonicity

$$\begin{split} K_{\widetilde{\varphi}}(\widetilde{M}|\widetilde{N}) &= -S(\widetilde{\varphi} \circ \widetilde{E}^{-1}|\widetilde{N}' \cap \widetilde{M}, \ \widetilde{\varphi} | \widetilde{N}' \cap \widetilde{M}) \\ &\leq -S(\widetilde{\varphi} \circ \widetilde{E}^{-1} \circ \pi_{\alpha} | (N' \cap M)_{E}, \ \widetilde{\varphi} \circ \pi_{\alpha} | (N' \cap M)_{E}) \\ &= -S(\widehat{\omega}|(N' \cap M)_{E}, \ \omega | (N' \cap M)_{E}) = K_{E}(M|N), \end{split}$$

implying $K_{\widetilde{E}}(\widetilde{M}|\widetilde{N}) \leq K_{E}(M|N)$.

Under additional assumptions, we obtain the following exact result which serves our purpose to connect $H_E(M|N)$ with $K_E(M|N)$.

THEOREM 5.6. Assume that G is abelian and that M, N, $M \rtimes_{\alpha} G$ and $N \rtimes_{\alpha} G$ are all factors. If $E \in \mathcal{E}(M, N)$ commutes with α and if $(N' \cap M)_E \subseteq M^{\alpha}$ and $K_E(M|N) < \infty$ (this is the case if Index $E < \infty$), then

$$K_{\widetilde{E}}(M \rtimes_{\alpha} G | N \rtimes_{\alpha} G) = K_{E}(M | N).$$

PROOF. Given a nonzero projection e in $(N' \cap M)_E$, since $e \in M^{\alpha}$, the action α^e of G on M_e can be defined by $\alpha_g^e = \alpha_g \mid M_e$, so that $\alpha_g^e(N_e) = N_e$, $g \in G$. Moreover let $\tilde{e} = \pi_{\alpha}(e)$, which belongs to $(\tilde{N}' \cap \tilde{M})_E$ as shown in the proof of Theorem 5.5. Then the following (1)-(4) hold:

- (1) $\widetilde{M}_{\tilde{e}} = M_e \rtimes_{\alpha e} G$ and $\widetilde{N}_{\tilde{e}} = N_e \rtimes_{\alpha e} G$,
- (2) E_e commutes with α^e and $\widetilde{E}_{\tilde{e}}$ is the canonical extension of E_e ,
- (3) Index $\tilde{E}_{\tilde{e}} = \operatorname{Index} E_{e}$,
- $(4) \quad (\widetilde{N}_{\widetilde{e}}' \cap \widetilde{M}_{\widetilde{e}})_{\widetilde{E}\widetilde{e}} = \widetilde{e}(\widetilde{N}' \cap \widetilde{M})_{\widetilde{e}}\widetilde{e}.$

In fact, $\widetilde{M}_{\tilde{e}} = M_e \rtimes_{\alpha e} G$ is seen from

$$\tilde{e}(\pi_{\alpha}(x)(1\otimes\lambda_{g}))\tilde{e}=\pi_{\alpha}e(exe)(e\otimes\lambda_{g}), \qquad x\in M, g\in G.$$

The other in (1) is analogous. Since

$$\begin{split} E_e(\alpha_g^e(x)) &= E(e)^{-1} E(\alpha_g(x)) e = E(e)^{-1} \alpha_g(E(x)e) \\ &= \alpha_g^e(E_e(x)), \qquad x \in M_e, \ g \in G, \end{split}$$

 E_e commutes with α^e . So let $(E_e)^{\sim}$ be the canonical extension of E_e . Since $\widetilde{E}(\widetilde{e}) = \pi_{\alpha}(E(e)) = E(e)$, we get for every $x \in M$ and $g \in G$

$$\begin{split} \widetilde{E}_{\tilde{e}}(\tilde{e}(\pi_{\alpha}(x)(1 \otimes \lambda_{g}))\tilde{e}) &= E(e)^{-1}\widetilde{E}(\pi_{\alpha}(exe)(1 \otimes \lambda_{g}))\tilde{e} \\ &= E(e)^{-1}\pi_{\alpha}(E(exe))(1 \otimes \lambda_{g})\tilde{e} = E(e)^{-1}\pi_{\alpha e}(E(exe)e)(e \otimes \lambda_{g}) \\ &= \pi_{\alpha e}(E_{e}(exe))(e \otimes \lambda_{g}) = (E_{e})^{\sim}(\pi_{\alpha e}(exe)(e \otimes \lambda_{g})), \end{split}$$

so that $\widetilde{E}_{\overline{e}}=(E_e)^{\sim}$, implying (2). Because $\operatorname{Index}(E_e)^{\sim}=\operatorname{Index}E_e$ (see the proof of [19, Theorem 2.8]), (3) follows. For every $X \in \widetilde{N}_{\epsilon}' \cap \widetilde{M}_{\overline{e}}$ and $Y \in \widetilde{M}$, since

$$\widetilde{E}(XY)\widetilde{e} = \widetilde{E}(X\widetilde{e}Y\widetilde{e})\widetilde{e} = \widetilde{E}(\widetilde{e})\widetilde{E}_{\widetilde{e}}(X\widetilde{e}Y\widetilde{e}),
\widetilde{E}(YX)\widetilde{e} = \widetilde{E}(\widetilde{e}Y\widetilde{e}X)\widetilde{e} = \widetilde{E}(\widetilde{e})\widetilde{E}_{\widetilde{e}}(\widetilde{e}Y\widetilde{e}X),$$

it follows that $\widetilde{E}(XY) = \widetilde{E}(YX)$ if and only if $\widetilde{E}_{\tilde{e}}(X\tilde{e}Y\tilde{e}) = \widetilde{E}_{\tilde{e}}(\tilde{e}Y\tilde{e}X)$. This shows (4) by [6, Corollaire 3.10].

Since $K_E(M|N) < \infty$, $N' \cap M$ and hence $(N' \cap M)_E$ are atomic ([19, Theorem 4.2]). So let $\{e_k\}$ be a set of atoms in $(N' \cap M)_E$ with $\sum e_k = 1$. Then we have by [19, Theorem 4.2]

$$K_{E}(M|N) = \sum_{k} E(e_{k}) \log \frac{\operatorname{Index} E_{e_{k}}}{E(e_{k})^{2}},$$

so that Index $E_{e_k} < \infty$ for all k. Furthermore each e_k is an atom in $N' \cap M$ too, because σ^E is inner by a one parameter unitary group in $N' \cap M$ by [6,

Proposition 3.11]. Hence $N'_{e_k} \cap M_{e_k} = C$ for all k. This together with (3) above implies that

$$\operatorname{Index} \widetilde{E}_{\tilde{e}_k} = \operatorname{Index} E_{e_k} = [M_{e_k} : N_{e_k}]_0$$

where $\tilde{e}_k = \pi_{\alpha}(e_k)$. But since G is abelian and $\tilde{M}_{\tilde{e}_k} \supseteq \tilde{N}_{\tilde{e}_k}$ are factors, we have $[M_{e_k}: N_{e_k}]_0 = [\tilde{M}_{\tilde{e}_k}: \tilde{N}_{\tilde{e}_k}]_0$ by $[\mathbf{19}$, Theorem 2.8] and (1), so that Index $\tilde{E}_{\tilde{e}_k} = [\tilde{M}_{\tilde{e}_k}: \tilde{N}_{\tilde{e}_k}]_0$ (i. e. $\tilde{E}_{\tilde{e}_k}$ gives the minimum index for $\tilde{M}_{\tilde{e}_k} \supseteq \tilde{N}_{\tilde{e}_k}$). Now partition each \tilde{e}_k into atoms f_{k1}, \cdots, f_{kn_k} in $(\tilde{N}'_{\tilde{e}_k} \cap \tilde{M}_{\tilde{e}_k})_{\tilde{E}_{\tilde{e}_k}}$. Then it follows from (4) that $\{f_{kj}: 1 \le k \le m, 1 \le j \le n_k\}$ is a set of atoms in $(\tilde{N}' \cap \tilde{M})_{\tilde{E}}$ with $\sum_k \sum_{j=1}^{n_k} f_{kj} = 1$. Noting $\tilde{E}_{f_{kj}} = (\tilde{E}_{\tilde{e}_k})_{f_{kj}}$, we get by $[\mathbf{25}$, Proposition 4.2] and $[\mathbf{18}$, Theorem 1]

$$\begin{split} \operatorname{Index} \widetilde{E}_{f_{kj}} &= \widetilde{E}_{\tilde{e}_k}(f_{kj})(\widetilde{E}_{\tilde{e}_k})^{-1}(f_{kj}) = (\operatorname{Index} \widetilde{E}_{\tilde{e}_k})\widetilde{E}_{\tilde{e}_k}(f_{kj})^2 \\ &= (\operatorname{Index} \widetilde{E}_{\tilde{e}_k})\widetilde{E}(\widetilde{e}_k)^{-2}\widetilde{E}(f_{kj})^2 \,, \end{split}$$

so that

$$\frac{\operatorname{Index} \widetilde{E}_{f_{kj}}}{\widetilde{E}(f_{kj})^{2}} = \frac{\operatorname{Index} \widetilde{E}_{\tilde{e}_{k}}}{\widetilde{E}(\tilde{e}_{k})^{2}} = \frac{\operatorname{Index} E_{e_{k}}}{E(e_{k})^{2}}$$

for all k and $1 \le j \le n_k$. Thus using [19, Theorem 4.2] again, we obtain

$$\begin{split} K_{\widetilde{E}}(\widetilde{M}|\widetilde{N}) &= \sum_{k} \sum_{j=1}^{n_k} \widetilde{E}(f_{kj}) \log \frac{\operatorname{Index} \widetilde{E}_{f_{kj}}}{\widetilde{E}(f_{kj})^2} \\ &= \sum_{k} \sum_{j=1}^{n_k} \widetilde{E}(f_{kj}) \log \frac{\operatorname{Index} E_{e_k}}{E(e_k)^2} \\ &= \sum_{k} E(e_k) \log \frac{\operatorname{Index} E_{e_k}}{E(e_k)^2} = K_E(M|N). \quad \Box \end{split}$$

COROLLARY 5.7. If $M \supseteq N$ are type III_1 factors, $E \in \mathcal{E}(M, N)$ and $K_E(M|N) < \infty$, then for $\varphi \in \mathcal{E}(M)$ with $\varphi \circ E = \varphi$

$$K_{E}(M \rtimes_{\sigma} \varphi \mathbf{R} | N \rtimes_{\sigma} \varphi \mathbf{R}) = K_{E}(M | N)$$
.

PROOF. Since $(N' \cap M)_E \subseteq M_{\varphi} (=M^{\sigma \varphi})$ and $M \rtimes_{\sigma} \varphi R \supseteq N \rtimes_{\sigma} \varphi R$ are II_{∞} factors ([38]), we apply Theorem 5.6. \square

6. Estimates of entropy.

The aim of this section is to estimate the entropies $H_{\varphi}(M|N)$ and $H_{E}(M|N)$ in comparison with $K_{E}(M|N)$ when N is a factor. For this sake, we first give some lemmas.

LEMMA 6.1. Let $M \supseteq N$ be von Neumann algebras and $\{f_n\}$ a sequence of projections in N with $f_n \uparrow 1$. If $\varphi \in \mathcal{E}(M)$ and $\varphi_n = \varphi(f_n)^{-1}\varphi \mid M_{f_n}$, then

$$H_{\varphi}(M|N) \leq \liminf_{n \to \infty} H_{\varphi_n}(M_{f_n}|N_{f_n}).$$

366 F. HIAI

PROOF. Given $\psi_1, \dots, \psi_k \in M_*^+$ with $\sum \psi_i = \varphi$, let $\psi_{ni} = \varphi(f_n)^{-1} \psi_i | M_{f_n}$. Since $\|\varphi'_n - \varphi\| \to 0$ and $\|\psi'_{ni} - \psi_i\| \to 0$ as $n \to \infty$ where $\varphi'_n = \varphi_n(f_n \cdot f_n)$ and $\psi'_{ni} = \psi_{ni}(f_n \cdot f_n)$, we have

$$\begin{split} &\sum_{i}\{S(\varphi,\,\phi_{i})-S(\varphi\,|\,N,\,\phi_{i}\,|\,N)\} = \lim_{n\to\infty}\sum_{i}\{S(\varphi_{n}',\,\phi_{n\,i}')-S(\varphi_{n}'\,|\,N,\,\phi_{n\,i}'\,|\,N)\} \\ &= \lim_{n\to\infty}\sum_{i}\{S(\varphi_{n},\,\phi_{n\,i})-S(\varphi_{n}\,|\,N_{f_{\,n}},\,\phi_{n\,i}\,|\,N_{f_{\,n}})\} \leq \liminf_{n\to\infty}H_{\varphi_{n}}(M_{f_{\,n}}\,|\,N_{f_{\,n}})\,, \end{split}$$

as desired.

LEMMA 6.2. Let M be a semifinite von Neumann algebra and $\varphi \in \mathcal{E}(M)$. If $\{e_k\}$ is a set of projections in M_{φ} with $\sum e_k = 1$, then

$$H_{\varphi}(M|\bigoplus_{k}M_{e_{k}}) \leq \sum_{k}\eta(\varphi(e_{k})).$$

PROOF. By Lemma 6.1, we can assume that $\{e_k\}$ is a finite set $\{e_1, \dots, e_m\}$ and further that M is finite with a faithful normal trace τ , $\tau(1)=1$. Moreover it may be supposed by Proposition 2.5 that $a=d\varphi/d\tau$ is bounded. We get $ae_k=e_ka$ since $e_k\in M_{\varphi}$. Also $E\in\mathcal{E}(M,\bigoplus_k M_{e_k})$ with $\varphi\circ E=\varphi$ is given by $E(x)=\sum e_kxe_k$, $x\in M$. Thus it suffices to prove that

$$\sum_{l} S(\varphi_{l} \circ E, \varphi_{l}) \leq \sum_{k} \eta(\varphi(e_{k}))$$

for each $\varphi_1, \cdots, \varphi_n \in M_*^+$ with $\sum \varphi_l = \varphi$. The proof in the following is a modification of that of [33, Lemma 4.3]. Let $b_l = a^{-1/2} (d\varphi_l/d\tau) a^{-1/2}$. For any $\varepsilon > 0$, by spectral decomposition, we write $b_l = \sum_j \beta_{lj} f_{lj} + c_l$ for some $\beta_{lj} \ge 0$, projections f_{lj} in M and $0 \le c_l \le \varepsilon$. Define $\varphi_{lj}, \omega_l \in M_*^+$ by $d\varphi_{lj}/d\tau = \beta_{lj} a^{1/2} f_{lj} a^{1/2}$ and $d\omega_l/d\tau = a^{1/2} c_l a^{1/2}$. Since $\varphi_l = \sum_j \varphi_{lj} + \omega_l$, we have

$$S(\varphi_l \circ E, \varphi_l) \leq \sum_j S(\varphi_{lj} \circ E, \varphi_{lj}) + S(\omega_l \circ E, \omega_l).$$

Noting $\tau \circ E = \tau$, we get for $\varepsilon \leq (\|a\|e)^{-1}$

$$S(\omega_l \circ E, \omega_l) = \tau(\eta E(a^{1/2}c_l a^{1/2})) - \tau(\eta(a^{1/2}c_l a^{1/2})) \leq \eta(\|a\|\varepsilon).$$

Now write (ϕ_i) for $(\varphi_{ij})_{i,j}$ and $d\phi_i/d\tau = \beta_i a^{1/2} f_i a^{1/2}$ with $\beta_i \ge 0$ and projections f_i in M. Then

$$0 \le 1 - \sum_i \beta_i f_i \le n \varepsilon$$
 ,

$$\sum_{l} S(\varphi_{l} \circ E, \varphi_{l}) \leq \sum_{i} S(\psi_{i} \circ E, \psi_{i}) + \delta_{1}(\varepsilon)$$

where $\delta_1(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$.

As in the proof of [33, Lemma 4.3], there exist projections g_{ij} in M and $\alpha_{kij} \ge 0$ such that $\sum_j g_{ij} = f_i$ and

$$0 \leq g_{ij}ae_kg_{ij} - \alpha_{kij}g_{ij} \leq \varepsilon g_{ij}$$

for all k, i, j. Define $\psi_{ij} \in M_*^+$ by $d\psi_{ij}/d\tau = \beta_i a^{1/2} g_{ij} a^{1/2}$. Then

$$\begin{split} S(\psi_{ij} \circ E, \, \psi_{ij}) &= \tau(\eta E(\beta_i a^{1/2} g_{ij} a^{1/2})) - \tau(\eta(\beta_i a^{1/2} g_{ij} a^{1/2})) \\ &= \beta_i \{ \tau(\eta(\sum_k e_k a^{1/2} g_{ij} a^{1/2} e_k)) - \tau(\eta(a^{1/2} g_{ij} a^{1/2})) \} \\ &= \beta_i \{ \sum_k \tau(\eta(g_{ij} a e_k g_{ij})) - \tau(\eta(g_{ij} a g_{ij})) \} \; . \end{split}$$

We get for $\varepsilon \leq (me)^{-1}$

$$\begin{split} \tau(\eta(g_{ij}ae_kg_{ij})) & \leq \tau(\eta(\alpha_{kij})) + \tau(\eta(\varepsilon g_{ij})) = \tau(g_{ij})\{\eta(\alpha_{kij}) + \eta(\varepsilon)\} \;, \\ \tau(\eta(g_{ij}ag_{ij})) & \geq \tau(\eta((\sum\limits_k \alpha_{kij} + m\varepsilon)g_{ij})) - \tau(\eta(m\varepsilon g_{ij})) \\ & = \tau(g_{ij})\{\eta(\sum\limits_k \alpha_{kij} + m\varepsilon) - \eta(m\varepsilon)\} \;, \end{split}$$

since

$$0 \leq g_{ij} a g_{ij} - (\sum_{k} \alpha_{kij}) g_{ij} \leq m \varepsilon g_{ij}$$
.

Therefore

$$\begin{split} \sum_{i,j} & S(\psi_{ij} \circ E, \, \psi_{ij}) \leq \sum_{i,j} \beta_i \tau(g_{ij}) \{ \sum_k \eta(\alpha_{kij}) + m \eta(\varepsilon) - \eta(\sum_k \alpha_{kij} + m \varepsilon) + \eta(m \varepsilon) \} \\ & = \sum_{i,j} \beta_i \tau(g_{ij}) \{ \sum_k \eta(\alpha_{kij}) - \eta(\sum_k \alpha_{kij}) \} + \delta_2(\varepsilon) \,, \end{split}$$

where $\delta_2(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$ because $\sum_{ij} \beta_i \tau(g_{ij}) \leq 1$ and $\sum_k \alpha_{kij} \leq ||a||$. Now let

$$r_{kij} = \alpha_{kij}\beta_i\tau(g_{ij}),$$

$$s_{kij} = (\sum_{i',j'}\alpha_{ki'j'}\beta_{i'}\tau(g_{i'j'}))(\sum_{k'}\alpha_{k'ij}\beta_i\tau(g_{ij})).$$

Then the direct calculation shows that

$$\sum_{i,j}\beta_i\tau(g_{ij})\{\sum_k\eta(\alpha_{kij})-\eta(\sum_k\alpha_{kij})\}=\sum_k\eta(\sum_{i,j}r_{kij})-\sum_{k,i,j}r_{kij}\log\frac{r_{kij}}{S_{kij}}.$$

Since

$$\begin{split} \varphi(e_k) - \sum_{i,j} \beta_i \tau(g_{ij} a e_k g_{ij}) &= \tau(e_k a e_k) - \sum_{i,j} \beta_i \tau(e_k a^{1/2} g_{ij} a^{1/2} e_k) \\ &= \tau(e_k a^{1/2} (1 - \sum_i \beta_i f_i) a^{1/2} e_k) \,, \end{split}$$

we get

$$0 \leq \varphi(e_k) - \sum_{i,j} \beta_i \tau(g_{ij} a e_k g_{ij}) \leq n \varepsilon$$
.

Also

$$0 \leq \sum\limits_{i,j} eta_i au(g_{ij} a e_k g_{ij}) - \sum\limits_{i,j} r_{kij} \leq \varepsilon \sum\limits_{i,j} eta_i au(g_{ij}) \leq \varepsilon$$
 ,

so that

$$0 \leq \varphi(e_k) - \sum_{i,j} r_{kij} \leq (n+1)\varepsilon$$
.

This implies that

$$\sum_{k} \eta(\sum_{i,j} r_{k\,ij}) \leqq \sum_{k} \eta(\varphi(e_{\,k})) + \delta_{3}(\varepsilon)$$
 ,

where $\delta_3(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$. Furthermore since

$$\sum_{k,i,j} s_{kij} = (\sum_{k,i,j} r_{kij})^2 \leq \sum_{k,i,j} r_{kij},$$

we get

$$\sum_{k,i,j} r_{kij} \log \frac{r_{kij}}{S_{kij}} \ge 0,$$

because this is the relative entropy of (r_{kij}) and (s_{kij}) . By the above estimates altogether, we have

$$\begin{split} \sum_{l} S(\varphi_{l} \circ E, \, \varphi_{l}) & \leq \sum_{i,j} S(\psi_{ij} \circ E, \, \psi_{ij}) + \delta_{1}(\varepsilon) \\ & \leq \sum_{k} \eta(\varphi(e_{k})) + \delta_{1}(\varepsilon) + \delta_{2}(\varepsilon) + \delta_{3}(\varepsilon), \end{split}$$

implying the desired inequality as $\varepsilon \rightarrow 0$. \square

LEMMA 6.3. Let M be a general von Neumann algebra and $\varphi \in \mathcal{E}(M)$. If $\{e_k\}$ is a set of projections in M_{φ} with $\sum e_k = 1$, then

$$H_{\varphi}(M|\bigoplus_{k}M_{e_k}) \leq \sum_{k} \eta(\varphi(e_k)).$$

PROOF. We can assume by Lemma 6.1 that $\{e_k\}$ is a finite set. Let $N=\bigoplus_k M_{e_k}$. Since $\sigma_i^{\varphi}(N)=N$ for all $t\in R$, we take the crossed products $\widetilde{M}=M\rtimes_{\sigma}{}^{\varphi}R$ and $\widetilde{N}=N\rtimes_{\sigma}{}^{\varphi}R$. Let $\widetilde{e}_k=\pi_{\sigma}(e_k)$ where $\sigma=\sigma^{\varphi}$. Since

$$\pi_{\sigma}(\sum_{k} e_{k} x e_{k})(1 \otimes \lambda_{t}) = \sum_{k} \tilde{e}_{k}(\pi_{\sigma}(x)(1 \otimes \lambda_{t}))\tilde{e}_{k}, \quad x \in M, t \in R,$$

it follows that $\tilde{N}=\bigoplus_k \tilde{M}_{\tilde{e}_k}$. Moreover $\tilde{E}\in\mathcal{E}(\tilde{M},\tilde{N})$ given by $\tilde{E}(X)=\sum \tilde{e}_k X \tilde{e}_k$, $X\in \tilde{M}$, is the canonical extension of $E(x)=\sum e_k x e_k$, $x\in M$. For each $\varphi_1,\cdots,\varphi_n\in M^+_*$ with $\Sigma \varphi_i=\varphi$, define $\tilde{\varphi}_{V,\varepsilon}\in\mathcal{E}(\tilde{M})$ and $\tilde{\varphi}_{V,\varepsilon,i}\in \tilde{M}^+_*$ as in the first paragraph of the proof of Theorem 5.1. Then

$$\sum_{i} S(\tilde{\varphi}_{V,\epsilon,i} \circ \tilde{E} \circ \pi_{\sigma}, \, \tilde{\varphi}_{V,\epsilon,i} \circ \pi_{\sigma}) \leq H_{\tilde{\varphi}_{V,\epsilon}}(\tilde{M} | \, \tilde{N}) \leq \sum_{k} \eta(\tilde{\varphi}_{V,\epsilon}(\tilde{\varrho}_{k}))$$

by Lemma 6.2 due to the semifiniteness of \tilde{M} . Letting $V \to \{1_G\}$ and $\varepsilon \to 0$, since $\tilde{\varphi}_{V,\varepsilon}(\tilde{e}_k) \to \varphi(e_k)$, we have as in the proof of Theorem 5.1

$$\sum_{i} S(\varphi_i \circ E, \varphi_i) \leq \sum_{k} \eta(\varphi(e_k)),$$

as desired.

In the sequel of this section, let $M \supseteq N$ be von Neumann algebras and assume always that N is a factor. We are now in a position to prove the next theorem.

THEOREM 6.4. Let $\varphi \in \mathcal{E}(M)$ and $E \in \mathcal{E}(M, N)$ with $\varphi \circ E = \varphi$. If $\{e_k\}$ is a

set of projections in $(N' \cap M)_E$ with $\sum e_k = 1$ and if $\varphi_k = \varphi(e_k)^{-1} \varphi \mid M_{e_k}$, then:

(1)
$$H_{\varphi}(M|N) \ge \sum_{\mathbf{k}} \eta(\varphi(e_{\mathbf{k}})) + \sum_{\mathbf{k}} \varphi(e_{\mathbf{k}}) H_{\varphi_{\mathbf{k}}}(M_{e_{\mathbf{k}}}|N_{e_{\mathbf{k}}})$$
,

(2)
$$H_{\varphi}(M|N) \leq 2\sum_{\mathbf{k}} \eta(\varphi(e_{\mathbf{k}})) + \sum_{\mathbf{k}} \varphi(e_{\mathbf{k}}) H_{\varphi_{\mathbf{k}}}(M_{e_{\mathbf{k}}}|N_{e_{\mathbf{k}}})$$
.

PROOF. (1) For each k, let $\psi_{kj} \in (M_{e_k})_*^+$, $1 \le j \le n_k$, be given with $\sum_j \psi_{kj} = \varphi_k$. Define $\varphi_{kj} \in M_*^+$ by $\varphi_{kj} = \varphi(e_k) \psi_{kj} (e_k \cdot e_k)$. Then $\sum_k \sum_{j=1}^{n_k} \varphi_{kj} = \varphi$ since

$$\sum_{k} \sum_{j=1}^{n_k} \varphi_{kj}(x) = \sum_{k} \varphi(e_k x e_k) = \varphi(x), \qquad x \in M.$$

Hence for each $m \ge 1$, we get

$$H_{\varphi}(M|N) \geq \sum_{k=1}^{m} \sum_{j=1}^{n_{k}} S(\varphi_{kj} \circ E, \varphi_{kj}) \geq \sum_{k=1}^{m} \sum_{j=1}^{n_{k}} S(\varphi_{kj} \circ E | M_{e_{k}}, \varphi_{kj} | M_{e_{k}}).$$

But $\varphi_{kj}|M_{e_k}=\varphi(e_k)\psi_{kj}$ and $\varphi_{kj}\circ E|M_{e_k}=\varphi(e_k)^2\psi_{kj}\circ E_{e_k}$ since

$$\varphi_{kj}(E(x)) = \varphi(e_k)\psi_{kj}(E(x)e_k) = \varphi(e_k)^2\psi_{kj}(E_{e_k}(x)), \qquad x \in M_{e_k}.$$

Therefore

$$H_{\varphi}(M|N) \geq \sum_{k=1}^{m} \sum_{j=1}^{n_{k}} S(\varphi(e_{k})^{2} \psi_{kj} \circ E_{e_{k}}, \varphi(e_{k}) \psi_{kj})$$

$$= \sum_{k=1}^{m} \eta(\varphi(e_{k})) + \sum_{k=1}^{m} \varphi(e_{k}) \sum_{j=1}^{n_{k}} S(\psi_{kj} \circ E_{e_{k}}, \psi_{kj}).$$

Thanks to $\varphi_k \circ E_{e_k} = \varphi_k$, taking the supremum over (ϕ_{kj}) for each $1 \le k \le m$, we obtain

$$H_{\varphi}(M|N) \ge \sum_{k=1}^{m} \eta(\varphi(e_k)) + \sum_{k=1}^{m} \varphi(e_k) H_{\varphi_k}(M_{e_k}|N_{e_k}),$$

implying the desired inequality as $m \rightarrow \infty$.

(2) Letting $\varphi' = \varphi \mid \bigoplus_k M_{e_k}$ and $\varphi'' = \varphi \mid \bigoplus_k N_{e_k}$, we have by Proposition 2.2(1) $H_{\varphi}(M \mid N) \leq H_{\varphi}(M \mid \bigoplus M_{e_k}) + H_{\varphi'}(\bigoplus M_{e_k} \mid \bigoplus N_{e_k}) + H_{\varphi'}(\bigoplus N_{e_k} \mid N).$

Moreover we have by Lemma 6.3

$$H_{\varphi}(M|\bigoplus_{k}M_{e_{k}})=\sum_{k}\eta(\varphi(e_{k}))$$
,

and by Proposition 2.3

$$H_{\varphi'}(\bigoplus_{\mathbf{k}} M_{e_{\,k}} \,|\, N_{e_{\,k}}) = \sum_{\mathbf{k}} \varphi(e_{\,k}) H_{\varphi_{\,k}}(M_{e_{\,k}} \,|\, N_{e_{\,k}})$$
 .

Now let $\psi_1, \dots, \psi_n \in (\bigoplus_k N_{e_k})_*^+$ and $\sum \psi_i = \varphi''$. Since

$$\psi_i(E(e_k y)) = \varphi(e_k)\psi_i(y) \ge \varphi(e_k)\psi_i(e_k y), \quad y \in \mathbb{N},$$

we get $\psi_i \circ E | N_{e_k} \ge \varphi(e_k) \psi_i | N_{e_k}$ for all k. Therefore

$$\begin{split} \sum_{i} S(\psi_{i} \circ (E \mid \bigoplus_{k} N_{e_{k}}), \, \psi_{i}) &= \sum_{i} \sum_{k} S(\psi_{i} \circ E \mid N_{e_{k}}, \, \psi_{i} \mid N_{e_{k}}) \\ &\leq \sum_{i} \sum_{k} S(\varphi(e_{k}) \psi_{i} \mid N_{e_{k}}, \, \psi_{i} \mid N_{e_{k}}) = -\sum_{i} \sum_{k} \psi_{i}(e_{k}) \log \varphi(e_{k}) = \sum_{k} \eta(\varphi(e_{k})), \end{split}$$

so that

$$H_{\varphi''}(\bigoplus_{\mathbf{k}} N_{e_{\mathbf{k}}} | N) \leq \sum_{\mathbf{k}} \eta(\varphi(e_{\mathbf{k}}))$$
.

Thus we obtain the desired inequality. \Box

THEOREM 6.5. Let $\{p_j\}$ be a set of projections in Z(M) with $\sum p_j=1$.

(1) If $\varphi \in \mathcal{E}(M)$ and there exists $E \in \mathcal{E}(M, N)$ with $\varphi \circ E = \varphi$, then

$$H_{\varphi}(M|N) = \sum_{j} \eta(\varphi(p_{j})) + \sum_{j} \varphi(p_{j}) H_{\varphi_{j}}(Mp_{j}|Np_{j})$$
 ,

where $\varphi_j = \varphi(p_j)^{-1} \varphi | M p_j$.

(2) Assume that N is infinite. Then for every $E \in \mathcal{E}(M, N)$

$$H_{E}(M|N) = \sum_{i} \eta(E(p_{j})) + \sum_{j} E(p_{j}) H_{E_{p_{j}}}(Mp_{j}|Np_{j}).$$

PROOF. (1) Since $Z(M) \subseteq (N' \cap M)_E$, it suffices by Theorem 6.4(1) to show that

$$H_{\varphi}(M|N) \leq \sum_{j} \eta(\varphi(p_{j})) + \sum_{j} \varphi(p_{j}) H_{\varphi_{j}}(Mp_{j}|Np_{j}).$$

But by Proposition 2.2(1)

$$H_{\varphi}(M|\,N) \leqq H_{\varphi}(M|\, \bigoplus_{j} N p_{j}) + H_{\varphi} \cdot (\bigoplus_{j} N p_{j}|\,N) \, ,$$

where $\varphi'' = \varphi \mid \bigoplus_{j} Np_{j}$. Thanks to $M = \bigoplus_{j} Mp_{j}$, we have by Proposition 2.3

$$H_{arphi}(M| \bigoplus_{j} Np_{j}) = \sum_{j} \varphi(p_{j}) H_{arphi_{j}}(Mp_{j}|Np_{j}),$$

and as in the proof of Theorem 6.4

$$H_{\varphi'}(\bigoplus_{j} Np_{j}|N) \leq \sum_{j} \eta(\varphi(p_{j})).$$

(2) Apply (1) above to $\{p_j \otimes 1\}$ in $Z(M \otimes R_{\infty})$ and $\varphi \otimes \omega$ where $\omega \in \mathcal{E}(R_{\infty})$ and $\varphi \in \mathcal{E}(M)$ with $\varphi \circ E = \varphi$. Then we have by Proposition 4.7(2)

$$\begin{split} H_{E}(M|N) &= H_{\varphi \otimes \omega}(M \otimes R_{\infty}|N \otimes R_{\infty}) \\ &= \sum_{j} \eta(\varphi(p_{j})) + \sum_{j} \varphi(p_{j}) H_{\varphi_{j} \otimes \omega}(M p_{j} \otimes R_{\infty}|N p_{j} \otimes R_{\infty}) \\ &= \sum_{j} \eta(E(p_{j})) + \sum_{j} E(p_{j}) H_{E_{p_{j}}}(M p_{j}|N p_{j}), \end{split}$$

because Np_j is infinite and $\varphi_j \circ E_{p_j} = \varphi_j$. \square

THEOREM 6.6. For every $E \in \mathcal{E}(M, N)$

$$H_E(M|N) \leq K_E(M|N)$$
.

PROOF. If $N' \cap M$ has a nonatomic part, then $H_E(M|N) = K_E(M|N) = \infty$ by

Proposition 3.2 and [19, Theorem 4.3]. So suppose $N' \cap M$ is atomic. If $\{p_j\}$ is the set of all atoms in Z(M), then by Theorem 6.5(2)

$$H_{E}(M|N) = \sum_{j} \eta(E(p_{j})) + \sum_{j} E(p_{j}) H_{E_{p_{j}}}(Mp_{j}|Np_{j}),$$

and by [19, Theorem 4.1]

$$K_{E}(M|N) = \sum_{j} \eta(E(p_{j})) + \sum_{j} E(p_{j}) K_{E_{p_{j}}}(Mp_{j}|Np_{j}).$$

Thus we may assume that M as well as N is a factor. Choose a set $\{e_k\}$ of atoms in $(N' \cap M)_E$ with $\sum e_k = 1$. Then for any $\varphi \in \mathcal{E}(M)$ with $\varphi \circ E = \varphi$, we deduce by Theorem 6.4(2), Proposition 2.9 and [19, Theorem 4.2] that

$$H_{\varphi}(M|N) \leq \sum_{k} \varphi(e_{k}) \log \frac{\operatorname{Index} E_{e_{k}}}{\varphi(e_{k})^{2}} = K_{E}(M|N). \quad \Box$$

COROLLARY 6.7. Assume that M is a finite von Neumann algebra with a faithful normal trace τ , $\tau(1)=1$. If $E_N: M\to N$ is the conditional expectation with respect to τ , then $H_{E_N}(M|N)=H_{\tau}(M|N)$. Moreover if M is of type II_1 , then $H_{E_N}(M|N)=K_{E_N}(M|N)$.

PROOF. It was shown in [19, Corollary 4.5] that if M is of type II_1 , then $K_{E_N}(M|N) = H_{\tau}(M|N)$. When N is finite dimensional, $H_{E_N}(M|N) = H_{\tau}(M|N)$ follows from Remark 2.8. When N is of type II_1 (hence so is M), by Theorem 6.6

$$H_{\tau}(M|N) \leq H_{E,\nu}(M|N) \leq K_{E,\nu}(M|N) = H_{\tau}(M|N). \quad \Box$$

THEOREM 6.8. Assume that N is infinite. If $E \in \mathcal{E}(M, N)$ and $K_E(M|N) < \infty$, then

$$H_E(M|N) = K_E(M|N)$$
.

PROOF. It suffices by Theorem 6.6 to prove $H_E(M|N) \ge K_E(M|N)$. We can assume as in the proof of Theorem 6.6 that M as well as N is a factor. Let $\hat{M} = M \otimes R_{\infty}$, $\hat{N} = N \otimes R_{\infty}$ and $\hat{E} = E \otimes \operatorname{id}_{R_{\infty}}$. Then $\hat{M} \supseteq \hat{N}$ are type III_1 factors. Associated with $\varphi \in \mathcal{E}(\hat{M})$ such that $\varphi \circ \hat{E} = \varphi$, we further take the crossed products $\tilde{M} = \hat{M} \rtimes_{\sigma} \varphi R$ and $\tilde{N} = \hat{N} \rtimes_{\sigma} \varphi R$ together with the canonical extension \tilde{E} of \hat{E} . Since $\tilde{M} \supseteq \tilde{N}$ are type $\operatorname{II}_{\infty}$ factors, we can write $\tilde{M} = \tilde{M}_e \otimes F$ and $\tilde{N} = \tilde{N}_e \otimes F$ where e is a finite projection in \tilde{N} and F is a type $\operatorname{I}_{\infty}$ factor. Then the canonical trace τ on \tilde{M} is written as $\tau = \tau_e \otimes \operatorname{tr}_F$ where τ_e is the normalized trace on \tilde{M}_e and tr_F is the usual trace on F. Because \tilde{E} is the conditional expectation with respect to τ (see Remark 5.3), we have $\tilde{E} = E_{\tilde{N}_e} \otimes \operatorname{id}_F$ where $E_{\tilde{N}_e}$ is the conditional expectation $\tilde{M}_e \to \tilde{N}_e$ with respect to τ_e . Now we deduce as follows:

$$H_{E}(M|N) = H_{\hat{E}}(\hat{M}|\hat{N})$$
 (Proposition 4.4)
= $H_{\tilde{E}}(\tilde{M}|\hat{N})$ (Corollary 5.2)

$$\geq H_{E\tilde{N}_e}(\tilde{M}_e|\tilde{N}_e) \qquad \text{(Proposition 4.2(2))}$$

$$= K_{E\tilde{N}_e}(\tilde{M}_e|\tilde{N}_e) \qquad \text{(Corollary 6.7)}$$

$$= K_{\widetilde{E}}(\tilde{M}|\tilde{N}) \qquad \text{([19, Proposition 3.6])}$$

$$= K_{E}(M|N) \qquad \text{([19, Proposition 3.6])}. \quad \Box$$

It is an open problem whether the conclusion of Theorem 6.8 holds when N is a type II_1 factor, also when $K_E(M|N) = \infty$.

7. Minimum index and entropy.

Throughout this section, let $M \supseteq N$ be a pair of factor and subfactor such that $[M:N]_0=\operatorname{Index} E_0<\infty$ where $E_0\in\mathcal{C}(M,N)$. In [19, § 6], we established the relation between the minimum index $[M:N]_0$ and the entropy $K_E(M|N)$. In this section, combining the results in [19] with the estimates in § 6, we have the same relation between $[M:N]_0$ and $H_E(M|N)$.

Although the following is a corollary of Theorem 6.6 and [19, Proposition 6.1 and Theorem 6.3], we give a direct proof which may be interesting.

COROLLARY 7.1. For every $E \in \mathcal{E}(M, N)$

$$H_{E}(M|N) \leq \log \lceil M:N \rceil_{0}$$
,

and if $H_E(M|N) = \log [M:N]_0$ then $E = E_0$.

PROOF. Let $\tau = E_0 | N' \cap M$ which is a trace by [18, Theorem 1]. For each $E \in \mathcal{E}(M, N)$, let $a = d(E|N' \cap M)/d\tau$. For any $\varphi \in \mathcal{E}(M)$ with $\varphi \circ E = \varphi$, let $\varphi_1, \dots, \varphi_n \in M_*^+$ be given with $\Sigma \varphi_k = \varphi$. Suppose for the moment that $\varphi_1, \dots, \varphi_n$ are all faithful. Then according to [30, Theorem 4], we have

$$S(\varphi_k \circ E, \varphi_k) = i \lim_{t \to +0} \frac{1}{t} \varphi_k([D\varphi_k \circ E : D\varphi_k]_t - 1),$$

where $[D\varphi_k \circ E : D\varphi_k]$ is the Connes cocycle derivative of $\varphi_k \circ E$ and φ_k . Furthermore since by [6, Propositions 4.1 and 5.1]

$$[D\varphi_k \circ E : D\varphi_k]_t = [D\varphi_k \circ E : D\varphi_k \circ E_0]_t [D\varphi_k \circ E_0 : D\varphi_k]_t$$
$$= [DE : DE_0]_t [D\varphi_k \circ E_0 : D\varphi_k]_t = a^{it} [D\varphi_k \circ E_0 : D\varphi_k]_t,$$

we get

$$S(\varphi_k \circ E, \varphi_k) = S(\varphi_k \circ E_0, \varphi_k) - \varphi_k(\log a)$$

so that

$$\sum\limits_k S(\varphi_k \circ E, \, \varphi_k) = \sum\limits_k S(\varphi_k \circ E_0, \, \varphi_k) - \varphi(\log a)$$
.

Therefore by the proof of Proposition 2.9

$$\sum_{k} S(\varphi_{k} \circ E, \varphi_{k}) \leq \log [M:N]_{0} + \tau(\eta a).$$

When $\varphi_1, \dots, \varphi_n$ are not necessarily faithful, taking $(1-\varepsilon)\varphi_k + \varepsilon \varphi$ where $0 < \varepsilon < 1$ and letting $\varepsilon \to 0$, we have the above inequality by the lower semicontinuity of relative entoropy. This implies that

$$H_E(M|N) \leq \log [M:N]_0 + \tau(\eta a)$$
.

Hence $H_E(M|N) \leq \log [M:N]_0$ because $\tau(\eta a) \leq \eta(\tau(a)) = 0$. Moreover if $H_E(M|N) = \log [M:N]_0$, then $\tau(\eta a) = 0$ so that a=1, implying $E=E_0$ by [6, Théorème 5.3]. \square

In addition to several characterizations in [18, 19] for $E \in \mathcal{E}(M, N)$ having the minimum index, Theorem 6.8 and [19, Theorem 6.3] show the following:

COROLLARY 7.2. Assume that N is infinite. Then the following conditions for $E \in \mathcal{E}(M, N)$ are equivalent:

- (i) Index $E = [M: N]_0$, i.e. $E = E_0$;
- (ii) $H_E(M|N) = \log [M:N]_0$;
- (iii) $H_E(M|N) = \log \operatorname{Index} E$.

REMARK 7.3. Let N be not necessarily infinite. Then Theorem 7.2 holds when (ii) and (iii) are replaced by the following (ii) and (iii) where P is any infinite factor:

- (ii)' $H_{E\otimes id_n}(M\otimes P|N\otimes P) = \log [M:N]_0;$
- (iii)' $H_{E \otimes id_n}(M \otimes P | N \otimes P) = \log \operatorname{Index} E$.

COROLLARY 7.4. If $E \in \mathcal{E}(M, N)$ and $N' \cap M = C$ (this is the case if Index E < 4), then

$$H_E(M|N) = K_E(M|N) = \log \operatorname{Index} E$$
.

PROOF. By assumption, $\mathcal{E}(M, N)$ consists of one element E. Hence $K_E(M|N)$ = log Index E by [19, Theorem 6.3]. When N is infinite, Theorem 6.8 implies $H_E(M|N) = K_E(M|N)$. When N is of type II₁, so is M (see the proof of Lemma 5.4) and E is the conditional expectation with respect to the normalized trace τ on M, so that Corollary 6.7 implies $H_E(M|N) = K_E(M|N)$. When N is finite dimensional, the conclusion is trivial since $N' \cap M = C$ forces M = N.

All other results in [19, §6] can be translated by replacing $K_E(M|N)$ with $H_E(M|N)$ due to Theorem 6.6 or 6.8, while we omit the details.

8. Basic constructions and entropy.

As in §7, let $M \supseteq N$ be a pair of factor and subfactor with $[M:N]_0 < \infty$. Given $E \in \mathcal{E}(M, N)$, repeating the basic constructions [25] started from E, we

obtain the tower of factors:

$$N \subseteq M_0 = M \subseteq M_1 \subseteq M_2 \subseteq \cdots$$

with $E_n \in \mathcal{E}(M_n, M_{n-1})$, $n \ge 1$, satisfying Index $E_n = \text{Index } E$. Concerning the entropies $H_{E_n}(M_n \mid M_{n-1})$ and $K_{E_n}(M_n \mid M_{n-1})$, we have:

PROPOSITION 8.1. For every $n \ge 1$,

- (1) $H_{E_{2n}}(M_{2n} | M_{2n-1}) = H_E(M|N),$
- (2) $H_{E_{2n+1}}(M_{2n+1}|M_{2n})=H_{E_1}(M_1|M),$
- (3) $K_{E_{2n}}(M_{2n}|M_{2n-1})=K_E(M|N),$
- (4) $K_{E_{2n+1}}(M_{2n+1}|M_{2n})=K_{E_1}(M_1|M).$

Moreover if e_1, \dots, e_m are atoms in $(N' \cap M)_E$ with $\sum e_k = 1$, then

$$K_{E_1}(M_1|M) = \sum_k \frac{E^{-1}(e_k)}{\operatorname{Index} E} \log \frac{(\operatorname{Index} E)^2(\operatorname{Index} E_{e_k})}{E^{-1}(e_k)^2}.$$

PROOF. It suffices for (1)-(4) to prove the case n=1. Let J and J_1 be the modular conjugations determined respectively by $\varphi_0 \circ E$ and $\varphi_0 \circ E \circ E_1$ where $\varphi_0 \in \mathcal{E}(N)$. Then we have by the method of basic construction

$$JMJ = M' = J_1 M_2 J_1$$
, $JNJ = M'_1 = J_1 M_1 J_1$,
 $JE(J \cdot J)J = (Index E)^{-1} E_1^{-1} = J_1 E_2 (J_1 \cdot J_1) J_1$.

Hence Proposition 2.1(2) implies that

$$H_{E_2}(M_2 | M_1) = H_{(Index E)^{-1}E_1^{-1}}(M' | M_1') = H_E(M | N)$$
.

The proof of $H_{E_3}(M_3|M_2)=H_{E_1}(M_1|M)$ is analogous. Next since

$$\begin{split} J(N' \cap M)J &= M' \cap M_1 = J_1(M_1' \cap M_2)J_1 \;, \\ E(J \cdot J)|\, M' \cap M_1 &= (\operatorname{Index} E)^{-1}E_1^{-1}|\, M' \cap M_1 = E_2(J_1 \cdot J_1)|\, M' \cap M_1 \;, \\ E^{-1}(J \cdot J)|\, M' \cap M_1 &= (\operatorname{Index} E)E_1|\, M' \cap M_1 = E_2^{-1}(J_1 \cdot J_1)|\, M' \cap M_1 \;, \end{split}$$

we get

$$\begin{split} K_{E_2}(M_2|M_1) &= -S(E_2^{-1}|M_1' \cap M_2, E_2|M_1' \cap M_2) \\ &= -S(E^{-1}|N' \cap M, E|N' \cap M) = K_E(M|N), \end{split}$$

and analogously $K_{E_3}(M_3|M_2)=K_{E_1}(M_1|M)$.

Now let us show the formula of $K_{E_1}(M_1|M)$ required. Because $\sigma_t^E = \sigma_{-t}^{E-1}$ for $t \in \mathbb{R}$ by [17, Theorem 6.13], it follows that

$$J(N' \cap M)_E J = J(N' \cap M)_{E^{-1}} J = (M' \cap M_1)_{E_1}.$$

Hence Je_1J , ..., Je_mJ are atoms in $(M'\cap M_1)_{E_1}$. Furthermore we have by [25, Proposition 4.2]

Index
$$(E_1)_{Je_k J} = E_1(Je_k J)E_1^{-1}(Je_k J)$$

= $(\text{Index } E)^{-1}E^{-1}(e_k)(\text{Index } E)E(e_k) = \text{Index } E_{e_k}$.

Thus by [19, Theorem 4.2]

$$\begin{split} K_{E_1}(M_1|M) &= \sum_k E_1(Je_k J) \log \frac{\operatorname{Index}\left(E_1\right)_{Je_k J}}{E_1(Je_k J)^2} \\ &= \sum_k \frac{E^{-1}(e_k)}{\operatorname{Index} E} \log \frac{(\operatorname{Index} E)^2(\operatorname{Index} E_{e_k})}{E^{-1}(e_k)^2} \,. \quad \Box \end{split}$$

The following examples show that $H_{E_1}(M_1|M)=H_E(M|N)$ does not generally hold.

EXAMPLE 8.2. Let M=R be the hyperfinite type Π_1 factor with the normalized trace τ . For $m \ge 2$, choose nonzero projections e_1, \dots, e_m in M with $\sum e_k = 1$ such that $\alpha_k = \tau(e_k)$, $1 \le k \le m$, are all different. Taking isomorphisms $\theta_k : M_{e_1} \to M_{e_k}$ for $2 \le k \le m$, we define a subfactor N of M by

$$N = \{x \oplus \theta_2(x) \oplus \cdots \oplus \theta_m(x) : x \in M_{e_1}\}.$$

Then it is easy to check that

$$N' \cap M = Ce_1 + \cdots + Ce_m$$
.

Let $E_N: M \to N$ be the conditional expectation with respect to τ , and $E_M: M_1 \to M$ be that with respect to the normalized trace τ_1 on M_1 . Note [25] that E_M coincides with the conditional expectation obtained by the basic construction from E_N . Then since $M_{e_k} = N_{e_k}$, we get by [25, Theorem 4.4]

$$\llbracket M \colon N
rbracket = \operatorname{Index} E_N = \sum\limits_{k} lpha_k^{-1}$$
 ,

$$[M:N]_0 = \operatorname{Index} E_0 = m^2$$
,

and by Corollary 6.7

$$H_{E_N}(M|N) = K_{E_N}(M|N) = H_{\tau}(M|N) = 2 \sum_k \eta(\alpha_k).$$

Here $E_0 \in \mathcal{E}(M, N)$ having the minimum index m^2 is given by $E_0(e_k) = 1/m$, $1 \le k \le m$. Hence $E_N = a^{1/2} E_0 a^{1/2}$ ($= E_0(a^{1/2} \cdot a^{1/2})$) where $a = \sum m \alpha_k e_k$. Because $E_N^{-1} = a^{-1/2} E_0^{-1} a^{-1/2}$ by [19, Proposition 1.2] and $E_0^{-1}(e_k) = m$ by [18, Theorem 1], we get

$$E_N^{-1}(e_k) = E_0(m^{-1}\alpha_k^{-1}e_k) = \alpha_k^{-1}$$
, $1 \le k \le m$.

Therefore by Proposition 8.1

$$H_{E_M}(M_1|M) = K_{E_M}(M_1|M) = 2 \sum_k \eta(\frac{\alpha_k^{-1}}{\sum_i \alpha_i^{-1}}).$$

For instance, if we take m=3 and $(\alpha_1, \alpha_2, \alpha_3)=(1/6, 1/3, 1/2)$, then $H_{E_M}(M_1|M) \neq H_{E_N}(M|N)$. According to [33], Jones' subfactor R_λ of R in [22] where $\lambda = [R:R_\lambda]^{-1} < 1/4$ is an example of the case m=2. In [35], a subfactor of a type II₁ factor is called a locally trivial subfactor if it has the above form of the case m=2. Also choosing a sequence e_1, e_2, \cdots of projections in M with

 $\sum e_k=1$ and $\alpha_k=\tau(e_k)$, $\sum \eta(\alpha_k)<\infty$, and defining N as above, we obtain a subfactor N of M such that $[M:N]=\infty$ but $H_{E_N}(M|N)<\infty$.

EXAMPLE 8.3. Let M be an infinite factor. For $m \ge 2$, choose nonzero projections e_1, \dots, e_m in M with $\sum e_k = 1$. Taking $v_k \in M$, $2 \le k \le m$, such that $v_k^* v_k = e_1$ and $v_k v_k^* = e_k$, we define a subfactor N of M by

$$N = \{x \oplus v_2 x v_2^* \oplus \cdots \oplus v_m x v_m^* : x \in M_{e_1}\}.$$

Then the following are easily shown:

$$N' \cap M = \sum_{i,j=1}^{m} C v_i v_j^* \simeq M_m(C)$$

where $v_1=e_1$. For $\alpha_1, \cdots, \alpha_m>0$ with $\sum \alpha_k=1$, define

$$E(x) = \sum_{i,j=1}^{m} \alpha_j v_i v_j^* x v_j v_i^*, \quad x \in M.$$

Then $E \in \mathcal{E}(M, N)$ is directly checked. Since $e_k \in (N' \cap M)_E$ and $M_{e_k} = N_{e_k}$, we get

Index
$$E = \sum_{k} \alpha_k^{-1}$$
,

$$[M:N]_0 = \operatorname{Index} E_0 = m^2$$
,

and by Theorem 6.8

$$H_E(M|N) = K_E(M|N) = 2 \sum_k \eta(\alpha_k)$$
.

Here $E_0 \in \mathcal{E}(M, N)$ is defined as E above with $\alpha_k = 1/m$, $1 \le k \le m$. Since $E = a^{1/2}E_0a^{1/2}$ where $a = \sum m\alpha_k e_k$, we get $E^{-1}(e_k) = \alpha_k^{-1}$, $1 \le k \le m$, so that $H_{E_1}(M_1|M) = K_{E_1}(M_1|M)$ is given by the same formula as in Example 8.2.

PROPOSITION 8.4. If there exist a projection e in M and an isomorphism $\theta: M_e \rightarrow M_{1-e}$ such that $N = \{x \oplus \theta(x) : x \in M_e\}$, then $[M:N]_0 = 4$ and $K_{E_n}(M_n | M_{n-1}) = K_E(M|N)$ for every $E \in \mathcal{E}(M,N)$ and $n \geq 1$.

PROOF. By assumption, either $N' \cap M = Ce + C(1-e)$ or $N' \cap M \simeq M_2(C)$ occurs. In either case, $[M:N]_0 = \operatorname{Index} E_0 = 4$ as in Examples 8.2 and 8.3, where $E_0 | N' \cap M$ is a trace with $E_0(e) = E_0(1-e) = 1/2$. For the second assertion, it suffices by Proposition 8.1 to show that $K_{E_1}(M_1|M) = K_E(M|N)$ for every $E \in \mathcal{E}(M,N)$. Replacing E by uEu^* with a unitary u in $N' \cap M$, we may assume that e and 1-e are atoms in $(N' \cap M)_E$. Then $E = a^{1/2}E_0a^{1/2}$ for some $a = 2\alpha_1e + 2\alpha_2(1-e)$ with α_1 , $\alpha_2 > 0$, $\alpha_1 + \alpha_2 = 1$. Hence the calculation in Examples 8.2 and 8.3 implies that

$$K_{E_1}(M_1|M) = 2\eta \left(\frac{\alpha_1^{-1}}{\alpha_1^{-1} + \alpha_2^{-1}}\right) + 2\eta \left(\frac{\alpha_2^{-1}}{\alpha_1^{-1} + \alpha_2^{-1}}\right)$$

= $2\eta(\alpha_2) + 2\eta(\alpha_1) = K_E(M|N)$. \square

Finally let $M_{-1}=N\subseteq M_0=M\subseteq M_1\subseteq M_2\subseteq \cdots$ be the basic constructions with $E_n\in\mathcal{C}(M_n,\ M_{n-1})$ started with $E=E_0$ having the minimum index $[M:N]_0<\infty$. It is proved in $[\mathbf{26}]$ that $[M_n:N]_0=[M:N]_0^{n+1}$ for all $n\geq 1$, or equivalently $E_0\circ E_1\circ \cdots \circ E_n$ gives the minimum index for $M_n\supseteq N$. This result enables us to prove the next theorem.

THEOREM 8.5. Under the above situation, the following assertions hold:

(1) For every $n, k \ge 0$

$$K_{E_n \circ \dots \circ E_{n+k}}(M_{n+k} | M_{n-1}) = (k+1)\log[M:N]_0.$$

(2) If N is infinite or if $N' \cap M = C$, then for every $n, k \ge 0$

$$H_{E_n \circ \cdots E_{n+k}}(M_{n+k} | M_{n-1}) = (k+1)\log[M:N]_0$$
.

PROOF. (1) For each $n, k \ge 0$, we see by the result stated above that $E_n \circ \cdots \circ E_{n+k}$ gives the minimum index for $M_{n+k} \supseteq M_{n-1}$. Hence by [19, Theorem 6.3]

$$K_{E_n \circ \dots \circ E_{n+k}}(M_{n+k} | M_{n-1}) = \log[M_{n+k} : M_{n-1}]_0 = (k+1)\log[M : N]_0.$$

(2) When N is infinite, the desired equality follows from Theorem 6.8 and the above (1). When N is of type II_1 (hence so is M) and $N' \cap M = C$, each E_n is the conditional expectation with respect to the normalized trace on M_n . Therefore by corollary 6.7 and $\lceil 34 \rceil$, Theorem 3.1

$$H_{E_n \circ \dots \circ E_{n+k}}(M_{n+k} | M_{n-1}) = \log[M_{n+k} : M_{n-1}] = \log[M_{n+k} : M_{n-1}]_0$$

Finally the case of N being finite dimensional is trivial, because $N' \cap M = C$ forces M = N. \square

ACKNOWLEDGEMENT. The author would like to thank Professor H. Kosaki who suggested to him that the approach with type III₁ factors is useful.

References

- [1] L. Accardi and C. Cecchini, Conditional expectations in von Neumann algebras and a theorem of Takesaki, J. Funct. Anal., 45 (1982), 245-273.
- [2] H. Araki, Some properties of modular conjugation operator of von Neumann algebras and a non-commutative Radon-Nikodym theorem with a chain rule, Pacific J. Math., 50 (1974), 309-354.
- [3] H. Araki, Relative entropy of states of von Neumann algebras, Publ. Res. Inst. Math. Sci., Kyoto Univ., 11 (1976), 809-833.
- [4] H. Araki, Relative entropy for states of von Neumann algebras II, Publ. Res. Inst. Math. Sci., Kyoto Univ., 13 (1977), 173-192.
- [5] M. Baillet, Y. Denizeau and J. F. Havet, Indice d'une esperance conditionnelle, Compositio Math., 66 (1988), 199-236.
- [6] F. Combes and C. Delaroche, Groupe modulaire d'une espérance conditionnelle dans une algèbre de von Neumann, Bull. Soc. Math. France, 103 (1975), 385-426.

- [7] A. Connes, On hyperfinite factors of type III₀ and Krieger's factors, J. Funct. Anal., 18 (1975), 318-327.
- [8] A. Connes, Classification of injective factors, cases II_1 , II_{∞} , III_{λ} , $\lambda \neq 1$, Ann. of Math., 104 (1976), 73-115.
- [9] A. Connes, On the spatial theory of von Neumann algebras, J. Funct. Anal., 35 (1980), 153-164.
- [10] A. Connes, Entropie de Kolmogoroff-Sinai et mécanique statistique quantique, C. R. Acad. Sci. Paris Sér. I, 301 (1985), 1-6.
- [11] A. Connes, H. Narnhofer and W. Thirring, Dynamical entropy of C* algebras and von Neumann algebras, Comm. Math. Phys., 112 (1987), 691-719.
- [12] A. Connes and E. Størmer, Entropy for automorphisms of II₁ von Neumann algebras, Acta Math., 134 (1975), 289-306.
- [13] A. Connes and E. Størmer, Homogeneity of the state space of factors of type III₁, J. Funct. Anal., 28 (1978), 187-196.
- [14] G. A. Elliott and E. J. Woods, The equivalence of various definitions for a properly infinite von Neumann algebra to be approximately finite dimensional, Proc. Amer. Math. Soc., 60 (1976), 175-178.
- [15] F. M. Goodman, P. de la Harpe and V. F. R. Jones, Coxeter Graphs and Towers of Algebras, Springer-Verlag, New York, 1989.
- [16] U. Haagerup, The standard form of von Neumann algebras, Math. Scand., 37 (1975), 271-283.
- [17] U. Haagerup, Operator valued weights in von Neumann algebras, I, II, J. Funct. Anal., 32 (1979), 175-206; 33 (1979), 339-361.
- [18] F. Hiai, Minimizing indices of conditional expectations onto a subfactor, Publ. Res. Inst. Math. Sci., Kyoto Univ., 24 (1988), 673-678.
- [19] F. Hiai, Minimum index for subfactors and entropy, J. Operator Theory, to appear.
- [20] F. Hiai and Y. Nakamura, Closed convex hulls of unitary orbits in von Neumann algebras, Trans. Amer. Math. Soc., 323 (1991), 1-38.
- [21] F. Hiai, M. Ohya and M. Tsukada, Sufficiency, KMS condition and relative entropy in von Neumann algebras, Pacific J. Math., 96 (1981), 99-109.
- [22] V. F. R. Jones, Index for subfactors, Invent. Math., 72 (1983), 1-25.
- [23] S. Kawakami, Some remarks on index and entropy for von Neumann subalgebras, Proc. Japan Acad. Ser. A Math. Sci., 65 (1989), 323-325.
- [24] H. Kosaki, Relative entropy of states: a variational expression, J. Operator Theory, 16 (1986), 335-348.
- [25] H. Kosaki, Extension of Jones' theory on index to arbitrary factors, J. Funct. Anal., 66 (1986), 123-140.
- [26] H. Kosaki and R. Longo, in preparation.
- [27] R. Longo, Index of subfactors and statistics of quantum fields. I, Comm. Math. Phys., 126 (1989), 217-247.
- [28] Y. Nakagami and M. Takesaki, Duality for Crossed Products of von Neumann Algebras, Lecture Notes in Math., No. 731, Springer-Verlag, Berlin, 1979.
- [29] M. Ohya, Entropy transmission in C*-dynamical systems, J. Math. Anal. Appl., 100 (1984), 222-235.
- [30] D. Petz, Properties of the relative entropy of states of von Neumann algebras, Acta Math. Hungar., 47 (1986), 65-72.
- [31] D. Petz, Sufficient subalgebras and the relative entropy of states of a von Neumann algebra, Comm. Math. Phys., 105 (1986), 123-131.
- [32] D. Petz, On certain properties of the relative entropy of states of operator alge-

- bras, Math. Z., to appear.
- [33] M. Pimsner and S. Popa, Entropy and index for subfactors, Ann. Sci. École Norm. Sup. (4), 19 (1986), 57-106.
- [34] M. Pimsner and S. Popa, Iterating the basic construction, Trans. Amer. Math. Soc., 310 (1988), 127-133.
- [35] S. Popa, Relative dimension, towers of projections and commuting squares of subfactors, Pacific J. Math., 137 (1989), 181-207.
- [36] Ş. Strătilă, Modular Theory in Operator Algebras, Editura Academiei and Abacus Press, Tunbridge Wells, 1981.
- [37] M. Takesaki, Conditional expectations in von Neumann algebras, J. Funct. Anal., 9 (1972), 306-321.
- [38] M. Takesaki, Duality for crossed products and structure of von Neumann algebras of type III, Acta Math., 131 (1973), 249-310.
- [39] A. Uhlmann, Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory, Comm. Math. phys., 54 (1977), 21-32.
- [40] H. Umegaki, Conditional expectation in an operator algebra, Tôhoku Math. J., 6 (1954), 177-181.
- [41] H. Umegaki, Conditional expectation in an operator algebra, IV (entropy and information), Kōdai Math. Sem. Rep., 14 (1962), 59-85.
- [42] Y. Watatani, Index for C*-subalgebras, Mem. Amer. Math. Soc., No. 424, Amer. Math. Soc., 1990.
- [43] A. Wehrl, General properties of entropy, Rev. Modern Phys., 50 (1978), 221-260.

Fumio HIAI
Department of Mathematics
Ibaraki University
Mito, Ibaraki 310
Japan