Global Sebastiani-Thom theorem for polynomial maps

By András NÉMETHI

(Received Sept. 25, 1989) (Revised April 5, 1990)

1. Introduction.

There are several methods for studying the topological type of affine hypersurfaces. Kouchnirenko and M. Oka have investigated in [Ko], [O2], [O3], [O4] the relation between Newton boundary and the topology of the generic fiber, Hà and Lê [H-L] determined the bifurcation set of polynomial maps with two variables using the Euler characteristic of the fibers. Another approach is due to Broughton [Br1], [Br2] who have introduced and studied the class of "tame" polynomials. His results have been extended by the author for the larger class of "quasitame" polynomials [Ne].

In this note we establish a Sebastiani-Thom type result. More precisely: Let $g: C^n \to C$ and $h: C^m \to C$ be polynomial maps with bifurcation sets Λ_g resp. Λ_h . We consider the sum-map $f: C^n \times C^m \to C$, f(x, y) = g(x) + h(y). We prove the following

THEOREM.

a) The bifurcation set of f is contained in $\Lambda_g + \Lambda_h$.

b) The generic fiber of f is homotopic equivalent with the join space of the generic fibers of the polynomial maps g and h.

c) The global algebraic monodromy of f (around all the bifurcation points) is induced by the join of the global geometric monodromies of g and h. (In particular it can be determined in terms of the global algebraic monodromies of g and h).

This result extends the results of Sebastiani-Thom [Se-T] and K. Sakamoto [Sa1], [Sa2] (in the local case) and M. Oka [O1] in the special case of weighted homogeneous polynomials. The proof is based on a new technique which applies to the general (global) case of the polynomials (without C^* -action).

We are indebted to the referee for suggesting us the proof of Theorem 3.2 which is more natural and simple than our original proof.

A. Némethi

2. The generic fiber.

Let $g: C^n \to C$ and $h: C^m \to C$ be polynomial maps. Then there exists a finite set $\Lambda_g = \{c_1, \dots, c_t\}$ (respectively $\Lambda_h = \{d_1, \dots, d_s\}$) such that $g: C^n - g^{-1}(\Lambda_g) \to C - \Lambda_g$ (respectively $h: C^m - h^{-1}(\Lambda_h) \to C - \Lambda_h$) is a C^{∞} locally trivial fibration (see [Ve], [Br1], [H-L]).

We define $f: \mathbb{C}^n \times \mathbb{C}^m \to \mathbb{C}$ by f(x, y) = g(x) + h(y) and $\Lambda_f = \Lambda_g + \Lambda_h = \{c_i + d_j | c_i \in \Lambda_g, d_j \in \Lambda_h\}$. If we introduce the set $L_e = \{(c, d) \in \mathbb{C} \times \mathbb{C} | c + d = e\}$ for all $e \in \mathbb{C}$, and the map $u = g \times h: \mathbb{C}^n \times \mathbb{C}^m \to \mathbb{C} \times \mathbb{C}$, u(x, y) = (g(x), h(y)), then $f^{-1}(e) = u^{-1}(L_e)$. Hence the study of the polynomial f is in strong connection with the study of the map u and the mutual position of the line L_e and the set $\Lambda = (\mathbb{C} \times \Lambda_h) \cup (\Lambda_g \times \mathbb{C})$. If $e \in \Lambda_f$, then let $\{C_i\}_{i=\overline{1,i}} = \{(c_i, e - c_i)\}_{i=\overline{1,i}} = L_e \cap (\Lambda_g \times \mathbb{C})$ and $\{D_j\}_{j=\overline{1,s}} = \{(e-d_j, d_j)\}_{j=\overline{1,s}} = L_e \cap (\mathbb{C} \times \Lambda_h)$.

LEMMA 2.1. There exists a C^{∞} diffeomorphism $v: \mathbb{R}^2 \to L_e$ such that $v^{-1}(C_i) \subset \mathbb{R} \times (0, \infty)$ $(i=\overline{1,t})$ and $v^{-1}(D_j) \subset \mathbb{R} \times (-\infty, 0)$ $(j=\overline{1,s})$.

This is the consequence of the following

HOMOGENEITY LEMMA [Mi1].

Let n_i and n'_i $(i=\overline{1,k})$ be arbitrary points of the smooth, connected manifold N. Then there exists a diffeomorphism $v_N: N \rightarrow N$ which (is smoothly isotopic to the identity and) carries n_i into n'_i . Moreover, v_N can be chosen such the set $\{x \in N: v_N(x) \neq x\}^-$ is compact.

In particular, we can choose the diffeomorphism $v: \mathbb{R}^2 \to L_e$ such that v is an isometry outside of a large disk, hence we have the following properties in plus:

i) there exists K_1 such that $||v^{-1}(w) - v^{-1}(w')|| < K_1 ||w - w'||$ for all $w, w' \in L_e$. ii) $||d_w(v^{-1})|| \le K_1$ for all $w \in L_e$.

We define the following sets in $L_e: v(\mathbf{R} \times [0, \infty)) = \mathcal{C}, v(\mathbf{R} \times (-\infty, 0]) = \mathcal{D}, v(\mathbf{R} \times \{0\}) = \gamma$ and $v((c_{\Gamma}, 0)) = \Gamma$ a point on γ . Thus $C_i \in \mathcal{C}$ $(i = \overline{1, t})$ and $D_j \in \mathcal{D}$ $(j = \overline{1, s})$. Our first result is the following

THEOREM 2.2. The restricted map $f: C^n \times C^m - f^{-1}(\Lambda_f) \to C - \Lambda_f$ is a C^{∞} locally trivial fibration.

PROOF. If we denote $C_{\varepsilon} = v(\mathbf{R} \times [\varepsilon, \infty))$ and $\mathcal{D}_{\varepsilon} = v(\mathbf{R} \times (-\infty, -\varepsilon])$ then there exists a sufficiently small $\varepsilon > 0$ such that $C_i \in C_{\varepsilon}$ $(i=\overline{1,t})$ and $D_j \in \mathcal{D}_{\varepsilon}$ $(j=\overline{1,s})$. We define a C^{∞} function $\phi: L_{\varepsilon} \rightarrow [0, 1]$ by $\phi = \phi' \circ v^{-1}$, where $\phi'(r_1, r_2) = \phi''(r_2)$ is a C^{∞} function with

$$\phi''(r_2) = \begin{cases} 1 & r_2 \leq -\frac{\varepsilon}{2} \\ 0 & r_2 \geq \frac{\varepsilon}{2} \end{cases}$$

214

Let $e \in A_f$. Since g is trivial over $pr_1(L_e - C_e) = P$ (where pr_1 is the first projection $pr_1: C \times C \rightarrow C$), there exists a diffeomorphism $\psi = (\psi_1, \psi_2): g^{-1}(P) \rightarrow P \times G$ such that $\psi_1 = g$.

Consider the following application:

$$\begin{split} \tilde{\phi} &: B_{\varepsilon'} \times P \times G \to B_{\varepsilon'} \times P \times G \text{ (where } B_{\varepsilon'} = \{a \in \mathbb{C} : |a - e| < \varepsilon') \\ \tilde{\phi}(a, c, x) = (a, c + \phi(c, e - c)(a - e), x). \end{split}$$

From (i) we get that there exists K such that $\|\phi(w)-\phi(w')\| \leq K \|w-w'\|$ for arbitrary $w, w' \in L_e$, hence for $\varepsilon' > 0$ sufficiently small $\tilde{\phi}$ is injective. Similarly, using (ii) we obtain that $\tilde{\phi}$ is local diffeomorphism for ε' small. In order to prove the surjectivity of $\tilde{\phi}$ we observe the following facts:

- a) $\tilde{\phi} | B_{\varepsilon'} \times v(\{\varepsilon/2 \leq r_2 < \varepsilon\}) \times G = id$
- b) $(\tilde{\phi} | B_{\varepsilon'} \times \mathcal{D}_{\varepsilon} \times G)(a, c, x) = (a, c+a-e, x)$
- c) $\|\widetilde{\phi} id\| \leq \varepsilon'$.

Therefore, similarly as in the proof of Theorem 1.7 [H] we obtain the surjectivity of $\tilde{\phi}$.

Thus, for ε' sufficiently small $\tilde{\phi}$ is diffeomorphism.

We define the diffeomorphism $\phi^g = (1, \phi_2^g) : B_{\varepsilon'} \times g^{-1}(P) \to B_{\varepsilon'} \times g^{-1}(P)$ by the diagram

$$B_{\varepsilon'} \times g^{-1}(P) \xrightarrow{(1, \phi_2^g)} B_{\varepsilon'} \times g^{-1}(P)$$

$$\stackrel{\langle \downarrow}{\downarrow} (1, \phi) \qquad \stackrel{\langle \downarrow}{\phi} \downarrow (1, \phi)$$

$$B_{\varepsilon'} \times P \times G \xrightarrow{\widetilde{\phi}} B_{\varepsilon'} \times P \times G.$$

Therefore $g(\phi_2^g(a, x)) = g(x) + \phi(g(x), e - g(x)) \cdot (a - e)$. (*)

The map $(1, \phi_2^s)$ can be extended by the identity, hence we have constructed a diffeomorphism $(1, \phi_2^s): B_{\varepsilon'} \times C^n \to B_{\varepsilon'} \times C^n$ such that (*) holds.

In similar way we obtain a diffeomorphism $(1, \phi_2^h)$: $B_{\varepsilon'} \times \mathbb{C}^m \to B_{\varepsilon'} \times \mathbb{C}^m$, such that $h(\phi_2^h(a, y) = h(y) + (1-\phi)(e-h(y), h(y)) \cdot (a-e)$.

We define $\bar{\phi}: B_{\varepsilon'} \times f^{-1}(e) \to f^{-1}(B_{\varepsilon'})$ by $\bar{\phi}(a, x, y) = (\phi_2^g(a, x), \phi_2^h(a, y))$. Then $\bar{\phi}$ is diffeomorphism with $f(\phi_2^g(a, x), \phi_2^h(a, y)) = a$.

In order to determine the structure of the fiber $f^{-1}(e) = u^{-1}(L_e)$ we study the restricted map $u: u^{-1}(L_e) \to L_e$.

LEMMA 2.3. Let $e \notin \Lambda_f$. Then

a) $u: u^{-1}(L_e - \Lambda) \to L_e - \Lambda$ is a C^{∞} locally trivial fibration. In particular $u^{-1}(\gamma) \approx u^{-1}(\Gamma) \times R \approx G \times H \times \mathbf{R}.$

b) $u^{-1}(\mathcal{D}) \approx G \times h^{-1}(pr_2\mathcal{D}) \approx G \times C^m$ $u^{-1}(\mathcal{C}) \approx g^{-1}(pr_1\mathcal{C}) \times H \approx C^n \times H$, (where G and H are the generic fibers of the polynomials g and h and " \approx " means "diffeomorphic").

PROOF. a) Let $(c, d) \in L_e - A$. Then there exists a neighbourhood U of (c, d) in L_e such that g (resp. h) is trivial over $pr_1U(\text{resp. } pr_2U)$. Hence there exist the diffeomorphisms:

$$\psi^{g} = (g, \psi_{2}^{g}) \colon g^{-1}(pr_{1}U) \longrightarrow pr_{1}U \times G \quad \text{and}$$
$$\psi^{h} = (h, \psi_{2}^{h}) \colon h^{-1}(pr_{2}U) \longrightarrow pr_{2}U \times H.$$

Then $\psi: u^{-1}(U) \rightarrow U \times G \times H$, $\psi(x, y) = ((g(x), h(y)), \psi_2^g(x), \psi_2^h(y))$ is a trivialization of u over U.

b) Since g over $pr_1\mathcal{D}$ is trivial fibration, we have a diffeomorphism $(g, \psi_2^g): g^{-1}(pr_1\mathcal{D}) \to pr_1\mathcal{D} \times G$. The map $(\psi_2^g, p_2): u^{-1}(\mathcal{D}) \to G \times h^{-1}(pr_2\mathcal{D}),$ $(\psi_2^g, p_2)(x, y) = (\psi_2^g(x), y)$ is the wanted diffeomorphism. Since $\Lambda_h \subset pr_2\mathcal{D}$ and $pr_2\mathcal{D}$ is a strong deformation retract of $C h^{-1}(pr_2\mathcal{D}) \approx h^{-1}(C) = C^m$.

With this preparations we can prove that following

THEOREM 2.4. Let f be a polynomial in $\mathbb{C}^n \times \mathbb{C}^m$ such that f(x, y) = g(x) + h(y). Let $F = f^{-1}(e)$ $(e \notin \Lambda_f)$, $G = g^{-1}(c)$ $(c \notin \Lambda_g)$ and $H = h^{-1}(d)$ $(d \notin \Lambda_h)$. Then there is a homotopy equivalence between F and G*H (the join of G and H).

PROOF. From Lemma 2.3 there is a homotopy equivalence between $u^{-1}(L_e)$ and $u^{-1}(L_e-(\gamma-\Gamma))$, which is homotopic equivalent to $C^n \times H \bigcup_{G \times H} G \times C^m$ (in the disjoint union of the spaces $C^n \times H$ and $G \times C^m$ we identify the subspaces $G \times H$ $\subset C^n \times H$, $G \times H \subset G \times C^m$). But we have the following identifications of pair of spaces $(C^n \times H, G \times H) \sim ((\operatorname{Con} G) \times H, G \times H), (G \times C^m, G \times H) \sim (G \times \operatorname{Con} H, G \times H)$ (where Con X denotes the cone over X).

If we define $X_1 = \{ [x, t, y] \in G * H : t \leq 1/2 \}$ and $X_2 = \{ [x, t, y] \in G * H : t \geq 1/2 \}$ then $(X_1, X_1 \cap X_2) \sim (G \times \operatorname{Con} H, G \times H)$ and $(X_2, X_1 \cap X_2) \sim ((\operatorname{Con} G) \times H, G \times H)$.

Therefore $F \sim X_1 \bigcup_{X_1 \cap X_2} X_2 = G * H$.

COROLLARY 2.5.

a)
$$\tilde{H}_r(F) = \bigoplus_{p+q=r-1} \tilde{H}_p(G) \otimes \tilde{H}_q(H) \oplus \bigoplus_{p+q=r-2} \operatorname{Tor} (\tilde{H}_p(G), \tilde{H}_q(H))$$

(for the proof see [Mi2]).

b) If G is n_1 -connected and H is n_2 -connected, then F is (n_1+n_2+2) -connected. In particular F is connected.

c) $\pi_1(F) = the free group of rank (a-1)(b-1)$, where $H_0(G) = \mathbb{Z}^a$ and $H_0(H) = \mathbb{Z}^b$.

REMARK 2.6. The homology groups can be calculated using the Mayer-

Vietoris sequence:

 $\cdots \longrightarrow \tilde{H}_q(u^{-1}(\gamma)) \longrightarrow \tilde{H}_q(u^{-1}(\mathcal{C})) \oplus \tilde{H}_q(u^{-1}(\mathcal{D})) \longrightarrow \tilde{H}_q(F) \xrightarrow{\hat{\sigma}_*} \cdots$

If we use Lemma 2.3 we obtain the following exact sequence:

$$0 \longrightarrow \tilde{H}_{q}(F) \xrightarrow{r_{*} \circ \tilde{\sigma}_{*}} \tilde{H}_{q-1}(G \times H) \longrightarrow \tilde{H}_{q-1}(C^{n} \times H) \oplus \tilde{H}_{q-1}(G \times C^{m}) \longrightarrow 0$$

which is equivalent with Corollary 2.5.a.

(Here the isomorphism r_* is induced by the natural retraction $r: u^{-1}(\gamma) \rightarrow u^{-1}(\Gamma)$.)

3. The global monodromy.

Let $g: \mathbb{C}^n \to \mathbb{C}$ be a polynomial map with bifurcation set $\Lambda_g \subset \mathbb{C}$. Consider a large circle $S_g = \{z: |z| = R_g\}$ such that $\Lambda_g \subset \{z: |z| < R_g\}$. Then g is locally trivial fibration over S_g . We shall call the isotopy class of the characteristic map $M_g: g^{-1}(R_g) \to g^{-1}(R_g)$ of this fibration the global geometric monodromy of g. M_g induces in reduced homology the global algebraic monodromy $m_g: \tilde{H}_*(g^{-1}(R_g), \mathbb{Z}) \to \tilde{H}_*(g^{-1}(R_g), \mathbb{Z}).$

EXAMPLE 3.1. If g is weighted homogeneous polynomial, possibly with negative weights, then $\Lambda_g = \{0\}$ and the global (geometric resp. algebraic) monodromy agrees with the usually (geometric resp. algebraic) monodromy of g.

Let g and h as in section 2., $G = f^{-1}(R_g)$, $H = h^{-1}(R_h)$. According to Corollary 2.5.a we define

$$(m_g * m_h)_* \colon \tilde{H}_*(G * H) \longrightarrow \tilde{H}_*(G * H)$$
$$(m_g * m_h)_r = \bigoplus_{p+q=r-1} (m_g)_p \otimes (m_h)_q \bigoplus_{p+q=r-2} \operatorname{Tor} ((m_g)_p, (m_h)_q)$$

Obviously $m_g * m_h$ is induced by the join of the geometric monodromies $M_g * M_h$.

THEOREM 3.2. Let f(x, y)=g(x)+h(y) as above. Then

$$(m_f)_* = (m_g * m_h)_*$$
.

PROOF. We can suppose $R_g = R_h = R$. By Theorem 2.2 we can take $R_f = 2R$. We define the C^{∞} family of C^{∞} diffeomorphismes $v_{\tau}: C \rightarrow L_{2Re^{2\pi i\tau}}, \tau \in [0, 1]$ (we identify C with R^2):

 $v_{\tau}(z) = (Re^{2\pi i \tau}(1+iz), Re^{2\pi i \tau}(1-iz))$ and we denote $C_{\tau} = v_{\tau}(\mathbf{R} \times [0, \infty)), \mathcal{D}_{\tau} = v_{\tau}(\mathbf{R} \times (-\infty, 0]), \gamma_{\tau} = v_{\tau}(\mathbf{R} \times \{0\})$ and $\Gamma_{\tau} = v_{\tau}(0)$. Then $v_0 = v_1, L_{2Re^{2\pi i \tau}} \cap (\Lambda_g \times C)$ $\subset C_{\tau}$ and $L_{2Re^{2\pi i \tau}} \cap (\mathbf{C} \times \Lambda_h) \subset \mathcal{D}_{\tau}.$

Since for each $\tau \in [0, 1]$ we have the property of decomposition as in Remark 2.6, the C^{∞} family of diffeomorphismes induce the following commutative dia-

Α. Νέμετηι

gram:

$$\begin{array}{cccc} 0 \longrightarrow \tilde{H}_{q}(F) \xrightarrow{r_{*} \circ \tilde{\partial}_{*}} \tilde{H}_{q-1}(G \times H) \longrightarrow \tilde{H}_{q-1}(C^{n} \times H) \oplus \tilde{H}_{q-1}(G \times C^{m}) \longrightarrow 0 \\ & & & \downarrow m_{f} & \downarrow m & \downarrow \\ 0 \longrightarrow \tilde{H}_{q}(F) \xrightarrow{r_{*} \circ \tilde{\partial}_{*}} \tilde{H}_{q-1}(G \times H) \longrightarrow \tilde{H}_{q-1}(C^{n} \times H) \oplus \tilde{H}_{q-1}(G \times C^{m}) \longrightarrow 0 \end{array}$$

where $G \times H$ is identified with $u^{-1}(\Gamma_0) = u^{-1}(\Gamma_1)$; $r = r_0 = r_1$ where $\{r_{\tau}\}_{\tau \in [0,1]}$ is the C^{∞} family of natural retractions $r_{\tau} : u^{-1}(\gamma_{\tau}) \to u^{-1}(\Gamma_{\tau})$; *m* is the monodromy induced by $\tau \mapsto u^{-1}(\Gamma_{\tau})$, which is $(M_g \times M_h)_{*,q-1}$. Therefore $m_f = m_g * m_h$.

References

- [Br1] S. A. Broughton, On the topology of Polynomial Hypersurfaces, Proceedings of Symposia in Pure Mathematics, Arcata Singularities Conference, Am. Math. Soc., 40 (1983). 167-178.
- [Br2] S. A. Broughton, Milnor numbers and the topology of polynomial hypersurfaces, Invent. Math., 92 (1988), 217-241.
- [H-L] H. V. Hà and D. T. Lê, Sur la topologie des polynômes complexes, Acta. Math. Vietnamica, 9 (1984), 21-32.
- [H] M.W. Hirsch, Differential Topology, Graduate texts in mathematics, 33, 1976.
- [Ko] A.G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math., 32 (1976), 1-31.
- [Mi1] J. Milnor, Topology from the differentiable viewpoint, University Press of Virginia, 1965.
- [Mi2] J. Milnor, Construction of universal boundles II, Ann. of Math., 63 (1965), 430-436.
- [Ne] A. Némethi, Théorie de Lefschetz pour les variétiés algebriques affines, C.R. Acad. Sci. Paris, 303, Serie I, no. 12, 1986.
- [O1] M. Oka, On the homotopy types of hypersurfaces defined by weighted homogeneous polynomials, Topology, 12 (1973), 19-32.
- [O2] M. Oka, On the bifurcation of the multiplicity and topology of the Newton boundary, J. Math. Soc. Japan, 31, No. 3, (1979).
- [O3] M. Oka, On the topology of Newton boundary II, J. Math. Soc. Japan, 32 (1980), 65-92.
- [O4] M. Oka, On the topology of the New boundary III, J. Math. Soc. Japan, 34 (1982), 541-549.
- [Sa1] K. Sakamoto, The Seifert matrices of Milnor fiberings defined by holomorphic functions, J. Math. Soc. Japan, 26 (1974), 714-721.
- [Sa2] K. Sakamoto, Milnor fiberings and their characteristic Maps, Proc. Intern. Conf. on Manifolds and Related Topics in Topology, Tokyo, 1973.
- [Se-T] M. Sebastiani and R. Thom, Un résultat sur la monodromie, Invent. Math., 13 (1971).
- [Ve] J.L. Verdier, Stratifications de Whitney et Theoreme de Bertini-Sard, Invent. Math., 36 (1976), 295-312.

András NÉMETHI

The National Institute for Scientific and Technical Creation Department of Mathematics Bd. Păcii 220, 79622 Bucharest, Romania

218