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0. Introduction.

Let us consider the following second order quasi-linear partial differential
equation :

0.1 ——;—Ava—i—H(x, VYva)+av, =0

with a quadratic growth nonlinear term H(x, Vv,) on Vv,, where a is a positive
constant. Such kinds of equations on bounded regions with periodic or Neumann
boundary conditions have been studied by several authors (cf. Bensoussan-
Frehse [3], Gimbert [6], Lasry [8], and Lions [9]) in connection with ergodic
control problems, where the asymptotic behaviour of the solution v, of [0.1)as
a tends to 0 is investigated. The problems arise from stochastic control
problem (cf. Bensoussan [2]). In those works important steps of the resolution
of such problems are to deduce the estimates on the L®-norms of av, and Vv,
by using the maximum principle and the Bernstein’s method. But similar
problems on the whole space have been out of consideration because the method
does not work. We may say intuitively that main difficulty to treat such
problems on the whole space lies in lack of uniform ergodicity of underlying
diffusion processes and it seems to be necessary to employ completely different
method.

In the present article we specialize the equation to the case where
0.2) H(x, Vv,) = %[Vualz——V(x)

but treat it on whole Euclidean space R™. We notice the relationship between the
equation [(0.1) with [0.2) and the eigenvalue problem of a Schrédinger operator
—(1/2)A+V in LXR™):

&) This author was partially supported by Grant-in-Aid for Scientific Research (No.
62302006), Ministry of Education, Science and Culture.
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0.3) — MGV =15,

More precisely, let us take the principal eigenvalue 2; of the operator and the
corresponding normalized eigenfunction ¢(x) and set

w = —log ¢+S¢210g¢dx,

then w satisfies the equation
_1

2
We start with regarding as a Bellman equation of ergodic control type

and [0.1) with as the corresponding equation of discounted type (cf. §1).
Our theorems assert that under some conditions on V(x) av, converges to

(0.4) Aw+-21—|Vw12—V(x>+z,=o with Sw¢2dx=0.

2, and va—gvagbzdx to w in a suitable function space as a—0, where v, is the

positive solution of [(0.I) with [0.2) (cf. §3). 7
To study the equation [0.1) with we take a transformation.

Ve = —log u,
and have the equation

0.5) ——%Aua—i-Vua = —auqslogu,, 0<u =l.

For the proof of existence of the solutions of [0.5) we employ Tartar’s methods
which were useful for the study of quasi-variational inequalities (cf. §2 and [4]).

We note that the relationship between ergodic control and the principal
eigenvalue A; of an elliptic operator has been studied by Karatzas from a
probabilistic view point in the case of R! under rather stringent conditions on
V(x). But any results on convergence to w have not seen so far.

The second author would like to express his hearty thanks to Dr. Fukagai
for useful discussions.

1. Preliminaries.

1.1. Setting of the problem. Let V(x) be a function on R"™ such that
1.1 V(x) =0, smooth, V(x)—> oo as |x|—oo.
Then the eigenvalue problem
1.2) ~SAGHV$ = 19

in L?(R™) has been solved as follows (cf. [10], [12]). An operator —(1/2)A+V(x)
on Cy(R"™) has a unique self-adjoint extension H in L*R") (as a sum of
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quadratic forms) and the resolvent operator G,=(y4H)™', r>0 is compact.
Therefore the operator H has purely discrete spectrum:

O=sh<b=s

(cf. Th. XIII. 67). It is also known that the principal eigenvalue 2, is
simple and a corresponding eigenfunction ¢(x) satisfies

1.3) 0 < ¢(x) < Ae %!

for some positive constants A and B (cf. [10], Chap. XIII, §C.1, §C.3and
[5D.

Thus we are given a function ¢ satisfying

1
(1.4) —§A¢+V¢ = A4,
1 2 2 2
(L5) S vgract [vgan{par < +oo
and [L.3]. We assume that ¢(x) is normalized as S¢2(x)dx:1. Let us set

w = ~log ¢-+ (¢ log gdr,

then w satisfies the equation

1

1
—SAwt [ Tw|*+2, =V

(1.6)

with S|Vw12¢2dx<+oo and uwge=0.

This equation looks like the Bellman equation of an ergodic control problem.
Indeed can be written as ‘

, 1 . noow 1, .,
1.6 —ghuth = int (g gtz V@)
Therefore it is interesting to study the equation
1.7 f%Ava—{—%lea *4+av, =V

and the limit of the solution v, of as a—0.
Indeed consider the following stochastic control problem
dy = z,dt+db,, y(0)=x

where b is a standard n dimensional Wiener process. The process z,, the control
is adapted to the family of ¢-algebras B‘'=a(b(s), s<t) generated by the Wiener
process b,. We want to minimize the cost function
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T30 = Ef e (Vo) + 1 201t
It is well known that the solution of satisfies
va(x) = inf J5(2(-)).
The ergodic control problem corresponds to the case a—0. One expects av,(x)

to converge to a scalar 4, independent of x and v,(x)—wv.(x,), to some w, which
yields from (1.7

1 1 2 —
—gAwt | Vwl +4 =V

i. e. equation [1.6).

REMARK. lgqsz(x)log o(x)dx| <+ since

ON(—xlog A) £ —xlogx < e '~¢+&x VE, 0<xZLA,

in particular
ON(—glog A) < —gloggp < e '""+V ¢

and we have and [(1.5).

1.2. Some function spaces and quadratic forms. Let us define a function
space

(L.8) Hy={z| S|\7z|2dx<+oo, §V22dx<+oo, Szzdx<+oo}
and a quadratic form
1.9) e"(u, v) = %SVu-Vvdx—i—SV uvdx, u, veH}

corresponding to the self-adjoint operator H:
e"(u, v) = (Hu, v), Yu, ve 9(H),

where (, ) is ordinary L*(R") inner product. H} is a Hilbert subspace of
L*R™) with inner product

(1.10) (u, v), = e"(u, v)—i—Suvdx

and C2(R™) is dense in H} with respect to the norm |ul,=+'(, u);. More-
over, following Carmona [5], we have

LEMMA L1.1. {@f|fCF(R™)} is dense in Hi with respect to the norm || |,.

Proor. It suffices to prove that for each f=CP(R™) there exists a sequence
fi€CF(R™) such that ||¢f;—f||,—0 as j—co. We first note that fg-‘=H} for
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each feC7(R™), which is easily seen because ¢(x)=0>0 on the support of f

for a positive constant § and SIV¢|2dx<+oo. Therefore using a mollifier, f¢-*
can be approximated by a sequence of functions f,;=Cy(R") such that
jivcsgm—porant 17— filrax — 0, jeo,

supports of f; and f are included in a compact set K, and f,—f¢~! uniformly
on K as j—co.
Thus we see that

1f—fil = IV —gr) et [Vis-grrant |1 £ pr,1%0n

= | IV —ralgdnt | (V1o —fygnt( 1991367~ firdr

converges to 0 as j—oco since we have and O
Let us set

(1.11) Hy=A{feLly||VfleLly}

(1.12) Ly=1s \ sz¢2dx<+oo}

Then Hj is a Hilbert space with inner product
(113 (f, @) = (V7 -Vg-gdx+ | fagd

and we see that CJP(R") is dense in Hj with respect to the norm [ fllz=
~(f, f)g by standard arguments using a mollifier since ¢(x) satisfies [I.3) and
(1.5). Let us define a transformation from L% to L*R™) by f—¢f. This
transformation is unitary from L} to L*R") and it is useful to note that there
are the following identities between the quadratic forms on H} and H}, which
is noted by Albeverio-Hgegh-Krohn-Streit and Swanson [13].

LemMA 1.2 ([1], [5], [13]). One has
118 F\1vrrgae =Sl rant (Vg ra-al@rrar,  remy
(1.15) %—SIVZ—Z—Vgilzdx:%—Slw2dx+SV22dx-—zISzﬂdx, zeHb.
Proor. 1t is easy to see (1.14) holds for f=CF(R") and (1.15) holds for

z=¢f, feCF(R™). Since CF(R™) (resp. {¢f| f€CF(R™)}) is dense in H} (resp.
H}) we obtain (1.14) for f&H}j and (1.15) for ze€ H3,. O
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LEMMA 1.3. One has the inequality
(1.16) [r-rroars 2 glivrrgar,  ren,
where fszngdx.

Proor. We first note that

(1/2)5 IVuIde+SVu2dx I 1{
1.17) A, = Inf u=H}
{ Suzdx ‘
and
. 2 . ! 2 ‘!
(1.18) Z:inf{ (/2 |l Vs Jug=0, uc—:H%J
Suzdx \ [

by mini-max principle. Therefore from (1.14) it follows that
(/219715 gdx
in
Sf2¢2dx

feH), ngs%zx:o}

(I/Z)SIVulzdx—i—gVuzdx—llSude
— inf wEH}, Su¢=0 =l iy
Suzdx
Hence we have (1.16). O

We shall need in the following sections the function spaces with weights
as follows. For p=0 let

(1.19) Bu(x) = exp{—p(l+]|x|*)!2}

and set

(1.20) L% = {z| Buz=L?

(1.21) Ly, =lecL} SVﬁ;zzdx<+oo}
(1.22) Hy,=leslt, | S{V(ﬁ#z)|2dx<+oo}

with the natural norm

(1.23) 2l ——52255de+5225,idx+51V(zﬁ#>[2dx.

e

We choose g such that
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0 < p® < 2a

and consider the bilinear form on Hy ,
1
(1.24) a(z,, z,) = —Z—SVzl(szﬁi—Zpﬁi(—l_;l‘%wzg)dx—kS(V——Xl—i—a)zlzgﬁﬁ,dx.

LEMMA 1.4. a is a continuous coercive form on Hi .

ProOOF. We first note that

1 X
G(Z, 2) = —Z—SVZ(VZ'ZFWWZ)ﬁidx_’—S(V~21+a)22ﬁidx

= 3l 1vesniaet [ —egint (a5 e,

Therefore a is a continuous form on H} ,. We further remark that by (1.15)
1
5V 198t |V~ 1)zB,0dx 2 0

because zB,=Hj. Take 0<#<1 such that

2

021<a_§ ’

then we have |
a(z, 2) = —"—§1v<zﬁ >|2dx+ogv2252dx+(a—i‘i—oz EEE
’ =2 ¢ 1 2 1 © .

Hence a is coercive on Hy, ,.

It is obvious that a is continuous on Hy, ,. O

2. Study of the equation (1.7).
2.1. A transformation. We shall study through the transformation

2.1) Ve = —log u,, 0<u.x1,

and thus obtain

(2.2) —%Aua—kVua = —auglogu,, 0<u=1.
Let us take a constant ¢ such that sup,c@(x)=1. We set
(2.3) Pa(x) = ce h11g(x),

then ¢,(x) is a subsolution of [2.2):

2.4) ——%A¢a+v¢a < —ag.log g,

because it follows that
219, £ —ad,log d.
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from ¢@,=<e"%1/e,

Now we introduce a supersolution of Let us consider the following
equation :

.(2.5) ——-%—AX,,-%-(V—-A)X,,A—aZa = qe~*1/%

LEMMA 2.1. For 0<p?/2<a, there exists a unique solution X, of (2.5) in
v.u and it is a supersolution of (2.2) such that Xo=¢,.

PROOF. Because of the bilinear form « is a continuous coercive
form on Hy, ,. Therefore

a(lq, z2) = Sae‘h/"zﬂf,dx VzeH},,

has a unique solution X, in HJ,,. Now we set

¢'a —_"xa'—¢a = Hll’,y,
then we have

-——;—Agba-l—(V—Zl)gba—l—ag[:a =ae ' —ad, = —Aip,—ad.logd, 2 0.

Since
ae™ W+ (h—a)pa 2 inflae™ 4" +Eg.] = —ag.log fa.
Thus we obtain ¢,=0, namely X,=¢,. Moreover we have
— S MV = e (= 2 inflae L} = —aX log e

since X,=¢,>0. Hence we see that X, is a supersolution of O

Now we have the formula

2.6) Lo(x) = ae-h/“S:’e-“u(x, 1t
where u(x, t) is the solution of
@.7) %—?—%Au—}-(V—-Zl)u =0, ulx,0)=1.

We shall use the following estimate to know a majoration of ¥,. Its probabilistic

counterpart has been shown by Simon [1I]. But for completeness we will
give the proof of an analytical version.

LEMMA 2.2. One has the estimate (Simon [11])

et for t<£1
28) ulx, 1) = ‘{cnl””2 for t=1.
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Proor. Consider the equation

9z 1
a_j—-z—AzHV—zl)z =0,  z(x, 0)=£(x)

with f= L% R™), then one has

2.9)

et

(2.10) |26, DI S sz | Flze Vi

Indeed we may assume f=0 without loss of generality since we can check by
comparison arguments

lz(x, D] = 9(x, 1).
Where 7 corresponds to with f(x) replaced by |f(x)|. Now for f=0 one
has z=0. Hence

(2.11) 2(x, 1) £ (x, 1).
Where { is the solution of

0 1
2.12) R IM-AL=0, U, 0=,
But

el - —z e®1| flpe y-z vz el f|,
G 1= Gy o 070y = g (v ) =
On the other hand one has the energy estimate
1 1 1

(2.13) Sle®it+ (| (51921 —22)dxds = 51 £ 112

and from (1.15) it follows that
(2.14) l2{t) 22 < | flLe.

Thus we have

et
(2.15) lz(x, 1) = WlflL2 Vx, Viz=1.

Indeed, since z(x, t) for t=1 can be considered as the value at time 1 of the
solution of [(2.9) with initial value z(x, t—1), we have

ezl ezl
lz(x, ] = le(', =12 = W]fli%

Let us turn to One first has
(2.16) u(x, t) < ettt for t<1.

Next for t=1 we can write
u=z+¢,

where z is the solution of with



58 A. Bensoussan and H. Nagar

flx)= 1(|x—201§Rt0) , Xo, to fixed, RQZ\/Z
and { the solution of

1
—aaf—mfAC—}_(V—zl)C =0, C(x, 0) = Lluz-zgi>riq -

Therefore from (3.10)

et

z(x, )] = onrignlt

Rn/zt(r)z/lellx/z

where | B,| is the volume of the unit ball in R™. In particular

et

(2.17) z(xo, to)l §WRM2¢3/2[B1|”2-
Next
{ix, ) JE—S e-<1/<2¢>>w—x!2dy
PO Qrt)ME Jiy-zgizReg

and particularly
etito

Elxo, to) = Cat o~ (/@ IY=2012
0

SIy—IQIERto
elxto S
@) )igizri)/

Therefore we have proved that

e—1/2\£l2d$ < oni2gCA1-R2 /Dty

n/4
(2.18) u(x, 1) S eMAL LR B 420, r21,
which completes the proof of the desired result. O

It follows from [Lemma 2.2. that

(2.19) Lo(x) = 91”“@'11"’+cne'11"’a‘"’2r(%+1)
hence
(2.20) —alogXa(x) = 21+§a10ga—alogKn for 0<a<l,

where K,=e*1* ¢, [(n/2+1).
2.2, Definition of a monotone map. We begin with

LEMMA 2.3. If zeL{,, with 0<z<X, and 7 is sufficiently large, then
rz—azlogze L} and the map z—yz—azlog z is monotone increasing.

PROOF. Since z=X, one has

n

T—alogz—a =y—a—alogd, = 7—a-+i+ 2

alog a—alog K,
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> 74+ 2—a(l+log Kn>~—2";— >0

if 7 is sufficiently large. Therefore the map
z—7z—azlogz

is monotone increasing. Moreover

0=rz—azlogz < aexp(%—%)%—éz VéE=R
hence in particular
0Zrz—azlogz < aexp(—t&—%%—zx/v.

Therefore we have
[sira—aztog 2yvdx = 2(g3e2V dx-+2atera-ere{grax,
which is finite, hence the desired result is obtained.

Define
K{={z=L} ,10<z=8s), Ca=U A1,

and the operator T, , defined on K by
(2.21) —-%AC—{—VC-{—TC =rz—azlogz, feH} ,
(2.22) E=T, .2, zeK).
is solved as follows. Let
1 , x
b(zl, Zz) = —Z—SVzl(szﬂi——Zpﬁ;‘Wzg)dx-i—S(V-{—T)lezﬁf,a’x.
Since
1 2 2
bz, 2= 3| I9B) tdxt gvzm;dx+g{r—~2—%_‘%l—z)}zwzdx

b is a continuous coercive form on H3, , for y>p?/2. Hence

@.24) bC, &) = |(rz—azlog2)prds  VE=H3,,

59

has a unique solution for z& L§, , with z2>0. Since ze L} , with z>0 implies

rz—azlogze L}.
Let us set
K, = {ZEL%,,L! I ¢a§.2§Ca},
then we have

LEMMA 2.4. The operator T, . maps K, into itself.



60 A. BEnsoussaN and H. NAGA1

PrROOF. As noted above defines a unique { in H}, ,. Let us check
that {=K,. Indeed, let

Sb = C_¢a = Hll’,u
and from [2.4) and [2.21) it follows that

——%Agb—}-ng-H’gb > rz—azlogz—(rpa—ad.logg.) =0

since z=¢,. This implies ¢=0, namely {=¢,.
Similarly let us set
E = xa_C,

then we have
—LAEVELTE 2 L adog (12— azlog ) 2 0

Since X,=z. Therefore, noting that £ Hy, ,, we obtain £=0, hence X.=C.
Consider next ({—1)* which belongs to H3,,. We have

bE, (€~1)") = |(rz—azlog2)C—1)"dx.
Since {=({—1)*+{Al we deduce

1 + +02 2 x + +202
DA (TC— 1 B2 oy G ") [V €= 172
+{r@—vdn+ [y eanE—1rprz

:S(rz-—az1ogz~—r<z;/\1)><c—1>+/3§,dx = S(rz—az log z—7)(C—1)*B2dx < 0.

Thus we obtain
1 : ¢’ :
S I9@=D et (- ) e grax < 0,
which implies ({—1)*=0. Hence {<1. Thus the desired result is proved. [

2.3. Existence and uniqueness. The set of solutions of is equivalent
to the set of fixed points of the map T, ., We prove

THEOREM 2.1. Assume (1.1), then the set of solutions of (2.2) in K, is not
empty and has a minimum and a maximum element.

Proor. We know that T, , maps K, into itself. Moreover T, , is monotone
increasing on K,. We follow an argument due to L. Tartar, stated in A.
Bensoussan-J. L. Lions (cf. p. 348, Remark 1.5). Let

(2.25) S={zcK,| Ty 252}
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which is not empty. In fact {,=S because

TraXuAND) S Ty ada £ Xy
and T, L. AD)Z1 implies T, .L.<{,. Let us next set
(2.26) 2 ={z2€K,| T, 222, 2z5u, YusS}

which is not empty since ¢,=2. Now T, , maps X into itself. Indeed, let
ze X, then T, ,z&K, and

T Tt a2) 2 Ty az.
Moreover, if u<S, z<u implies
T, 02=Tru=u.

We next show that Y has a maximal element. It is a consequence of Zorn’s

lemma.
We must prove that every totally ordered subset {z,} of X has an upper
bound. Let {z.} be such a subset, since z,=L}, , and ¢,<z:,={,, 2, converges

in L}, ,. In fact, being fixed &k, Szk(Ca—zko)(l—i—V)ﬂidx are increasing real

numbers bounded above and converge. Moreover
Jlze—zu 1ta+VB1ax < (Gr—2i)Camza1+V B30

for k,<k’<k. Let z be its limit, then ¢,<z<{, and z<uVu<S. Also from
zy £ Tr,zxzk = Tr.ag

we deduce z<T, ,z. Therefore z=X and is the upper bound of the set z:
since, if {2 satisfies z,<{, for all k, necessarily z<¢.

It is thus proved that Y has a maximal element z. Necessarily z is a fixed
point of T, .. Indeed z&X implies T, .22, T, ,z=z and by the maximality of
z in K,, necessarily one has

Tiaz=2.

Since z<u VYu in S, in particular z<u for all u such that T, ,u=wu. Therefore

z is the minimum solution in K,. The existence of maximum solution is proved

in a similar way. The proof has been completed. O
THEOREM 2.2. Assume (1.1) and

(2.27) eV = LYR™), 36>0,

Then the positive solution of (2.2) in Hy . is unique and belongs to HY for

0<a<l1/a.

PROOF. Step 1. We first show that any solution of in H}, , belongs
to Hj. Indeed, let u, be a solution of in H} ,, then we have
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1 . _ r—a VNV
__-Z—Aua—FVua-}-Tua = TUus—auzlogu, < aexp( . B ) g ta s
therefore
Lyl e TV 1
—Z—Aua+§Vucf+rua < aexp( - °a ), UEHY 4.
Let z be a solution of
1 1., . r—a V.
~§Az+—2—1/ zt+7rz = aexp( . 900 )

in H}, ,, then z belongs to H since we deduce aexp(7—a)/a—V /(2a))< L* from
the assumptions and [I1.I)} Thus we see that u,< L} since 0<u,=z.
Consequently we deduce,
TUa—auzlog U, <= L2
from 0<7uq—auglogua<aexp(y—a)/a—~V /a)+vV u. Hence we conclude
that u, = H?%.
Step 2. We next show that if » and u’ are two positive solutions of

in H{ such that »<u’, then necessarily u=u’. In fact, from the equation [2.2)
we deduce

Suu’log u'dx= Suu’log udx,

which implies u=u’.
Step 3. By Step 2 and has a unique solution u, in K,.
Let #, be another positive solution in Hy ,. We set

Ke={2EL} | 8.V 6a<z=L.}.

Note that I?a is not empty. Indeed we have
1
_'2_A<xa""ﬁa)"i—(v_lzl)(xa_ﬁa)+a(xa_ﬁa> == ae'h/“-i-(zl—a)ﬁa-l-aﬁalog ﬁa

= —afiglog fi.+aii,logfi, =0.

Therefore we see that X,—#,=0 since X,—#,=H}, .. Thus we have #,=<C,.

Now we shall see that #,\V¢, is a subsolution of [2.2). In fact, noting that
T,.o is monotone on K for sufficiently large 7, we have

Tr,a(ﬁa‘\/féa) —_2_ Tr,aﬁa - ﬁa
and

T aliaV@a) Z Ty aboa = Pa,
from which we deduce Ty (V@) aV Pa-

Therefore in the same way as the proof of [Theorem 2.1, we see the exist-
ence of the solution of in K,, which is moreover unique because of Step
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1 and Step 2. Let u¥ be the solution in I?a, then we have u¥=u, since
K,cK,. Moreover u¥>1{, by definition, which implies u*¥=14, and #,=u,.
The proof has been completed. i

3. Study of the limit as a—0.
3.1. Limit of —alogu,.

THEOREM 3.1. Assume (1.1), then for any solution of (2.2) in K,N\H4y . one
has

3.1 }zi_{r()l(~alog U X)) = 4;.

Proor. We have

(3.2) —alog @u(x) = —alogu.(x) = —alogl(x).
Therefore
Lim(—alog uq(x)) 2 lim(—alogX(x)) = 4
a—0 a—

by [(2.20). On the other hand
lim(—alog u4(x)) < lim(—alog gu(x)) = A+lm(—alog cg(x)) = 4.
Hence we obtain [(3.1) O

3.2. Limit of v,. Let u, be a solution of [2.2) in K.,N\H¥ ,, then it is
locally smooth by regularity properties of elliptic equations and 0<<u,<1. There-
fore we deduce from [2.2) that the function v,=—log u, satisfies

(3.3) 05, < —é:———logcgzi(x)
and is a solution of [1.7). Moreover
Ao = aSvagbzdx = ——S(a log uq)9%dx < 4oco.

From and we can assert that
(3.4) lim 2, = 4.

a—0

We then prove

THEOREM 3.2. Assume (1.1) and (2.27). Let u, be the unique solution of
2.2) in H} with 0<u,=1 and vo=—10g u,, then va—SvagSde converges to w=

—1og¢+§¢21og¢dx in H3,.

PROOF. Since u,=H%¥, ¢/u.=L> and ¢*/u,=H}, from [2.2) it follows that
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(3.5) —;—SVua-V<—f—)dx+SVu ( ¢ )dx = —ag(ualog Ua) 32 dx
Therefore we have
(3.6) —--%—Sl Vu““ dx +S Vita V; T grdx+ (v gdn = —a{gtloguads.

Since vo=—log u, and Vua:—Vua/ua we see that v,&Hy and

3.7 S‘V”“L |"gdx-+alvegrar = SV¢2dx+ S|v¢12dx = .
As noted above aSv(,‘ng”dx-—nlI as a—0. Therefore

3.8) Slv 4 \ gdx —> 0, as a—0,

Let us set ﬁa———va~gva¢2dx, then from we deduce

flva—witgrar < mglwa—vmwwx = Z(TI_A)—S'Vvaﬂ-Eq;ilngzdx.

Hence by we obtain the desired result. O

4. Example

We illustrate a simple example. Let
V()= 3 lxlt = 3Cebtabt = +ad),

then the principal eigenvalue of —(1/2)A+V in L%R") is n/2 and the cor-
responding normalized eigenfunction is ¢(x)=Ae~*/»'="*, where A is a normalized
constant. Let us take C such that sup,cé(x)=1 and set

Pa(x) = "1/ P(x) = exp{‘%"' t =gt

We can find the solution u, of

u(x)=ex{ ol £.1 " }»
* Plat+va 114 ala+va?+4))’
and the solution v, of [(1.7)

[x]? n n
at+vVal+4 ' alat+vat+4)’

Va(X) =
We see that as a—0

n
avy(x) —> &

2
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and

val)= [0 e —> 312122 = —log ¢lx)+{glog glx)dx

REMARK. We can develop our all arguments without using more regularities
than 1** order differentiabilities on u.(x). Then the assumption that V(x) is
smooth can be weakened, for example, as V(x)=L%, if n<3 and V(x)eLE,,
p>n/2 if n>3 since, under these assumptions besides the conditions that
V(x)=0, V(x)—oo, as |x]|—oo, the principal eigenvalue of —(1/2)A+V is simple
and a corresponding eigenfunction satisfies (ct. [5D.
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