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0. Introduction.

Let E be an associative ring spectrum with unit, and X, ¥ be CW-spectra.
We say that X is quasi Ey-equivalent to Y if there exists a map h:Y—-EAX
such that the composite (uAL(IAAR): EAY—-EAX is an equivalence where
¢ EANE—FE stands for the multiplication of E. In this case we write X?Y,

and we call such a map h:Y—>EAX a quasi Ex-equivalence. We shall be con-
cerned with the quasi KOx-equivalence where KO is the real K-spectrum. In
we have determined the quasi KOy-types of the real projective n-spaces
RP", The purpose of this note is to determine the quasi KOs-types of the
stunted real projective spaces RP"/RP™ as a continuation of [Y2].

In order to describe our main result precisely we have to introduce some
elementary suspension spectra with three or four cells (see [Y3, Y4]). The
Moore spectrum SZ/n of type Z/n is constructed by the cofiber sequence

Z°J>Z°—i+SZ/n1>21. Let M;, and V., denote the cofibers of the maps iy :23'—
SZ/2m and i7: 2'SZ/2—SZ/m respectively. Here 7:2'—2X° stands for the
stable Hopf map of order 2 and 7:2'SZ/2—2° its extension satisfying 7i=7.
The complex K-spectrum KU possesses the conjugation ¢: KU— KU which gives
rise to an involution f, on KUxX for any CW-spectrum X. By comparing
KULRP" with KUgM,, or KU,V ,, as an abelian group with involution, and
then by characterizing a CW-spectrum X which admits the same quasi KOx-type
as M,, or V,,, we have established the following determination [Y2, Theorem

51 (cf. [F). i

THEOREM 1. XY'RP™ is quasi KOsx-equivalent to SZ/2'", M,r, Vrii,
IV Vrsts Varse, Myrss, SZj2¢7+2, Y°N/SZ/2'7*° according as n=8r, 8r+1,
ey Br+7.

Let M}, and MP,, denote the cofibers of the maps 5;:SZ/2m—2° and
in\V i 2\ 2*—>SZ/2m respectively. Here 7:2°—SZ/2m stands for a coexten-
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sion of 7 satisfying j7=%. By applying the same method as in the proof of
established in we will show the following main result (cf.
[FYTD.

THEOREM 2. i) 2X*™(RP‘™*"/RP*™) is quasi KOx-equivalent to RP™.

iiy Xtm(RP m+r/RP*™ 1Y) is quasi KOy-equivalent to the wedge X°N/ RP™.

iii) X4m(RPim+r-2/RP™-%) js quasi KOx-equivalent to RP? where Y'RP}=
SZj2tr, 20N SZ/2t, SZ/247+, M24r+1, V24r+2; 2V V24r+2, V24r+3; A{24r+3 according
as n=8r, 8+1, -+, 8r+7.

iv) Xemty(Rpimtn-2/RP ™3 s quasi KOy-equivalent to M., 'V M4,
Mre, 2'MPyris, 3*M s, 2N 2 M i, 2°M iy, 2'MP,,. 4 according as
n=8r, 8r+1, ---, 8r+7.

In §1 and §2 we will characterize a CW-spectrum X admitting the same
quasi KOy-type as SAVZ'SD\V M}, or 2*SB\ 2*SE\ MP,,, under some restric-
tions on A, D, B and E (Theorems and 2.6), where SG denotes the Moore
spectrum of type G. In particular, shows that Y*MP,, is quasi
KOy-equivalent to MP,,, (Corollary 2.7). In §3 we will first investigate the
KU- and KO-homologies of the stunted real projective spaces RP"/RP™ (cf.
[Adi], [FY]), and then prove our main result by means of results
obtained in §1, §2 and [Y2]. In fact, Theorem 2i) and iii) are shown by ap-
plying [Y2, Theorem 2.5] as Theorem 1 was done in [ Y2]. Moreover, Theorem
21iv) is established by applying Theorem 1.6 and Corollary 2.7 (or Theorem 2.6).
On the other hand, Theorem 2ii) is obtained by making use of the Thom iso-
morphism in KO-theory as was done in [FY].

In this note we will work in the stable homotopy category of CW-spectra.

1. The cofiber M;, of the map %;:SZ/2m—2°.

1.1. Let KO, KU and KC denote the real, complex and self-conjugate K-
spectrum respectively. These K-spectra are closely related each other. Thus

we have nice relations among them given by the cofiber sequences as follows
([An] or [B]):

-1

(1.1 k0 255 ko = kKU 25 3RO
rx;l
(1.2) > k0 25 KO 5 KC —> KO
C z;l(l—t) -
(1.3) KC —> KU ek Y SRC

which are related by the commutative diagram below
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KU = X'KU

‘1/ a1 l’ 2,1

KO -5 KC —% KO 25 S1KO

- | e

KO — KU — 3t KO — J'KO

e, n-1
cu l 0"y l 7AL
2?KU = X*KU.
In place of we sometimes use the cofiber sequence

1-¢ 7

(1.3) KC —> KU =5 kU 1> S'KC .

We denote by M,, and Mj,, m=1, the suspension spectra with three cells
constructed by the cofiber sequences

iy 1% Iy
(1.5) 2V —SZ/2m —> My, —> 22
i % Iu
(1.6) SZ/2m — 35— M}, — 2'SZ/2m.

Note that M}, is the Spanier-Whitehead dual of M,,,, thus M},=22DM,,.. The
KU- and KO-homologies of these elementary suspension spectra M,, and M,
are easily calculated in [ Y3, Propositions 4.1 and 4.2].

10

PROPOSITION 1.1. i) KU Myn=Z®Z/2m on which t*:(—l .

KU M,,,=0.
i) KUM}nw =2, KUM,,=Z/2m on both of which ty=1.
i) KOMyn=2/2m 0 ZPZ/2 Z/2 Z/4m 0 Z 0
KOM,= Z Z/Am Z/2 Z/2 Z Z/2m 0 0
according as 1=0, 1, ---, 7.

), and

We denote by MP,,, m=1, the suspension spectrum with four cells con-
structed by the cofiber sequence

iy i J
L.7) Szt SZom — MP,, s 3ty

where 7:2*—>SZ/2m stands for a coextension of 7 satisfying j5=%. Then
there exists a cofiber sequence

Ly kM 4

(1.8) 3t M, e MP, 5 3

making the diagram below commutative
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bX: = 3

iMﬁ lo

st Sz/om—sM,, —> 3°

L |

A\

W3 — SZ/2m —> MP,,, —> X*\V2?

XAV l

23 = 2.

-1 0

PROPOSITION 1.2. 1) KUMPum=ZDZ/m on which t*:( -

KU MP,,=7 on which t,=-—1.
ity KOMP,,=2Z/2m, 0, Z, Z according as 1=0, 1, 2, 3 mod4.

), and

PrOOF. i) Use the two exact sequences

0— KU ,MP,,—>KU,2"* x, KU,SZ/2m—>KUMPyp,—> KU _, 2'—>0

Gy,
0—>KU,MPyp—> KUy 32— > KU'sMyp —> KUy M Py —>0
induced by the cofiber sequences [1.7), Here #4: KU, 2*—>KU,SZ/2m is
expressed to be jy=m:Z—Z/2m, as is shown in the proof of [ Y3, Proposition
4.17. Hence we obtain that KU,MP,,,=Z7 and KUMP,,=ZFHZ/m. Moreover,

it follows immediately that ty=—1o0on KU, MP,,=Z and t*:(_i (1)> on KUMP,,,
=7®7/m because t*:(i (1)) on KUoMyn=Z®Z/2m.

ii) Use the long exact sequence of KO-homology induced by the cofiber
sequence [1.7). Then KO;MP,, is easily calculated except i=4. On the other
hand, the cofiber sequence gives rise to a short exact sequence 0—KQO,X*?
—KOM,,—KO,MP,,—0 in the /=4 case. So the result is immediately obtained.

1.2. The short exact sequences

1:*

jl‘
(1.10) 0 —> [ 3%, KUAX] —> [Myn, KUAX] —> [SZ/2m, KUAX] —> 0

r*

J i
(L11) 0—>[31SZ/2m, KUAX] —> [Mjn, KUAX] —> [2°, KUAX] —> 0

induced by the cofiber sequences are split for any CW-spectrum X.
Moreover the universal coefficient sequence

0 — Ext(KU,SZ/2m, KU, X) —> [2'SZ/2m, KUNX]
(1.12) £
— Hom(KU,SZ/2m, KU;X) — 0
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is also a split exact sequence for each 7 (cf. [ArT]), where the arrow &; assigns
to any map f its induced homomorphism f, of KU-homology in dimension z.

Let A, D be a 2-torsion free abelian groups and m=2%, £=0. We now
deal with a CW-spectrum X such that

(1.13) KU, X=ADZ and KU, X=D®Z/2m on both of which t4=1, and
in addition KO, X=(ARZ/2)DDDZ /4m and KO X=0=KO.X.

By means of [Proposition 1.1l we note that the wedge sum SAV3'SDV M;n
satisfies the above condition (1.13). In this section we will conversely prove that
a CW-spectrum X satisfying (1.13) is quasi KO4-equivalent to SAV2'SDV M jn.
In order to investigate the behaviour of the conjugation ¢4 on [M}., KUAX]
for such a CW-spectrum X, we will first show

LEMMA 1.3. There exists a direct sum decomposition

[2'SZ/2m, KUNX] = Hom(KU,SZ/2m, KU, X)®EXt(KU,SZ/2m, KU,X)
= Z/2mPB(APZ)RZ/2m

on which t*———<z.1 (1)> where i, Z/2m—(ARZ /2m)PDZ /2m denotes the injection
, —

into the last factor.

PrOOF. Denote by t,, the conjugation f4 on [2'SZ/2m, KUAX]. Con-
sider the commutative diagram

0—Ext(KU,SZ/2m, KU, X)—[2'SZ/2m, KU/\X]——;Hom(KUOSZ/Zm, KU, X)—0

l [ |

0—Ext(KU,SZ/2m, KU, X)—[2'SZ/2m, KU\ X]—>Hom(KU,SZ/2m, KU,X)—0
31

with split exact rows. Note that the left vertical arrow is just multiplication
by 2 and the right one is trivial.

In order to give a matrix representation of the central arrow 1—tyn,
we here observe the connecting homomorphism d:Hom(Z/2m, KU, X)—
Ext(Z/2m, KU, XXZ/2) associated with the short exact sequence 0—KU,XXZ/2
—KC,X—KU,X—0 induced by the cofiber sequence [1.3}). This short exact
sequence is obtained as the canonical exact sequence 0—(ARZ/2)DZ/2—
(ARZ/2)PDPZ /4m—DPBZ /2m—0 because & : KO, X—KC,X is an isomorphism.
So it is easily seen that the connecting homomorphism 0: Z/2m—(ARZ/2)PBZ/2
is given by d(1)=(0, 1). Hence we can express as 1—t2m=< ? g) on

—i2
[2'SZ/2m, KUN X]=Hom(KU,SZ/2m, KU, X) DExt(KU,SZ/2m, KU,X) by
choosing suitably a splitting of «, if necessary. Thus [X2'SZ/2m, KUAX] has
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. .. 1 0 . .
a direct sum decomposition so that tm:(z. 1) on it as desired.
, —

Let P denote the cofiber of the stable Hopf map %:2'—2° The cofiber

sequence Z‘LZ’“ZPgZQ gives rise to a split exact sequence 0—[3?, KUAX]—
[P, KUNX]—[2° KUANX]—0. Asiswell known (cf. [Y3, 2.3)]), [P, KUANX]
has a direct sum decomposition

(1.14) [P, KUAX] = KU,X®KU,X  on which t*z(_i _(1’)

LEMMA 1.4. There exists a direct sum decomposition
My, KUNX] = KU, XPHom(KU,SZ /2m, KU, X)BExt(KU,SZ /2m, KU,X)
= (ADL)DZ/2mB(ADZ)RQZ/2m

10 0
on which t*:( 01 0) where p: ADZ—(ADPZYRZ/2m denotes the canonical
—pP 2 —1

projection.

ProoF. Use the commutative diagram

7j iy Iu
SZ/2m — 53— M}, —> 2'SZ/2m

o
v
2 s P — 23?
7 ip ip
which gives rise to the following commutative diagram
J iy

0— [2% KUANX] = [P, KUNX] —[2°, KUNX]—>0

| .
0 —>[2'SZ/2m, KUNX] —> [Min, KUNX]—>[2°, KUNX] —>0

T ‘M

.| r

Hom(KU,SZ/2m, KU, X) —> Hom(KU M}, KU,X)

with two split exact rows. The central composite &k k’*: [P, KUNX]—
Hom(KU,M},, KU, X) is evidently trivial, and the left vertical arrow

7R [2% KUNX]—[2'SZ/2m, KUAX] is expressed as the column (2) where

[2'SZ/2m, KUAX] is decomposed as in and p:Hom(Z, KU,X)—
Ext(Z/2m, KU,X) denotes the canonical projection. Hence £2'*: [P, KUANX]—
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1 0
(M., KUNX] is written into the matrix (0 O) for some homomorphism
a p

a: ADZ—-(ADZ)YRZ/2m, where [P, KUNX] is decomposed as in and
M}, KUNX] is decomposed by making use of the splitting exact sequence
(1.11) and

Denote by ¢p and ¢y the conjugations tx on [P, KUAX] and [M},, KUAX]

respectively. Then says that t,:(_} _(1)) and asserts that
10 0

tyr is written into the matrix {b 1 0| for some homomorphisms b: ADZ—
Cc Z.z _l

Z/2m, ¢: ADZ—(ADPZ)RZ/2m. However 7,b=0: ADZ—(APZ)RZ/2m which
implies b=0, because t% =1. Moreover the equality ¢, k’*=F~k’*t{p shows that
c=2a—p: ADZ—-(APZ)RZ/2m. So we may take to be c=—p by replacing
suitably the splitting of 7} if necessary. Thus [M;,., KUAX] has a direct sum

10 0
decomposition so that thz( 0 1 (1)) on it as desired.
__p 22 —

1.3. For any CW-spectrum X satisfying (1.13) we consider the commutative
diagram below

0

l

Ext(KU,SZ/2m, KU, X) Hom(KUsMbn, KUsX) —> Hom(KU,3°, KU,X)

| - -

0—[23'SZ/2m, KUNX] —> [Min, KUNX] — [2° KUANX]—0

v _ o

Hom(KU,SZ/2m, KUlX)——:—_—> Hom(KU ,M4n, KU, X)

l

0
where the arrows x; (=0, 1) assign to any map f its induced homomorphism
of KU-homology in dimension 7. Then we can rewrite the direct sum decom-

position on [M;,, KUAX] obtained in as follows:
(1.15) [Mjm, KUNX]
= Hom(KU M}y, KU X)PHom(KU M}, KU, XYDExt(KUSZ /2m, KU, X).

PROPOSITION 1.5. Let A, D be 2-torsion free abelian groups, m=2%, =0,
and X be a CW-spectrum satisfying the condition (1.13). Then there exists a map
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fu i Min—KUANX with (A f e =F 3y, whose induced homomorphisms of KU-
homologies in dimensions 0, 1 are respectively the canonical inclusions iy: Z—APZ
and i,: Z/2m—DPZ/2m.

PrRoOF. Under the direct sum decomposition on [M},., KUAX] given in
(1.15), we can choose a map [y : Min—KUAX corresponding to the element
w=C(,, 71, 0). Then it is immediate that (¢ A1)f - =f because {y (w)=w as is
easily calculated by means of the matrix representation of ¢, obtained in

We will now prove a main result in this section, which characterize a CW-
spectrum X admitting the same quasi KOs-type as SAVY'SDVM,,, where SG
denotes the Moore spectrum of type G for G=A or D.

THEOREM 1.6. Let A, D be 2-torsion free abelian groups such that
Ext(D, ABZ) is uniquely 2-divisible, and m=2%, k=0. Then a CW-spectrum X
is quasi KOx-equivalent to the wedge sum SAN Y'SDN/ M}, if and only if KU, X
= ABZ and KU, X=DPZ/2m on both of which ty=1 and in addition KO, X=
(ARZ /2YPDPBZ /4m and KO X=0=KO,X.

PrOOF. The “only if” part is evident from [Proposition 1.1

The “if” part: By use of Proposition 1.5 we can choose a map [ : Min
—-KUAX with (¢ A1)fy =fs inducing the canonical inclusions i,: Z—>APZ,
i,: Z/2m—DPDZ/2m in KU-homologies. By virtue of [Y2, Lemma 1.1] there
exist maps gu : Min—KCAX, he: 2’-KOAX and h,;:SZ/2m—3*KOAX
making the diagram below commutative

“u n
2 — M, — 23'SZ/2m
hol 8y l’ l n1
KOAX — KCANX —> 3*KOAX
rr:c—l/\l

| el oo

KONX — KUNX —> 2X*KOAX
N eox;1A1
with ({A1)gy =fu. However the map h,:SZ/2m—3*KO ANX becomes trivial
because KO, X=0=K0,X. Hence we get a map hy : M;,—KOAX with
(eu ADhy=Ffn.

Choose next maps f,:SA—-KUAX and fp: 2'SD—KUANX whose induced
homomorphisms are respectively the canonical inclusions 7,: A—APZ and
ip: D-DDZ/2m in KU-homologies. By use of [Y2, Lemma 1.2] there exists
a map gp: 2'SD—-KCAX with ({Al)gp=Fp because Ext(D, KU,X) is uniquely
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2-divisible. Then the composite maps (e,75'Al)f4:SA-Z*KOAX and
(7' Al)gp: SD—-3*KOAX are both trivial because KO, X=0=K0,X. Hence
we get maps hy: SA—-KOAX and hp: 2'SD—-KOAX with (e,ADh,=f, and
(exADhp=Ffp.

We finally apply [Y3, Proposition 1.1] to show that the map A=h,\V hpV Ay
SAVI'SDVM—KOANX is a quasi KOy-equivalence.

2. The cofiber MP,, of the map in\Vij: 2"\ 3*—>SZ/4m.

2.1. Let B, E be 2-torsion free abelian groups and m=2*%, £=0. We here
deal with a CW-spectrum X such that

-1 0 0
(2.1) KUX = BQZPZ/2m on which t*——-( 8 —1 0), and KU, X=E®DZ
11

on which ty=-—1, and in addition KO, X=Z/4m, 0, BOZ or EPZ
~according as 1=0, 1, 2 or 7 (cf. Proposition 1.2).

For such a CW-spectrum X it is verified that KO, X=B®PZ because (taz')y:
KC,X—KO X is an isomorphism. By means of Proposition 1.2 we note that
the wedge sum 2:SBV2*SE\V MP,, satisfies the above condition (2.1). In this
section we will conversely prove that a CW-spectrum X satisfying (2.1) is quasi
KO 4-equivalent to 22SBV 2*SEV MP,,. For this purpose we will first investi-
gate the behaviour of the conjugations ty on [SZ/4m, KUAX] and [M,n, KUAX]
as in Lemmas [.3 and [L.4 because we can use the cofiber sequences

Consider the map A=2un. 2m : SZ/4m—SZ /2m associated with the canonical
epimorphisSm Qum,om : Z/4m—Z/2m. This map 4 gives rise to the following
commutative diagram

0—Ext(KU,SZ/2m, KU,X)—[SZ/2m, KU N X]—>Hom(KU,SZ /2m, KU, X )0

22) | )7 !

0—Ext(KU,SZ /4m, KU, X)—[SZ/4m, KU A\X]—>Hom(KU,SZ /4m, KUy X )—0
0

with split exact rows. Hence A*:[SZ/2m, KUANX]-[SZ/4m, KUNX] is re-
presented by the matrix

(2.3) z*:(ll g) for some homomorphism ! : Z/2m—(EDZ)RZ/4m

where [SZ/2n, KUANX]=Hom(KU,SZ/2n, KU,X) P Ext(KU,SZ/2n, KU,X)=
Z/2m@P(EBZ)RZ/2n for n=m or 2m. In fact, we may take to be 2/=0 as is
shown in the proof of the following lemma.

LEMMA 2.1. There exists a direct sum decomposition
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[SZ/4m, KUNX] = Hom(KU,SZ /4m, KU, X)PExt(KU,SZ /4m, KU, X)
= Z/2mB(EPZYRZ /4m

1

24,

injection into the last factor.

on which t*=( _(1)> where 21y : Z/2m—(EQRZ /4m)PZ /4m denotes the canonical

PrROOF. Denote by ¢, the conjugation t4 on [SZ/2n, KUANX], n=m or 2m.
1
2n

—(EPBZ)RZ/2n where [SZ/2n, KUAX] is decomposed as in In order to
represent t,, precisely we first observe the connecting homomorphism

0 : Hom(Z/2m, KU, X)<—Hom(Z/2m, Z/2m)—Ext(Z/2m, KU, X®Z/2) associated
with the short exact sequence 0—-KU,XRZ/2—KC,X—Z/2m—0 induced by the
cofiber sequence [(1.3Y, as in the proof of Lemma 1.3. This short exact sequence
is obtained as the canonical exact sequence 0—(ERZ/2)PZ/2—(ERZ/2)DZ/4m
—Z7Z/2m—0 because the cofiber sequence gives rise to an exact sequence
0—-KO,X—KC, X—KO;X—0. So it is easily seen that the connecting homo-
morphism 0: Z/2m—(EQRZ/2)PZ/2 is given by 8(1)=(0, 1).

Hence the homomorphism a,, : Z/2m—(EQRZ/2m)PDZ/2m may be taken to

be the injection z, into the last factor, by replacing the splitting of the upper

ko in suitably if necessary. Thus th:C (1)
, —

A*¥tom =1tsmA* shows that a,m=20+2[: Z/2m—(EQRZ/4m)PZ/4m. By replacing
suitably the splitting of the lower &, in if necessary, we may take to be
Qsm =245, and hence 2/=0. Thus [SZ/4m, KU X] has a direct sum decomposi-
1

22.2

Obviously we may express as tzn:<a _(1)> for some homomorphism a,,: Z/2m

). Then the equality

0 . .
tion so that tm:( _1) on it as desired.

LEMMA 2.2. There exists a divect sum decomposition
(Myn, KUNX] = Hom(KU,SZ /4m, KU X)YPEXt(KU,SZ /4m, KU, X)PKU, X
= Z/2mEDL)YRQZ /AmBD(BHZPZ/2m)

I3 O "‘to 0 ].
Z2m—(EDZ)YRQZ/4m and is: Z/2m—BPZPBZ /2m denote the canonical injections
into the last factor respectively.

1 0 0 —1 00
on which ty=|2i, —1 0] where t,=| 0 —1 (l)) on BPZPZ/2m and 2i,:

PrOOF. Use the commutative diagram
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7 tp ip

r—s ¥ — P —23
|

P
2'—>SZ/Adm —> My —> 32
in iy i

M

which gives rise to the following commutative diagram

* i

J
0 —> [3%, KUAX] —> [Mun, KUAX] —> [SZ/4m, KUAX] —> 0

N l 2 l o
0—[2% KUNX]— [P, KUNX] — [ KUNX] —0
i P
with split exact rows. Denote by ¢ and ¢, the conjugations ¢4 on [P, KUAX]
and [M,., KUAX] respectively. As is easily verified, { may be represented

—1 00

by the matrix (;0 (t)) on [P, KUANX]=2KU,X(pKU,X where toz( (()) —1 0)

0o —tlo 1 1

on BOZPZ/2m. Moreover, asserts that ¢, is written into the
) 1 0 0

matrix (222 —1 0) for some homomorphisms b: Z/2m—BHZEZ/2m and
c —1

¢ (ERZ2)RZ/4m—BHZPHZ/2m, where [Myn, KUAX] is decomposed by using
the splitting exact sequence (1.10) and Lemma 2.1l

On the other hand, we may express k*:[ My, KUANX]-[P, KUANX] as
i, 0 0
d e 1
e (EDZ2YRZ/Am—BPZEBZ /2m. Then the equality tpk*¥*=Fk*t; shows that b=
—i;—2d—e(27,) and ¢=0. So we may take to be b=i; and ¢=0 by replacing
suitably the splitting of 73 if necessary. Thus [M,», KUAX] has a direct sum

the matrix < ) for some homomorphisms d:Z/2m—BPHZPHZ/2m and

1 0 0
decomposition so that tM::(Zz'2 ——(1) 0) on it as desired.
Iy —i

2.2. The realification map e,n3': KU—2?KO gives rise to the following
commutative diagram

i

j!‘ﬂ
0—> [, KUAX] —> [Min, KUAX] —> [SZ/4m, KUAX] ——> 0

2.4) L | ex |
0—[27 2P KONX] — [M,n, 2 KONX] —> [SZ/4m, 3 KONX] — 0
i i
with exact rows, for any CW-spectrum X satisfying (2.1). The top exact
sequence is evidently split, and the bottom one is also split because
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7¥:[2Y, 2P KOANXIRZ/Am—[SZ /4m, 2* KON X] is an isomorphism. We will
explicitly give a matrix representation of the induced homomorphism
ey [(Myn, KUNX]—[M,;n, 2*KONX].

The short exact sequence 0—>K02X~+KU2X3KOOX—+O is obtained as the

exact sequence OaB@ZiB@ZEBZ/ZmiZ/Alm—»O, where ¢ and ¢ are represented

1 0 ,
by the matrices (O 2) and (0 1 2). Thus
0 —1

(2.5) ey KU, X—KO,X is expressed as the row (0 1 2).
We will next investigate the right arrow e, in [2.4) by making use of the
commutative diagram -
0—-Ext(KU,SZ/2n, KU, X)—[SZ/2n, KU/\X]lHom(KUOSZ/Zn, KU,X)—0
(2.6) | )
Ext(K0,SZ/2n, KO,X) —> [SZ/2n, 2* KON X]

with a split exact row, where n=m or 2m. The short exact sequence 0—KU,X
—KO0,X—Z/2—0 induced by the cofiber sequence is obtained as the
canonical exact sequence 0—~EPZ—-EPZ—Z/2—0. Hence the left vertical

arrow is expressed as the matrix (1 0) on (EQRZ/2n)YBZ/2n. Therefore

0 2
e:n: [SZ/2n, KUNX]-[SZ/2n, * KONX] is written into the matrix
(:wz (1) g) for some homomorphisms u,,: Z/2m—EXZ/2n and ve,: Z/2m—
2n

Z/2n where [SZ/2n, KUNX]1=Z/2mP(EBZ)YRZ/2n is decomposed as in [2.3
and [SZ/2n, 2! KONX]=(EDZ)RQZ/2n.

In order to express e, (n=m, 2m) precisely we here use the commutative
diagram

0 0

l

0 — KU, X — KO, X — KOyX —> KU, X — KO X —> 0

| N B

0 — KU, X — KU, X — KCyX —> KU X — BHZ — 0

l

K05X == KOsX

l

0 0
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where the two long exact sequences are induced by the cofiber sequences [1.1)
and [1.3). Since the left column is obtained as the canonical exact sequence
0->EDZ—-EPZ—ERZ/2—0, the discussion given in the proof of
shows that 2u,,=0 and v,,=—1. So we may take to be u#;, =0 and vy,=-—1,

—(1) (l) (2)) where [SZ/2m, KUAX] is decomposed as in the proof

of and [SZ/2m, Y*KO A X] might be changed by a suitable direct
sum decomposition if necessary.
On the other hand, the induced homomorphism A*:[SZ/2m, KUANX]—

1 00
[SZ/4m, KUAX] is represented by the matrix (51 % 0) for some homomor-
2

phism lz(il) 1 Z2m—~(EPZ)QZ /4m with 2/=0, because of [2.3]. Moreover the
2

induced homomorphism A*: [SZ/2m, 3* KON X]—[SZ/4m, Z° KON X] is given
by the canonical inclusion 7y, 4m : (EPBZ)RZ/2m—(EPZYRZ /4m. Therefore the
equality A*e;n,=e,n4* shows that u,n,=—/, and v,n=—2. So we may take to
be #;n»=0, v,n=—2 by replacing suitably the splitting of £, in (2.6) if necessary.
Thus we see that

2.7) eim : [SZ/4m, KUNX]—-[SZ/4m, 22 KON X] is expressed as the

matrix (_(2) é g)

Remark that the conjugation t,, on [SZ/4m, KU A X] remains to be expressed
by the same matrix as given in because 2/,=0, in spite of changing
the direct sum decomposition on [SZ/4m, KU A X] slightly in the above dis-
cussion.

thus em:(

LEMMA 2.3. There exist direct sum decompositions
(M,n, KUNX] = Hom(KU,SZ /4m, KU, X)BEXt(KU,SZ /4m, KU, X)BKU,X
= Z/2mP(EDZYQZ /AmD(BDZDZ /2m),
My, 2 KOANX] = Ext(KOSZ/4m, KO, X)PKO X = (EPZ)RZ/4mPBZ /4m
so that (eomgVs: [Mym, KUNX]—>[Myn, 2?KOANX] is represented by the matrix
01 00 O0O0
(—2 0 2 00 0).
0 0-1 01 2

ProOF. From (2.5) and (2.7) it follows that ey:[Mun, KUANX]—

010000
[(Myn, 22 KOANX] is written into the matrix |—2 0 2 0 0 0] for some

r st 01 2
homomorphisms » : Z/2m—Z /4m, s : EQZ/dm—Z /4m and t : Z/dm—Z /4m. Since
the conjugation fy on [M,., KUANX] is explicitly given in Lemma 2.2, the
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equality eyt —=—e, then implies that 2t=—2r—2:2Z/2m—Z/4m. So we may
take to be r=0, s=0 and t=—1 by replacing suitably splittings of 7%’s in
if necessary. Thus we have direct sum decompositions on [M,,, KUAX] and
[(Mn, 22KOAX] as desired.

We again remark that the conjugation £, on [M,,, KUAX] remains to be
expressed by the same matrix as given in in spite of changing
slightly the direct sum decomposition on [M,,, KUAX] in the above lemma.

2.3. For any CW-spectrum X satisfying (2.1) we use the commutative dia-
gram

Ext(KUoM,n, KU, X) —> Ext(KU,SZ /4m, KU,X)

0—> [2% KUANX] —> [Mun, KUNX] — [SZ/4m, KUNX]

~
= \L L ,cO KO

0-—>H0m(KU022,KUOX)—AHOm(KUOM‘;m, KUoX)_ﬁHom(KUQSZ/4m,K'UOX)—')O

0 0

in order to rewrite the direct sum decomposition on [M,,, KUAX] given in
as follows:

(2.8) (M,n, KUNX] = Hom(KU M, KU X)PExt(KU M,,, KU, X)
= HOm(KUOSZ/4m, KUOX)@HOIH(KUQZZ, KUQX)@EXt(KU0M4m, KUlX)
= 7/2mPB(BHZPZ/2m)P(EDZ)RZ /4m .

The cofiber sequence gives rise to a short exact sequence

" r*

0 —> [3%, KUAX] —> [MPip, KUANX] —> [Myn, KUAX] —> 0.
Notice that the universal coefficient sequence

0> Ext(KUMP,m, KU, X)— [MPyr, KUNX]— @ Hom(KU;MP,,,, KU; X)—0

1=0,1

is a pure exact sequence (use [Y1l, Theorem 5]). Then we see by means of
[HM, Lemma 3.6] that its pure exact sequence is split because Pext(BHE)xQ/Z,
(EDZYRZ/2m)=0 for m=2%, k=0. We will here give a matrix representation
of the induced homomorphism k%p explicitly.

LEMMA 2.4, There exists a direct sum decomposition
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[MP,,, KUNX]

= Hom(KUMP,,., KU, X)®Hom(KU,MP,,,, KU, X) PExt(KU MP,,, KU,X)

= (Z/2mPBBZDZ/2m)P(ESL)YD(EDZ)RZ /2m
so that kYp:[MP,,, KUNX]—>[M,,, KUANX] is represented by the matrix
((1) (1) g) where [Mun, KU AX1=Hom(KUM,n, KUy X)PEXt(KU M.y, KU, X)=
(Z/2mPBPHZDBZ/2m)P(EDZ)RZ /4m.

ProOOF. Consider the following commutative diagram
0 0

Ext(KUMP,,, KU, X) — Ext(KU M, KU,X)

r*

l*
0—>[3%, KUAX] —5 [MPyn, KUNX] —> [Myn, KUAX] —> 0
@ “
El”l Hom(KUoMPan, KUsX) —> Hom(KUyM,n, KU X)

%)
HOm(KUIZS, KUlX) I HOm(KUlMP4m, KU]_X) O

l

0

with exact row and columns. The top arrow is the canonical monomorphism
tom.am - (EDZ)QZ/2m—(EDZ)RZ /4m and the bottom one is just multiplication
by 2 on EPZ. Observe the connecting homomorphism ¢ : Hom(KU,MP,,,, KU, X)
—Ext(Z/2, KU,X) associated with the short exact sequence 0—KU,MP,,—
KU,Y*—-Z/2—0 induced by the cofiber sequence [I.8). Since the connecting
homomorphism 6: ERZ—-(EPZ)YRZ/2 is evidently the canonical epimorphism,
kip: [MPym, KUNX]—>[M;n, KUNX] may be expressed as the matrix

((1) 2 g) Here [M,n, KUAX] is decomposed as in (2.6) and [MP,n, KUAX]

is done by choosing splittings of x, and &, suitably.

PROPOSITION 2.5. Let B, E be 2-torsion free abelian groups, m=2%, k=0,
and X be a CW-spectrum satisfying the condition (2.1). Then there exists a map
fup: MPom—KUAX such that the composite (e,my' AD)f upkup: Mym—MPn—
KUANX—2!KOANX is trivial, whose induced homomorphisms of KU-homologies in
dimensions 0, 1 are respectively the canonical inclusions io: ZPZ /2m—BPHZDZ /2m
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and i,: Z—~EDZ.

PrROOF. Among maps f: MP,,—~KUAX inducing the canonical inclusions
%y, ¢, in KU-homologies we pick up the map fyp: MP,,— KU N X corresponding
to the element w=(1,0,1,0,0, 1, 0, 0) under the direct sum decomposition on
[MP,,, KUNX] given in Lemma 2.4. By means of Lemmas and 2.4 we
can easily compute that eyk¥s(w)=0. Thus the composite (e,mz' A1) f upkup:
M,,—2*KO A X becomes trivial.

2.4. We will now prove a main result in this section, which characterize
a CW-spectrum X admitting the same quasi KOx-type as X?°SBV2*SEVMP,,.

THEOREM 2.6. Let B, E be 2-torsion free abelian groups such that
Ext(E, BBZ) is uniquely 2-divisible, and m=2*%, k=0. A CW-spectrum X is
quasi KOy-equivalent to the wedge sum 2*SB\ 2*SEN/ MP,,, if and only if KU X

—1 0 0
=BHZDZ/2m on which t*:( 8 —1 O), and KU, X=E®Z on which ty=-—1,
11

and in addition KO;X=Z /4m, 0, BZ or EPZ according as i=0, 1, 2 or 7.

ProOOF. The “only if” part is evident from [Proposition 1.2

The “if” part: By means of [Proposition 2.5 we can choose a map
fup: MP,,— KU A X inducing the canonical inclusions 7, : ZpZ /2m—BERZPZ /2m,
5,: Z—E®Z in KU-homologies such that the composite (e, A S ypkyp: My,
—32KOAX is trivial. So there exist maps ho: Myn—KOAX, hy: S'-KOAX
making the diagram below commutative

*yp ‘yp

M, — MP, — 23

l g l Tup l hy
KOANX — KUANX —> 2X!KOMNX.
eyl eonal/\l
Since the map h, is trivial, we get a map hyp: MP,,—»KOAX with (e,AD)hyp
=f up-

Choose next maps fp: 2:SB—KUANX and f5: 2 SE—KU A X whose induced
homomorphisms are respectively the canonical inclusions ip: B—BPHZPZ/2m
and ig: E—~EPZ in KU-homologies. The composite (e¢omz*Al)fp: SB—-KOAX
becomes trivial because the realification (e,73)x : KU, X—KO,X restricted to B
is trivial by (2.5) and KO,X=0. On the other hand, there exists a map
g 2 SE—-KCAX with ({Al)gg=fr by means of [Y2, Lemma 1.2] because
Ext(E, KU,X) is uniquely 2-divisible. Making use of this map gz we will show
that the composite (e,mz'!Al)fz: 2'SE—-KOANX is trivial, too.

Consider the commutative diagram
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0 — Ext(E, KO, X) — [SE, KOANX] — Hom(E, KO, X)—0

l Lo |

0 — Ext(E, KO,X) — [SE, Y '"KOAX] — Hom(E, KO, X) — 0

with KO, X=0. In order to show that the central arrow (9 Al)y is trivial, we
observe the connecting homomorphism ¢: Hom(E, KO X)—Ext(E, KO,X) asso-
ciated with the short exact sequence 0—KO,X—KU,X—KO,X—0 induced by
the cofiber sequence [1.I). Since KO, X=Z/4m and Ext(E, KO,X)=Ext(E, BDZ)
is uniquely 2-divisible, the connecting homomorphism ¢ is trivial. Thus
(pADx: [SE, KONX]-[SE, X' KOAX] is trivial, and hence (eonz'Al)fg:
2'SE—-KOAX becomes trivial.

Consequently we get maps hg: 2:SB—KOAX and hg: 2*SE—KOAX as
well as hyp: MP,,—~KOAX with (e,AD)hp=fy for H=B, E and MP. We
can now apply [Y3, Proposition 1.1] to show that the map hA=hgV hgV hyp:
2:SBV3YSEVMP,,—»KOANX is a quasi KO -equivalence.

Combining with [Proposition 1.2 we obtain the following result
immediately.

COROLLARY 2.7. 2‘MP,, is quasi KOx-equivalent to MP,,, for any m, m=1.

3. The stunted real projective spaces RP"/RP™,.

3.1. Let RP™ be the real projective n-space, and X, be the suspension
spectrum X "SPS™ whose n-th term is the symmetric square SP2S™ of n-sphere.
The spectrum X,., is exhibited by the following two cofiber sequences [L,
JTTW]:

3.1 2" —> X, —> Xy —> 2"
3.2) RP" — 23— X,,, —> J'RP"
which are related by the commutative diagram below

Z’n — Z’n

RP1 3 X —» JIRpPr-!

L
RP* — 3" —» X,,, —> J'RP"

POLES TS of 23

Hence we may regard that the stunted real projective space RP*/RP™ is
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obtained by the cofiber sequence
(3.4) RP"/RP™ X X1 2YRP*/RP™), m<n.

In [ Y2, Theorem 2.7] we have determined the quasi KO4-type of X,.; as
follows.

THEOREM 3.1. X,., is quasi KOx-equivalent to X°, P, 2*, 24\ 3¢, 24, P, X°,
20/ 3% according as n=8r, 8+1, ---, 8r+7.

As a result we note that
(3.5) 2™ X min 18 quasi KOg-equivalent to X, .

The conjugation ¢t on KU gives rise to an involution fx on KU,X for any
CW-spectrum X. Thus the KU-homology KU.X is regarded as a Z/2-graded
abelian group with involution. In order to investigate the structure of
KU(RP"/RP™) as a Z/2-graded abelian group with involution, we recall the
following result (see [AdI], or [Y2, Proposition 2.6]).

ProprosITION 3.2. i) KU,RP"=0, and KU_RP"=Z/2° or ZBZ/2* accord-
ing as n=2s or 2s+1.

ii) The conjugation ty on KU_,RP™ behaves as tx=1 if nz%=1 mod4 and ty=
(_i (l)> if n=1 mod4.

iii) KORP*=0 if n=2, 3,4 mod8, KO,RP*=0 if n=0,6,7 mod8 and
KORP"=0 for all n.

Let RP? be a fixed CW-spectrum such that KU RP?=KU,RP" and the
conjugation ¢4 on KU _,RP? behaves as

(3.6) ty=1if n=3 mod4 and z*z(_i (1)

KO\RP>r=0 if n=4, 5, 6 mod8, KO,RP?»=0 if n=0, 1, 2 mod8 and
KO,RP?=0 for all n.

) if n=3 mod4, and in addition

As an abelian group with involution KURPZ? differs from KU.RP"™ when
n is odd, although they coincide when 7 is even. For example, as in
2 ii) we may set Y'RPy to be SZ/2'7, 2°V/SZ/2'", SZ/2*"*', Myri1, Vyrss
2N Vorse, Vorss, Myris according as n=8r, 8+1, ---, 8r4+7. By applying
[Y2, Theorem 2.5] with (3.6) we notice that RP} is uniquely determined up to
quasi KOy-equivalence.

3.2. We will first study the KU-homology of RP"/RP™ with the involution
ty (cf. [Adl]). For simplicity RP"/RP™ is sometimes abbreviated to be RPZ,,.

PROPOSITION 3.3. As abelian groups with involution the KU-homologies of
the stunted real projective spaces are isomorphic to the following KU-homologies:
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X — RP4m+n/RP4m RP4m+n/RP4m—1 RP4m+n—2/RP4m—2 RP4m+n—2/RP4m—3
KU X = 0 KU, 2™ 0 KU, 2+m-*
KU, X= KU,RP" KU _,RP" KU_,RP? KU_,RP}.

ProoF. i) The X=RP**"/RP? case: Use the two cofiber sequences RP?*
—RP**rRP? 3 RP? and Xy 01— Xotener—RPEI?P—23"X,,4,. Then it follows
from and [Proposition 3.2 that KU,RP3::?=0, and hence the
sequence 0—KU _RP*—KU_,RP**"—»KU _,RP}?—0 is exact. The result is
now immediate.

ii) The X=RP?+"/RP?"! case: Use the two cofiber sequences 2*—RP}*"
—RPiiir—3%+ and ¥ '»RP P —RP Y%, Assume that KU,RPZ*"=0.
Then there exist two exact sequences 0—KU,RP3*"—KU,RP¥I1—KU,2*—0
and 0—-KU,Y*—-KU_,RP3+*—KU_,RP%+**—(0. By use of the former sequence
we see that KU, RP3i?=ZPKU,RP%*". When n=2s, this is a contradiction
because KU,RP}t?=KU,RP"=Z/2° by the above i) and [Proposition 3.2, On
the other hand, the latter sequence is obtained in the form of the short exact
sequence 0—-Z—>ZPZ/2°"'—-7Z/2*—0 when n=2s+1, because KU_,RPiil=
KU_\RP*"?=7@Z/2***. This is obviously a contradiction, too. Therefore it
is easily verified that KU RP%*"=Z, and hence KU RP}*"=~KU,2* and
KU RP}i*"=KU,RP3i?. The result is now immediate from the above i).

In order to determine the quasi KOy-types of RP*+*/RP? we will next

show that KO, (RP**"/RP*)=0 for certain dimensions 7 as so are KO,RP" and
KO;RP?.

LEmMMA 3.4. i) KOu(RP'™"/RP*™) =0 = KO,,(RP*™*"/RP*™ %) {f n=1,
2, 3,4, 5mod8.

i) KO, (RP™"/RP™) =0 = KO, (RP™/RP™2)  {f n=0,1,5,6,
7 mod8.

i) KO umioRP*™7/RP™) = 0 = KO, nso(RP*™"/RP*™ %) for all n.

PROOF. Since e,«: KO;RP311RZ[1/2]—-KU;RP}11QZ[1/2] is a monomor-
phism, [Proposition 3.3 implies that KO;RP2i1? is 2-torsion whenever j is even.
Use the cofiber sequence RP3I7P—X,ii1—Xoionsi—2 ' RP3IT, t=2m or 2m—1.
By means of (3.5) we then get epimorphisms KO, ,, X1 —KO; i n RPZ1? and
KO; 1 Xn1— KO nRPiT42-2 for i=0, 4 or 6, because X;=2"° and X@;Z". The
result is now immediate from [Theorem 3.1.

PROOF OF THEOREM 2 i) and iii). Combirne [Proposition 3.3 with Lemma 3.4
and then apply Theorem 2.5 in [¥2], as was previously done in to prove
Theorem 1.

3.3. In order to determine the quasi KO4-type of RP'™""2/RP*™* we will
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here calculate the KO-homology of RP™*"~2/RP*™~% although it has completely
done by [FY]|.

LEMMA 3.5. The KO-homology KO yn(RP*™"2/RP*™"%) is {somorphic to
the following abelian group A; . for each i and n:

A; .= KO,RP"? KO,RP"** KO0,X°, KO,RP"** KO,RP"**, KO;RP?,
KO0O,2°, KO.RP"*?/K0,3" according as 1=0, 1, ---, 7.

PrOOF. Use the three cofiber sequences Y™ 3 »RPim+n-2 s RPimFR-2_, F4m=2
2imt L RPimin-2 SR Pimin-t_yFum-1and RPimtr-2 5 X, o Ximin-1—> ‘RP{I22,
By means of Theorems 2 i), iii) and 3.1 we notice that RPi,"‘nig‘"Z;OZ“m“‘RP"”,
RP;:r 2;4024"‘RP2} and Xm_z;{\(x)P. Consider the long exact sequences of KO-
homologies associated with the three cofiber sequences. By use of the first two
exact sequences we see easily that A, ,=KO,RP"*%, A, ,=KO,RP"*? A; =
KO;RP?, A, =27 and A, . is 2-torsion. By use of the third exact sequence
we then get that A, .=KO.P, Ay .=KO,X,_, and hence A ,=K0,2°, Ao »=
KO,RP**%, So there exist short exact sequences 0—K0,Y°—~KO,RP"**— A, ,—0
and 0— A, ,—KO,RP?~K0,3°—0. Therefore it follows that A, ,=KO,RP"*?*/
KO0,%°, A, .=KO;RP"** and hence A, ,=KO0,".

In particular, Lemma 3.5 shows that

3.7) 1) KOupm(RP™ 72 /RP™HN=0=KO;, n(RP™ " 2/RP*™ 3% if n=0,1, 2
mod 8, and KO, jn(RP*™+ " 2/RPI™-\= 7 /274t Z(NZ /247 or Z/2*7*? according
as n=8r, 8»+1 or 8r+2.

il) KOyn(RPi™m=2/RP™=%) = 0 = KO, yn(RP*™""2/RP*™"%) if n=4,5,6
mod8, and KO,,,n(RP*™*""2/RP™-N= 7247+ ZHZ /247 or Z/2*"+* according
as n=8r+4, 8»+5 or 8r+6.

iil) KOm(RPi™+7-2/RP™ ) =0=KO, yn(RP™"2/RP*™*) if n=3 mod4.

PrROOF OF THEOREM 2 iv). The n=%3 mod4 case: Combine Proposition 3.3
with (3.7) i) and ii), and then apply Theorem 1.6. The result is easily shown.

The n=3mod4 case: Set n=4s—1. Putting Theorems 1 and 2 i) together
we see that RPimtr~% is quasi KOx-equivalent to 3™ °M,,;. Thus there exists
a map hy: 24" M, —KOARP{3~* which induces the canonical isomorphism
in KU-homology. Using the cofiber sequence (1.8) we consider the following
diagram

Zun—s > 2‘4m—5M22S N 24m—-5MP22s N 2’4111,-2

ol | o

KOANY™? —s KOARP{Z 22 —> KOARPiRIZ? —> KONX ™2,

The complexification eyu: KOy ;RPN 22 KU, _sRPi%*?"? is a monomorphism
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because of (3.7) iii). Therefore the left square in the above diagram becomes
commutative by means of Propositions [.1], and Hence there exists a
map hyp: 2*™ °MP,,—KO NRPin*2~* making the above diagram commutative.
Obviously the map Ayxp is a quasi KOx-equivalence. Thus Xm+?PRim+2-2 ig
quasi KOx-equivalent to 3°MP,,,, which is also so to 3'MP,, by

REMARK. We may directly apply combining [Proposition 3.3
with [Lemma 3.5 in the =3 mod4 case, in place of the above discussion using
the cofiber sequence [1.8) and Corollary 2.7,

3.4. Let E be an associative ring spectrum with unit and & be an n-dimen-
sional real vector bundle over a CW-complex X. Let T(¢) denote the Thom
complex of &, thus T(&)=D(&)/S(&) where D(§) and S(&) are respectively the
associated disc and sphere bundle. We say & to be E-orientable if there exists
a Thom class u;= E"T() such that the composite (us Ap*)d: T(E)—-TENDE"
—X"EAX* gives rise to an isomorphism E,T(§)—E4«_,X*. Here 4 denotes the
map induced by the diagonal map and p denotes the projection of the disc
bundle D(&) over X, and Y+ stands for the based CW-complex with the addi-
tional base point + for any CW-complex Y.

Hence we notice

(3.8) the Thom complex T'(§) is quasi Ex-equivalent to X*X* whenever
its n-dimensional vector bundle & over X is E-orientable.

PrROOF OF THEOREM 2 ii). Let &, be the canonical line bundle over RP"
and 6 be the trivial line bundle over RP". As is well known, the 8m-dimen-
sional vector bundle 4mé&,54mé over RP™ is KO-orientable because it has a
spin reduction, thus its first and second Stiefel-Whitney classes vanish (see [ABS]).
On the other hand, the Thom complex T(4mé&,) is homeomorphic to the stunted
real projective space RP*™*"/RP*™"! (see [A]). The result follows immediately
from (3.8).
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