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1. Introduction.

All spaces under consideration are assumed to be metric. By a continuum,
we mean a compact connected nondegenerate space. Let X be a compact metric
space with metric d. A homeomorphism f of X is called expansive if there
exists ¢>0 (called an expansive constant for f) such that if x and y are differ-
ent points of X, then there is an integer n such that d(f*(x), f™(v)>c. Ex-
pansiveness does not depend on the choice of metric of X. We are interested
in the following problem: What kinds of continua admit expansive homeo-
morphisms? Here, we consider this problem from a point of view of continuum
theory.

Concerning the above problem, the following results are well known.

(i) Each compact metric space which admits an expansive homeomorphism
is finite-dimensional ([127]).

(i) The Cantor set, the p-adic solenoids (»p=2) and compact orientable
surfaces of positive genus admit expansive homeomorphisms ([13], and
[16]). There are solenoidal groups which admit no expansive automorphisms
(see [17, Remark 2, p. 102] and [18, Theorem 3, p. 30]).

(iii) The shift homeomorphism of the inverse limit of every continuous
surjection of an arc is not an expansive homeomorphism ([3] and [4].

(iv) There are no expansive homeomorphisms on the 2-sphere ([5]).

(v) If X is a Peano continuum in the plane, or X is a Peano continuum
which contains a 1-dimensional AR neighborhood, then X does not admit an
expansive homeomorphism ([1], [4], [6], and [11]).

(vi) There are no expansive homeomorphisms on hereditarily decomposable
tree-like (or circle-like) continua ([8] and [9]).

(vii) There is a continuum in the plane which admits an expansive homeo-
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morphism. This continuum is 1-dimensional, indecomposable and separates the
plane ([15]).

(viii) There are no expansive homeomorphisms on Suslinian, hereditary -
continua ([10]).

The purpose of this paper is to prove that there are no expansive homeo-
morphisms on Suslinian continua. In other words, if a continuum X admits an
expansive homeomorphism, then X contains an uncountable collection of mutually
disjoint, nondegenerate subcontinua of X. Of course, this result is an extension
of (viii). As a corollary, no rational continuum admits an expansive homeo-
morphism. This implies that every l-dimensional continuum which admits an
expansive homeomorphism is considerably complicated.

The author wishes to thank the referee for his kind remarks.

2. Definitions and preliminaries.

A continuum is a compact metric connected space. A continuum is said to
be Suslinian if each collection of mutually disjoint, nondegenerate subcontinua
of it is countable. A continuum is rational if it has a basis of open sets whose
boundaries are countable. A continuum is called hereditarily locally connected
if each subcontinuum of it is locally connected. Then we have the following
diagram:

(1-dimensional ANR) —— (hereditarily locally connected) —>

(rational) — (Suslinian) — (1-dimensional).

Note that neither implication can be replaced by an equivalence.
From now on, we list some facts which will be needed in the sequel.

(2.1) LEMMA. Let Y be a compact metric space. Let ¢>0 and k be any
natural number. Then there is a natural number n=n(e, )=k such that if
@y, @s, *++, Ao are points of Y, then there is a point a of Y such that d(a, a;)
e for 7=1,2, -+, k, where 1<i(1)<d(2)< -+ <i(E)<n.

The proof is trivial, hence we omit the proof.

The next lemma is well known.

(2.2) LEMMA. Let X be a compact metric space and let U,V be open sets of
X such that CIV)CU. If A is a subcontinuum of X such that ANV +@ and

A—=CIU)+# @, then there is a subcontinuum B of ANCIU) such that BNV +@
and BNBdAU)+ Q.

(2.3) LEMMA ([8, (2.2)]). Let f: X—X be an expansive homeomorphism of a
compact metric space X. Then there is §>0 such that for each nondegenerate
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subcontinuum A of X, there is a matural number n, which satisfies one of the
following conditions ;

(%) diam f*(A) =46 for each n=n,, or
(*+) diam f™(A) =90 for each n=n,.

(2.4) REMARK. The converse assertion of (2.3) is not true. Let I be the
unit interval [0, 1] and let f: I—I be a map defined by

2x if 0« g%,
fx)= 1

Consider the inverse limit
I, )= A{(x)=0 | i€, f(xir)=x:}
and the shift homeomorphism f: (I, f)—(, f), i.e.,
EADEGIENS

Then f satisfies the condition (%), but f is not expansive.

3. Main theorem.
In this section, we prove the following main theorem of this paper.

(3.1) THEOREM. There are no expansive homeomorphisms on Suslinian con-
tinua. In other words, if a continuum X admits an expansive homeomorphism,
then there is a closed subset Z of X such that each component of Z is non-
degenerate, the space of components of Z is a Cantor set, and the decomposition
of Z into components is continuous (i.e., upper-semi and lower-semi continuous).

To prove (3.1), we need the following notations: Let X be a continuum
and let C(X) be the hyperspace of X defined by

C(X)={A: A is a nonempty subcontinuum of X}.

The hyperspace C(X) is metrized as follows; for A, BeC(X), dx(4, B)=
inf{e>0:U.(4)DB and U.(B)DA}, where UJ(A) denotes the e-neighborhood of
A in X. The metric dj is called the Hausdorff metric. Note that C(X) is also
a continuum.

For any subset M of C(X), we consider the following set M/ defined by

M7 = {AeC(X): for any ¢>0 and any natural number k, there
are points A;, A, -+, A, of M such that each A; is
nondegenerate, A;NA;=@ (#7s) and dyx(A, A;)<e}.
Note that in the definition of M7, the intersection AN A; may not be empty.
Then we have
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(3.2) PROPOSITION. M7 is closed in C(X).

In fact, suppose that {B,} is a sequence of points of A/ such that lim B,
=B. Since C(X) is compact, B&(C(X). Let ¢>0 and a natural number % be
given. Since lim B,=B, dyx(B, B,)<e/2 for some n. Since B,=M7, there are
points A,, A, -+, A, of M such that each element A; is nondegenerate, A;N\A;
=@ (i#7) and dg(B,, A;)<e/2 for j=1, 2, ---, k. Hence we have

du(B, Ay) = du(B, By)+duy(B,, 4:) <ce.
This implies BEM’. Therefore M7 is closed in C(X).

(3.3) PROPOSITION. MT D (M7 .

The proof is similar to the proof of (3.2). We omit the proof.
For a subset M of C(X) and ordinal numbers, define
M,=M’, My.,,= (M, and M, = QAMQ ,
where 4 is a limit ordinal.

Note that if f is a homeomorphism of X and f(M)=2M, then M, is f-invariant
(i.e., f(My)=M,).
Then we have

(3.4) THEOREM. Let X be a continuum and let M=C(X). Then X is Sus-
linian if and only if M,=@ for some countable ordinal «.

PrOOF. Let X be a Suslinian continuum. Suppose, on the contrary, that
M,+@ for any countable ordinal «. By (3.2), M, is closed in C(X). Also,
by (3.3), M,DM; if a<f. Since C(X) is separable, there is a countable ordinal
a such that M,=M; if a<B. In particular, (M,)'=M, and M,#@. Choose
AcM,. Since A=(M,)’, there are two points A, and A; of M, such that each
A, is nondegenerate, 4,"N\A;=@. Choose 7>0 such that diam A,>7 (=0, 1),
and choose neighborhoods U; (=0, 1) of A; in X such that CIU,NCIU,=¢@ and
ClU,CU,;»(A;). Since A; /=0, 1) is contained in M,=(M,)’, for each / we
can choose two points 4;; (=0, 1) of M, such that diam A4;,>7, 40 \Au =@
and A;;CU,. Choose neighborhoods U;; of A;; in U; such that CIU;,N\CIU,,
=@ and CIU;;CU,,A;;). Note that A;;&M,=(M,)’. By induction on n,
we can choose subcontinua A;q,.:, (#;=0 or 1) of X and neighborhoods U
of A in Uj;iyi,-, Such that

(1) ClU i, poNCIU =0,

iylgein-11 —

i1ig-ig

iyigin

(2) diam Agj iy, > 7, and
(3) Cll]iliz--'in - U1/2n<Ai1i2»--in) .
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For any sequence {(¢;),} (¢;=0 or 1), consider the following set
Ailizr”' = ClUi]f\ClUilizﬂClUiliziJ\ tr .

By (1), (2) and (3), we can easily see that the uncountable collection {A4;,.:
7;=0 or 1} is a collection of mutually disjoint nondegenerate subcontinua of X,
which implies that X is not Suslinian. This is a contradiction. Next, suppose
that X is not Suslinian. By [2, (2.1)], there is a closed subset Z of X such
that each component of Z is nondegenerate, the space of components of Z is
a Cantor set, and the decomposition of Z into components is continuous.
Clearly, each component of Z is contained in M, for any ordinal «. Hence
M.+ @ for any countable ordinal a«. This completes the proof.

(3.5) ExaMpPLE. For each ordinal number a=1, 2, ---, @, ---, w,, let ¥, be
the following O-dimensional compact metric space;

Y, = {1,

V.= SYiufel,

1

iDs

Yo Uleo} (4 1is a limit ordinal, a;<a,< - and lima,=2),
1

Y=

Y,, = a Cantor set,

where Y7 is a copy of Y, &5-,Y % denotes the topological sum of Y2 (n=1, 2, --*)
and @7, Y 2\ U{o} is the one point compactification of P3_.¥Y2. Let X, be the
cone of Y,. Suppose M=C(X,). Thenif a<w, M.+ @, and for >a, Mz=@.
Also, in the case of X,,, M;+# @ for any ordinal 4.

Proor oF (3.1). Let X be a Suslinian continuum. Suppose, on the contrary,
that there is an expansive homeomorphism f on X. Set M=C(X). Let >0
be as in (2.4). Choose a sequence &,>¢&,>¢;>, ---, of positive numbers such
that lime;=0. For each ¢, and k, choose a natural number n,=n(e;, k) as in
(2.1), where we assume that Y=C(X) in (2.1). Let A be any nondegenerate
subcontinuum of X. By (2.2), we can choose nondegenerate subcontinua B, B,
v, Bsn, of A such that B.NB;=@ (i+j). By (2.3), we may assume that for
some integer 7,

(1) diam fn(Bi) :i— 5 ’ Where Z.:ll 2’ ety Mg
By the choice of n,, there is a point B* of C(X) such that

(2) dH<Bk} fn(BijD < €k fOI‘ ]:1’ 2: ) k and 1§2'1<Z.2< o <ik§nk-

Since C(X) is compact, we may assume that {B*} is convergent to a point A4,
of C(X). By (1) and (2), diam A,=0. Also, we can easily see that A,eM,
(=M7), hence M, contains nondegenerate element. Now, we shall show that
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M, satisfies the following condition (x,):

If A=M, and A is nondegenerate, for any open sets U, V of X such that
ClvcU, ANV+@ and A—CIlU + @, there exists B€M, such that BNCIV+ @,
BCANCIU and BNBdU + @.

We can prove this as follows. Since A= M,, for each k2 we choose B,, B,,

» Bn,€C(X) such that each B; is nondegenerate, B;N\B;=@ (i#j) and
du(A, B;)<e, for each i=1, 2, ---, n,. We may assume that B;N\V+@ and
B;—CiU+#@ for each . By (2.2), for each =1, 2, ---, n, we can choose a
subcontinuum C; of B; such that C,cCCIU, C;N\V+@ and C:NBdU+@. By
(2.1), there is a point C* of C(X) such that d4z(C*, Cij)<ek for each ;j=1,2,---, k
and 1=57,<d,< -+ <4 <n,. Also, we may assume that {C*} is convergent to
a point B of C(X). Then we can easily see that BCANCIU, BNCIV + @ and
BNBdU=+@. Clearly, BeM,.

For a countable ordinal 4, we may assume that for a<A M, contains a
nondegenerate element and satisfies the condition (x,). We shall prove that M;
has the same properties. We consider the following two cases.

(I) A=a+1. Note that M, satisfies the condition (*,). By an argument
similar to the above one, we can prove that M, contains a nondegenerate ele-
ment and satisfies the condition (x;).

(II) 2 is a limit ordinal. In this case, take a sequence a,<a,<a,< ---, of
countable ordinals such that lima;=A4. Since M, is f-invariant, by (2.3) we see
that for each 7, there is A;&M,,; such that diam A;=d. We may assume that
{A;} is convergent to a point A; of C(X). This implies that

Aye "M,=M;.

a<i

Also, note that diam A;=0. By using (2.1), we can prove that M; satisfies the
condition (x;).

Consequently, M,# @ for any countable ordinal «. By (3.4), X is not
Suslinian. This is a contradiction. This completes the proof.

As corollaries, we have

(3.6) COROLLARY. There are no expansive homeomorphisms on rational con-
tinua.

(3.7) COROLLARY. There are no expansive homeomorphisms on hereditarily
locally connected continua.

By an argument similar to the proof of (3.1), we have

(3.8) COROLLARY. If f: X—=X is an expansive homeomorphism of a compact
metric space X and dim X>0, then there is a closed subset Z of X such that each



Suslinian continua 637

component of Z 1is nondegenerate, the space of components of Z is a Cantor set,
and the decomposition of Z into components is continuous.
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