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1. Introduction.

There are several methods for studying the topological type of affine hyper-
surfaces. Kouchnirenko and M. Oka have investigated in [Ko], [O2], [O3],

[04] the relation between Newton boundary and the topology of the generic
fiber, H\‘a and L\^e [H-L] determined the bifurcation set of polynomial maps with
two variables using the Euler characteristic of the fibers. Another approach is
due to Broughton [Brl], [Br2] who have introduced and studied the class of
“tame” polynomials. His results have been extended by the author for the
larger class of “quasitame” polynomials [Ne].

In this note we establish a Sebastiani-Thom type result. More precisely:
Let $g:C^{n}arrow C$ and $h:C^{m}arrow C$ be polynomial maps with bifurcation sets $\Lambda_{g}$ resp.
$\Lambda_{h}$ . We consider the sum-map $f$ : $C^{n}\cross C^{m}arrow C,$ $f(x, y)=g(x)+h(y)$ . We prove
the following

THEOREM.
a) The bifurcation set of $f$ is contained in $\Lambda_{g}+\Lambda_{h}$ .
b) The generic fiber of $f$ is homotopic equivalent with the join space of the

generic fibers of the polynomial maps $g$ and $h$ .
c) The global algebraic monodromy of $f$ (around all the bifurcation points)

is induced by the 7 $0in$ of the global geometric monodromies of $g$ and $h$ . (In parti-
cular it can be determined in terms of the global algebraic monodromies of $g$

and $h$).

This result extends the results of Sebastiani-Thom [Se-T] and K. Sakamoto
[Sal], [Sa2] (in the local case) and M. Oka [01] in the special case of weighted
homogeneous polynomials. The proof is based on a new technique which applies
to the general (global) case of the polynomials (without $c*$-action).

We are indebted to the referee for suggesting us the proof of Theorem 3.2
which is more natural and simple than our original proof.
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2. The generic fiber.

Let $g:C^{n}arrow C$ and $h:C^{m}arrow C$ be polynomial maps. Then there exists a finite
set $\Lambda_{g}=\{c_{1}, \cdots , c_{t}\}$ (respectively $\Lambda_{\hslash}=\{d_{1},$ $\cdots$ , $d_{s}\}$ ) such that $g:C^{n}-g^{-1}(\Lambda_{g})$

$arrow C-\Lambda_{g}$ (respectively $h:C^{m}-h^{-1}(\Lambda_{h})arrow C-\Lambda_{h}$ ) is a $C^{\infty}$ locally trivial fibration
$\langle$see [Ve], [Brl], [H-L] $)$ .

We define $f:C^{n}\cross C^{m}arrow C$ by $f(x, y)=g(x)+h(y)$ and $\Lambda_{f}=\Lambda_{g}+\Lambda_{h}=$

$\{c_{i}+d_{j}|c_{i}\in\Lambda_{g}, d_{j}\in\Lambda_{h}\}$ . If we introduce the set $L_{e}=\{(c, d)\in C\cross C|c+d=e\}$

for all $e\in C$, and the map $u=g\cross h:C^{n}\cross C^{m}arrow C\cross C,$ $u(x, y)=(g(x), h(y))$ , then
$f^{-1}(e)=u^{-1}(L_{e})$ . Hence the study of the polynomial $f$ is in strong connection
with the study of the map $u$ and the mutual position of the line $L_{e}$ and the
set $\Lambda=(C\cross\Lambda_{h})\cup(\Lambda_{g}\cross C)$ . If $ee\Lambda_{f}$ , then let $\{C_{i}\}_{i=\overline{1,t}}=\{(c_{i}, e-c_{i})\}_{t\Rightarrow\overline{1,t}}=$

$L_{e}\cap(\Lambda_{g}xC)$ and $\{D_{f}\}_{j=1.S}-=\{(e-d_{j}, d_{j})\}_{j=\overline{1.s}}=L_{e}\cap(C\cross\Lambda_{h})$ .
LEMMA 2.1. There exists a $C^{\infty}$ diffeomorphism $v:R^{2}arrow L_{e}$ such that $v^{-1}(C_{i})\subset$

$R\cross(O, \infty)(i=\overline{1,t})$ and $v^{-1}(D_{j})\subset R\cross(-\infty, 0)(j=\overline{1,s})$ .
This is the consequence of the following

HOMOGENEITY LEMMA [Mil].

Let $n_{i}$ and $n_{i}’(i=\overline{1,k})$ be arbitrary points of the smooth, connected mani-
fold N. Then there exists a diffeomorphism $v_{N}$ : $Narrow N$ which (is smoothly so-
topc to the identity and) carries $n_{i}$ info n\’i. Moreover, $v_{N}$ can be chosen such
the set $\{x\in N:v_{N}(x)\neq x\}^{-}$ is compact.

In particular, we can choose the diffeomorphism $v:R^{2}arrow L_{e}$ such that $v$ is
an isometry outside of a large disk, hence we have the following properties in
plus:

i) there exists $K_{1}$ such that $||v^{-1}(w)-v^{-1}(w’)||<K_{1}||w-w’||$ for all $w,$ $w’\in L_{e}$ .
ii) $||d_{w}(v^{-1})||\leqq K_{1}$ for all $w\in L_{e}$ .
We define the following sets in $L_{e}$ : $v(R\cross[0, \infty))=C,$ $v(R\cross(-\infty, 0])=9$ ,

$v(R\cross\{0\})=\gamma$ and $v((c_{\Gamma}, 0))=\Gamma$ a point on $\gamma$ . Thus $C_{i}\in C(i=\overline{1,t)}$ and $D_{j}\in 9$

( $J^{=\overline{1,s})}$ . Our first result is the following

THEOREM 2.2. The restricted map $f:C^{n}\cross C^{m}-f^{-1}(\Lambda_{f})arrow C-\Lambda_{f}$ is a $C^{\infty}$

locally trivial fibration.
PROOF. If we denote $C.=v(R\cross[\epsilon, \infty))$ and $9_{\epsilon}=v(R\cross(-\infty, -\epsilon])$ then there

exists a sufficiently small $\epsilon>0$ such that $C_{i}\in C_{\epsilon}(i=\overline{1,t})$ and $D_{j}\in 9_{\epsilon}(j=\overline{1,s})$ .
We define a $C^{\infty}$ function $\phi:L_{e}arrow[0,1]$ by $\phi=\phi’\circ v^{-1}$ , where $\phi’(r_{1}, r_{2})=\phi’(r_{2})$ is a
$C^{\infty}$ function with

$\phi’’(r_{2})=\{$

1

$0$

$r_{2}$ $ $- \frac{\epsilon}{2}$

$r_{2} \geqq\frac{\epsilon}{2}$
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Let $e\not\in\Lambda_{f}$ . Since $g$ is trivial over $pr_{1}(L_{e}-C_{\epsilon})=P$ (where $pr_{1}$ is the first
projection $pr_{1}$ : $C\cross Carrow C$ ), there exists a diffeomorphism $\psi=(\psi_{1}, \psi_{2}):g^{-1}(P)arrow P\cross G$

such that $\psi_{1}=g$ .
Consider the following application:

$\tilde{\phi}$ : $B.,$ $\cross P\cross Garrow B_{\epsilon’}\cross P\cross G$ (where $B.,$ $=\{a\in C:|a-e|<\epsilon’$ )

$\phi(a, c, x)=(a, c+\phi(c, e-c)(a-e), x)$ .

From (i) we get that there exists $K$ such that $||\phi(w)-\phi(w’)||\leqq K||w-w’||$

for arbitrary $w,$ $w’\in L_{e}$ , hence for $\epsilon’>0$ sufficiently small di is injective. Simi-
larly, using (ii) we obtain that $\tilde{\phi}$ is local diffeomorphism for $\epsilon’$ small. In order
to prove the surjectivity of 6 we observe the following facts:

a) $\phi|B_{\epsilon’}\cross v(\{\epsilon/2\leqq r_{2}<\epsilon\})\cross G=id$

b) $(\emptyset|B_{\epsilon’}\cross 9_{\epsilon}\cross G)(a, c, x)=(a, c+a-e, x)$

c) $||\emptyset-id||\leqq\epsilon’$ .
Therefore, similarly as in the proof of Theorem 1.7 [H] we obtain the sur-

jectivity of $\phi$ .
Thus, for $\epsilon’$ sufficiently small di is diffeomorphism.
We define the diffeomorphism $\phi^{g}=(1, \phi_{2}^{g}):B_{\epsilon}\cross g^{-1}(P)arrow B_{\xi},$ $\cross g^{-1}(P)$ by the

diagram
$(1, \phi_{2}^{g})$

$B_{\epsilon’}\cross g^{-1}(P)-B_{\epsilon’}\cross g^{-1}(P)$

$l\downarrow(1, \psi)$ $l\downarrow(1, \psi)$

$B_{\epsilon’}\cross P\cross G\underline{\emptyset}B_{\epsilon’}\cross P\cross G$ .

Therefore $g(\phi_{2}^{g}(a, x))=g(x)+\phi(g(x), e-g(x))\cdot(a-e)$ . $(*)$

The map $(1, \phi_{2}^{g})$ can be extended by the identity, hence we have constructed
a diffeomorphism $(1, \phi_{2}^{g})$ : $B.,$ $\cross C^{n}arrow B_{\epsilon’}\cross C^{n}$ such that $(*)$ holds.

In similar way we obtain a diffeomorphism $(1, \phi_{2}^{h})$ : $B.,$ $\cross C^{m}arrow B_{\epsilon’}\cross C^{m}$ , such
that $h(\phi_{2}^{h}(a, y)=h(y)+(1-\phi)(e-h(y), h(y))\cdot(a-e)$ .

We define $\overline{\phi}:B_{\epsilon’}\cross f^{-1}(e)arrow f^{-1}(B_{\epsilon’})$ by $\overline{\varphi}(a, x, y)=(\phi_{2}^{g}(a, x),$ $\phi_{2}^{h}(a, y))$ . Then
$\overline{\phi}$ is diffeomorphism with $f(\phi_{2}^{g}(a, x),$ $\phi_{2}^{h}(a, y))=a$ .

In order to determine the structure of the fiber $f^{-1}(e)=u^{-1}(L_{e})$ we study the
restricted map $u:u^{-1}(L_{e})arrow L_{e}$ .

LEMMA 2.3. Let $e\not\in\Lambda_{f}$ . Then
a) $u:u^{-1}(L_{e}-\Lambda)arrow L_{e}-\Lambda$ is a $C^{\infty}$ locally trivial fibration. In particular

$u^{-1}(\gamma)\approx u^{-1}(\Gamma)\cross R\approx G\cross H\cross R$ .
b) $u^{-1}(9)\approx G\cross h^{-1}(pr_{2}9)\approx G\cross C^{m}$

$u^{-1}(C)\approx g^{-1}(pr_{1}C)\cross H\approx C^{n}\cross H$ ,
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(where $G$ and $H$ are the generic fibers of the polynomials $g$ and $h$ and $"=$ means
“diffeomorphic”).

PROOF. a) Let $(c, d)\in L_{e}-\Lambda$ . Then there exists a neighbourhood $U$ of \‘A

$(c, d)$ in $L_{e}$ such that $g$ (resp. $h$ ) is trivial over $pr_{1}U(resp. pr_{2}U)$ . Hence there
exist the diffeomorphisms:

$\psi^{g}=(g, \psi_{2}^{g}):g^{-1}(pr_{1}U)arrow pr_{1}UxG$ and

$\psi^{h}=(h, \psi_{2}^{h}):h^{-1}(pr_{2}U)arrow pr_{2}U\cross H$ .

Then $\psi:u^{-1}(U)arrow U\cross G\cross H,$ $\psi(x, y)=((g(x), h(y)),$ $\psi_{2}^{g}(x),$ $\psi_{2}^{h}(y))$ is a triviali-
zation of $u$ over $U$ .

b) Since $g$ over $pr_{1}9$ is trivial fibration, we have a diffeomorphism
$(g, \psi_{2}^{g}):g^{-1}(pr_{1}9)arrow pr_{1}9\cross G$ . The map $(\psi_{2}^{g}, p_{2}):u^{-1}(9)arrow G\cross h^{-1}(pr_{2}9)$ ,
$($ \psi \S , $p_{2})(x, y)=(\psi_{2}^{g}(x), y)$ is the wanted diffeomorphism. Since $\Lambda_{h}\subset pr_{2}9$ and
$pr_{2}9$ is a strong deformation retract of $Ch^{-1}(pr_{2}g)--:h^{-1}(C)=C^{m}$ . $\blacksquare$

With this preparations we can prove that following

THEOREM 2.4. Let $f$ be a polynomial in $C^{n}\cross C^{m}$ such that $f(x, y)=$

$g(x)+h(y)$ . Let $F=f^{-1}(e)(e\not\in\Lambda_{f})$ , $G=g^{-1}(c)(c\not\in\Lambda_{g})$ and $H=h^{-1}(d)(d\not\in\Lambda_{h})$ .
Then there is a homotopy equivalence between $F$ and $G*H$ (the join of $G$ and $H$ ).

PROOF. From Lemma 2.3 there is a homotopy equivalence between $u^{-1}(L_{e})$

and $u^{-1}(L_{e}-(\gamma-\Gamma))$ , which is homotopic equivalent to $C^{n}\cross HUGG\cross H\cross C^{m}$ (in the

disjoint union of the spaces $C^{n}\cross H$ and $G\cross C^{m}$ we identify the subspaces $G\cross H$

$\subset C^{n}xH,$ $G\cross H\subset G\cross C^{m})$ . But we have the following identifications of pair of
spaces $(C^{n}\cross H, G\cross H)\sim((ConG)\cross H, G\cross H),$ $(GxC^{m}, G\cross H)\sim(G\cross ConH, G\cross H)$

(where Con $X$ denotes the cone over $X$ ).

If we define $X_{1}=\{[x, t, y]\in G*H:t\leqq 1/2\}$ and $X_{2}=\{[x, t, y]\in G*H:t\geqq 1/2\}$

then $(X_{1}, X_{1} \bigcap_{1}X_{2})\sim(G\cross ConH, G\cross H)$ and $(X_{2}, X_{1}\cap X_{2})\sim((ConG)\cross H, G\cross H)$ .
Therefore $F\sim X_{1}()X_{2}=G*HX_{1}\cap X_{2}$

COROLLARY 2.5.

a) $\tilde{H}_{r}(F)=\bigoplus_{p+q=r-1}\tilde{H}_{p}(G)\otimes\tilde{H}_{q}(H)\oplus\bigoplus_{p+q=r-2}Tor(\tilde{H}_{p}(G),\tilde{H}_{q}(H))$

(for the proof see [Mi2]).
b) If $G$ is $n_{1}$-connected and $H$ is $n_{2}$-connected, then $F$ is $(n_{1}+n_{2}+2)$-connected.

In particular $F$ is connected.
c) $\pi_{1}(F)=the$ free group of rank $(a-1)(b-1)$ , where $H_{0}(G)=Z^{a}$ and $H_{0}(H)$

$=Z^{b}$ .
REMARK 2.6. The homology groups can be calculated using the Mayer–
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Vietoris sequence:
$\partial_{*}$

$arrow\tilde{H}_{q}(u^{-1}(\gamma))arrow\tilde{H}_{q}(u^{-1}(C))\oplus\tilde{H}_{q}(u^{-1}(9))->\tilde{H}_{q}(F)arrow\ldots$

If we use Lemma 2.3 we obtain the following exact sequence:

$0arrow\tilde{H}_{q}(F)$
$\tilde{H}_{q-1}(G r_{*}\circ\partial_{*}xH)arrow\tilde{H}_{q-1}(C^{n}\cross H)\oplus\tilde{H}_{q-1}(G\cross C^{m})arrow 0$

which is equivalent with Corollary 2.5. $a$ .
(Here the isomorphism $r_{*}$ is induced by the natural retraction $r:u^{-1}(\gamma)arrow$

$u^{-1}(\Gamma).)$

3. The global monodromy.

Let $g:C^{n}arrow C$ be a polynomial map with bifurcation set $\Lambda_{g}\subset C$ . Consider
a large circle $S_{g}=\{z:|z|=R_{g}\}$ such that $\Lambda_{g}\subset\{z:|z|<R_{g}\}$ . Then $g$ is locally
trivial fibration over $S_{g}$ . We shall call the isotopy class of the characteristic
map $M_{g}$ : $g^{-1}(R_{g})arrow g^{-1}(R_{g})$ of this fibration the global geometric monodromy of
$g$ . $M_{g}$ induces in reduced homology the global algebraic monodromy
$m_{g}$ : $\tilde{H}_{*}(g^{-1}(R_{g}), Z)arrow\tilde{H}_{*}(g^{-1}(R_{g}), Z)$ .

EXAMPLE 3.1. If $g$ is weighted homogeneous polynomial, possibly with
negative weights, then $\Lambda_{g}=\{0\}$ and the global (geometric resp. algebraic)

monodromy agrees with the usually (geometric resp. algebraic) monodromy
of $g$ .

Let $g$ and $h$ as in section 2., $G=f^{-1}(R_{g}),$ $H=h^{-1}(R_{h})$ . According to Corol-
lary 2. $5.a$ we define

$(m_{g}*m_{h})_{*}:$ $\tilde{H}_{*}(G*H)->\tilde{H}_{*}(G*H)$

$(m_{g}*m_{h})_{r}= \bigoplus_{p+q=r-1}(m_{g})_{p}\otimes(m_{h})_{q}\oplus\bigoplus_{p+q=r-2}Tor((m_{g})_{p}, (m_{h})_{q})$

Obviously $m_{g}*7n_{h}$ is induced by the join of the geometric monodromies $M_{g}*M_{h}$ .

THEOREM 3.2. Let $f(x, y)=g(x)+h(y)$ as above. Then

$(m_{f})_{*}=(m_{g}*m_{h})_{*}$ .
PROOF. We can suppose $R_{g}=R_{h}=R$ . By Theorem 2.2 we can take $R_{f}=$

$2R$ . We define the $C^{\infty}$ family of $C^{\infty}$ diffeomorphismes $v_{\tau}$ : $Carrow L_{2Re^{2\pi i\tau}},$ $\tau\in[0,1]$

(we identify $C$ with $R^{2}$):
$v_{\tau}(z)=(Re^{2\pi i\tau}(1+iz), Re^{2\pi i\tau}(1-iz))$ and we denote $C_{\tau}=v_{\tau}(R\cross[0, \infty)),$ $9_{\tau}=$

$v_{\tau}(R\cross(-\infty, 0]),$ $\gamma_{\tau}=v_{\tau}(R\cross\{0\})$ and $\Gamma.=v.(O)$ . Then $v_{0}=v_{1},$ $L_{2Re^{2\pi i\tau}}\cap(\Lambda_{g}\cross C)$

$\subset C_{\tau}$ and $L_{2Re^{2\pi i\tau}}\cap(C\cross\Lambda_{h})\subset 9_{\tau}$ .
Since for each $\tau\in[0,1]$ we have the property of decomposition as in Remark

2.6, the $C^{\infty}$ family of diffeomorphismes induce the following commutative dia-
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gram:
$r_{*}\circ\partial_{*}$

$0arrow\tilde{H}_{q}(F)-\tilde{H}_{q-1}(G\backslash \cross H)\downarrow m_{f\downarrow^{1}m}arrow\tilde{H}_{q-1}(C^{n}\cross H)\oplus\tilde{H}_{q-1}(G\cross C^{m})\downarrowarrow 0$

$r_{*}\circ\partial_{*}$

$0arrow\tilde{H}_{q}(F)-\tilde{H}_{q-1}(G\cross H)arrow\tilde{H}_{q-1}(C^{n}\chi H)\oplus\tilde{H}_{q-1}(G\cross C^{m})arrow 0$

where $G\cross H$ is identified with $u^{-1}(\Gamma_{0})=u^{-1}(\Gamma_{1});r=r_{0}=r_{1}$ where $\{r_{\tau}\}_{\tau\in[0,1]}$ is the
$C^{\infty}$ family of natural retractions $r_{\tau}$ : $u^{-1}(\gamma_{\tau})arrow u^{-1}(\Gamma_{\tau});m$ is the monodromy induced
by $\tau-u^{-1}(\Gamma_{\tau})$ , which is $(M_{g}\cross M_{h})_{*.q-1}$ . Therefore $m_{f}=m_{g}*m_{h}$ . $\blacksquare$
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