Extension of minimal immersions of spheres into spheres

By Yosio Mutō

(Received April 27, 1988)
(Revised Feb. 22, 1989)

§ 1. Introduction.

The purpose of the present study is to get isometric minimal immersions of $S^{m+k}(1)$ into spheres which are extensions of isometric minimal immersions of $S^{m}(1)$ into spheres and to find some properties of such immersions.

Let $S^{n-1}(r)$ denote the sphere of radius r centered at the origin in \boldsymbol{R}^{n}. An isometric minimal immersion $f_{m, s}: S^{m}(1) \rightarrow S^{n-1}(r)$ is expressed by

$$
f_{m, s}(u)=\sum_{A=1}^{n} f^{A}(u) \tilde{e}_{A}
$$

where $\left\{\tilde{e}_{1}, \cdots, \tilde{e}_{n}\right\}$ is an orthonormal basis of \boldsymbol{R}^{n} and $u \in S^{m}(1)$. By a theorem of Takahashi [7] $f^{A}(A=1, \cdots, n)$ are spherical harmonics of degree s,

$$
\Delta f^{A}=\lambda_{s} f^{A}, \quad \lambda_{s}=s(s+m-1) .
$$

Let $\left\{e_{1}, \cdots, e_{m+1}\right\}$ be an orthonormal basis of \boldsymbol{R}^{m+1} and $S^{m}(1)$ be the unit sphere in \boldsymbol{R}^{m+1} so that we can put $u=u^{i} e_{i}$ using summation convention. To an eigenfunction f of Δ with $\Delta f=\lambda_{s} f$, there corresponds a unique harmonic polynomial

$$
F=F_{i_{1} \ldots i_{s}} x^{i_{1}} \cdots x^{i_{s}}
$$

of degree s such that

$$
f(u)=F_{i_{1} \ldots i_{s}} i^{i_{1}} \cdots u^{i_{s}} .
$$

The harmonic polynomial F then is viewed as a symmetric harmonic tensor of degree s, satisfying
i) $F\left(v_{1}, \cdots, v_{s}\right)$ is symmetric in v_{1}, \cdots, v_{s}
ii) $\sum_{i} F\left(e_{i}, e_{i}, v_{3}, \cdots, v_{s}\right)=0$
where $v_{1}, \cdots, v_{s} \in \boldsymbol{R}^{m+1}$.
Thus, to an isometric minimal immersion $f_{m, s}$ there corresponds a set of n symmetric harmonic tensors $\left\{F^{1}, \cdots, F^{n}\right\}$. Let $V(m, s)$ denote the vector space of symmetric harmonic tensors of degree s on \boldsymbol{R}^{m+1}. Then we know that $\operatorname{dim} V(m, s)=n(m, s)$ is given by

$$
n(m, s)=(2 s+m-1)(s+m-2)!/(s!(m-1)!)
$$

and $n=n(m, s)$. If we take a basis $\left\{H^{1}, \cdots, H^{n}\right\}$ of $V(m, s)$ satisfying

$$
\int_{S^{m}(1)} H^{A}(u) H^{B}(u) d \omega_{m}=c \delta^{A B},
$$

where c is a certain number given later, then the corresponding isometric minimal immersion $h_{m, s}: S^{m}(1) \rightarrow S^{n-1}(r)$ such that $h_{m, s}(u)=\sum_{A} H^{A}(u) \tilde{e}_{A}$ is called a standard minimal immersion $[3, \S 5]$ and the basis $\left\{H^{1}, \cdots, H^{n}\right\}$ is called the standard basis.
$\operatorname{IMI}(m, s)$ and $\operatorname{SMI}(m, s)$ denote respectively the set of isometric minimal immersions $f_{m, s}$ and the set of standard minimal immersions $h_{m, s}$, hence $\operatorname{SMI}(m, s) \subset \operatorname{IMI}(m, s) . \quad f_{m, s}$ and $\tilde{f}_{m, s}$ are called equivalent if there exists an orthogonal transformation $g \in O(n)$ on \boldsymbol{R}^{n} such that $\tilde{f}_{m, s}=g \circ f_{m, s}$. Hence $\operatorname{SMI}(m, s)$ is the unique equivalence class of standard minimal immersions in $\operatorname{IMI}(m, s)$.

To describe the equivalence we introduce the symmetric tensor product $B(m, s)=V(m, s) \otimes V(m, s)$. Any element of $B(m, s)$ is given by

$$
\sum_{A, B} b_{A B} H^{A} \otimes H^{B}, \quad b_{A B}=b_{B A}
$$

Let (F^{1}, \cdots, F^{n}) and ($\tilde{F}^{1}, \cdots, \tilde{F}^{n}$) correspond respectively to $f_{m, s}$ and $\tilde{f}_{m, s}$. Then these are equivalent if and only if $\Sigma_{A} F^{A} \otimes F^{A}=\Sigma_{A} \widetilde{F}^{A} \otimes \widetilde{F}^{A}$ as it is easy to see $[3, \S 3]$. Thus, to the set $\operatorname{SMI}(m, s)$ there corresponds the element $\Sigma_{A} H^{A} \otimes H^{A}$ of $B(m, s)$. To describe the relation between $\operatorname{IMI}(m, s)$ and $\operatorname{SMI}(m, s)$ we consider

$$
C=\sum_{A}\left(F^{A} \otimes F^{A}-H^{A} \otimes H^{A}\right) \in B(m, s) .
$$

It is to be noticed that, if we take a set $\left\{F^{1}, \cdots, F^{n}\right\} \subset V(m, s)$ at haphazard, it may happen that there exist no $f_{m, s} \in \operatorname{IMI}(m, s)$ corresponding to this set. When there exists an $f_{m, s} \in \operatorname{IMI}(m, s)$ corresponding to the given set $\left\{F^{1}, \cdots, F^{n}\right\}$ C satisfies

$$
C(w, w, v, \cdots, v ; v, \cdots, v)=0 \quad w, v \in \boldsymbol{R}^{m+1}
$$

The set of elements of $B(m, s)$ satisfying (α) is a subspace of $B(m, s)$ and is denoted by $W(m, s)$. It is known that when $C \in W(m, s)$ is given, $\Sigma_{A} H^{4} \otimes H^{4}+C$ can be put $\Sigma_{A} F^{A} \otimes F^{A}$ with the set $\left\{F^{1}, \cdots, F^{n}\right\}$ corresponding to an $f_{m, s} \in$ $\operatorname{IMI}(m, s)$ if and only if C belongs to a certain compact convex body $L(m, s)$ in $W(m, s)[1,3]$. Precisely, the equivalence classes of isometric minimal immersions are known to be parametrized by $L(m, s)$ [1]. It is explained in $\S 7$ as well.

The purpose of the present paper is to give an injective homomorphism $A: W(m, s) \rightarrow W(m+k, s)$ such that

$$
\Lambda L(m, s)=L(m+k, s) \cap \Lambda W(m, s)
$$

which amounts to giving a method of obtaining extensions of $f_{m, s}$ belonging to $\operatorname{IMI}(m+k, s)$. These extensions are denoted by $\operatorname{Ext}_{k} f_{m, s}$. Extension is natural in the sense that it keeps equivalence classes by (β). Obviously a standard one is extended to a standard one. Furthermore, some properties of $f_{m, s}$ are inherited to its extension. Though not many examples of non-standard minimal immersions have been known, we can find many examples systematically from known ones.
$\S 2$ is given preparatorily to the essential part of the paper beginning with $\S 3$. In $\S 2.1$ we recall a relation between $S^{m}(1)$ and $S^{m+k}(1)$. The way of deduction used there gives in $\S 2.2$ a formula for the integral over $S^{m+k}(1)$ of some function on $S^{m}(1)$. Inner products $(,)_{m}$ and $(,)_{m, m+k}$ are defined. We begin to give the notion of extension in $\S 3$. Extension of a symmetric tensor T on \boldsymbol{R}^{m+1} is defined. When a tensor \tilde{T} on \boldsymbol{R}^{m+k+1} is obtained by extension, \tilde{T} is denoted by $\operatorname{ext}_{k} T$. It is proved that harmonic tensors are extended to harmonic tensors. An inner product [,] is defined which is invariant by extension. Thus we can construct an orthonormal basis of $V(m+k, s)$ with particular relation to an orthonormal basis of $V(m, s)$. In $\S 4$ extension of a standard minimal immersion is treated. $h_{m+k, s}$ obtained by extension of $h_{m, s}$ is denoted by $\operatorname{Ext}_{k} h_{m, s}$. In $\S 5$ we construct from an immersion $f_{m, s} \in \operatorname{IMI}(m, s)$ an immersion $f_{m+k, s} \in \operatorname{IMI}(m+k$, $s)$ which we call an extension of $f_{m, s}$. Then $f_{m+k, s}$ is denoted by $\operatorname{Ext}_{k} f_{m, s}$. As a result we get an injective homomorphism $\Lambda: W(m, s) \rightarrow W(m+k, s)$ for which we prove the following theorem; Λ satisfies

$$
\Lambda L(m, s)=L(m+k, s) \cap \Lambda W(m, s)
$$

In $\S 6$ we consider the distance between the image of $S^{m}(1)$ by an isometric minimal immersion $f_{m, s}$ and the image of the same $S^{m}(1)$ by $\operatorname{Ext}_{k} f_{m, s}$. Some other result concerning the shape of $\operatorname{Ext}_{k} f_{m, s}\left(S^{m+k}(1)\right)$ is also obtained. We prove in $\S 7.1$ that when an immersion $f_{m, s} \in \operatorname{IMI}(m, s)$ is given, there exist an orthonormal basis of \boldsymbol{R}^{n} and a standard minimal immersion $h_{m, s}$ such that the tensors F^{A} and H^{A} associated with $f_{m, s}$ and $h_{m, s}$ satisfy $F^{A}=a^{A} H^{A}$ where a^{A} are non negative numbers. In $\S 7.2$ we consider the relation between $f_{m, s}\left(S^{m}(1)\right)$ and $h_{m, s}\left(S^{m}(1)\right)$ when $F^{A}=a^{A} H^{A}$ is satisfied, setting down some additional condition, and in $\S 7.3$ we consider the effect of extension. We introduce another notion of distance, denoted by $d\left(f_{m, s}, h_{m, s}\right)$, between images of $S^{m}(1)$ by $f_{m, s}$ and by $h_{m, s}$ in $\S 7.4$. In $\S 7.5$ we define the distance $d\left(f_{m, s}, \operatorname{SMI}(m, s)\right)$ and prove in $\$ 7.6$

$$
d\left(f_{m, s}, \operatorname{SMI}(m, s)\right)=d\left(\operatorname{Ext}_{k} f_{m, s}, \operatorname{SMI}(m+k, s)\right)
$$

In $\S 8$ we prove that A leaves invariant the isotropic property.
Acknowledgement. The author wishes to express his hearty thanks to the referee whose suggestion helped him in improving the paper to a great
extent.

§ 2. Preliminaries.

2.1. Let c_{d} denote the volume of $S^{d}(1)$ and $d \omega_{d}$ the volume element of $S^{d}(1)$. We recall the relation among $d \omega_{m+k}, d \omega_{m}, d \omega_{k-1}$ and also that among c_{m+k}, c_{m}, c_{k-1} understanding $c_{0}=2$.

The unit ball b in \boldsymbol{R}^{m+k+1} is given by

$$
\left(x_{1}\right)^{2}+\cdots+\left(x_{m+1}\right)^{2}+\left(y_{1}\right)^{2}+\cdots+\left(y_{k}\right)^{2} \leqq 1,
$$

where we can put

$$
\begin{array}{ll}
x_{\alpha}=r u_{\alpha} \sin \theta, & \alpha=1, \cdots, m+1, \\
y_{\beta}=r v_{\beta} \cos \theta, & \beta=1, \cdots, k,
\end{array}
$$

$u_{1}, \cdots, u_{m+1}, v_{1}, \cdots, v_{k}$ being considered to be such that

$$
\left(u_{1}\right)^{2}+\cdots+\left(u_{m+1}\right)^{2}=\left(v_{1}\right)^{2}+\cdots+\left(v_{k}\right)^{2}=1
$$

and $0 \leqq r \leqq 1$. Taking local coordinates $\varphi_{1}, \cdots, \varphi_{m}$ for $S^{m}(1)$ and $\psi_{1}, \cdots, \psi_{k-1}$ for $S^{k-1}(1)$, we get
where

$$
\begin{aligned}
& M_{1, \alpha}=u_{\alpha} \sin \theta, \quad M_{1, m+1+\beta}=v_{\beta} \cos \theta, \\
& M_{2, \alpha}=u_{\alpha} \cos \theta, \quad M_{2, m+1+\beta}=-v_{\beta} \sin \theta, \\
& M_{2+\lambda, \alpha}=\left(\partial u_{\alpha} / \partial \varphi_{\lambda}\right) \sin \theta, \quad M_{2+\lambda, m+1+\beta}=0, \\
& M_{m+2+\mu, \alpha}=0, \quad M_{m+2+\mu, m+1+\beta}=\left(\partial v_{\beta} / \partial \psi_{\mu}\right) \cos \theta, \\
&
\end{aligned}
$$

Thus we have, for the volume element $d b$ of the unit ball,

$$
d b=r^{m+k} d r d \theta \sin ^{m} \theta \cos ^{k-1} \theta d \boldsymbol{\omega}_{m} d \boldsymbol{\omega}_{k-1},
$$

and get

$$
\begin{aligned}
& d \omega_{m+k}=d \omega_{m} d \omega_{k-1} \sin ^{m} \theta \cos ^{k-1} \theta d \theta, \\
& c_{m+k}=I_{m, k-1} c_{m} c_{k-1},
\end{aligned}
$$

where

$$
I_{m, k-1}=\int_{0}^{\pi / 2} \sin ^{m} \theta \cos ^{k-1} \theta d \theta .
$$

2.2. As an application of the above formulas we get the following lemma for $S^{m+k}(1)$ expressed as

$$
\left(x_{1}\right)^{2}+\cdots+\left(x_{m+1}\right)^{2}+\left(y_{1}\right)^{2}+\cdots+\left(y_{k}\right)^{2}=1
$$

and a homogeneous polynomial $P_{2 s}(x)=P_{2 s}\left(x_{1}, \cdots, x_{m+1}\right)$ of degree $2 s$.
LEMMA 2.2.1. For the integral of $P_{2 s}(x)$ we have

$$
\begin{equation*}
\int P_{2 s}(x) d \omega_{m+k}=I_{2 s+m, k-1} c_{k-1} \int P_{2 s}(u) d \omega_{m} \tag{2.2.1}
\end{equation*}
$$

where u is the unit vector of \boldsymbol{R}^{m+1} as $d \omega_{m}$ indicates.
Proof. Here and also in what follows the domain of integration is not explicitly shown when the volume element is written. The following calculation proves the lemma.

$$
\begin{aligned}
\int P_{2 s}(x) d \omega_{m+k} & =\int_{0}^{\pi / 2} \int P_{2 s}(u \sin \theta) \sin ^{m} \theta d \omega_{m} \cos ^{k-1} \theta d \omega_{k-1} d \theta \\
& =\int_{0}^{\pi / 2} \int P_{2 s}(u) d \omega_{m} d \omega_{k-1} \sin ^{2 s+m} \theta \cos ^{k-1} \theta d \theta \\
& =I_{2 s+m, k-1} \int P_{2 s}(u) d \omega_{m} \int d \omega_{k-1}
\end{aligned}
$$

Let $\left\{e_{1}, \cdots, e_{m+k+1}\right\}$ be an orthonormal basis of \boldsymbol{R}^{m+k+1} and \boldsymbol{R}^{m+1} be the subspace spanned by e_{1}, \cdots, e_{m+1}. Consider the projection $P: \boldsymbol{R}^{m+k+1} \rightarrow \boldsymbol{R}^{m+1}$ given by $P e_{1}=e_{1}, \cdots, P e_{m+1}=e_{m+1}, P e_{m+2}=0, \cdots, P e_{m+k+1}=0$. Then we get as an application of Lemma 2.2.1 the following corollary.

Corollary 2.2.2. We have

$$
\begin{align*}
\left(T_{1}, T_{2}\right)_{m, m+k} & =\int T_{1}(P \tilde{u}, \cdots, P \tilde{u}) T_{2}(P \tilde{u}, \cdots, P \tilde{u}) d \omega_{m+k} \tag{2.2.2}\\
& =I_{2 s+m, k-1} c_{k-1}\left(T_{1}, T_{2}\right)_{m}
\end{align*}
$$

u ranging over $S^{m+k}(1)$.
Here T_{1} and T_{2} are symmetric tensors of degree s on $\boldsymbol{R}^{m+1},\left(T_{1}, T_{2}\right)_{m, m+k}$ is defined by this formula, while $\left(T_{1}, T_{2}\right)_{m}$ is defined by

$$
\left(T_{1}, T_{2}\right)_{m}=\int T_{1}(u, \cdots, u) T_{2}(u, \cdots, u) d \omega_{m}
$$

§ 3. Extension of tensors on \boldsymbol{R}^{m+1} to those on \boldsymbol{R}^{m+k+1}.

In $\S 2$ we considered $P: \boldsymbol{R}^{m+k+1} \rightarrow \boldsymbol{R}^{m+1}$. Since \boldsymbol{R}^{m+1} is a subspace of \boldsymbol{R}^{m+k+1}, when $P \tilde{v}, \tilde{v} \in \boldsymbol{R}^{m+k+1}$, is considered as a vector of \boldsymbol{R}^{m+k+1}, it is sometimes written as $\tilde{P} \tilde{v}$ if necessary. Naturally we have $P \tilde{P} \tilde{v}=P \tilde{v}$.

Definition 3.1. Let T be a symmetric tensor of degree s on \boldsymbol{R}^{m+1} and \tilde{v}_{i} a vector in \boldsymbol{R}^{m+k+1}. Then the symmetric tensor \tilde{T} on \boldsymbol{R}^{m+k+1} defined by

$$
\begin{equation*}
\tilde{T}\left(\tilde{v}_{1}, \cdots, \tilde{v}_{s}\right)=T\left(P \tilde{v}_{1}, \cdots, P \tilde{v}_{s}\right) \tag{3.1}
\end{equation*}
$$

is called the extension of T and is denoted by $\operatorname{ext}_{k} T$.
It is easy to see that a tensor \tilde{T} on \boldsymbol{R}^{m+k+1} is the extension of a certain tensor T on \boldsymbol{R}^{m+1} if and only if

$$
\begin{equation*}
\tilde{T}\left(\tilde{v}_{1}, \cdots, \tilde{P} \tilde{v}_{s}\right)=\tilde{T}\left(\tilde{v}_{1}, \cdots, \tilde{v}_{s}\right) \tag{3.2}
\end{equation*}
$$

since $P \tilde{P} \tilde{v}=P \tilde{v}$.
It is also easy to see that we have

$$
\left(\operatorname{ext}_{k} T_{1}, \operatorname{ext}_{k} T_{2}\right)_{m+k}=\left(T_{1}, T_{2}\right)_{m, m+k}
$$

for symmetric tensors T_{1} and T_{2} on \boldsymbol{R}^{m+1}. Furthermore we have

$$
\left[\operatorname{ext}_{k} T_{1}, \operatorname{ext}_{k} T_{2}\right]=\left[T_{1}, T_{2}\right]
$$

where $\left[T_{1}, T_{2}\right.$] is defined by

$$
\left[T_{1}, T_{2}\right]=\sum_{i}^{*} T_{1}\left(e_{i_{1}}, \cdots, e_{i_{s}}\right) T_{2}\left(e_{i_{1}}, \cdots, e_{i_{s}}\right)
$$

\sum_{i}^{*} indicating summation where each of i_{1}, \cdots, i_{s} ranges over $1, \cdots, m+1$.
Lemma 3.2. $\tilde{T}=\operatorname{ext}_{k} T$ is a symmetric harmonic tensor on \boldsymbol{R}^{m+k+1} if and only if T is a symmetric harmonic tensor on \boldsymbol{R}^{m+1}.

Proof. We take an orthonormal basis of \boldsymbol{R}^{m+k+1} as in $\S 2.2$ and use indices $i=1, \cdots, m+1$ and $p=m+2, \cdots, m+k+1$. If T is harmonic, we have

$$
\sum_{i} T\left(e_{i}, e_{i}, v, \cdots, v\right)=0, \quad v \in \boldsymbol{R}^{m+1}
$$

Then, since $P e_{i}=e_{i}$ and $P e_{p}=0$, we get

$$
\begin{aligned}
& \sum_{i} \tilde{T}\left(e_{i}, e_{i}, \tilde{v}, \cdots, \tilde{v}\right)+\sum_{p} \tilde{T}\left(e_{p}, e_{p}, \tilde{v}, \cdots, \tilde{v}\right) \\
= & \sum_{i} \tilde{T}\left(e_{i}, e_{i}, \tilde{P} \tilde{v}, \cdots, \tilde{P} \tilde{v}\right)=\sum_{i} T\left(e_{i}, e_{i}, P \tilde{v}, \cdots, P \tilde{v}\right)=0
\end{aligned}
$$

which shows that \tilde{T} is harmonic. We can easily see that the converse is also true.

> q. e. d.

Let us take a basis $\left\{T^{1}, \cdots, T^{n(m, s)}\right\}$ of $V(m, s)$ orthonormal in the sense of tensors, that is, in the sense of inner products [,]. Then the set $\left\{\widetilde{T}^{1}, \cdots, \widetilde{T}^{n(m, s)}\right\}$, where $\widetilde{T}^{P}=\operatorname{ext}_{k} T^{P}(P=1, \cdots, n(m, s))$, is orthonormal as well in $V(m+k, s)$. Hence, supplementing this with symmetric harmonic tensors $\tilde{T}^{x}(X=n(m, s)+1, \cdots, n(m+k, s))$ suitably chosen, we get a basis $\left\{\tilde{T}^{1}, \cdots\right.$, $\left.\tilde{T}^{n(m+k, s)}\right\}$ of $V(m+k, s)$ orthonormal in the sense of tensors. This satisfies

$$
\begin{array}{r}
\left(\tilde{T}^{A}, \tilde{T}^{B}\right)_{m+k}=(s!(m+k-1)!!/(2 s+m+k-1)!!) c_{m+k} \delta^{4 B} \tag{3.3}\\
A, B=1, \cdots, n(m+k, s) .
\end{array}
$$

To get this formula we can use the formulas $\left(H^{A}, H^{B}\right)_{m}=c \delta^{A B},\left[H^{A}, H^{B}\right]=c^{\prime} \delta^{A B}$ satisfied by the basis $\left\{H^{1}, \cdots, H^{n(m, s)}\right\}$ of $V(m, s)$ corresponding to a standard minimal immersion $h_{m, s}[3, \S 5] . \quad c$ and c^{\prime} are computed according to the formulas given in [3, p. 322], thus

$$
c=(r(m, s))^{2} c_{m} / n(m, s), \quad c^{\prime}=m!!(2 s+m-3)!!/ s(s+m-1)!,
$$

so that we get

$$
\begin{equation*}
\left(T^{A}, T^{B}\right)_{m}=\left(c / c^{\prime}\right) \delta^{A B}=(s!(m-1)!!/(2 s+m-1)!!) c_{m} \delta^{A B} . \tag{3.4}
\end{equation*}
$$

Replacing m with $m+k$, we get (3.3),
Remark. We consider $f_{m, s}: S^{m}(1) \rightarrow S^{n(m, s)-1}(r(m, s))$.

§ 4. Extension of standard minimal immersions.

We take an orthonormal basis $\left\{T^{1}, \cdots, T^{n(m, s)}\right\}$ of the space $V(m, s)$ and the orthonormal basis $\left\{\widetilde{T}^{1}, \cdots, \widetilde{T}^{n(m+k, s)}\right\}$ of the space $V(m+k, s)$ as in $\S 3$. Then the harmonic tensors $H^{1}, \cdots, H^{n(m, s)}$ and $\tilde{H}^{1}, \cdots, \tilde{H}^{n(m+k, s)}$ which are taken as

$$
H^{P}=\left(c^{\prime}\right)^{1 / 2} T^{P}, \quad \tilde{H}^{P}=\left(\tilde{c}^{\prime}\right)^{1 / 2} \widetilde{T}^{P}, \quad \tilde{H}^{X}=\left(\tilde{c}^{\prime}\right)^{1 / 2} \widetilde{T}^{X}
$$

are associated with standard minimal immersions $h_{m, s}$ and $h_{m+k, s}$ respectively since they satisfy

$$
\left[H^{P}, H^{Q}\right]=c^{\prime} \delta^{P Q}, \quad\left[\tilde{H}^{A}, \tilde{H}^{B}\right]=\tilde{c}^{\prime} \delta^{A B}
$$

for $P, Q=1, \cdots, n(m, s)$ and $A, B=1, \cdots, n(m+k, s)$. The immersion $h_{m+k, s}$ obtained in this way is called the extension of $h_{m, s}$ and is denoted by $\operatorname{Ext}_{k} h_{m, s}$.
§ 5. $f_{m+k, s}$ obtained as an extension of $f_{m, s}$.
As was stated in §4, we have a standard minimal immersion $h_{m+k, s}$ corresponding to a standard minimal immersion $h_{m, s}$ such that $H^{P}=\left(c^{\prime}\right)^{1 / 2} T^{P}$, $\tilde{H}^{P}=\left(\tilde{c}^{\prime}\right)^{1 / 2} \operatorname{ext}_{k} T^{P}$, hence

$$
\begin{equation*}
\tilde{H}^{P}=\left(\tilde{c}^{\prime} / c^{\prime}\right)^{1 / 2} \operatorname{ext}_{k} H^{P} . \tag{5.1}
\end{equation*}
$$

This suggests us a new correspondence between tensors on \boldsymbol{R}^{m+1} and those on $\boldsymbol{R}^{m+k+1}, T \rightarrow \lambda \operatorname{ext}_{k} T$, where T is a tensor on \boldsymbol{R}^{m+1} and λ is given by

$$
\begin{equation*}
\lambda^{2}=\tilde{c}^{\prime} / c^{\prime}=\frac{(m+k)!!}{m!!} \cdot \frac{(s+m-1)!}{(s+m+k-1)!} \cdot \frac{(2 s+m+k-3)!!}{(2 s+m-3)!!} . \tag{5.2}
\end{equation*}
$$

Minding such a correspondence we get the following theorem.
Theorem 5.1. Let $F^{P}(P=1, \cdots, n(m, s))$ be tensors associated with an isometric minimal immersion $f_{m, s}$. Taking the number $\lambda>0$ given above, put
tensors $\tilde{F}^{A}(A=1, \cdots, n(m+k, s))$ on \boldsymbol{R}^{m+k+1} as

$$
\begin{aligned}
& \tilde{F}^{P}(\tilde{v})=\varepsilon_{P} \lambda F^{P}(P \tilde{v}), \\
& \tilde{F}^{X}(\tilde{v})=\varepsilon_{X} \tilde{H}^{X}(\tilde{v}) \quad(X=n(m, s)+1, \cdots, n(m+k, s)),
\end{aligned}
$$

where $\left|\varepsilon_{A}\right|=1$. Then there exists an isometric minimal immersion $f_{m+k, s} \in$ $\operatorname{lMI}(m+k, s)$ such that \tilde{F}^{A} are associated with $f_{m+k, s}$.

Proof. As we have

$$
\sum_{X} \tilde{F}^{x} \otimes \tilde{F}^{x}-\sum_{X} \tilde{H}^{x} \otimes \tilde{H}^{x}=0
$$

we get

$$
\begin{aligned}
\sum_{A} \tilde{F}^{A}(\tilde{v}) \tilde{F}^{A}(\tilde{w})-\sum_{A} \tilde{H}^{A}(\tilde{v}) \tilde{H}^{A}(\tilde{w}) & =\sum_{P} \tilde{F}^{P}(\tilde{v}) \tilde{F}^{P}(\tilde{w})-\sum_{P} \tilde{H}^{P}(\tilde{v}) \tilde{H}^{P}(\tilde{w}) \\
& =\lambda^{2}\left[\sum_{P} F^{P}(P \tilde{v}) F^{P}(P \tilde{w})-\sum_{P} H^{P}(P \tilde{v}) H^{P}(P \tilde{w})\right] \\
& =\lambda^{2} C(P \tilde{v}, \cdots, P \tilde{v} ; P \tilde{w}, \cdots, P \tilde{w})
\end{aligned}
$$

where $C=\Sigma_{P}\left(F^{P} \otimes F^{P}-H^{P} \otimes H^{P}\right) \in W(m, s)$. Let us define a bi-symmetric tensor \tilde{C} on \boldsymbol{R}^{m+k+1} by

$$
\begin{equation*}
\tilde{C}(\tilde{v}, \cdots, \tilde{v} ; \tilde{w}, \cdots, \tilde{w})=\lambda^{2} C(P \tilde{v}, \cdots, P \tilde{v} ; P \tilde{w}, \cdots, P \tilde{w}) . \tag{5.3}
\end{equation*}
$$

Then it is easy to see that \tilde{C} satisfies the conditions $\tilde{C} \in B(m+k, s)$ and (α) with m replaced by $m+k$. Thus $\tilde{C} \in L(m+k, s)$ and \tilde{F}^{A} are tensors associated with an isometric minimal immersion.
q.e.d.

Theorem 5.1 shows that, if C belongs to $L(m, s)$, then \tilde{C} obtained by (5.3) belongs to $L(m+k, s)$.

Definition 5.2. An element \tilde{C} of $W(m+k, s)$ obtained from an element C of $W(m, s)$ by (5.3), with λ^{2} given by (5.2), is called the extension of C and is denoted by $\Lambda C . \Lambda$ induces a mapping $\Lambda: W(m, s) \rightarrow W(m+k, s)$.

Theorem 5.3. Λ is an injective homomorphism such that

$$
\Lambda L(m, s)=L(m+k, s) \cap \Lambda W(m, s) .
$$

Proof. From Theorem 5.1 we get

$$
\Lambda L(m, s) \subset L(m+k, s) \cap \Lambda W(m, s) .
$$

If the set $\left\{F^{P} ; P=1, \cdots, n(m, s)\right\}$ is linearly dependent, then so are the set $\left\{\tilde{F}^{P} ; P=1, \cdots, n(m, s)\right\}$, and hence the set $\left\{\tilde{F}^{4} ; A=1, \cdots, n(m+k, s)\right\}$ as well. Thus we have

$$
\Lambda \partial L(m, s) \subset \partial L(m+k, s) \cap \Lambda W(m, s)
$$

which proves the theorem, since L is a convex body.
q.e.d.

Definition 5.4. In Theorem 5.1 we may put $\varepsilon_{A}= \pm 1$ for each of
$A=1, \cdots, n(m+k, s)$ arbitrarily. This is a natural result of the notion of equivalence. When $\varepsilon_{A}=1$ for every A, the resulting $f_{m+k, s}$ is called an extension of $f_{m, s}$ and is denoted by $\operatorname{Ext}_{k} f_{m, s}$.

When $f_{m, s}$ is given, there still exist many extensions $\operatorname{Ext}_{k} f_{m, s}$, since there exists some degree of freedom in the choice of \tilde{H}^{x}.

As an application of Theorem 5.1 and Theorem 5.3, we get a corollary of the following theorem due to Mashimo [2].

Theorem A. Let s be an integer $s \geqq 4$. Then there exists an isometric minimal immersion of $S^{3}(1)$ into $S^{2 s+1}(r), r^{2}=3 / s(s+2)$. Let s be an even integer $s \geqq 6$. Then there exists an isometric minimal immersion of $S^{3}(1)$ into $S^{s}(r), r^{2}=$ $3 / s(s+2)$.

Corollary B. If $s \geqq 4$, there exists an isometric minimal immersion of a $(3+k)$ sphere into a $2 s+1+n(3+k, s)-n(3, s))$-sphere. If s is even and $\geqq 6$, then there exists an isometric minimal immersion of a (3+k)-sphere into an $(s+n(3+k, s)-$ $n(3, s)$)-sphere.
§6. Distance between an isometric minimal immersion and its extension.
6.1. Let $\operatorname{Ext}_{k} f_{m, s}$ be an extension of an isometric minimal immersion $f_{m, s}$. We define the ground distance $d_{m, m+k}$ between $f_{m, s}$ and $\operatorname{Ext}_{k} f_{m, s}$ in the following way. We can consider that $f_{m, s}\left(S^{m}(1)\right)$ lies in $\boldsymbol{R}^{n(m, s)}$ and $\operatorname{Ext}_{k} f_{m, s}\left(S^{m+k}(1)\right)$ lies in $\boldsymbol{R}^{n(m+k, s)}$, where $\boldsymbol{R}^{n(m, s)}$ is the subspace of $\boldsymbol{R}^{n(m+k, s)}$ generated by the first $n(m, s)$ vectors of a fixed orthonormal basis of $\boldsymbol{R}^{n(m+k, s)}$. We consider the distance $d_{m, m+k}(u)$ between $f_{m, s}(u)$ and $\operatorname{Ext}_{k} f_{m, s}(\tilde{u})$ where $u \in S^{m}(1)$, $\tilde{u} \in S^{m+k}(1)$ with $P \tilde{u}=u$. The relation $P \tilde{u}=u$ simply means that \tilde{u} belongs to $\boldsymbol{R}^{m+1} \cap S^{m+k}(1)=S^{m}(1)$ and $\tilde{u}=u$. Under this circumstance $\boldsymbol{R}^{n(m, s)}$ and $S^{m}(1)$ are called the ground space and the ground sphere respectively.

Then, since we have put $\varepsilon_{A}=1$, we get

$$
\operatorname{Ext}_{k} f_{m, s}(\tilde{u})=\tilde{F}^{P}(\tilde{u}) \tilde{e}_{P}+\tilde{F}^{x}(\tilde{u}) \tilde{e}_{X}=\lambda F^{P}(u) \tilde{e}_{P}+\tilde{H}^{X}(\tilde{u}) \tilde{e}_{X},
$$

where \tilde{e}_{P} lie in the ground space and \tilde{e}_{X} are vertical to the ground space. On the other hand we have $f_{m, s}(u)=F^{P}(u) \tilde{e}_{P}$. Thus the distance $d_{m, m+k}(u)$ is given by

$$
\begin{equation*}
\left(d_{m, m+k}(u)\right)^{2}=\sum_{P}\left(\lambda F^{P}(u)-F^{P}(u)\right)^{2}+\sum_{X}\left(\tilde{H}^{X}(\tilde{u})\right)^{2} . \tag{6.1.1}
\end{equation*}
$$

Since the right hand side becomes

$$
\sum_{P}\left(\lambda F^{P}(u)\right)^{2}+\sum_{X}\left(\tilde{H}^{X}(\tilde{u})\right)^{2}+(1-2 \lambda) \sum_{P}\left(F^{P}(u)\right)^{2}
$$

which is equal to

$$
(r(m+k, s))^{2}+(1-2 \lambda)(r(m, s))^{2}
$$

where $r(m, s)$ (resp. $r(m+k, s))$ is the radius of the sphere on which $f_{m, s}\left(S^{m}(1)\right)$ (resp. $\left.\operatorname{Ext}_{k} f_{m, s}\left(S^{m+k}(1)\right)\right)$ lies, $d_{m, m+k}(u)$ does not depend on u and is denoted simply by $d_{m, m+k}$.

Thus we have the following definition and theorem.
DEFINITION 6.1.1. $d_{m, m+k}$ is called the ground distance between $f_{m, s}$ and its extension $\operatorname{Ext}_{k} f_{m, s}$.

THEOREM 6.1.2. The ground distance $d_{m, m+k}$ between $f_{m, s} \in \operatorname{IMI}(m, s)$ and its extension $\operatorname{Ext}_{k} f_{m, s}$ is given by

$$
\begin{equation*}
d_{m, m+k}=\left((r(m+k, s))^{2}+(1-2 \lambda)(r(m, s))^{2}\right)^{1 / 2} \tag{6.1.2}
\end{equation*}
$$

where λ is the positive number given by (5.2). Furthermore the ground distance does not depend on the choice of the immersion $f_{m, s}$ and is determined only by m, k and s.

Now let us consider the distance between the ground space and the image of the ground sphere by the extension $\operatorname{Ext}_{k} f_{m, s}$. Clearly the square of the distance is given by $\sum_{X}\left(\tilde{H}^{X}(\tilde{u})\right)^{2}$ for each point. On the other hand we have

$$
\begin{equation*}
(r(m+k, s))^{2}=\lambda^{2} \sum_{P}\left(F^{P}(u)\right)^{2}+\sum_{X}\left(\tilde{H}^{X}(\tilde{u})\right)^{2}=\lambda^{2}(r(m, s))^{2}+\sum_{X}\left(\tilde{H}^{x}(\tilde{u})\right)^{2} \tag{6.1.3}
\end{equation*}
$$

hence

$$
\sum_{X}\left(\tilde{H}^{X}(\tilde{u})\right)^{2}=(r(m+k, s))^{2}-\lambda^{2}(r(m, s))^{2}
$$

This admits us to give the following definition and theorem.
Definition 6.1.3. Let $\operatorname{Ext}_{k} f_{m, s}$ be an extension of $f_{m, s} \in \operatorname{IMI}(m, s)$ and let \tilde{u} be the position vector of a point of the ground sphere, hence $\tilde{u}=\tilde{P} \tilde{u}$. As the distance between the point $\operatorname{Ext}_{k} f_{m, s}(\tilde{u})$ and the ground space does not depend on \tilde{u}, it is called the ground distance between the extension $\mathrm{Ext}_{k} f_{m, s}$ and the ground space.

THEOREM 6.1.4. Let $f_{m, s}$ be an immersion $\in \operatorname{IMI}(m, s)$. The ground distance between $\operatorname{Ext}_{k} f_{m, s}$ and the ground space is given by

$$
\begin{equation*}
\left((r(m+k, s))^{2}-\lambda^{2}(r(m, s))^{2}\right)^{1 / 2} \tag{6.1.4}
\end{equation*}
$$

hence depends only on m, k and s.
We give two examples where s is less than 4 , hence all immersions are standard minimal immersions.

EXAMPLE 1. $s=2, m=2, k=1$. Then we have $n(2,2)=5, n(3,2)=9$, $(r(2,2))^{2}=1 / 3,(r(3,2))^{2}=3 / 8$. We take variables x, y, z in \boldsymbol{R}^{3} and variables x, y, z, t in \boldsymbol{R}^{4}. Then we can choose

$$
H^{1}=x y, \quad H^{2}=x z, \quad H^{3}=y z, \quad H^{4}=(1 / 2)\left(x^{2}-y^{2}\right)
$$

$$
H^{5}=12^{-1 / 2}\left(x^{2}+y^{2}-2 z^{2}\right)
$$

as a standard basis of $V(2,2)$. As $\lambda=1$ in this case,

$$
\tilde{H}^{1}=H^{1}, \quad \tilde{H}^{2}=H^{2}, \quad \tilde{H}^{3}=H^{3}, \quad \tilde{H}^{4}=H^{4}, \quad \tilde{H}^{5}=H^{5}, \quad \tilde{H}^{6}=x t
$$

$$
\tilde{H}^{7}=y t, \quad \tilde{H}^{8}=z t, \quad \tilde{H}^{9}=24^{-1 / 2}\left(x^{2}+y^{2}+z^{2}-3 t^{2}\right)
$$

can be considered as a standard basis of $V(3,2)$ extended from the basis of $V(2,2)$ given above. The image of the ground sphere is obtained when we put $t=0$, hence $x^{2}+y^{2}+z^{2}=1$, hence $\tilde{H}^{6}=\tilde{H}^{7}=\tilde{H}^{8}=0$ and $\tilde{H}^{9}=24^{-1 / 2}$. Thus we get $d_{2,3}=24^{-1 / 2}$. The ground distance between the extension and the ground space is also $24^{-1 / 2}$.

Example 2. $s=3, m=2, k=1$. Then we have $n(2,3)=7, n(3,3)=16$, $(r(2,3))^{2}=1 / 6,(r(3,3))^{2}=1 / 5$. We take the same variables as in Example 1 and can choose

$$
\begin{aligned}
& H^{1}=a x y z, \quad H^{2}=b x\left(y^{2}-z^{2}\right), \quad H^{3}=b y\left(x^{2}-z^{2}\right), \\
& H^{4}=b z\left(x^{2}-y^{2}\right), \quad H^{5}=c x\left(2 x^{2}-3 y^{2}-3 z^{2}\right), \\
& H^{6}=c y\left(2 y^{2}-3 x^{2}-3 z^{2}\right), \quad H^{7}=c z\left(2 z^{2}-3 x^{2}-3 y^{2}\right),
\end{aligned}
$$

with $a=(5 / 2)^{1 / 2}, b=a / 2, c=24^{-1 / 2}$, as the standard basis of $V(2,3)$. As we get $\lambda^{2}=24 / 25$ in this case,

$$
\begin{aligned}
& \tilde{H}^{1}=\lambda H^{1}, \quad \cdots, \quad \tilde{H}^{7}=\lambda H^{7}, \quad \tilde{H}^{8}=\lambda a x y t, \quad \tilde{H}^{9}=\lambda a x z t, \\
& \tilde{H}^{10}=\lambda a y z t, \quad \tilde{H}^{11}=\lambda b t\left(x^{2}-y^{2}\right), \quad \tilde{H}^{12}=3^{-1 / 2} \lambda b t\left(x^{2}+y^{2}-2 z^{2}\right), \\
& \tilde{H}^{13}=5^{-1 / 2} t\left(x^{2}+y^{2}+z^{2}-t^{2}\right), \quad \tilde{H}^{14}=5^{-1} x\left(x^{2}+y^{2}+z^{2}-5 t^{2}\right), \\
& \tilde{H}^{15}=5^{-1} y\left(x^{2}+y^{2}+z^{2}-5 t^{2}\right), \quad \tilde{H}^{16}=5^{-1} z\left(x^{2}+y^{2}+z^{2}-5 t^{2}\right)
\end{aligned}
$$

can be taken as a standard basis of $V(3,3)$ extended from the basis of $V(2,3)$ given above. Putting $t=0$ we get

$$
\begin{array}{ll}
\tilde{H}^{1}=\lambda H^{1}, \quad \cdots, \quad \tilde{H}^{7}=\lambda H^{7}, & \tilde{H}^{8}=\cdots=\tilde{H}^{13}=0 \\
\tilde{H}^{14}=5^{-1} x, \quad \tilde{H}^{15}=5^{-1} y, \quad \tilde{H}^{16}=5^{-1} z
\end{array}
$$

After some computation we get $\left(d_{2,3}\right)^{2}=11 / 30-(4 / 5) 6^{-1 / 2}$. The ground distance between the extension and the ground space is $1 / 5$.

All these results coincide with (6.1.2) and (6.1.4),
6.2. The distance $d_{m, m+k}$ considered above is so to say the distance between $f_{m, s}\left(S^{m}(1)\right)$ and $\operatorname{Ext}_{k} f_{m, s}\left(S^{m}(1)\right)$. It is desirable to know more about $\operatorname{Ext}_{k} f_{m, 8}\left(S^{m+k}(1)\right)$. When \tilde{u} is an arbitrary unit vector in \boldsymbol{R}^{m+k+1}, let us take $P \tilde{u} /\|P \tilde{u}\|$ as the unit vector in \boldsymbol{R}^{m+1} corresponding to \tilde{u}. This allows usंto consider the distance $d\left(\operatorname{Ext}_{k} f_{m, s}(\tilde{u}), f_{m, s}(P \tilde{u} /\|P \tilde{u}\|)\right)=d_{m, m+k}(\tilde{u})$ for which we get

$$
\left(d_{m, m+k}(\tilde{u})\right)^{2}=\left(1-2 \lambda\|P u\|^{s}\right)(r(m, s))^{2}+(r(m+k, s))^{2}
$$

since we have $F^{P}(P \tilde{u})=\|P \tilde{u}\|^{s} F^{P}(P \tilde{u} /\|P \tilde{u}\|)$.
The distance between the ground space and the image by the extension $\operatorname{Ext}_{k} f_{m, s}$ of $S^{m+k}(1)$ is also easy to compute. We get

$$
\left((r(m+k, s))^{2}-\left(\lambda\|P \tilde{u}\|^{s} r(m, s)\right)^{2}\right)^{1 / 2} .
$$

Thus we get the following theorem.
Theorem 6.2.1. Let $f_{m+k, s}$ be an extension of $f_{m, s} \in \operatorname{IMI}(m, s)$. Then the distance between $\operatorname{Ext}_{k} f_{m, s}(\tilde{u}), \tilde{u} \in S^{m+k}(1)$, and the ground space \boldsymbol{R}^{m+1} is not less than

$$
r(m+k, s)\left(1-(\lambda r(m, s) / r(m+k, s))^{2}\right)^{1 / 2}
$$

§ 7. Relation between an isometric minimal immersion and a standard minimal immersion.
7.1. As we consider for a while only immersions of $\operatorname{IMI}(m, s)$, we use in §7.1 and in $\$ 7.2$ indices ranging as

$$
\begin{aligned}
& A, B, C, \cdots=1, \cdots, n ; \quad P, Q, R, \cdots=1, \cdots, p ; \\
& X, Y, Z, \cdots=p+1, \cdots, n
\end{aligned}
$$

where $n=n(m, s)$ and p is an integer $1 \leqq p<n$.
Let us recall that tensors F^{4} or H^{A} associated with an $f_{m, s} \in \operatorname{lMI}(m, s)$ or an $h_{m, s} \in \operatorname{SMI}(m, s)$ depend on the choice of the orthonormal basis $\left\{\tilde{e}_{1}, \cdots, \tilde{e}_{n}\right\}$ of \boldsymbol{R}^{n}. As F^{4} belong to $V(m, s)$ and $\left\{H^{1}, \cdots, H^{n}\right\}$ is a standard basis of $V(m, s)$, we can put

$$
\begin{equation*}
F^{A}=\sum_{B} f^{A B} H^{B}, \tag{7.1.1}
\end{equation*}
$$

where $f^{4 B}$ are numbers making an $n \times n$ matrix f. On the other hand, for $C \in W(m, s)$ there exists a symmetric matrix $\left[c^{A B}\right]$ such that

$$
C=\sum_{A, B} c^{A B} H^{A} \otimes H^{B} .
$$

We are going to study the behavior of the matrices $\left[f^{A B}\right]$ and $\left[c^{A B}\right]$ when we choose a suitable basis of \boldsymbol{R}^{n}, a suitable immersion from the given equivalence class $\left[f_{m, s}\right.$] and a suitable standard minimal immersion.

Taking a suitable basis $\left\{H^{1}, \cdots, H^{a}\right\}$ and hence the corresponding standard minimal immersion $h_{m, s}$, we have a diagonal form for C,

$$
\begin{equation*}
C=\sum_{A} c^{4} H^{4} \otimes H^{A} . \tag{7.1.2}
\end{equation*}
$$

If moreover C satisfies

$$
C=\sum_{\Lambda}\left(F^{4} \otimes F^{4}-H^{4} \otimes H^{4}\right),
$$

where F^{4} are associated with $f_{m, s}$, we have

$$
\sum_{A} F^{A} \otimes F^{A}=C+\sum_{A} H^{A} \otimes H^{A}=\sum_{A}\left(1+c^{A}\right) H^{A} \otimes H^{A}
$$

Thus we get

$$
\sum_{A, B, C} f^{C A} f^{C B} H^{A} \otimes H^{B}=\sum_{A}\left(1+c^{A}\right) H^{A} \otimes H^{A}
$$

and hence

$$
\begin{equation*}
\sum_{C} f^{C A} f^{C B}=\left(1+c^{A}\right) \delta^{A B}, \quad \sum_{C}\left(f^{C A}\right)^{2}=1+c^{A} \tag{7.1.3}
\end{equation*}
$$

This shows that, whenever C belongs to $L(m, s)$, we have $1+c^{A} \geqq 0$ for each of $A=1, \cdots, n$. Conversely, if $1+c^{A} \geqq 0$, then there exists an isometric minimal immersion $g_{m, s}$ such that

$$
G^{A}=\left(1+c^{A}\right)^{1 / 2} H^{A}
$$

are the tensors associated with $g_{m, s}$. Thus the condition $1+c^{A} \geqq 0$ (all A) is the necessary and sufficient condition for C to belong to $L(m, s)$, and this condition is satisfied in our case. If $1+c^{A}=0$ for some A, then we have $C \in \partial L(m, s)$.

Let us consider the relation between $f_{m, s}$ and $g_{m, s}$. As we have

$$
G^{A}=d^{A} H^{A}, \quad F^{A}=\sum_{B} f^{A B} H^{B},
$$

where $d^{A}=\left(1+c^{A}\right)^{1 / 2}$, we get, if $d^{A}>0$ for all A,

$$
F^{A}=\sum_{B}\left(f^{A B} / d^{B}\right) G^{B} .
$$

From this and (7.1.3) we get

$$
\sum_{A}\left(f^{A B} / d^{B}\right)\left(f^{A C} / d^{C}\right)=\delta^{B C}
$$

and this shows that the matrix $\left[f^{A B} / d^{B}\right]$ is an orthogonal matrix. Thus $g_{m,}$ and $f_{m, s}$ belong to one and the same equivalence class.

If we have $d^{P}>0$ but $d^{x}=0$ for $P=1, \cdots, p$ and $X=p+1, \cdots, n$, then we get $f^{A X}=0, G^{P}=d^{P} H^{P}, G^{X}=0$, hence

$$
\begin{aligned}
& F^{A}=\sum_{P} f^{A P} H^{P}=\sum_{P}\left(f^{A P} / d^{P}\right) G^{P}+\sum_{X} g^{A X} G^{X}, \\
& \sum_{\Lambda}\left(f^{A P} / d^{P}\right)\left(f^{A Q} / d^{Q}\right)=\delta^{P Q}
\end{aligned}
$$

where we can choose $g^{A X}$ freely. Thus, when $g^{A X}$ are chosen such that $\left[f^{A P} / d^{P}, g^{A X}\right]$ is an orthogonal matrix, $g_{m, s}$ belongs to the equivalence class of $f_{m, s}$.

Thus we have proved the following theorem.
Theorem 7.1.1. Let an orthonormal basis of \boldsymbol{R}^{n} be fixed, $f_{m, s}$ be an arbitrary isometric minimal immersion and $h_{m, s}$ be a suitable standard minimal immersion. Then there exists an isometric minimal immersion $g_{m, s}$ belonging to the equivalence class of $f_{m, s}$ such that tensors G^{A} and H^{A} associated with $g_{m, s}$
and $h_{m, s}$ respectively satisfy

$$
G^{A}=g^{A} H^{A}, \quad g^{A} \geqq 0
$$

The relation between F^{A} and G^{A} can be written

$$
F^{A}=\sum_{B} a^{A B} G^{B}, \quad G^{A}=\sum_{B} a^{B A} F^{B}
$$

where $a=\left[a^{A B}\right]$ is an orthogonal matrix. Let $\left\{\tilde{e}_{1}, \cdots, \tilde{e}_{n}\right\}$ be the orthonormal basis of \boldsymbol{R}^{n} with respect to which F^{A}, G^{A} and H^{A} are the tensors considered above. Then taking another orthonormal basis $\left\{\tilde{e}_{1}^{\prime}, \cdots, \tilde{e}_{n}^{\prime}\right\}$ such that

$$
\tilde{e}_{A}^{\prime}=\sum_{B} a^{B A} \tilde{e}_{B},
$$

we get $F^{4} \tilde{e}_{A}=G^{A} \tilde{e}_{A}^{\prime}$. This shows that G^{A} are the tensors associated with $f_{m, s}$ with respect to the new basis $\left\{\tilde{e}_{1}^{\prime}, \cdots, \tilde{e}_{n}^{\prime}\right\}$. Let $h_{m, s}^{\prime}$ be another standard minimal immersion such that the tensors associated with $h_{m, s}^{\prime}$ are H^{4} with respect to the new basis, namely the tensors associated are $\Sigma_{B} a^{A B} H^{B}$ with respect to the old basis. Then we can deduce from the equation $G^{A}=g^{4} H^{4}$, $g^{4} \geqq 0$ the following theorem.

Theorem 7.1.2. Let $f_{m, s}$ be an arbitrary isometric minimal immersion. If we choose a suitable orthonormal basis of \boldsymbol{R}^{n} and a suitable standard minimal immersion $h_{m, s}$, then the tensors F^{A} and H^{A} associated with $f_{m, s}$ and $h_{m, s}$ respectively satisfy

$$
\begin{equation*}
F^{A}=a^{A} H^{A}, \quad a^{A} \geqq 0 \tag{7.1.4}
\end{equation*}
$$

7.2. Assuming $f_{m, s}$ and $h_{m, s}$ satisfy the condition (7.1.4), we compute the pointwise distance between $\left.f_{m, s} s S^{m}(1)\right)$ and $h_{m, s}\left(S^{m}(1)\right)$, namely $d\left(f_{m, s}(u), h_{m, s}(u)\right)$ where u is a unit vector in \boldsymbol{R}^{m+1}. For this distance $\rho(u)$ we have

$$
(\rho(u))^{2}=\sum_{A}\left(F^{A}(u)-H^{A}(u)\right)^{2}=\sum_{A}\left(a^{A}-1\right)^{2}\left(H^{A}(u)\right)^{2}
$$

and also

$$
(\rho(u))^{2}=2 r^{2}-2 \sum_{A} a^{A}\left(H^{A}(u)\right)^{2}=2 \sum_{A}\left(1-a^{A}\right)\left(H^{A}(u)\right)^{2}
$$

As it is easy to see, $\rho(u)$ coincides with $\min \left\{d\left(f_{m, s}(u), h_{m, s}(v)\right) ;\|v\|=1\right\}$ if $\rho(u)$ does not depend on u.

We can put

$$
a^{A}=a_{i}\left(A=n_{1}+\cdots+n_{i-1}+1, \cdots, n_{1}+\cdots+n_{i}\right)
$$

where $i=1, \cdots, p, \sum_{i} n_{i}=n$ and $a_{1}>a_{2}>\cdots>a_{p} \geqq 0$. Let us define

$$
\begin{equation*}
\sigma_{i}(u)=\sum_{(i)}\left(H^{A}(u)\right)^{2} \tag{7.2.1}
\end{equation*}
$$

where $\Sigma_{(i)}$ means the sum for $A=n_{1}+\cdots+n_{i-1}+1, \cdots, n_{1}+\cdots+n_{i}$. Then we have

$$
\begin{aligned}
& \sum_{i} \sigma_{i}(u)=\sum_{A}\left(H^{A}(u)\right)^{2}=r^{2} \\
& \sum_{i}\left(a_{i}\right)^{2} \sigma_{i}(u)=\sum_{A}\left(a^{A} H^{A}(u)\right)^{2}=r^{2} \\
& (\rho(u))^{2}=2 r^{2}-2 \sum_{i} a_{i} \sigma_{i}(u)
\end{aligned}
$$

In some following paragraphs we consider the case where $\sigma_{i}(u)$ do not depend on u. Then putting $\sigma_{i}(u)=\sigma_{i}$ we get from (7.2.1) $\sigma_{i}=\left(n_{i} / n\right) r^{2}$ because of ${ }^{\boldsymbol{F}} c=r^{2} c_{m} / n[3, \S 5]$, hence $\rho(u)=\rho$ does not depend on u.

$$
\begin{equation*}
\rho^{2}=\left(1-\sum_{i=1}^{p} n_{i} a_{i} / n\right) 2 r^{2} . \tag{7.2.2}
\end{equation*}
$$

Thus we have obtained the following lemma and corollary.
Lemma 7.2.1. Let $f_{m, s} \in \operatorname{IMI}(m, s)$ and $h_{m, s} \in \operatorname{SMI}(m, s)$ be such that (7.1.4) is satisfied and moreover the basis $\left\{H^{1}, \cdots, H^{n}\right\}$ corresponding to $h_{m, s}$ be such that $\boldsymbol{Z} \sigma_{i}(u)$ defined by (7.2.1) do not depend on $u \in S^{m}(1)$. Then $d\left(f_{m, s}(u), h_{m, s}(u)\right)$ $=\rho$ is given by (7.2.2).

Corollary 7.2.2. Let $h_{m, s}$ be a standard minimal immersion with the corresponding basis $\left\{H^{1}, \cdots, H^{n}\right\}$ satisfying $\sigma_{i}(u)=\sigma_{i}$. If $\alpha_{1}, \cdots, \alpha_{p}$ are numbers such that

$$
\sum_{i=1}^{p} \alpha_{i} \sum_{(i)} H^{A} \otimes H^{A} \in L(m, s)
$$

then there exists an isometric minimal immersion $f_{m, s}$ satisfying (7.1.4) and such that $d\left(f_{m, s}(u), h_{m, s}(u)\right)$ does not depend on the unit vector u.

Example 1. From the result we have got in [6, §9], where some cases of $S^{3}(1) \rightarrow S^{24}(r), r^{2}=1 / 8$, are treated, we can easily deduce that there exists a standard minimal immersion $h_{3,4}$ with $\left\{H^{1}, \cdots, H^{25}\right\}$ such that

$$
\frac{1}{2}\left(3 \sum_{A=1}^{10} H^{A} \otimes H^{A}-2 \sum_{A=11}^{25} H^{A} \otimes H^{A}\right) \in \partial L(3,4)
$$

Then we have an isometric minimal immersion $f_{3,4}$ such that

$$
F^{A}=a^{A} H^{A}, \quad a^{1}=\cdots=a^{10}=\left(\frac{5}{2}\right)^{1 / 2}, \quad a^{11}=\cdots=a^{25}=0
$$

This satisfies

$$
\left(d\left(f_{3,4}(u), h_{s, 4}(u)\right)\right)^{2}=\left(1-\left(\frac{2}{5}\right)^{1 / 2}\right) / 4
$$

Example 2. We have the following $C \in \partial L(3,4)$ as well,

$$
C=-\frac{1}{3}\left(3 \sum_{A=1}^{10} H^{A} \otimes H^{A}-2 \sum_{A=11}^{25} H^{A} \otimes H^{A}\right)
$$

Then we can take $f_{8,4}$ satisfying (7.1.4) for which the associated $F_{\text {anareIgiven }]}$ by

$$
F^{A}=a^{A} H^{A}, \quad a^{1}=\cdots=a^{10}=0, \quad a^{11}=\cdots=a^{25}=\left(\frac{5}{3}\right)^{1 / 2},
$$

hence

$$
\left(d\left(f_{3,4}(u), h_{3,4}(u)\right)\right)^{2}=\left(1-\left(\frac{3}{5}\right)^{1 / 2}\right) / 4 .
$$

7.3. Let us study about extensions of $f_{m, s}$ and $h_{m, s}$ when the conditions of Lemma 7,2.1 are satisfied. $f_{m+k, s}$ and $h_{m+k, s}$ which we take as extensions are such that the corresponding $\left\{\tilde{F}^{1}, \cdots, \tilde{F}^{n(m+k, s)}\right\}$ and $\left\{\tilde{H}^{1}, \cdots, \tilde{H}^{n(m+k, s)}\right\}$ satisfy

$$
\begin{array}{ll}
\tilde{F}^{P}(\tilde{v})=\lambda F^{P}(P \tilde{v}), & \tilde{H}^{P}(\tilde{v})=\lambda H^{P}(P \tilde{v}), \quad P=1, \cdots, n(m, s), \tag{7.3.1}\\
\tilde{F}^{X}(\tilde{v})=\tilde{H}^{X}(\tilde{v}), & X=n(m, s)+1, \cdots, n(m+k, s) .
\end{array}
$$

Then we have

$$
\begin{aligned}
& \tilde{F}^{A}=\tilde{a}^{A} \tilde{H}^{A}, \quad A=1, \cdots, n(m+k, s), \\
& \tilde{a}^{P}=a^{P}, \quad \tilde{a}^{X}=1, \\
& \tilde{\sigma}_{i}(\tilde{u})=\sum_{(i)}\left(\tilde{H}^{P}(\tilde{u})\right)^{2}=\lambda^{2} \sigma_{i}(P \tilde{u})=\lambda^{2}\|P \tilde{u}\|^{2 s} \sigma_{i}, \\
& \sum_{X}\left(\tilde{H}^{X}(\tilde{u})\right)^{2}=\tilde{r}^{2}-\lambda^{2}\|P \tilde{u}\|^{2 s} \sum_{i} \sigma_{i}=(r(m+k, s))^{2}-\lambda^{2}\|P \tilde{u}\|^{2 s}(r(m, s))^{2},
\end{aligned}
$$

hence $\tilde{\rho}(\tilde{u})=d\left(f_{m+k, s}(\tilde{u}), h_{m+k, s}(\tilde{u})\right)$ is obtained from

$$
\begin{aligned}
(\tilde{\rho}(\tilde{u}))^{2} & =\sum_{\Lambda}\left(\tilde{F}^{A}(\tilde{u})-\tilde{H}^{A}(\tilde{u})\right)^{2}=\sum_{P}\left(\tilde{F}^{P}(\tilde{u})-\tilde{H}^{P}(\tilde{u})\right)^{2} \\
& =\lambda^{2} \sum_{P}\left(a^{P}-1\right)^{2}\left(H^{P}(P \tilde{u})\right)^{2}=\lambda^{2}\|P \tilde{u}\|^{2 s} \rho^{2}
\end{aligned}
$$

where $\rho=d\left(f_{m, s}(u), h_{m, s}(u)\right)$.
Thus we have proved the following theorem.
Theorem 7.3.1. Suppose that $f_{m, s}$ and $h_{m, s}$ satisfy the conditions of Lemma 7.2.1, while $f_{m+k, s}$ and $h_{m+k, s}$ are extensions satisfying (7.3.1). Then the pointwise distance $\tilde{\rho}(\tilde{u})=d\left(f_{m+k, s}(\tilde{u}), h_{m+k, s}(\tilde{u})\right)$ satisfies $\tilde{\rho}(\tilde{u})=\lambda\|P \tilde{u}\|^{*} \rho$ where $\rho=$ $d\left(f_{m, s}(u), h_{m, s}(u)\right)$ does not depend on u.

Then it is clear that, at the point \tilde{u} where $P \tilde{u}$ vanishes, we have $\tilde{\rho}(\tilde{u})=0$. This shows that $f_{m+k, s}\left(S^{m+k}(1)\right)$ and $h_{m+k, s}\left(S^{m+k}(1)\right)$ come in contact there. On the other hand the pointwise distance $d\left(f_{m+k, s}\left(S^{m}(1)\right), h_{m+k, s}\left(S^{m}(1)\right)\right)$, where $S^{m}(1)$ is the ground sphere, is equal to $\lambda \rho$.
7.4. Let M and N be submanifolds of a Euclidean space and $\varphi: M \rightarrow N$ be a suitable mapping. Then it is not unnatural to define the distance $d(M, N)$ from M to N by

$$
(d(M, N))^{2}=\int(d(x, \varphi(x)))^{2} d \omega / \int d \omega
$$

where $x \in M$ and $d \omega$ is the volume element of M. As a variation of such an idea we define the distance $d\left(f_{m, s}, h_{m, s}\right)$ as follows.

Definition 7.4.1 The number $d\left(f_{m, s}, h_{m, s}\right) \geqq 0$ is defined by

$$
2 \frac{r^{2}}{n} c_{m}\left(d\left(f_{m, s}, h_{m, s}\right)\right)^{2}=\int\left(d\left(f_{m, s}(u), h_{m, s}(u)\right)\right)^{2} d \omega_{m}
$$

and is called the relative distance or, simply, the distance between $f_{m, s}$ and $h_{m, 0}$.

From (7.1.1) we get

$$
\begin{aligned}
\left(d\left(f_{m, s}(u), h_{m, s}(u)\right)\right)^{2} & =\sum_{A}\left(F^{A}(u)-H^{A}(u)\right)^{2}=2 r^{2}-2 \sum_{A} F^{A}(u) H^{A}(u) \\
& =2 r^{2}-2 \sum_{A, B} f^{A B} H^{A}(u) H^{B}(u),
\end{aligned}
$$

where $A, B=1, \cdots, n$. Then we get, by some computations [3, (5.1) and (5.12)],

$$
\int\left(d\left(f_{m, s}(u), h_{m, s}(u)\right)\right)^{2} d \omega_{m}=2 r^{2} c_{m}-2(\operatorname{Tr}(f) / n) r^{2} c_{m}
$$

This proves the following lemma.
Lemma 7.4.2. The distance $d\left(f_{m, s}, h_{m, s}\right)$ is given by

$$
\begin{equation*}
\left(d\left(f_{m, s}, h_{m, s}\right)\right)^{2}=\operatorname{Tr}(1-f) \tag{7.4.1}
\end{equation*}
$$

where 1 is the unit matrix of order n.
7.5. $d\left(f_{m, s}, h_{m, s}\right)$ depends on $h_{m, s}$. We now define and consider $d\left(f_{m, s}, \operatorname{SMI}(m, s)\right)$ where $\operatorname{SMI}(m, s)$ is the equivalence class of $h_{m, s}$.

Definition 7.5.1. $d\left(f_{m, s}, \operatorname{SMI}(m, s)\right)$ is the least value of $d\left(f_{m, s}, h_{m, s}\right)$, $h_{m, s} \in \operatorname{SMI}(m, s)$.

We get $d\left(f_{m, s}, \operatorname{SMI}(m, s)\right)$ when $\operatorname{Tr}(f)$ takes the largest value. From Theorem 7.1.2, for any $f_{m, s}$, there exist an orthonormal basis of \boldsymbol{R}^{n} and a standard minimal immersion $h_{m, s}$ such that

$$
\begin{equation*}
F^{A}=a^{A} H^{A}, \quad a^{A} \geqq 0 \tag{7.5.1}
\end{equation*}
$$

If an arbitrary orthonormal basis of \boldsymbol{R}^{n} and an arbitrary standard minimal immersion are taken, we have an equation of the form

$$
\sum_{B} S^{A B} F^{B}=a^{A} \sum_{B} T^{A B} H^{B}
$$

instead of (7.5.1) where $S=\left[S^{A B}\right]$ and $T=\left[T^{A B}\right]$ are orthogonal matrices. Then we have

$$
F^{A}=\sum_{B} f^{A B} H^{B}, \quad f^{A B}=\sum_{C} S^{C A} a^{C} T^{C B}
$$

and consequently

$$
\operatorname{Tr}(f)=\sum_{c}\left(T S^{-1}\right)^{c c} a^{c} .
$$

$T S^{-1}$ being an orthogonal matrix, no diagonal element is larger than 1 . As a^{c} are nonnegative, we have

$$
\operatorname{Tr}(f) \leqq \sum_{A} a^{A} .
$$

This proves the following theorem.
Theorem 7.5.2. The distance $d\left(f_{m, s}, \operatorname{SMI}(m, s)\right)$ is given by $d\left(f_{m, s}, h_{m, s}\right)$ where $f_{m, s}$ and $h_{m, s}$ satisfy (7.1.4), hence

$$
\left(d\left(f_{m, s}, \operatorname{SMI}(m, s)\right)\right)^{2}=n-\sum_{A} a^{A} .
$$

7.6. As an application we consider $d\left(\operatorname{Ext}_{k} f_{m, s}, \operatorname{SMI}(m+k, s)\right)$. We now use indices ranging as follows,

$$
\begin{aligned}
& P=1, \cdots, n(m, s) ; \quad X=n(m, s)+1, \cdots, n(m+k, s) ; \\
& A=1, \cdots, n(m+k, s) .
\end{aligned}
$$

The orthonormal basis of $\boldsymbol{R}^{n(m, s)}$ and $h_{m, s}$ are supposed to be such that we have $F^{P}=a^{P} H^{P}, a^{P} \geqq 0$. Then, as we have shown in $\S 5$, we can take $\operatorname{Ext}_{k} f_{m, s}$, $\operatorname{Ext}_{k} h_{m, s}$ and the orthonormal basis of $\boldsymbol{R}^{n(m+k, s)}$ such that $\tilde{F}^{P}=a^{P} \tilde{H}^{P}, \tilde{F}^{x}=\tilde{H}^{x}$. Thus we get

$$
\tilde{F}^{A}=\tilde{a}^{4} \tilde{H}^{4}
$$

where $\tilde{a}^{P}=a^{P}, \tilde{a}^{x}=1$. This proves the following theorem.
Theorem 7.6.1. Let $\operatorname{Ext}_{k} f_{m, s}$ be an extension of $f_{m, s}$. Then we have

$$
d\left(f_{m, s}, \operatorname{SMI}(m, s)\right)=d\left(\operatorname{Ext}_{k} f_{m, s}, \operatorname{SMI}(m+k, s)\right),
$$

namely, extension leaves invariant the distance between an isometric minimal immersion and the equivalence class of standard minimal immersions.

§ 8. Isotropic property.

Isotropic property of isometric minimal immersions of spheres into spheres was studied in [4] and [8]. Isotropic property considered in the present paper is defined as follows.

Definition 8.1. Let C be an element of $W(m, s)$. If $C(v, \cdots, v, w, \cdots, w$; $v, \cdots, v, w, \cdots, w$), which is r-linear in v, identically vanishes when $r \leqq 2 j+1$, then C is said to be j-isotropic.

Let $C \in W(m, s)$ and $\tilde{C} \in W(m+k, s)$ be such that $\tilde{C}=\Lambda C$. Then we have

$$
\begin{aligned}
& \tilde{C}(\tilde{v}, \cdots, \tilde{v}, \tilde{w}, \cdots, \tilde{w} ; \tilde{v}, \cdots, \tilde{v}, \tilde{w}, \cdots, \tilde{w}) \\
= & \lambda^{2} C(v, \cdots, v, w, \cdots, w ; v, \cdots, v, w, \cdots, w)
\end{aligned}
$$

where $v=P \tilde{v}, w=P \tilde{w}$. This proves the following theorem.
THEOREM 8.2. The mapping Λ leaves invariant the isotropic property of elements of $W(m, s)$.

References

[1] M. P. Do Carmo and N.R. Wallach, Minimal immersions of spheres into spheres, Ann. of Math., 93 (1971), 43-62.
[2] ${ }^{\text {E }} \mathrm{K}$. Mashimo, Minimal immersions of 3 -dimensional sphere into spheres, Osaka J. Math., 21 (1984), 721-732.
[3] Y. Mutō, Some properties of isometric minimal immersions of spheres into spheres, Kodai Math. J., 6 (1983), 308-332.
[4] Y. Mutō, Isometric minimal immersions of spheres into spheres isotropic up to some order, Yokohama Math. J., 32 (1984), 159-180.
[5] Y. Mutō, Groups of motions and minimal immersions of spheres into spheres, Kodai Math. J., 9 (1986), 191-205.
[6] Y. Mutō, Some isometric minimal immersions $S^{3}(1) \rightarrow S^{24}(r), r^{2}=1 / 8$, which are not full, Tensor (N.S.), 45 (1987), 130-140.
[7] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan, 18 (1966), 380-385.
[8] K. Tsukada, Isotropic minimal immersions of spheres into spheres, J. Math. Soc. Japan, 35 (1983), 355-379.

Yosio Mutō
34-6-904, 5-Chome, Koishikawa
Bunkyo-ku, Tokyo 112
Japan

