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Introduction.

A compact oriented framed manifold $(N, \alpha)$ of dimension $4k-1$ has an in-
variant called signature defect defined by Hirzebruch in [Hi] as follows: Since
$N$ is framed, there exists a compact oriented $4k$ dimensional manifold $M$ with
$\partial M=N$ and the tangent bundle of $M$ restricted to $\partial M$ is trivialized. Thus we
can define the Pontrjagin classes of $M$ as relative classes $p_{j}$ in $H^{4j}(M, \partial M;Z)$ .
Hirzebruch defined the signature defect as

$\sigma(N, \alpha):=L_{k}(p_{1}, \cdots , p_{k})[M, \partial M]-sign(M, \partial M)$ ,

where $L_{k}(p_{1}, \cdots , p_{k})\in H^{4k}(M, \partial M;Q)$ is the Hirzebruch $L$-polynomial with re-
spect to $p_{j}’ s,$ $[M, \partial M]$ is the fundamental class of $(M, \partial M)$ and sign $(M, \partial M)$

is the signature of the bilinear form on $H^{2k}(M, \partial M;R)$ defined by cup product.
In [Hi] Hirzebruch showed that a Hilbert modular cusp singularity (X, $p$ )

has a compact neighborhood $V$ of $P$ such that the boundary $\partial V$ is framed and
conjectured that the signature defect of the singularity is equal to the special
value of Shimizu’s $L$-function. He proved the conjecture in the 2-dimensional
case.

On the other hand, Atiyah, Patodi and Singer [APSI] defined the eta in-
variants of first order self-adjoint elliptic differential operators on compact mani-
folds, and derived the index theorem for manifolds with boundary. Their index
theorem says that the difference between the integral of the closed differential
form representing the $L$-genus and sign $(M, \partial M)$ is equal to the eta invariant of
the tangential signature operator on the boundary manifold $\partial M$ .

By using the index theorem for manifolds with baundary in [APSI] Atiyah,
Donnelly and Singer proved Hirzebruch’s conjecture in general ([ADSI], [ADS2]).

And M\"uller also proved it $([Mu2])$ .
The purpose of this paper is to study the signature defects of Picard
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modular cusp singularities and to relate them to the eta invariants of some
operators.

In order to state our result, let $K$ be an imaginary quadratic field with the
ring of integers $O$ . We define an algebraic group $G$ defined over $Q$ as follows:

$G_{Q}:=\{g\in SL_{m+1}(K);{}^{t}\overline{g}I_{m.1}g=I_{m.1}\}$ ,

and $G_{R}=SUm,$ $1$ ) with

$I_{m.1}.=(\begin{array}{ll}E_{m} 00 -1\end{array})$ .

The group $G_{R}$ acts on the complex $m$-dimensional unit ball $B_{m}$ $:=\{z\in C^{m} ; |z|<1\}$

as linear fractional transformations. The group $G_{Z}$ $:=G_{Q}\cap SL_{m+1}(O)$ is called the
Picard modular grouP. Let $\Gamma_{0}$ be an arithmetic subgroup of $G_{R}$ . $\Gamma_{0}$ acts on
$B_{m}$ properly discontinuously. The factor space $\Gamma_{0}\backslash B_{m}$ is called the Picard
modular variety, and can be compactified (Satake compactification) by addition
of finitely many points. We call these singular points Picard modular cusPs.
Let $\Gamma$ be a neat normal subgroup of $\Gamma_{0}$ of finite index (such $\Gamma$ exists by a
theorem of Borel [B] $)$ . Then $\Gamma\backslash B_{m}$ is a manifold and its cusps are given by

contraction of the zero-sections of negative line bundles over abelian varieties.
Moreover, the cusps of $\Gamma_{0}\backslash B_{m}$ are given as the quotients of those of $\Gamma\backslash B_{m}$

with respect to the action of the finite group $\Gamma_{0}\backslash \Gamma$ .
Let (V, $p$ ) be a cusp singularity of $\Gamma\backslash B_{m}$ such that it is the contraction of

the zero-section (denoted by the same $T$ as the base space of the bundle) of a
negative line bundle $L$ over an abelian variety $T$ . We denote by $\sigma(V, p)$ the
signature defect of $(N, \alpha)$ , where $N$ is the boundary of a neighborhood of the
singular point $P$ and a is the natural frame induced from $V$ . Let $M$ be the
disc bundle associated to $L$ over $T$ . By definition, the signature defect is

$\sigma(V, p)=L_{k}(p_{1}, \cdots p_{k})[M, \partial M]-sign(M, \partial M)$ when $m=2k$ .
In this situation we get the following theorems.

THEOREM 1. Let $A$ be the modified tangential signature $oPerator$ on $\partial M$

defined analogously as in [ADSI] and acting on the space of $L^{2}$-forms with even
degree. Then we have

$\eta_{A}(0)=L_{k}(p_{1}, \cdots , p_{k})[M, \partial M]=-\frac{2^{2k}T^{2k}}{(2k-1)!}\zeta(1-2k)$ ,

where $T^{m}$ is the self-intersection number of $T$ in $M$ .

THEOREM 2. Let $A_{1}$ be the tangential signature $oPerator$ defined in [APSI].
Let $H$ be the sPace of constat even forms on $\partial M$ . $T$ en we have

$\eta_{A_{11H}}(0)=-sign(M, \partial M)$ .
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THEOREM 3.

sign $(M, \partial M)=(--1)_{2k-1}^{k}C_{k- 1}-2\sum_{j=0}^{k-2}(-1)_{2k-1}^{j}C_{j}$ .

Barbasch and Moscovici [BM, Theorem 7.6] calculated the $L^{2}$-index of the
signature operator on $\Gamma\backslash X$ , where $X$ is a symmetric space of rank one, and
obtained a formula for the difference, which we call $L^{2}$-signature defect”, be-
tween the integral of tbe closed differential form representing the $L$-genus and
this $L^{2}$ -index by using the Selberg trace formula. Stern [Stl] calculated the
$L^{2}$-index of the signature operator on locally symmetric spaces in general.
M\"uller [Mul] calculated the $L^{2}$-index of the signature operator on a Hilbert
modular variety and in [Mu2] derived a more general formula for the $L^{2}$-signa-
ture defect of one cusp on $\Gamma\backslash X$, where $X$ is a product of copies of a symmetric
space of rank one, by using wave operators and the Selberg trace formula.
The $L^{2}$-signature defect of a Hilbert modular cusp singularity coincides with the
signature defect of the singularity in the sense of Hirzebruch ([ADSI], [ADS2],

[Mu2] $)$ . In view of the conjecture of Hirzebruch on Hilbert modular cusps and
the result of Stern [Stl] it seems likely that the contribution from each cusp
to the $L^{2}$-signature defect coincides with a properly defined signature defect of
the cusp. Recently Stern [St2] calculated the $\eta$ -density in his formula of the
$L^{2}$ -index, which coincides with our sign $(M, \partial M)$ in the case of $\Gamma\backslash B_{m}$ and
vanishes otherwise, and pointed out that the formula for $\Gamma\backslash B_{m}$ in [BM. Theo-
rem 7.6] need a correction term. Thus in the case of $\Gamma\backslash B_{m}$ [St2, Theorem
6.7] actually implies that the contribution from each cusp to the $L^{2}$-signature
defect coincides with our signature defect $\sigma(V, p)$ of a cusp (V, $p$ ) on $\Gamma\backslash B_{m}$

up to normalization of the measure on $\Gamma\backslash B_{m}$ .
In Section 1 we recall the structure of Picard modular cusp singularities.

In Section 2 we determine the eta invariant of the modified tangential signature
operator on the nilmanifold covered by the Heisenberg group. We employ the
method of Deninger and Singhof [DS]. In Section 3 we relate the eta invariant
with tbe signature defect of Picard modular cusp singularities and the signature
sign $(M, \partial M)$ of the bounding manifold $M$ for the nilmanifold. In Section 4 we
calculate sign $(M, \partial M)$ .

\S 1. Picard modular cusps.

We review the structure of Picard modular cusp singularities following
[He] and [Ho].

Let $d$ be a square-free natural number and $K:=Q(\sqrt{-d})$ an imaginary qua-
dratic number field with the ring of integers O. Let $SU(m, 1):=\{g\in SL_{m+1}(C)$ ;
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${}^{t}\overline{g}I_{m.1}g=I_{m.1}\}$ a real Lie group, where $I_{m.1}:=(\begin{array}{ll}E_{m} 00 -1\end{array})$ . $SU(m, 1)$ acts on the

complex $m$-dimensional unit ball $B_{m}$ $:=\{z\in C^{m} ; |z|<1\}$ as linear fractional trans-
formations. The group $SU(m, 1;K):=SU(m, 1)\cap SL_{m+1}(K)$ is a $Q$-form of
$SU(m, 1)$ . Let $\Gamma$ be an arithmetic subgroup of $SU(m, 1)$ , that is, $\Gamma\subset SU(m, 1;K)$

and $\Gamma\cap SU(m, 1;0)$ is of finite index in both $\Gamma$ and $SU(m, 1;O)$ . The action
of $\Gamma$ on $B_{m}$ is properly discontinuous. The factor space $\Gamma\backslash B_{m}$ is the Picard
modular variety, and can be compactified (Satake compactification) by adding
finitely many points. We call these singular points Picard modular cusPs. In
[HO] these singularities are called ball cusps.

We are interested in one cusp singularity. We consider a $\Gamma$-rational boun-
dary point $\kappa_{0}$

$:={}^{t}(1, 0, \cdots , 0)\in\partial_{K}B_{m}$ . We can realize $B_{m}$ as an unbounded domain
by a biholomorphic mapping

$\tau:B_{m}\ni{}^{t}(z_{1}, z_{m})-{}^{t}(\sqrt{-1}(1+z_{1}), \sqrt{2}z_{2}, \cdots \sqrt{2}z_{m})/(1-z_{1})\in 9$ ,

where $9:=\{(z, u_{1}, \cdots , u_{m-1})\in C^{m} ; 2{\rm Im} z-\Sigma_{i\subset 1}^{m-1}|u_{i}|^{2}>0\}$ . Let $c\circ=\tau(\kappa_{0})$ . De-
note the matrix

$\frac{1}{\sqrt{}^{-}2^{-}}(_{\sqrt{-1}-\sqrt{-1}}^{11}0-\sqrt{\frac{0}{0}2}E_{m-1}0)$

of the transformation $\tau$ by the same symbol $\tau$ . By conjugation, the group
$SU(m, 1)$ is transformed into the group $G:=\{g\in SL_{m+1}(C);{}^{t}\overline{g}Hg=H\}$ ,where

$H:=(\begin{array}{ll} -\sqrt{-1}\sqrt{-1} E_{m-1}\end{array})$ .

The isotropy group $SU(m, 1)_{\kappa_{0}}$ is transformed into $G_{\infty}$ , which is a parabolic sub-
group $P\not\subset G$ . $P$ splits into $P=NAM$ , where

$A=\{(\begin{array}{llll}\delta E_{m} -1 \delta^{-1}\end{array});\delta>0\}$ , $M=\{$$(\beta B \beta);B\in U(m-1),$ $\det B=\beta^{-2}\}$

and

$N=\{[a, r]$ $:=(\begin{array}{lll}1 \sqrt{-1}^{\iota}\overline{a} \sqrt{-1}|a|^{2}/2+r0 E_{m-1} a0 0 1\end{array});a\in C^{m-1},$ $r\in R)$ .

Note that $N$ is the Heisenberg group with the multiplication defined by
$[a, r][b, s]=[a+b, r+s-{\rm Im}{}^{t}\overline{a}b]$ . AS a fundamental neighborhood system of $\infty$

in $\overline{\Gamma\backslash B_{m}}:=(\Gamma\backslash B_{m})\cup$ {oo} we can take the set $C(L)\cup\{c\circ\}$ , where for any posi-
tive $L$ ,

$C(L):=\Gamma^{\tau}\cap P\backslash \{(z, u)\in 9;2{\rm Im} z-|u|^{2}>L\}$ and $\Gamma^{r}:=\tau^{-1}\Gamma\tau$ .
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Suppose that $\Gamma$ is torsion free and that $\Gamma^{\tau}\cap P=\Gamma^{\tau}\cap N$. Then $C(L)=$

$\Gamma^{\tau}\cap N\backslash \{(z, u)\in 9;2{\rm Im} z-|u|^{2}>L\}$ is a punctured disk bundle over an abelian
variety as we explain in the following.

Let $L_{2}$ $:=\Gamma^{\tau}\cap[N, N]$ and $q=q(\Gamma)$ the positive real number such that $[0, q]$

$\in N$ generates $L_{2}$ . Hence there exist $Z$-linearly independent vectors $\{e_{1}, \cdots, e_{2m-2}\}$

in $C^{m-1}$ and real number $r_{x}$ depending on $x=(x_{i})\in Z^{2m-2}$ such that

$\Gamma^{\tau}\cap N=\{[\sum_{i=1}^{2m-2}x_{i}e_{i},$ $r_{x}+yq];x=(x_{i})\in Z^{2m-2},$ $y\in Z\}$ .

Let $L(\Gamma)$ denote the lattice $\Sigma_{i=1}^{2m-2}Ze_{i}$ in $C^{m-1}$ and let $E:C^{m-1}\cross C^{m-1}arrow R$ be
the nondegenerate alternating form $E(u, v):=(2/q){\rm Im}{}^{t}\overline{u}v$ . Then $E$ restricted to
$L(\Gamma)\cross L(\Gamma)$ has values in $Z$ because $[u, r][v, s][u, r]^{-1}[v, s]^{-1}=[0, -2{\rm Im}{}^{t}\overline{u}v]$ .
Thus $E$ is a Riemann form on the complex torus $T:=L(\Gamma)\backslash C^{m-1}$ , which is
hence an abelian variety. Let $H(u, v):=E(u, \sqrt{-1}v)+\sqrt{-1}E(u, v)$ for $u,$ $v\in C^{m-1}$ .
Then $H(u, v)=(2/q)^{t}\overline{u}v$ . Let $\mathcal{L}=\mathcal{L}(-H)$ be the line bundle over $T$ with transi-
tion function

$\exp(-\pi H(x, u)-\frac{\pi}{2}H(x, x)+2\pi\sqrt{-1}r_{x}/q)$

for $x\in L(\Gamma)$ and $u\in C^{m-1}$ .

LEMMA 1.1. $C(L)$ is a punctured disk bundle associated with the negative
line bundle $\mathcal{L}$ . If we identify the $0$-section of $\mathcal{L}$ with the base space $T$, then the
self-intersection number of $T$ in the total space of $\mathcal{L}$ is given by

$T^{m}=-(m-1)!\sqrt{\det E}$ .
PROOF. The first assertion is obvious. Let $W$ be the Total space of the

line bundle $\mathcal{L}$ . Then $X$ is the normal bundle $N_{T/W}=O_{T}(T)$ of $T\subset W$ and $T^{m}=$

$c_{1}(N_{T/W})^{m- 1}[T]=b_{1}(\mathcal{L})^{m-1}[T]$ . For the dual bundle $\mathcal{L}^{\vee}=\mathcal{O}_{T}(-T)$ , we have
$\chi(\mathcal{L})=-T^{m}/(m-1)$ ! (see \S 16 in [AV]).

$On_{A}^{T}the$ other hand, since the dual bundle $\mathcal{L}^{\vee}$ has transition functions

$\exp(\pi H(x, u)+\frac{\pi}{2}H(x, x)+2\pi\wedge-1r_{x}/q)$ for $u\in C^{m-1},$ $x\in L(\Gamma)$ ,

we have $\chi(\mathcal{L}^{v})=\sqrt{\det E}$ (see, for example, Section 3 in [AV]). $q$ . $e.d$ .

From Lemma 1.1 we see that the boundary of a compact neighborhood
$V:=\overline{C(L)\cup\{\infty\}}$ of a cusp $\infty$ is a circle bundle over the abelian variety $T$ . We
note that the disc bundle associated to $X$ is one of the bounding manifolds for
$\partial V$ . On the other hand, we can easily see that the boundary manifold $\partial V$ is a
compact nilmanifold $\Gamma\cap N\backslash N$, because the action of $N$ on the set { $(z, u)\in 9$ ;
$2{\rm Im} z-|u|^{2}=L\}$ is transitive. We use this fact in Section 2.
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\S 2. Analysis on the Heisenberg group.

In this section we slightly modify the tangential signature operator on
$\Gamma^{\tau}\cap N\backslash N$ defined by Atiyah, Patodi and Singer in [APSI], and calculate its
$\eta$ -invariant following the method used by Deninger and Singhof in [DS].

2.1. Heisenberg groups and representations. Let

$N_{n}=\{[a, r]=(_{0}^{1}0$ $\sqrt{-1}^{t}E_{n}0$

$a$

$\sqrt{-1}|a|^{2}/2+ra1$) ; $a\in C^{n}$ , $r\in R\}$

be the Heisenberg group with the multiplication law $[a, r][b, s]=[a+b,$ $r+s-$

$(q/2)E(a, b)]$ , where $E(, )$ is the alternating form on $C^{n}\cross C^{n}$ defined in Section
1. In the notation of Section 1, $N_{n}=\Lambda^{\gamma}$ with $n=m-1$ . Let

$\mathfrak{R}=\{X(a, r):=(_{0}^{0}0$ $\sqrt{-1}^{t}00$

a
$ar0)\in\Lambda\ell_{n+2}(C);a\in C^{n},$ $r\in R\}$

be the Lie algebra $0_{\sim}^{f}$ $N_{n}$ and $\mathfrak{Z}:=[\mathfrak{R}, \mathfrak{R}]$ the center. Then we have
$[X_{(}a, r),$ $X(b, s)]=X(0, -qE(a, b))$ . In Section 1 we defined a $Z$-basis $\{e_{1}, \cdots, e_{2n}\}$

of $L(\Gamma)$ . If necessary, we choose a new basis of $L(\Gamma)$ so that $E$ satisfies the
following condition:

$E(e_{i}, e_{n+j})=\delta_{4f}d_{\ell}$ , $d_{i}>0$ ,

and
$E(e_{t}, e_{f})=E(e_{n+t}, e_{n+j})=0$ for $1\leqq i,$ $j\leqq n$ .

Put $X_{i}$ $:=X(e_{t}, 0),$ $Y_{i}$ $:=X(e_{n+t}, 0)$ for $1\leq-i\leqq n$ and $Z:=X(0, q)$ . Then the only
nontrivial relations are

$[X_{t}, Y_{f}]=-\delta_{ij}d_{i}Z$ .
The basis $\{X_{1}, Y_{1}, \cdot.. , X_{n}, Y_{n}, Z\}$ of the Lie algebra Wt defines a frame $\alpha$ on
the tangent space of the compact nilmanifold $\Gamma^{\tau}\cap N_{n}\backslash N_{n}$ so that it is an
oriented orthonormal frame, and induces the left $\Gamma^{\tau}\cap N_{n}$-invariant volume form
on the nilmanifold. In this section we denote $\Gamma^{\tau}\cap N_{n}$ simply by $\Gamma$ .

Let $L^{2}(\Gamma\backslash N.)$ be the space of left $\Gamma$-invariant and square integrable func-
tions on $N_{n}$ with respect to the $\Gamma$-invariant volume form induced from $\alpha$ . The
right quasi-regular representation $R_{\Gamma}$ of $N_{n}$ on $L^{2}(\Gamma\backslash N_{n})$ decomposes discretely
into the orthogonal direct sum $R_{\Gamma}=\oplus m(\pi)\pi(\pi\in\hat{N}_{n})$ of irreducible representa-
tions, each occurring with finite multiplicity $m(\pi)$ . We know unitary irreducible
representations of the Heisenberg group $N_{n}$ (see, for instance, [Mo]):
For $\tau\in \mathfrak{R}^{*}$ with $\tau|_{\mathfrak{Z}}=0$ , we define the one dimensional representation $\pi_{\tau}$ by

$\pi_{\tau}([a, r])=\exp(2\pi\sqrt{-1}\tau(X(a, r)))1$ .
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For $c\in R\backslash \{0\}$ , define a representation $\pi_{c}$ on $\mathcal{H}_{c}$ $:=L^{2}(W_{2})$ by

$( \pi_{c}([a, r])f)(v_{2}):=\exp(2\pi\sqrt{-1}c(r-qE(w_{1}, v_{2})+\frac{q}{2}E(w_{1}, w_{2})))f(v_{2}-w_{2})$ ,

where $W_{1}$ $:=\{\Sigma_{i=1}^{\eta}t_{i}X_{i} ; t_{i}\in R\}\cong R^{n},$ $W_{2}:=\{\Sigma_{i=1}^{n}t_{i}Y_{i} ; t_{t}\in R\}\cong R^{n}$ and $a_{\triangleright}=7\iota$) $1+w_{2}$

$\in W_{1}+W_{2}=C^{n}$ .
Let $L\S:=$ {$\tau\in \mathfrak{R}^{*};$ $\tau(\mathfrak{Z})=0$ and $\tau(\log\Gamma)\subset Z$ } $=L(\Gamma)^{*}$ and $L_{2}^{*}$ $:=\{\lambda\in \mathfrak{Z}^{*};$

$\lambda(\log L_{2})\subset Z\}$ . We identify $\mathfrak{Z}^{*}$ with the multiplications of $R$ on $\mathfrak{Z}=R$ . Then
$L_{2}^{*}=(1/q)Z$ because $\log L_{2}=qZ$ .

LEMMA 2.1. The rePresentation $R_{\Gamma}$ of $N_{n}$ on $L^{2}(\Gamma\backslash N_{n})$ decomposes as

$R_{\Gamma}= \bigoplus_{\tau\in L_{1}^{*}}\pi_{\tau\oplus}\bigoplus_{c\in L_{2}^{*}}m(\pi_{c})\pi_{c}$
,

where $m(\pi_{c})=|l|^{n}d_{1}\cdots d_{n}$ if $c=l/q$ for $l\in Z\backslash \{0\}$ .

For the proof see [R] or [Mo, Theorem 37].

2.2. Operator A. Let $M$ be a $(4k-1)$-dimensional compact oriented mani-
fold without boundary. The tangential signature operator on $M$ is a first order
elliptic differential operator acting on square integrable differential forms of even
degree defined on $2p$-forms by $(-1)^{k+p+1}(*d-d*)$ , where $d$ is the exterior differ-
ential and $*is$ the Hodge star operator defined by the volume form on $M$ .

Inlthis section we define the operator $A$ on $\Gamma\backslash \Lambda^{r_{2k- 1}}$ slightly modifying the
tangential signature operator, and in the next section we calculate its $\eta$ -invariant.
We define $A$ on $2p$-forms by

$(-1)^{k+p+1}(*d^{\nabla}-d^{\nabla}*)$ ,

where $d^{\nabla}$ is the covariant differential of the flat connection $\nabla$ defined by the
frame $\alpha$ . The space of square integrable forms of even degree on $\Gamma\backslash N_{2k- 1}$ is
identified with $L^{2}(\Gamma\backslash N_{2k-1})\otimes_{C}(\wedge^{ev}\mathfrak{R}^{*}\otimes C)$ , where A $\mathfrak{R}^{*}:=\oplus_{p=0}^{2k-1}$ A $\mathfrak{R}^{*}$ is the
set of even degree alternating forms on SC with values in $R$ . Put $\mathscr{M}:=A^{ev}\mathfrak{R}^{*}\otimes_{R}C$ ,

which is identified with the space of constant forms of even degree on $\Gamma\backslash N_{2k- 1}$ .

PROPOSITION 2.1. $\eta(A, 0)=2^{2k}\frac{\det E}{}\zeta(1-2k)$ .

TO the proof of the proposition we devote the rest of this section.

In what follows, we put $n=2k-1$ .

LEMMA 2.2. On $L^{2}(\Gamma\backslash N_{n})\otimes_{C}\mathscr{M}$ , the operator $A$ is written as

$A= \sum_{i=1}^{n}Y_{i}\otimes F_{i}-\sqrt{-1}\sum_{i=1}^{n}X_{\mathfrak{i}}\otimes E_{i}-\sqrt{-1}Z\otimes E_{0}$ ,

with $E_{0},$ $E_{i},$ $F_{i}\in End(\mathscr{M}),$ $E_{0},$ $E_{i}$ are Hermitian and $F_{i}$ are skew Hermitian.
Moreover $E_{0^{2}}=E_{t^{2}}=1,$ $F_{t^{2}}=-1$ , and any two distinct matrices among $\{E_{0},$ $E_{t},$ $F_{i}$
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$(1\leqq i\leqq n)\}$ anticommute.

PROOF. This follows from the fact that $A$ is self-adjoint and that $A^{2}$ has
the same principal symbol as that of the Laplace-Beltrami operator on forms.

NOW put $\Gamma(\lambda):=\{[\lambda a, \lambda^{2}r]\in N_{n} ; [a, r]\in\Gamma\}$ for any positive real $\lambda$ . On the
compact nilmanifold $\Gamma(\lambda)\backslash N_{n}$ the frame $\alpha$ defines a metric, which we denote
by $g_{\lambda}$ , and an operator $A$ , which we denote by $A(\lambda)$ . Consider a diffeomorphism
$\varphi_{\lambda}$ : $\Gamma(\lambda)\backslash N_{n}arrow\Gamma\backslash N_{n}$ defined by $\varphi_{\lambda}(\Gamma(\lambda)[a, r])=\Gamma[a/\lambda, r/\lambda^{2}]$ . Transform the
operator $A(\lambda)$ on $\Gamma(\lambda)\backslash N_{n}$ to an operator $D$ on $\Gamma\backslash N_{n}$ : For $\Phi\in L^{2}(\Gamma\backslash N_{n})\otimes \mathscr{M}$ ,

$D(\Phi)(\Gamma g):=A(\lambda)(\Phi\circ\varphi_{\lambda})(\varphi_{\lambda^{-1}}(\Gamma g))$ .
Then we have for $f\otimes\omega\in L^{2}(\Gamma\backslash N_{n})\otimes \mathscr{M}$

$D(f \otimes\omega)=\frac{1}{\lambda}\{\sum_{i=1}^{n}Y_{i}f\otimes F_{i}\omega-\sqrt{-1}\sum_{i=1}^{n}X_{i}f\otimes E_{i}\omega\}-\frac{\sqrt{-1}}{\lambda^{2}}Zf\otimes E_{0}\omega$ .

REMARK. The operator $D$ is defined by the metric $(\varphi_{\lambda^{-1}})^{*}g_{\lambda}$ on $\Gamma\backslash N_{n}$ , in
other words, defined by the frame $\{X_{1}/\lambda, 1_{1}^{\gamma}/\lambda, , X_{n}/\lambda, Y_{n}/\lambda, Z/\lambda^{2}\}$ . Hence
the spectrum of $D$ is equal to that of $A(\lambda)$ .

Since $D$ is an $N_{n}$-invariant operator, we can decompose $D$ into the sum of
the operators on the irreducible representation spaces of $1V_{n}$ on $L^{2}(\Gamma\backslash N_{n})$ . For
the representation $\pi_{\tau}$ , the operator $D_{\tau}:=\pi.(D)$ on $C1\otimes \mathscr{M}$ is written as

$D_{\tau}= \frac{1}{\lambda}\{\sum_{i=1}^{n}2\pi\sqrt{-1}\tau(Y_{i})F_{i}+\sum_{i=1}^{n}2\pi\tau(X_{i})E_{i}\}$ .

And for $\pi_{c}$ the operator $D_{c}:=\pi_{c}(D)$ on $\mathcal{H}_{c}\otimes \mathscr{M}$ is written as

$D_{c}=- \frac{1}{\lambda}\{\sum_{i=1}^{n}\frac{\partial}{\partial y_{i}}\otimes F_{i}+\sum_{i\Rightarrow 1}^{n}2\pi cqd_{i}y_{i}\otimes E_{i}\}+\frac{2\pi cq}{\lambda^{2}}\otimes E^{0}$

on $L^{2}(R^{n})\otimes \mathscr{M}$ . Thus the $\eta$-series of $D$ is written as

$\eta(D, s)=\sum_{\tau\in L_{\underline{9}}^{*}}\eta(D_{\tau}, s)+\sum_{\iota\in Z\backslash \{0\}}m(l/q)\eta(D_{l/q}, s)$

for ${\rm Re}(s)$ sfficiently large.

LEMMA 2.3. $\eta(D_{\tau}, s)=0$ for all $\tau\in L_{2}^{*}$ .

PROOF. Conjugating by the unitary matrix $E_{0}$ , we have $E_{X}D.E_{0}=-D.$ .
Hence $D_{\tau}$ does not contribute to the $\eta$ -series.

2.3. Determination of $\eta(A, 0)$ . First we calculate the eigenvalues of $D_{c}^{2}$ .
From the description of $D_{c}$ in the previous subsection we have

$D_{c}^{2}= \frac{1}{\lambda^{2}}\sum_{i=1}^{n}\{-\frac{\partial^{2}}{\partial y_{i}^{2}}+(2\pi cqd_{t}y_{i})^{2}\}\otimes id+\frac{4(\pi cq)^{2}}{\lambda^{4}}\otimes id-\frac{2\pi cq}{\lambda^{2}}\otimes\sum_{i=1}^{n}d_{i}E_{p}F_{\ell}$ .
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Put $\Delta_{0}:=\Sigma_{i=1}^{n}\{-\partial^{2}/\partial y_{i}^{2}+(2\pi cqd_{i}y_{i})^{2}\}$ .

LEMMA 2.4. $\Delta_{0}$ on $L^{2}(R^{n})$ has eigenvalues

$\{2\pi|c|q\sum_{i=1}^{n}d_{i}(2m_{i}+1);m=(m_{i})\in(Z_{\geq 0})^{n}\}$ .

PROOF. Let $h_{m}(x):=(-l)^{m}e^{x^{2}}(d/dx)^{m}e^{-x^{2}}$ be the Hermite polynomial for
nonnegative integer $m$ , which satisfies the Hermite differential equation:

$( \frac{d}{dx})^{2}h_{m}(x)-2x\frac{d}{dx}h_{m}(x)+2mh_{m}(x)=0$ .

Set $f(x):=e^{-x^{2}/2}h_{m}(x)$ . Then $\{f_{m}(x)\}_{m=0}^{\infty}$ forms a complete orthogonal basis of
$L^{2}(R)$ . Set $g_{m}^{(i)}(y):=f_{m}(\sqrt{2\pi|c|qd_{i}}y)$ . Then $g_{m}^{(t)}(y)$ satisfies the differential equa-
tion

$[(2 \pi cqd_{t})^{2}y^{2}-(\frac{d}{dy})^{2}]g_{m}^{(i)}(y)=2\pi|c|qd_{i}(2m+1)g_{m}^{(i)}(y)$ .

Hence if we put

$\Phi_{m}(y):=\prod_{i=1}^{n}g_{m_{i}}^{(t)}(y_{\ell})/\prod_{i\Leftarrow 1}^{n}||g_{m_{t}}^{(t)}||_{L2}$

for $m=(m_{1}, \cdots, m_{n})\in(Z_{\geqq 0})^{n}$ , then $\{\Phi_{m}\}$ forms a complete orthonormal basis of
$L^{2}(R^{n})$ and satisfies the equation

$\Delta_{0}\Phi_{m}=2\pi|c|qd_{i}(2m_{i}+1)\Phi_{m}i1n$ .

Next we diagonalize the operator $\Sigma_{i=1}^{n}d_{i}E_{i}F_{i}\in End(\mathscr{M})$ . Since $(E_{i}F_{i})^{2}=1$

and since $E_{i}F_{i}$ (l$i\leqq n) commute with one another, we can decompose $\mathscr{M}$ into
the direct sum of V. $:=$ {$v\in \mathscr{M};E_{i}F_{i}v=\epsilon_{i}v$ for $1\leqq i\leqq n$ } with $\epsilon\in\{+1, -1\}^{n}$ .
Put $\epsilon_{0}=(+1$ , $\cdot$ .. , +1 $)$ . Then for any $\epsilon\in\{+1, -1\}^{n}$ the mapping

$\prod_{1\leqq i\leqq n.\epsilon_{i}\Leftrightarrow- 1}E_{i}$
: $V_{\epsilon_{0}}arrow V_{\epsilon}$

is bijective. Hence $\dim$ $V.=2^{n}$ because $\dim \mathscr{M}=2^{2n}$ . From Lemma 2.4 we have
the following

LEMMA 2.5. $D_{c^{2}}$ restricted to $L^{2}(R^{n})\otimes V_{\epsilon}$ has eigenvalues

$\frac{2\pi|c|q}{\lambda^{2}}\sum_{i=1}^{n}d_{i}(2m_{i}+1)+\frac{4\pi^{2}c^{2}q^{2}}{\lambda^{4}}-\frac{2\pi cq}{\lambda^{2}}\sum_{i=1}^{n}d_{i}\epsilon_{i}$ .

LEMMA 2.6. If $\mathcal{E}\subset L^{2}(R^{n})\otimes \mathscr{M}$ is any eigensPace of $D_{c}^{z}$ , then

$Trace(D_{c}|_{\mathcal{E}})\in\frac{2\pi cq}{\lambda^{2}}Z$ .

(Note that each eigenspace of $D_{c^{2}}$ is of finite dimension.)
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PROOF. One has $E_{0}V_{\epsilon}=V_{\epsilon}$ and $E_{i}V_{\epsilon}=F_{i}V_{\epsilon}=V_{\delta}$ with $\delta=(\delta_{j}),$ $\delta_{i}=-\epsilon_{i}$ , and
$\delta_{j}=\epsilon_{j}$ for $j\neq i$ . Hence $Trace(D_{c}|_{\mathcal{E}})=(2\pi cq/\lambda^{2})Trace(E_{0}|_{C})$ . Since $E_{0}|_{V_{g}}=\pm 1$ ,
$Trace(E_{0})\in Z$ . q.e.d.

By definition we see that for large ${\rm Re}(s)$

$\eta(D_{c}, s)=\mathcal{E}:eigenspaceoffDTrace(D|)\sum_{\neq 0^{c^{2}}}\eta(D_{c}|_{\mathcal{E}}, s)$

.

We seek eigenspaces $\mathcal{E}$ of $D_{c^{2}}$ with $Trace(D_{c}|_{\mathcal{E}})\neq 0$ . From Lemma 2.5 we have
for some integer $a$

$Trace(D_{c}|_{C})=a(\frac{2\pi|c|q}{\lambda^{2}}\{\sum_{t=1}^{n}d_{t}(2m_{i}+1)-\frac{c}{|c|}\sum_{i=1}^{n}d_{i}\epsilon_{i_{\int^{+\frac{4\pi^{2}c^{2}q^{2}}{\lambda^{4}})^{1/2}}}}^{1}$

On the other hand, from Lemma 2.6 we have for some integer $b$

$Trace(D_{c}|_{\mathcal{E}})=b\frac{2\pi cq}{\lambda^{2}}$ .

If $c>0$ , then $a=b,$ $m_{i}=0$ and $\epsilon_{i}=+1$ . If $c<0$ , then $a=-b,$ $m_{Z}=0$ and $\epsilon_{i}=-1$ .
Thus the eigenspace $\mathcal{E}$ of $D_{c^{2}}$ with $Trace(D_{c}|_{\mathcal{E}})\neq 0$ is $\mathcal{E}=\mathcal{E}_{c}$ $:=C\Phi_{0}\otimes V_{\epsilon},$

$\epsilon=\epsilon_{0}$ if
$c>0$ or $\epsilon=-\epsilon_{0}$ if $c<0$ , and has the eigenvalue $4\pi^{2}c^{2}q^{2}/\lambda^{4}$ . Hence we see that
$Trace(D_{c}|_{\mathcal{E}_{C}})=(2\pi cq/\lambda^{2})Trace(E_{0}|_{V_{g}})$ .

LEMMA 2.7. $E_{0} \prod_{i=1}^{n}E_{i}F_{i}=1$ on $\mathscr{M}$ .

For the proof see [ADSI, Lemma 10.2] which works also in our case. Or
see the argument in p. 262 in [G].

From Lemma 2.7 we have

$Trace(D_{c}|_{\mathcal{E}_{C}})=\frac{2\pi|c|q}{\lambda^{2}}2^{n}$

Hence we have

$\eta(D, s)=\sum_{\iota=1}^{\infty}2m(l/q)(\lambda^{2}/2\pi)^{s}2^{n}|l|^{-s}$

$=2^{n+1}( \lambda^{2}/2\pi)^{s}d_{1}d_{2}\cdots d_{n}\sum_{\iota=1}^{\infty}l^{n-S}$

Thus we have
$\eta(D, 0)=2^{n+1}\sqrt{\det E}\zeta(-n)$ ,

which is independent of positive real $\lambda$ . Hence $\eta(A, O)=\eta(A(\lambda), O)=\eta(D, 0)$ .
This completes the proof of Proposition 2.1.

REMARK. $\eta(A(\lambda), 0)$ is independent of positive real R. In other words,
$\eta(A, 0)$ is invariant under replacing the metric on $\Gamma\backslash N_{n}$ by $(\varphi_{\lambda}^{-1})^{*}g_{\lambda}$ .
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\S 3. Signature defects and eta invariants.

In thls section we relate the eta invariant of $A$ with the signature defect by
using the similar argument in Sections 13, 14 and 15 in [ADSI].

Let $M$ be an oriented compact manifold of dimension $4k=2n+2$ with $\partial M=$

$\Gamma\backslash N_{n}$ . Assume that $M$ has the metric which is the product metric in a
neighborhood of $\partial M$ . From [ADSI, Theorem 13.1] we may write

$\eta(A, 0)=\int_{M}9_{0}-l_{0}$ ,

where $l_{0}$ is an integer and $9_{0}$ is invariant under scaling of the metric on $M$ .
First we will identify the integer $l_{0}$ with the difference of the signature.

Let $H$ be the subspace consisting of constant forms in $L^{2}(\Gamma\backslash N_{n})\otimes \mathscr{M}$ and
$H^{\perp^{\gamma}}$ the orthogonal complement. Then we have the decomposition $L^{2}(\Gamma\backslash N_{n})\otimes \mathscr{M}$

$=H\oplus H^{\perp}$ .

LEMMA 3.1. $KerA(\lambda)=H$ , and $A(\lambda)^{2}-4\pi^{2}/\lambda^{4}\geqq 0$ on $H^{\perp}$ .

PROOF. This follows from the estimates

$D_{\tau}^{2}=4\pi^{2}||\tau||^{2}/\lambda^{2}$ and $D_{c^{2}}\geqq 4\pi^{2}c^{2}q^{2}/\lambda^{4}$ .

NOW let $B(\lambda)$ be the tangential signature operator on the compact nilmani-
fold $\Gamma(\lambda)\backslash N_{n}$ . Then for $f\otimes\omega\in L^{2}(\Gamma\backslash N_{n})\otimes \mathscr{M}$

$B(\lambda)(f\otimes\omega)=A(\lambda)(f\otimes\omega)+f\otimes B_{0}\omega$ ,

where $B_{0}$ is the restriction of $B(\lambda)$ to $H$ and is a constant matrix. Let us
deform linearly from $B(\lambda)$ to $A(\lambda)$ . Set

$A_{t}(\lambda):=tB(\lambda)+(1-t)A(\lambda)=A(\lambda)+tB_{0}$ for $0\leqq t\leqq 1$ .

LEMMA 3.2. We can suitably choose Positive $\lambda$ such that

$KerA_{t}(\lambda)=\{\begin{array}{l}HKerB_{0}\end{array}$

for $t=0$ ,

for $t>0$ .
PROOF. This follows from Lemma 3.1. We can choose $\lambda>0$ such that

$1/\lambda^{2}\geqq|B_{0}|/2\pi$ .
Fix $\lambda$ so that it satisfies the condition of Lemma 3.2 and denote $A_{t}(\lambda)$ by

$A_{t}$ . Then
$\eta(A_{t}, 0)=\eta(A_{t1H},$ $0I+\eta(A_{t1H}\perp, 0)$ .

LEMMA 3.3. $\eta(A_{t\mathfrak{l}H}\perp, 0)$ is continuous with respect to $t$ .

PROOF. According to Lemma 3.2 we have $Ker(A_{t})\cap H^{\perp}=0$ . The lemma
follows from the proof of [APS2, Proposition 2.1] or from [ADSI, Proposition
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5.1].

From [APSI, Theorem 4.2] we have

(3.4) $l_{t}= \int_{M}9_{t}-\eta(A_{t}, 0)$ ,

where $l_{t}$ is an integer and $9_{t}$ is continuous in $t$ . We can write the equality
(3.4) as

$l_{t}+ \eta(A_{t1H}, 0)=\int_{M}9_{t}-\eta(A_{t1H^{1}},0)$ ,

whose right hand side is continuous in $t$ from Lemma 3.3. But the left hand
side has values in integers. Thus we see

$l_{0}+\eta(A_{01H}, 0)=l_{1}+\eta(A_{11H}, 0)$ .
Since $\eta(A_{01H}, 0)=0$ from Lemma 3.2 and since $l_{1}=sign(M, \partial M)$ from [APSI,

Theorem 4.14], we have

$l_{0}=sign(M, \partial M)+\eta(A_{1IH}, 0)$ .

PROPOSITION 3.5. By sign $(T, c_{1}(\mathcal{L}))$ we denote the signature of the bilinear
form on $H^{n-1}(T, R)$ defined by $(u\cup v\cup c_{1}(\mathcal{L}))[T]$ for $u,$ $v\in H^{n-1}(T, R)$ . Then we
have

$\eta(A_{11H}, 0)=-sign(T, c_{1}(\mathcal{L}))$ .
And hence $l_{0}=sign(M, \partial M)-sign(T, c_{1}(\mathcal{L}))$ .

PROOF. Applying the argument in pp. 67-68 [APSI] to our sltuation, we
see that $\eta(A_{1IH}, 0)$ is identified with the signature of the bilinear form $Q$ on
the space of constant forms with degree $2k-1$ defined by

$Q( \alpha, \beta)=\int_{\partial M}\alpha\Lambda d\beta$ .

In the argument in p. 68 [APSI] the sign is not correct, and should be changed
as follows. If $d\alpha$ is an eigenvector of $d*with$ eigenvalue $\lambda$ , then

$Q(\alpha, \alpha)=\langle\alpha, *d\alpha\rangle=\lambda^{-1}\langle\alpha, *d*d\alpha\rangle=\lambda^{-1}\langle d\alpha, d\alpha\rangle$ .
We will show that sign $Q=-sign(T, c_{1}(X))$ . Let $\xi^{i},$ $\eta^{i}$ and $\zeta$ be the l-forms

forming the basis dual to $X_{i},$ $Y_{i}$ and $Z$ . Then $d\xi^{i}=d\eta^{i}=0$ and $d\zeta=\Sigma_{i=1}^{n}d_{i}\xi^{i}$ A
$\eta^{i}$ . If $\alpha$ is a $(2k-1)$-form in $H$ with $d\alpha\neq 0$ , then $\alpha$ has the form $\alpha=\alpha_{/}’\backslash \zeta$ for
some $\alpha’\in H$. For $\alpha=\alpha’\Lambda\zeta$ and $\beta=\beta’\Lambda\zeta$ we have

$Q( \alpha, \beta)=\int_{\partial M}\alpha’\Lambda\beta’\Lambda d\zeta\wedge\zeta$ .

If we identify $\{\xi^{i}, \eta^{\mathfrak{i}}\}$ with the frame fields of the cotangent bundle of the
complex torus $T=L(\Gamma)\backslash C^{n}$ , then we can easily see that $c_{1}(X)$ is represented
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by the 2-form $-\Sigma_{i=1}^{n}d_{i}\xi^{i}\wedge\eta^{i}$ , and hence that the signature of $Q$ is equal to
$-sign(T, c_{1}(\mathcal{L}))$ . $q.e.d$ .

COROLLARY. If we choose $M$ to be the disc bundle associated to $\mathcal{L}$ , then we

have $\eta(A_{11H}, O)=-sign(M, \partial M)$ , and hence $\int_{M}9_{0}=\eta(A, 0)$ .

PROOF. From [HZ, Theorem 7 in Section 2] we see that sign $(M, \partial M)=$

$sign(T, c_{1}(\mathcal{L}))$ .

The first statement of the corollaly is Theorem 2.

We want to know the integral $\int_{M}9_{0}$ . Unfortunately we can not directly

show that the integrand $9_{01\partial M\cross I}$ vanishes in contrast with the case in [ADSI].

Let $\nabla$ be the flat connection on the tangent bundle of $\Gamma(\lambda)\backslash N_{n}$ defined by

the frame $\alpha$ and $T_{0}$ its torsion tensor. Choose a non-negative $C^{\infty}$-function $f$

on $I=[0,1]$ satisfying
$0$ $ $f\leqq 1$ , $f([0,1/4])=1$ and $f([3/4,1])=0$ .

Define $T$ to be $f(t)T_{0}$ on $\partial M\cross I$ and $0$ on $M\backslash \partial M\cross I$ . Then $T$ is a tensor field
on $M$ . There uniquely exists the metric connection $\phi$) on $TM$ with torsion
tensor $T$ (see, for instance, [KN, I]). We denote by $p_{j}(\emptyset)$ the j-th Pontrjagin
form defined from the curvature form of $\phi$ by the Chern-Weil theory ([KN, II]).

Then

$L_{k}(p_{1}, \cdots p_{k})[M, \partial M]=\int_{M}L_{k}(p_{1}(\phi), \cdots , p_{k}(\emptyset))$ ,

where $p_{f}\in H^{4j}(M, \partial M;Z)$ are the relative Pontrjagin classes associated to the
frame $\alpha$ . We put $\Omega(\phi):=L_{k}(p_{1}(\phi), \cdots , p_{k}(\emptyset))$ for simplicity. The signature
defect is

$\sigma(\Gamma\backslash N_{n}, \alpha)=\int_{M}\Omega(\phi)-sign(M, \partial M)$

$= \int_{M}\Omega(\phi)-l_{0}-sign(T, c_{1}(\mathcal{L}))$

$= \int_{M}\Omega(\phi)-\int_{M}9_{0}+\eta(A, O)-sign(T, c_{1}(X))$ .

We may choose the connection $\phi$ so that $\phi$ defines the integrand $9_{0}$ as in
[ADSI, Theorem 13.2]. Since the integrands $\Omega(\emptyset)$ and $9_{0}$ restricted to $M\backslash \partial M$

$\cross I$ coincide, the integrals turn out

$\int_{M}(\Omega(\phi)-9_{0})=\int_{\partial M\cross I}(\Omega(\dot{\varphi})-9_{0})$ .

Up to now we have seen that
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(3.6) $\int_{\partial M\cross I}(\Omega(\phi)-9_{0})=\sigma(\Gamma(\lambda)\backslash N_{n}, \alpha)-\eta(A(\lambda), O)+sign(T, c_{1}(\mathcal{L}))$

$=\sigma(\Gamma\backslash N_{n}, \alpha)-\eta(A, 0)+sign(T, c_{1}(\mathcal{L}))$ .

The right hand side is independent of $\lambda$ . We will consider the behavior of the
left hand side of (3.6) under changing the metric of $\partial M$ by $(\varphi_{\lambda^{-1}})^{*}g_{\lambda}$ . The in-
tegrand is a $O(4k)$-invariant $4k$-form and has weight zero under scaling the
metric $garrow\mu^{2}g$ . Moreover we have the following

LEMMA 3.7. On $\partial M\cross I$ we have

$\Omega(\emptyset)-9_{0}=\Sigma a_{t}(f)P_{i}(T_{0})$ ,

where $a_{t}(f)$ is a polynomial in $f$ and in the derivatives of $f$ with values in 1-
forms on $I$, and $P_{i}(T_{0})$ is an $O(4k-1)$-invariant $(4k-1)$-form valued polynomial
in the components of $T_{0}$ and in its covariant derivatives with respect to the flat
connection $\nabla$ . Moreover each $P_{i}$ has nonnegative weight.

For the proof see [ADSI, Proposition 13.5].

Every invariant polynomial is a finite linear combination of elementary
monomials $m(T_{0})$ in the torsion tensor $T_{0}$ with values in $q$-forms defined in
[ABP] by

$7n(T_{0})=\Sigma_{q}^{*}T_{\alpha_{1}}$ $T_{\alpha_{r}}$ .

Here $\alpha_{i}$ are multi-indices, and the sum goes over alternation of precisely $q$

indices and contraction of the remaining ones. Since the torsion tensor $T_{0}$ of
canonical connection on any reductive homogeneous space of Lie group is parallel
(see Chapter X of [KN, II]), the length $|\alpha_{i}|$ of multi-indices is 3 and $m(T)$ has
weight $q-r$ . We are concerned with the case $q=4k-1$ and $q\geqq 0$ .

Therefore we consider only elementary monomials with $r\leqq 4k-1$ . Let us
rename them as $e_{2t-1}$ $:=X_{i},$ $e_{2i}$ $:=Y_{i}$ $(\iota=1, \cdots , n)$ and $e_{2n+1}$ $:=Z$ .

LEMMA 3.8. With resPect to the frame field $\{e_{1}, \cdots , e_{2n+1}\}$ the only non-
vanishing comPonents of $T$ are

$T_{ij}^{2n+1}=-T_{fi}^{2n+1}=d_{i}\delta_{j.n+i}$ for $i=1,$ $\cdots$ , $n$ .

LEMMA 3.9. If we change the metric on $\Gamma\backslash N_{n}$ by $(\varphi_{\lambda^{-1}})^{*}g_{\lambda}$ for any $\lambda>0$ ,

then elementary monomials in the torsion tensor with values in $(4k-1)$-forms
change as multiPlication by $\lambda^{2n+2}$ .

PROOF. Let $m(T_{0})= \sum_{q}^{*}T_{\alpha_{1}}\cdots T_{\alpha_{r}}$ be an elementary monomial under cosi-
deration with $q=4k-1$ and $r\leqq 4k-1$ . $T_{\alpha_{i}}$ are contracted by $g$ with respect to
$e_{2n+1}$-component. In $m(T_{0})$ the numbers of contractions by $g^{-1}$ with respect to
$e_{2n+1}$-component and the other components are $(r-1)/2$ and $r-n$ respectively.
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Since $(\varphi_{\lambda^{-1}})^{\star}g_{\lambda}$ is the diagonal matrix diag $(\lambda^{2}, \cdots , \lambda^{2}, \lambda^{4})$ with respect to the
frame $\{e_{1}, \cdots , e_{2n+1}\}$ , from the number of contractions we see that $\uparrow\uparrow?(T_{0})$ is
multiplied by

$(\lambda^{4})^{r}(\lambda^{-4})^{(r- 1)/2}(\lambda^{-2})^{r- n}=\lambda^{2n+2}$

under changing of the metric. q.e. $d$ .

PROPOSITION 3.10. $\int_{M}9_{0}=L_{k}(p_{1}, \cdots , p_{k})[M, \partial M]$ .

PROOF. From Lemmas 3.7 and 3.9 we see that the left hand side of (3.6)

vanisbes. q. e. $d$ .

Proposition 3.10 and the corollary to Proposition 3.5 imply the first equality

of Theorem 1.

\S 4. Estimate of sign $(T, c_{1}(X))$ .
In this section we prove Theorem 3, that is, we calculate $\eta(A_{1IH}, 0)=$

-sign $(T, c_{1}(\mathcal{L}))$ .
Put $\omega^{i}$

$:=\xi^{t}/\backslash \eta^{t}$ for $i=1,$ $\cdots$ , $n$ and denote $\omega^{i_{1}}A\cdots$ A $\omega^{i_{S}}$ by $\omega^{I}$ with $I=$

$\{i_{1}, \cdots , i_{s}\},$ $1\leqq i_{1}<\cdots<i_{s}\leqq n$ . Let $F$ be the complex vector space spanned by
$\omega^{I}$ with $|I|=k$ . Then $\dim_{C}F={}_{n}C_{k}=_{2k-1}C_{k}$ $:=(2k-1)!/k!(k-1)$ !.

PROPOSITION 4.1. $\eta(A_{11H}, 0)$ is equal to the signature of $d*restricted$ to $F$ .

PROOF. Since $A_{1}^{2}$ is the Laplace-Beltrami operator acting on even forms,

which preserves the degree of forms, we restrict the operator $d*$ only to 2k-
forms as far as we are concerned with the eta invariant. Moreover $(A_{11H})^{2}$

preserves the types of forms, that is,

$A_{1}^{2}\xi^{I}$ A $\eta^{J}=\sum_{\iota}a_{i}\xi^{I_{i}}\wedge\eta^{J_{t}}$ with $|I_{t}|=|I|,$ $|J_{i}|=|J|$ .

and
$A_{1}^{2}\xi^{I},\wedge\eta^{J}$ A $\zeta=\sum_{J}b_{j}\xi^{I_{j}}\wedge\eta^{J_{f}}$ A $\zeta$ with $|I_{j}|=|I|,$ $|J_{j}|=|J|$ .

Therefore eigenspaces $E\subset H$ of $A_{1}^{2}$ with $Trace(A_{11E})\neq 0$ are generated by the
linear combinations of $\xi^{I}$ A $\eta^{J}$ with $|I|=|J|=k$ .

We define the lexicographic order in the set $\{I\subset\{1, \cdots , n\} ; |I|=k\}$ by $I<J$

if $i_{1}<j_{1}$ or there exists $s$ with $1\leqq s\leqq k-1$ such that $i_{1}=_{J_{1}}$ , , $i_{s}=]_{S}$ and $i_{s+1}<$

$j_{s+1}$ for $I=\{i_{1}, -- , i_{k}\},$ $J=\{]_{1}, -- , j_{k}\}$ with 1:$ $i_{1}<\ldots<i_{k}\leqq n$ and 1:;; $]_{1}<\cdots<j_{k}$

$\leqq n$ . Then two complex vector spaces spanned by { $\xi^{I}\wedge\eta^{J}+\xi^{J}$ A $\eta^{I}$ ; $I<J$ } and
{ $\xi^{I}$ A $\eta^{J}-\xi^{J}\Lambda\eta^{I}$ ; $I<J$ } have the same dimension and are stable under the opera-
tion of $d*$ , while the matrices of $d*restricted$ to these spaces have opposite
sign because $J^{c}<I^{c}$ for $I<J$ . Here $I^{c}$ is the complement of $I$ . Thus we proved
the proposition.
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From Proposition 4.1 we see that -sign $(T, c_{1}(X))$ is equal to the slgnature
of the operator on $F_{R}:=\Sigma_{II1=k}R\omega^{I}\subset H^{k,k}(T)\cap H^{2k}(T, R)$ defined by the com-
position of the exterior product of $\omega_{0}$

$:=\Sigma_{t=1}^{2k-1}d_{i}\omega^{i}$ after $*$ . Since sign $(T, c_{1}(X))$

is an topological invariant, by changing the metric we may identify $\omega_{0}$ with
the K\"ahler form $\Omega_{0}:=\Sigma_{i=1}^{2k-1}\omega^{i}$ on $T$ .

LEMMA 4.2. The signature of ext $(\Omega_{0})*$ on $F_{R}$ is equal to

$1+ \sum_{f=1}^{k-1}(-1)^{k+j}\{C-C_{k-j- 1}\}$ .

PROOF. Let $F^{j}$ be the real vector space generated by { $\omega^{I}$ ; $|I|=_{J\}}$ and $L$

the exterior multiplication by $\Omega_{0}$ . Since $F^{j}\subset H^{j.j}(T)\cap H^{2f}(T, R)$ and since
$LF^{j}\subset F^{j+1}$ , from the Hard Lefschetz theorem we can decompose $F^{k}=F_{R}$ as

$\bigoplus_{j=0}^{k}L^{j}(P_{j}\cap F^{k-j})$ ,

where $P_{f}$ $:=Ker(L^{j+1})\cap H^{k- j,k-j}(T)$ . According to the Hodge-Riemann relations,
$L*$ has the sign $(-1)^{k+j}$ on $L^{j}(P_{j}\cap F^{k-j})$ for $j\geqq 1$ and vanishes on $P_{0}\cap F^{k}$ .
Thus we have

sign $(L*|_{F^{k}})= \sum_{j=1}^{k}(-1)^{k+j}\dim P_{f}\cap F^{k- j}$

$=(-1)^{2k}+ \sum_{f=1}^{k- 1}(-1)^{k+j}\{_{2k- 1}C_{k- j^{-}2k- 1}C_{k-j-1}\}$ .

$q.e.d$ .

From Proposition 4.1 and Lemma 4.2 we complete the proof of Theorem 3.
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