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1. Introduction.

Generalized functions and hyperfunctions have been introduced and studied
by many PeoPle using different approaches. In the work of K\"othe[11], [12],

Grothendieck [6], Gelfand and Silov [3], [4], Schwartz [19], Roumieu [15] and
Lions and Magenes [13], they were viewed as continuous linear functionals
acting on some test-function spaces which are usually the inductive limits of
sequences of normed spaces. However, in the work of Sato [17], hyperfunctions
were viewed more as algebraic objects pertaining to the boundary values of
holomorphic functions than as continuous linear functionals. In the case of the
real line $R$, the notion of a hyperfunction in Sato’s theory is very simple; a
hyperfunction on $R$ is defined by a holomorphic function on $C-R$ where $C$ is
the complex plane. And two such functions represent the same hyperfunction
if and only if their difference is holomorphic on $C$ , hence on $R$. More generally,
if $I$ is an open subset of $R$ and $V$ is an open subset of $C$ containing $I$ and in
which $I$ is relatively closed, then the module of hyperfunctions on $I$ is defined
as the quotient module $\mathcal{H}(V-I)/\mathcal{H}(V)$ where $\mathcal{H}(V-I)$ and $\mathcal{H}(V)$ are the com-
plex modules of locally holomorphic functions on $V-I$ and $V$ respectively.

Sato’s hyperfunctions have been defined on more general sets in the complex
plane such as curves and have also been generalized to higher dimensions using
sheaf theory.

On the unit circle $\partial D$ , hyperfunctions were first characterized by K\"othe [11],
[12] as continuous linear functionals acting on the linear space of holomorphic
complex-valued functions on $\partial D$ when provided with a certain locally convex
topology. Using different approaches, Sato [16] and Johnson [8] were able to
find a very interesting characterization of hyperfunctions on the unit circle in
terms of Fourier series. They showed that $f(e^{i\theta})$ is a hyperfunction on $\partial D$ if
and only if $f(e^{i\theta})= \sum_{n=-\infty}^{\infty}c_{n}e^{tn\theta}$ where $\lim\sup_{1n1arrow\infty}^{|n|}\sqrt{|c_{n}|}\leqq 1$ and the series
converges, of course, in the sense of hyperfunctions.

If one deforms the unit circle homotopically to a curve $\Gamma$ , both Sato’s and
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K\"othe’s theories remain adequate to describe hyperfunctions on $\Gamma$ , but unfor-
tunately the Fourier series characterization ceases to make sense. No similar
characterization to the one given by Fourier series seems to exist for hyper-
functions on $\Gamma$ .

The aim of this paper is to derive the analogue of the Fourier series charac-
terization of hyperfunctions on the unit circle for hyperfunctions on curves $\Gamma$

that are conformal images of the unit circle. It will be shown that any hyper-
function on such a curve $\Gamma$ can be expanded in a series of generalized Faber
polynomials and their “conjugate” functions. As a consequence of this charac-
terization, some of the local properties of these hyperfunctions, such as micro-
analyticity and singular spectrum, can also be described in terms of the coef-
ficients of their generalized Faber expansions.

We divide the rest of this article into three main sections. Section 2
consists of two subsections A and $B$ ; in A we introduce the generalized Faber
polynomials, their conjugate functions and some of their properties that will be
used later on and in $B$ we introduce hyperfunctions and some related concepts.
In Section 3 we prove the main results and in Section 4 we give some examples.

2. Preliminaries.

A. The generalized Faber polynomials. Let $B$ be an open, bounded subset
of the complex $z$-plane with closure $\overline{B}$ whose complement $\overline{B}^{c}$ is a simply con-
nected domain. Let $z=x(\omega)$ map the domain $|\omega|>\rho$ one-to-one conformally
onto the domain $\overline{B}^{c}$ such that $\chi(\infty)=\infty$ . We denote the inverse function of
$z=x(\omega)$ by $\omega=\phi(z)$ . Let $D_{r}$ denote the disc { $\omega$ : to $|<r$ } and $\partial D_{r}$ its boundary
$\{\omega:|\omega|=r\}$ . We denote the image of $\partial D_{r}(r>\rho)$ , when mapped by the function
$z=x(\omega)$ , by $L_{r}$ , the bounded domain with boundary $L_{r}$ by $B_{r}$ and the boundary
of the domain $\overline{B}^{c}$ by $L_{\rho}$ or simply by $L$ .

Let the function

$F(z)= \sum_{n=0}^{\infty}b_{n}z^{n}$ , $b_{n}\neq 0$

be analytic in $|z|<1$ and assume that $F$ can be analytically continued to any
point outside the unit disc $D=D_{1}$ by any path not passing through the points
$z=0,1,$ $\infty$ . If the same is true for the function

$F_{*}(z)= \sum_{n=0}^{\infty}\frac{z^{n}}{b_{n}}$ ,

we say that $F(z)$ and $F_{*}(z)$ are adjoint.
Let

$R( \omega)=\sum_{n=0}^{\infty}c_{n}\omega^{-n}$ , $c_{0}\neq 0$
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be analytic in the domain $|\omega|>\rho$ with $R(\omega)\neq 0$ thereon and, furthermore, let
$B$ contain the point $z=0$ .

The generalized Faber polynomials $P_{n}(z)$ are defined by the generating
function

$F( \frac{z}{\chi(\omega)})\frac{\omega\chi’(\omega)}{\chi(\omega)}R(\omega)=\sum_{n=0}^{\infty}\frac{P_{n}(z)}{\omega^{n}}$ , $|\omega|>\rho,$
$z\in\overline{B}$ (2.1)

from which we immediately obtain for $n=0,1,2,$ $\cdots$

$P_{n}(z)= \frac{1}{2\pi i}\int_{|\omega|=r_{1}}F(\frac{z}{\chi(\omega)})\frac{x’(\omega)}{\chi(\omega)}R(\omega)\omega^{n}d\omega$ , $z\in\overline{B}_{r},$ $\rho<r<r_{1}$ . (2.2)

By substituting $\omega=\phi(u)$ , we obtain

$P_{n}(z)= \frac{1}{2\pi i}\int_{L_{r_{1}}}F(\frac{z}{u})R(\phi(u))[\phi(u)]^{n}\frac{du}{u}$ , $z\in\overline{B}_{r},$ $\rho<r<r_{1}$ . (2.3)

The case where $F(z)=1/(1-z)$ is of special importance to us; therefore, we
shall denote the generalized Faber polynomials in this case by $\pi_{n}(z)$ . For $\pi_{n}(z)$ ,
equations (2.1), (2.2) and (2.3) take on the form

$\frac{\omega\chi’(\omega)}{\chi(\omega)-z}R(\omega)=\sum_{n=0}^{\infty}\frac{\pi_{n}(z)}{\omega^{n}}$ , $|\omega|>\rho,$
$z\in\overline{B}$ , (2.4)

$\pi_{n}(z)=\frac{1}{2\pi i}\int_{|\omega|=r_{1}}\frac{x’(\omega)}{\chi(\omega)-z}R(\omega)\omega^{n}d\omega$ , $z\in\overline{B}_{r},$ $\rho<r<r_{1}$ (2.5)

and

$\pi_{n}(z)=\frac{1}{2\pi i}\int_{L_{r_{1}}}\frac{R(\phi(u))[\phi(u)]^{n}}{u-z}du$ , $z\in\overline{B}_{r},$ $\rho<r<r_{1}$ . (2.6)

If we set $R(\omega)=1$ in (2.4), we obtain the original Faber polynomials as introduced
by Faber [2].

Let $f(z)$ be analytic in $B$ and have the expansion

$f(z)= \sum_{n=0}^{\infty}a_{n}z^{n}$ (2.7)

in a neighbourhood of $z=0$ , then it is easy to show that the function

$\tilde{f}_{*}(z)=\sum_{n=0}^{\infty}a_{n}b_{n}z^{n}$ (2.8)

is also analytic in $B$ and

$\tilde{f}_{*}(z)=\frac{1}{2\pi i}\int_{L}f(u)F(\frac{z}{u})\frac{du}{u}$ , $z\in B$ (2.9)

$f(z)= \frac{1}{2\pi i}\int_{L}\tilde{f}_{*}(u)F_{*}(\frac{z}{u})\frac{du}{u}$ , $z\in B$ (see [23]). (2.10)

In particular, for fixed $\zeta\in\overline{B}^{c}$, if we set $f(u)=\Sigma_{n=0}^{\infty}(1/b_{n}\zeta^{n})u^{n}$ in (2.9), we obtain
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$\frac{\zeta}{\zeta-z}=\frac{1}{2\pi i}\int_{L}F_{*}(\frac{u}{\zeta})F(\frac{z}{u})\frac{du}{u}$ . (2.11)

From (2.2), (2.5), (2.9) and (2.10) we deduce that

$P_{n}(z)= \frac{1}{2\pi i}\int_{L}\pi_{n}(u)F(\frac{z}{u})\frac{du}{u}$ , $z\in B$ (2.12)

$\pi_{n}(z)=\frac{1}{2\pi i}\int_{L}P_{n}(u)F_{*}(\frac{z}{u})\frac{du}{u}$ , $z\in B$ . (2.13)

Since $P_{n}(z)$ and $\pi_{n}(z)$ are polynomials, with some minor modification of the
argument above, one can extend (2.12) and (2.13) to the case where $z\in B_{r}(r>\rho)$ .
By substituting $u-\chi(t)$ in (2.11) and using (2.1), we obtain

$\frac{1}{\zeta-z}=\sum_{n=0}^{\infty}P_{n}(z)q_{n}(\zeta)$ , $z\in B_{\gamma},$ $\zeta\in\overline{B}_{r}^{c}$ (2.14)

where

$q_{n}( \zeta)=\frac{1}{2\pi i}\int_{|t|\Rightarrow r}F_{*}(\frac{\chi(t)}{\zeta})\frac{1}{\zeta R(t)t^{n+1}}dt$ (2.15)

which is called the conjugate function of the polynomial $P_{n}(z)$ . The conjugate
function of the polynomial $\pi_{n}(z)$ will be denoted by $Q_{n}(\zeta)$ .

The two sequences of functions $\{P_{n}(z)\}_{n=0}^{\infty}$ and $\{q_{n}(z)\}_{n=0}^{\infty}$ form a biorthogonal
system of functions on any closed path $\gamma$ containing $\overline{B}$ in its interior, $i.e.$ ,

$\frac{1}{2\pi i}\int_{\gamma}P_{n}(z)P_{7r\iota}(z)dz=0$ ,

$\frac{1}{2\pi i}\int_{\gamma}q_{n}(z)q_{m}(z)dz=0$ ,

$n,$ $m=0,1,2,$ $\cdots$

$n,$ $m=0,1,2,$ $\cdots$ (2.16)

$\frac{1}{2\pi i}\int_{\gamma}P_{n}(z)q_{m}(z)dz=\delta_{nm}$ , $n,$ $m=0,1,2,$ $\cdots$

In view of the biorthogonality, formula (2.14) and the estimates

$\lim_{narrow}\sup_{\infty}n\sqrt{|P_{n}(z)|}=r$ and $\lim_{narrow}\sup_{\infty}n\sqrt{|q_{n}(z)|}=\frac{1}{r}$ (2.17)

which hold uniformly for $z\in L_{r}(r>\rho)$ , one can show that if $f(z)$ is analytic
in a doubly-connected domain $B_{r_{1}.r_{2}},$ $\rho<r_{1}<r_{2}<\infty$ , bounded by the contour
lines $L_{r_{1}}$ and $L_{r_{2}}$ and has singular points on these contour lines, then

$f(z)= \sum_{n=0}^{\infty}$ a ${}_{n}P_{n}(z)+ \sum_{n=0}^{\infty}b_{n}q_{n}(z)$ , (2.18)

where

$a_{n}= \frac{1}{2\pi i}\int_{L_{r}}f(\zeta)q_{n}(\zeta)d\zeta$ , $b_{n}= \frac{1}{2\pi i}\int_{L_{r}}f(\zeta)P_{n}(\zeta)d\zeta$ , $r_{1}<r<r_{8}$ (2.19)

and
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$\lim_{narrow}\sup_{\infty}n$ Vl $a_{n}|= \frac{1}{r_{2}}$ , $\lim_{n}\sup_{arrow\infty}n\sqrt{|b_{n}|}=r_{1}$ . (2.20)

For more details on Faber polynomials, see [2], [7], [9], [20] and [21].
In the next subsection, we shall introduce some of the definitions and nota-

tions Pertaining to hyPerfunctions that will be used later on.

B. Hyperfunctions. Let $G$ be an open subset of the Riemann sphere $O$ and
$\mathcal{H}(G)$ be the ring of locally holomorphic functions on $G$ . When provided witb
the topology of uniform convergence on compact subsets of $G,$ $\mathcal{H}(G)$ becomes
a Frechet space which will also be denoted by $\mathcal{H}(G)$ . Let $K$ be a compact
subset of the complex plane $C$ and consider the system of open neighbourhoods
$\{G_{n}\}_{n=1}^{\infty}$ of $K$ defined by

$G_{n}=\{z$ : dist$(z, K)< \frac{1}{n}\}$ .
Hence, $G_{1}\supset G_{2}\supset G_{3}\cdots\cdots$ and consequently, $\mathcal{H}(G_{1})\subset \mathcal{H}(G_{2})\subset \mathcal{H}(G_{3})\subset\cdots$ where $f(z)$

$\in \mathcal{H}(G_{n})$ defines an element in $\mathcal{H}(G_{n+1})$ by restriction, $i.e.,$ $f(z)|_{G_{n+1}}$ . We define
$\mathcal{H}(K)$ by

$\mathcal{H}(K)=_{n}U_{=1}\mathcal{H}(G_{n})\infty$ ,

$i$ . $e.,$ $f(z)\in \mathcal{H}(K)$ if and only if it is locally holomorphic in some neighbourhood
of $K$. We endow $\mathcal{H}(K)$ with the inductive limit topology induced by the
topologies of $\{\mathcal{H}(G_{n})\}_{n=1}^{\infty}$ . It is known that the dual space $\mathcal{H}’(K)$ of $\mathcal{H}(K)$ ,
when provided with the strong topology, is isomorphic to $\mathcal{H}_{0}(C\backslash K)=\{f:f$ is
holomorphic on $C\backslash K$ and $f(\infty)=0\}$ ; see [10].

Let $I$ be an open subset of the real line $R$ and $V$ be a complex neigh-
bourhood of $I(V$ is an open subset of the complex plane $C$ which contains $I$

in its interior) such that $I$ is relatively closed in $V$ . The complex-module $B(I)$

of hyperfunctions on $I$ is defined as the quotient module

$B(I)=\mathcal{H}(V-I)/\mathcal{H}(V)$ . (2.21)

It can be shown [17] that this dePnition is independent of the neighbourhood
$V$ , hence for $V=C-\partial I$ where $\partial I$ is the boundary of $I$ relative to $R$, then

$B(I)\cong \mathcal{H}(C-\overline{I})/\mathcal{H}(C-\partial I)$ , (2.22)

where $\cong$ means isomorphic to. It is easy to see that $Iarrow B(I)$ is a sheaf.
If $I$ is relatively compact in $R$, it follows that

$B(I)\cong \mathcal{H}’(\overline{I})/\mathcal{H}’(\partial I)$ . (2.23)

But if $I$ is compact, then

$B(I)\cong \mathcal{H}’(I)$ , (2.24)
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moreover for any $\tilde{f}\in \mathcal{H}’(I)$ , there exists $f(z)\in H_{0}(C-I)$ such that for any
$\phi(z)\in \mathcal{H}(I)$

$\langle\tilde{f}, \phi\rangle=\frac{1}{2\pi i}\int_{\gamma}\phi(z)f(z)dz$ , (2.25)

where 7 is any simple closed path enclosing $I$ and lying in the domain of
analyticity of $\phi(z)$ .

Let $C^{\pm}=\{z:{\rm Im} Z<>0\}$ , hence $C=C^{+}+R+C^{-}$ . Similarly, for a complex
neighbourhood $V$ of $I$, we define $V^{\pm}=\{z\in V:{\rm Im} z><0\}$ . Since any hyperfunction
$f$ on $I$ is represented by a holomorphic function $\phi(z)$ in $V-I$ (up to a holomor-
phic function on $V$), we may write $f(x)=[\phi(z)]_{z\Rightarrow x}$ . Let

$\epsilon(z)=\{\begin{array}{l}1 ifz\in C^{+}0 ifz\in C^{-},\end{array}$ $\overline{\epsilon}(z)=\{-10$ $ififz\in C^{+}z\in C^{-}$

and $1(x)=[\epsilon(z)]_{z=x}$ ( $=[\overline{\epsilon}(z)]_{z=x}$ since $\epsilon-\overline{\epsilon}$ is holomorphic everywhere). Thus, we
can define the hyperfunctions $f(x+iO),$ $f(x-iO)$ as

$f(x+iO)=[\epsilon(z)\phi(z)]_{z\Leftarrow x}$ and $f(x-iO)=[\overline{\epsilon}(z)\phi(z)]_{z=x}$

and hence, $f(x)=f(x+iO)-f(x-iO)$ . Moreover, we can inject $\mathcal{H}(I)$ into $B(I)$ via

$f(z)\in \mathcal{H}(I)-f(x)=[f(z)\epsilon(z)]_{z=x}=f(x)\cdot 1(x)\in B(I)$ .
The complex-submodule $\mathcal{H}(I)$ of $B(I)$ is called the module of holomorphic
hyperfunction on $I$. It is easy to see that a hyperfunction $f(x)=[\phi(z)]_{z\Rightarrow x}$ on
$I$ is holomorphic if and only if

$\phi(z)-\epsilon(z)f_{1}(z)+\overline{\epsilon}(z)f_{2}(z)$ , $z\in V’-I$ ,

where $V’\subseteqq V$ is a complex neighbourhood of $I$ and $f_{1},$ $f_{a}\in \mathcal{H}(V’)$ . A hyperfunc-
tion $f\in B(I)$ is said to be upper (lower) semi-holomorphic if $f(x)$ is of the form
$g(x+iO)(g(x-iO))$ for some $g\in B(I)$ or equivalently $f$ is upper (lower) semi-
holomorphic if and only if $f(x)=[\phi(z)]_{z=x}$ where $\phi(z)=\epsilon(z)\phi_{1}(z)+\overline{\epsilon}(z)f_{2}(z)(\phi(z)$

$=\epsilon(z)f_{i}(z)+\overline{\epsilon}(z)\phi_{2}(z))$, with $\phi_{1}(z)\in \mathcal{H}(V^{+}),$ $f_{2}(z)\in \mathcal{H}(V’)(f_{1}(z)\in \mathcal{H}(V’), \phi_{2}(z)\in$

$\mathcal{H}(V^{-}))$ where $V’\subseteq V$ is a complex neighbourhood of $I$ . We denote the submodule
of upper (lower) semi-holomorphic hyperfunctions on $I$ by $B^{+}(I)(B^{-}(I))$ . Clearly,
$f\in B(I)$ is holomorphic if and only if it is upper and lower semi-holomorphic.

The support of a hyperfunction is defined as the complement of the largest
open set in which it vanishes. Thus, if $f(x)=[\phi(z)]_{z=x}\in\ovalbox{\tt\small REJECT}(I)$ has support in a
closed set $F\subset I$, then $\phi(z)\in \mathcal{H}(V-F)$, where $V$ is a complex neighbourhood of $I$.

Let $f(x)=[\phi(z)]_{p=x}\in B(I)$ , where $\phi(z)$ is holomorphic in $V-I$ for some
complex neighbourhood $V$ of $I$. We define $\phi^{\pm}(z)$ as the restriction of $\phi(z)$ to
$V^{\pm},$ $i.e.,$ $\phi^{\neq}(z)=\phi(z)|_{V^{\pm}}$ .

$f(x)$ is said to be microanalytic at $x_{0}+i0(x_{0}-iO)$ if and only if $\phi^{+}(z)(\phi^{-}(z))$
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can be continued analytically in a neighbourhood of $x_{0}\in I$ . $f(x)$ is said to be
analytic at $x_{0}\in I$ if and only if it is microanalytic at $x_{0}\pm i0$ . The upper (lower)

singular spectrum $SS^{+}f(SS^{-}f)$ of $f\in e(I)$ is the set of points $x_{0}\in I$ such that
$f$ is not microanalytic at $x_{0}+i0(x_{0}-iO)$ . The singular support of $f$ is defined
as sing. $suPp$ . $f=SS^{+}f\cup SS^{-}f$ , which is the same as the complement in $I$ of the
set where $f$ is analytic. Trivially, sing. $supp$ . $f\subset supp$ . $f$ .

EXAMPLES. 1) Let

$f(x)=[\chi(z)]_{z=x}$ where $\chi(z)=\{$

$\frac{1}{z}$ $z\in C^{+}$

$0$ , $z\in C^{-}$

then $SS^{+}f=\{0\},$ $SS^{-}f=\emptyset$ , sing. $supp$ . $f=\{0\},$ $supp$ . $f=R$ .

2) $\delta(x)=\frac{-1}{2\pi i}[\frac{1}{z}]_{z=x}$ .

Hence, $SS^{+}\delta=\{0\}=SS^{-}\delta$ , sing. $supp$ . $\delta=\{0\},$ $supp$ . $\delta=\{0\}$ .

Let $\mathcal{H}^{+}(V, I)(\mathcal{H}^{-}(V, I))$ be the module of holomorphic functions in $V^{+}(V^{-})$

which can be continued analytically across every point of $I$ and set

$\mathcal{H}(V, I)=\mathcal{H}^{+}(V, I)\cap \mathcal{H}^{-}(V, I)$ .

Thus, $\mathcal{H}(V, I)$ is isomorphic to the module of all holomorphic functions $f(z)$ in
$V-I$ such that $f|_{V}\pm\in \mathcal{H}^{\pm}(V, I)$ .

The modules of upper and lower microfunctions on $I$ are defined by

$C^{+}(I)=\mathcal{H}(V^{+})/\mathcal{H}^{+}(V, I)$ and $C^{-}(I)=\mathcal{H}(V^{-})/\mathcal{H}^{-}(V, I)$ .

It can be shown that this definition is independent of $V$ and in addition

$C^{+}(I)\cong B(I)/B^{-}(I)$ and $C^{-}(I)\cong\ovalbox{\tt\small REJECT}(I)/\ovalbox{\tt\small REJECT}^{+}(I)$ .

The module $C(I)$ of microfunctions on $I$ , which is a refinement of the
module of hyperfunctions on $I$ , is defined by

$C(I)=\mathcal{H}(V-I)/\mathcal{H}(V, I)$ .
Again it can be shown that this definition is independent of $V$ . With some
easy arguments, one can show that

$C(I)\cong B(I)/\mathcal{H}(I)$ and $C(I)\cong C^{+}(I)\oplus C^{-}(I)$ .
Finally, let $\Gamma$ be an oriented, simple analytic curve in a locally compact,

analytic differential manifold $X$. Let $V$ be an open neighbourhood of $\Gamma$ in
which $\Gamma$ is relatively closed. Similar to $C^{\pm}$ , one can define $V^{\pm}$ such that $V=$

$V^{+}+\Gamma+V^{-}$ . For every point $p\in\Gamma$ there exists an open neighbourhood $V_{p}$ and
a univalent holomorphic function $\phi_{p}\in \mathcal{H}(V_{p})$ satisfying $\phi_{p}^{-1}(R)=V_{p}\cap\Gamma$ and
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$\phi_{\overline{p}}^{1}(C^{\pm})=V_{p}\cap V‘=V_{p}^{\pm}$ . Therefore, all the previous notions pertaining to hyper-
functions and microfunctions on $I$ can be carried over to $\Gamma$ .

For more details on hyPerfunctions, see [14], [17] and [18].

3. Characterization of hyperfunctions on analytic curves.

In thls section we shall characterize hyperfunctions on simple closed analytic
curves $\Gamma$ in the complex plane in terms of their generalized Faber series re-
presentations. Any such a curve $\Gamma$ can be viewed as the boundary of a domain
$B$ of the type described in Section 2.A. Therefore, we may write $\partial B$ instead
of $\Gamma$ to emphasize the interrelation between hyperfunctions as objects defined
on the boundary of the domain $B$ and the holomorphic functions defined in the
interior and the exterior of $B$.

Since we are assuming that the boundary of $B$ is analytic, the function
$\chi(\omega)$ may be extended analytically to the domain $|\omega|>\rho_{1}$ for some $0<\rho_{1}<\rho$ ,
and, thus, without loss of generality we may also assume that $R(\omega)\neq 0$ in this
extended region.

THEOREM 1. A function $\phi(\zeta)$ is in $\mathcal{H}(\partial B)$ if and only if it has a series ex-
pansion in terms of the generalized Faber polynomials in the form

$\phi(\zeta)=\sum_{n=0}^{\infty}$ a ${}_{n}P_{n}( \zeta)+\sum_{n=0}^{\infty}b_{n}q_{n}(\zeta)$ , $\zeta\in\partial B$ , (3.1)

where

$a_{n}= \frac{1}{2\pi i}\int_{\partial B}\phi(\zeta)q_{n}(\zeta)d\zeta$ ,

and

$\lim_{narrow}\sup_{\infty}n_{\sqrt{|a_{n}|}<\frac{1}{\rho’}}$

$b_{n}= \frac{1}{2\pi i}\int_{\partial B}\phi(\zeta)P_{n}(\zeta)d\zeta$ (3.2)

$\lim_{narrow}\sup_{\infty}n\sqrt{|b_{n}|}<\rho$ . (3.3)

PROOF. Since $\partial B$ is an analytic curve, the function $z=x(\omega)$ is holomorphic
in the domain $|\omega|>\rho_{1}$ for some $0<\rho_{1}<\rho$ and hence in the $z$ plane there will
be an image $L_{r}$ . of the circle $|\omega|=r^{*},$ $\rho_{1}<r^{*}<\rho$ , under the map $z=x(\omega)$ . As
before, we may denote the bounded domain with boundary $L_{r}$ . by $B_{r}.$ . Let
$\phi(\zeta)\in \mathcal{H}(\partial B)$ . Since $\phi(\zeta)$ is locally holomorphic on $\partial B$, then it is holomorphic
in some neighbourhood $V^{*}$ of $\partial B$. Set $V=V^{*}\cap\overline{B}_{r}^{c}.$ . Then, one can find two
contours $L_{r_{1}}$ and $L_{r_{2}}$ lying entirely in the interior of $V$ with $\rho_{1}<r^{*}<r_{1}<\rho<$

$r_{2}$ . By Cauchy’s formula, for any $\zeta$ between $L.1$ and $L_{r_{2}}$ , in particular for
$\zeta\in\partial B$, we have

$\phi(\zeta)=\frac{-1}{2\pi i}\int_{L_{r_{1}}}\frac{\phi(u)du}{u-\zeta}+\frac{1}{2\pi i}\int_{L_{r_{2}}}\frac{\phi(u)du}{u-\zeta}$

which, when combined with (2.14) after a slight modification of its domain of
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validity, one obtains (3.1) and (3.2) with the integrals in (3.2) taken over $L_{r_{2}}$ ,
$L_{r_{1}}$ respectively. But, replacing $L_{r_{1}}$ , $L_{r_{2}}$ by $\partial B$ is trivial since $\phi(\zeta),$ $P_{n}(\zeta)$

and $q_{n}(\zeta)$ are all holomorphic in $V$ . As in (2.20), one has

$\lim_{narrow}\sup_{\infty}n$ Vl $a_{n}|= \frac{1}{r_{2}}<\frac{1}{\rho}$ and $\lim_{narrow}\sup_{\infty}n\sqrt{|b_{n}|}=\gamma_{1}<\rho$ .

Conversely, in view of (3.3) and the estimates (2.17), one can show that
the series in (3.1) converges absolutely and uniformly on $\partial B$ to a holomorphic
function $\tilde{\phi}(\zeta)$ . But from the uniqueness of the generalized Faber expansions, it
follows that $\hat{\phi}=\emptyset$ .

COROLLARY 1. Let $\phi(\zeta)\in \mathcal{H}(\partial B)$ . Then, there exist two unique functions
$\phi_{1}(z)$ and $\phi_{2}(z)$ such that $\phi_{1}(z)$ is holomorPhic in a neighbourhood of $\overline{B}$ , $\phi_{2}(z)$ is
holomorphic in a neighbourhood of $B^{c}$ with $\phi_{2}(\infty)=0$ and

$\phi(\zeta)=\phi_{1}(z)|_{\partial B}+\phi_{2}(z)|_{\partial B}$ .

PROOF. Let $\phi_{1}(z)=\Sigma_{n=0}^{\infty}a{}_{n}P_{n}(z)$ and $\phi_{2}(z)=\Sigma_{n=0}^{\infty}b_{n}q_{n}(z)$ . From (3.3) and the
estimates (2.17), one can easily show that both $\phi_{1}(z)$ and $\phi_{2}(z)$ are holomorphic
in the indicated regions. The uniqueness of $\phi_{1}$ and $\phi_{2}$ follows from the uni-
queness of the generalized Faber representations.

We write $\phi_{i}(\zeta)=\phi_{i}(z)|_{\partial B},$ $i=1,2$ and hence,

$\phi(\zeta)=\phi_{1}(\zeta)+\phi_{2}(\zeta)$ , $\zeta\in\partial B$

where $\phi_{1}(\zeta)$ can be extended analytically to a neighbourhood of $\overline{B}$ and $\phi_{2}(\zeta)$ can
be extended analytically to a neighbourhood of $B^{c}$ .

The next theorem gives a characterization of the dual space $\mathcal{H}’(\partial B)$ of $\mathcal{H}(\partial B)$ .

THEOREM 2. $f(\zeta)\in \mathcal{H}’(\partial B)$ if and only if it has the series expansion

$f( \zeta)-\sum_{n=0}^{\infty}c_{n}P_{n}(\zeta)+\sum_{n=0}^{\infty}d_{n}q_{n}(\zeta)$ (3.4)

where
$c_{n}=\langle f, q_{n}\rangle$ ,

and

$\lim_{narrow}\sup_{\infty}n_{\sqrt{|c_{n}|}}\leqq\frac{1}{\rho}$

Moreover, if $\phi(\zeta)\in \mathcal{H}(\partial B)$ with

$d_{n}=\langle f, P_{n}\rangle$ (3.5)

$\lim_{narrow}\sup_{\infty}n$ Vl $d_{n}|$ $ $\rho$ . (3.6)

$\phi(\zeta)=\sum_{n=0}^{\infty}$ a ${}_{n}P_{n}( \zeta)+\sum_{n=0}^{\infty}b_{n}q_{n}(\zeta)$ ,

then

$\langle f, \phi\rangle=\sum_{n=0}^{\infty}(a_{n}d_{n}+b_{n}c_{n})$ . (3.7)
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PROOF. From Theorem 1 and Corollary 1, it is clear that $\mathcal{H}(\partial B)$ is isomor-
phic to the direct sum of $\mathcal{H}(\overline{B})$ and $\mathcal{H}_{0}(B^{c})$ . Let us define

$\mathcal{H}_{1}(\partial B)=$ { $\phi_{1}(\zeta)$ : $\phi_{1}(\zeta)=\phi_{1}(z)|_{\partial B}$ for some $\phi_{1}(z)\in \mathcal{H}(\overline{B})$ }
and

$\mathcal{H}_{2}(\partial B)=t\phi_{2}(\zeta)$ : $\phi_{2}(\zeta)=\phi_{2}(z)|_{\partial B}$ for some $\phi_{2}(z)\in \mathcal{H}_{0}(B^{c})\}$ .

The maps $\phi_{1}(z)-\phi_{1}(z)|_{\partial B},$ $\phi_{2}(z)arrow\phi_{2}(z)|_{\partial B}$ are surjective by definition and in-
jective because of the analyticity of $\phi_{1}(z)$ and $\phi_{2}(z)$ . If we provide $\mathcal{H}_{1}(\partial B)$ ,
$\mathcal{H}_{2}(\partial B)$ with their natural topology inherited from $\mathcal{H}(\overline{B})$ and $\mathcal{H}_{0}(B^{c})$ , we obtain
that

$\mathcal{H}(\partial B)=\mathcal{H}_{1}(\partial B)\oplus \mathcal{H}_{2}(\partial B)$ (3.8)

and hence
$\mathcal{H}’(\partial B)=\mathcal{H}_{1}’(\partial B)\oplus \mathcal{H}_{2}’(\partial B)\cong \mathcal{H}’(\overline{B})\oplus \mathcal{H}_{0}’(B^{c})$ . (3.9)

Since $\mathcal{H}(\overline{B})$ can be characterized as the space of all functions $\phi_{1}(z)=\Sigma_{n=0}^{\infty}a{}_{n}P_{n}(z)$

with $\lim\sup_{narrow\infty}^{n_{\sqrt{|a_{n}|}}}=1/r_{1}$ , for some $r_{1}$ with $\rho<r_{1}$ and $\mathcal{H}_{0}(B^{c})$ as the space
of all functions $\phi_{2}(z)=\Sigma_{n=0}^{\infty}b_{n}q_{n}(z)$ with $\lim\sup_{narrow\infty}^{n}\sqrt{|b_{n}|}=\gamma_{2}$ for some $r_{2}$ with
$r_{2}<\rho$ , it follows from K\"othe’s duality theorem [10] and (2.20) that $\mathcal{H}’(\overline{B})$ is
isomorphic to the space of all holomorphic functions $f_{1}(z)=\Sigma_{n=0}^{\infty}d_{n}q_{n}(z)$ with
$\lim\sup_{narrow\infty}^{n\sqrt{|d_{n}|}}\leqq\rho$ , when provided with the topology of uniform convergence
on compact subsets of $\overline{B}^{c},$ $i$ . $e.$ , isomorphic to $\mathcal{H}_{0}(\overline{B}^{c})$ . Moreover, if $\tilde{f}_{1}\in \mathcal{H}’(\overline{B})$ ,

then there exists a holomorphic function $f_{1}(z)$ as above such that for any
$\phi_{1}(z)\in \mathcal{H}(\overline{B})$

$\langle f_{1}, \phi_{1}\rangle=\frac{1}{2\pi i}\int_{\gamma}f_{1}(z)\phi_{1}(z)dz=\frac{1}{2\pi i}\int_{\gamma}(\sum_{n=0}^{\infty}d_{n}q_{n}(z))(\sum_{m=0}^{\infty}$ a ${}_{n}P_{n}(z))dz$

$= \sum_{n=0}^{\infty}a_{n}d_{n}<\infty$

because of (2.16), where $\gamma$ is any closed contour encircling $\overline{B}$ but lying between
$\partial B$ and $L_{r_{1}}$ . The last series converges absolutely since $\lim\sup_{narrow\infty}^{n}\sqrt{|a_{n}d_{n}|}\leqq$

$\rho/r_{1}<1$ . Similarly, one can show that $\mathcal{H}’(B^{c})$ is isomorphic to the space of
all holomorphic functions $f_{2}(z)=\Sigma_{n=0}^{\infty}c_{n}P_{n}(z)$ with $\lim\sup_{narrow\infty}^{n}\sqrt{|c_{n}|}\leqq 1/\rho$ , when
provided with the topology of uniform convergence on compact subsets of $B$.
Moreover, if $\tilde{f}_{2}\in \mathcal{H}’(B^{c})$ , then there exists a holomorphic function $f_{2}(z)$ as above
such that for any $\phi_{2}(z)\in \mathcal{H}(B^{c})$

$\langle f_{2}, \phi_{2}\rangle=\frac{1}{2\pi i}\int_{\gamma_{1}}f_{2}(z)\phi_{2}(z)dz=\sum_{n=0}^{\infty}b_{n}c_{n}<\infty$ ,

where $\gamma_{1}$ is any closed contour encircling $B^{c}$ in its exterior but lying between
$\partial B$ and $L_{r_{2}}$ .

Consider the sequence $f_{1.N}(\zeta)=\Sigma_{n=0}^{N}d_{n}q_{n}(\zeta),$ $\zeta\in\partial B,$ $N=0,1,2,$ $\cdots$ . Each
member of this sequence defines a continuous linear functional on $\mathcal{H}_{1}(\partial B)$ . Since
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$\lim_{Narrow\infty}\frac{1}{2\pi i}\int_{\partial B}f_{1,N}(\zeta)\phi_{1}(\zeta)d\zeta=\lim_{Narrow\infty}\sum_{n=0}^{N}a_{n}d_{n}=\sum_{n=0}^{\infty}a_{n}d_{n}$

$= \frac{1}{2\pi i}\int_{\gamma}f_{1}(z)\phi_{1}(z)dz$ ,

it is easy to see that the sequence $\{f_{1,N}(\zeta)\}_{N=0}^{\infty}$ converges in $\mathcal{H}_{1}’(\partial B)$ to some
element which we shall denote by $f_{1}(\zeta)$ . Therefore, we may identify $\mathcal{H}_{1}’(\partial B)$

with $\mathcal{H}(\overline{B}^{c})$ via $f_{1}( \zeta)=\Sigma_{n=0}^{\infty}d_{n}q_{n}(\zeta)=\lim_{zarrow(}\Sigma_{n=0}^{\infty}d_{n}q_{n}(z)=\lim_{zarrow\zeta}f_{1}(z),$ $\zeta\in\partial B$.
Similar results hold for $f_{2}(\zeta)$ and $f_{2}(z)$ . Therefore, in view of (3.9), the theorem
is now proved except for (3.5) which will follow from (3.7) and (2.16).

We shall say that $f_{i}(z)$ is the analytic extension of $f_{i}(\zeta),$ $i=1,2$ .
COROLLARY 2. $f(\zeta)$ is a hyperfunction on $\partial B,$ $i.e.,$ $f(\zeta)\in B(\partial B)$ if and only

if $f(\zeta)=\Sigma_{n=0}^{\infty}c_{n}P_{n}(\zeta)+\Sigma_{n=0}^{\infty}d_{n}q_{n}(\zeta)$ with

$\lim_{narrow}\sup_{\infty}n\sqrt{|c_{n}|}\leqq\frac{1}{\rho}$ $\lim_{narrow}\sup_{\infty}n\sqrt{|d_{n}|}\leqq\rho$ .

Moreover,
$f( \zeta)=\lim_{zarrow\zeta}(f_{1}(z)-f_{2}(z))$ , $\zeta\in\partial B$

where $f_{1}(z)$ is holomorphic in $\overline{B}^{c}$ with $f_{1}(\infty)=0,$ $f_{2}(z)$ is holomorphic in $B$, and
the limit is taken in the sense of $\mathcal{H}’(\partial B)$ .

COROLLARY 3. Let $f(\zeta)=\Sigma_{n=0}^{\infty}c_{n}P_{n}(\zeta)+\Sigma_{n=0}^{\infty}d_{n}q_{n}(\zeta)\in \mathcal{H}’(\partial B)$ . Then, its
analytic representation (indicatrix of Fantappie) $f(z)=(1/2\pi i)\langle f(\zeta), 1/(\zeta-z)\rangle$ is
given by

$f(z)= \frac{1}{2\pi i}\langle f(\zeta), \frac{1}{\zeta-z}\rangle=\{$

$\sum_{n=0}^{\infty}c_{n}P_{n}(z)$ if $z\in B$

$\sum_{n=0}^{\infty}d_{n}q_{n}(z)$ if $z\in\overline{B}^{c}$ .

PROOF. This follows from (2.14) and (2.16).

Having characterized $\mathcal{H}(\partial B)$ and $\mathcal{H}’(\partial B)$ in terms of the generalized Faber
expansions, one now can imitate Johnson’s proofs in the case of the unit circle
to reconstruct the theory of hyperfunctions on $\partial B$ in a different way using
sequence spaces. For example, assuming without loss of generality that $\rho\geqq 1$ ,

we provide $\mathcal{H}_{1}(\partial B)$ with the following new topology:
Let $A$ be the class of all sequences $\alpha=\{\alpha_{n}\}_{n=0}^{\infty}$ which satisfy

$\alpha_{n}\geqq\alpha_{n+1}>0$ for all $n$ and $\lim_{narrow\infty}\frac{\alpha_{n+1}}{\alpha_{n}}=1$ ,

then we take the collection of sets

$V( \alpha)=\{\phi_{1}(\zeta)=\sum_{n=0}^{\infty}$ $a{}_{n}P_{n}(\zeta)\in \mathcal{H}_{1}(\partial B):|a_{n}|\leqq\alpha_{n}$ for all $n\}$
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for all $\alpha\in A$ as a base for the neighbourhood system at the origin. That
$\{V(\alpha)\}_{\alpha\in A}$ , indeed, forms a neighbourhood system at the origin and that the
topology generated by it makes $\mathcal{H}_{1}(\partial B)$ a complete, nonmetrizable Montel space
can be proved as in [8]. Similar neighbourhood systems, hence similar topologies,
can also be defined for $\mathcal{H}_{2}(\partial B),$ $\mathcal{H}_{1}’(\partial B)$ and $\mathcal{H}_{2}’(\partial B)$ ; see [8].

Another advantage of our representation of hyperfunctions on $\partial B$ as series
of generalized Faber polynomials is that several analytic properties of hyper-
functions on $\partial B$ can be characterized in terms of the coefficients of the ex-
pansions. For example, analogous to the concept of upper and lower hyperfunc-
tions on $I\subset R$, we shall say that a hyperfunction $f( \zeta)=\Sigma_{n\Rightarrow 0}^{\infty}d_{n}q_{n}(\zeta)+\sum_{n=0}^{\infty}c_{n}P_{n}(\zeta)$

$=f_{1}(\zeta)+f_{2}(\zeta)$ on $\partial B$ is outer if

$\lim_{narrow}\sup_{\infty}n\sqrt{|c_{n}|}<\frac{1}{\rho}$

and inner if

$\lim_{narrow}\sup_{\infty}n$ V4 $c_{n}| \leqq\frac{1}{\rho}$ ,

$\lim_{narrow}\sup_{\infty}n_{\sqrt{|d_{n}|}\leqq}\rho$

$\lim_{narrow}\sup_{\infty}n_{\sqrt{|d_{n}|}}<\rho$ .

Thus, $f$ is holomorphic on $\partial B$ if and only if it is both outer and inner. To
be consistent with the notation of Section 2, we may denote the analytic ex-
tensions of $f_{1}(\zeta),$ $f_{2}(\zeta)$ also by $f^{+}(z)$ and $f^{-}(z)$ respectively. Let $N_{\zeta}$ denote the
unit normal vector to $\partial B$ at the point $\zeta\in\partial B$. We say that $f(\zeta)\in B(\partial B)$ is
microanalytic at $\zeta+ON_{\zeta}(\zeta-ON_{\zeta})$ if and only if $f^{+}(z)(f^{-}(z))$ can be continued
analytically in a neighbourhood of $\zeta\in\partial B$. Analogous to the upper (lower)
singular spectrum of a hyperfunction on $I\subset R$ , one can define the outer and inner
singular spectra $SS^{+}f,$ $SS^{-}f$ of a hyperfunction $f$ on $\partial B$ and then define the
singular support of $f$ as their union (cf. [14]).

In the next theorem we characterize some microanalytic properties of hyper-
functions on $\partial B$ in terms of the coefficients of their generalized Faber expansions.

THEOREM 3. i) Let $\{c_{n}\}_{n=0}^{\infty}$ be a sequence of complex numbers such that
$\lim_{narrow\infty}c_{n}/c_{n+1}=\rho e^{i\sigma^{s}}$ . Then, the hyperfunction

$f( \zeta)=\sum_{n=0}^{\infty}c_{n}P_{n}(\zeta)+\sum_{n=0}^{\infty}d_{n}q_{n}(\zeta)\in B(\partial B)$

is not microanalytic at $\zeta^{*}-ON_{(}$. where $\zeta^{*}=x(\rho e^{i\sigma})$ .
ii) Let $\{\lambda_{n}\}_{n=0}^{\infty}$ be a sequence of Positive integers such that

$\lim_{narrow\infty}\lambda_{n}\sqrt{|c}$rr $=\rho$ and $\lim_{narrow\infty}\frac{\lambda_{n}}{n}=\infty$ .

Then, every point of $\partial B$ is in the inner singular spectrum $SS^{-}f$ of the hyperfunction

$f( \zeta)=\sum_{n\Rightarrow 0}^{\infty}c_{n}P_{\lambda_{n}}(\zeta)+\sum_{n=0}^{\infty}d_{n}q_{n}(\zeta)$ .
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Hence, sing. $suppf=supp$ . $f=\partial B$.
PROOF. Recall that ([1], p. 376) under the hypothesis of i) the power series

$g( \omega)=\sum_{n=0}^{\infty}c_{n}\omega^{n}$ has a singular point at $\omega^{*}=\rho e^{i\sigma}$ and under the hypothesis of
ii) the circle $|\omega|=\rho$ is the natural boundary for the power series $\tilde{g}(\omega)=$

$\Sigma_{n=0}^{\infty}c_{n}\omega^{\lambda_{n}},$ $i.e.,\tilde{g}(\omega)$ can not be continued anywhere beyond $|\omega|=\rho$ .
i) Let $g(\omega)=\Sigma_{n=0}^{\infty}c_{n}\omega^{n},$ $f_{2}(z)=f^{-}(z)=\Sigma_{n=0}^{\infty}c_{n}P_{n}(z)$ and $\tilde{f}_{*}^{-}(z)=\Sigma_{n=0}^{\infty}c_{n}\pi_{n}(z)$ ,

where $\pi_{n}(z)$ are given by (2.5). From (2.12) and (2.13), one can easily show that

$f^{-}(Z)= \frac{1}{2\pi i}\int_{\gamma}f_{*}^{-(u)F(\frac{z}{u})\frac{du}{u}}$ , $z\in B$

$f_{*}^{-}(z)= \frac{1}{2\pi i}\int_{\gamma}f^{-}(u)F_{*}(\frac{z}{u})\frac{du}{u}$ , $z\in B$

and then apply Hadamard’s multiplication of singularities argument ([23]), to
show that $f^{-}(z)$ and $\tilde{f}_{*}^{-}(z)$ have exactly the same singular points. From the
formula ([21])

$\omega^{n}=\frac{1}{2\pi i}\int_{|t|=r}\frac{\pi_{n}(\chi(t))}{(t-\omega)R(t)}dt$ , $|\omega|<r<\rho$

and (2.5), after modifying its domain of validity, one obtains

$g( \omega)=\frac{1}{2\pi i}\int_{|t|=r}\frac{\tilde{f}_{*}^{-}(\chi(t))}{(t-\omega)R(t)}dt$ , $|\omega|<r<\rho$

and

$\tilde{f}_{*}^{-}(z)=\frac{1}{2\pi i}\int_{|\omega|=r}\frac{\chi^{;}(\omega)}{\chi(\omega)-z}R(\omega)g(\omega)d\omega$ , $z\in B_{r},$ $r<\rho$

respectively. Of course, $r$ must be chosen so that the circle $|\omega|=\gamma$ is in the
domain of definition of $\chi(\omega)$ , which is the case if $r^{*}<r<\rho$ ; for the definition
of $r^{*}$ , see the proof of Theorem 1. Upon using Hadamard’s argument once
more, one can show that $g(\omega)$ has a singular point at $\omega=\omega^{*}$ if and only if
$\tilde{f}_{*}^{-}(z)$ has one at $z=z^{*}$ where $z^{*}=x(\omega^{*})$ . Therefore, $g(\omega)$ has a singular point
at $\omega=\omega^{*}$ if and only if $f^{-}(z)$ has one at $z=z^{*}$ where $z^{*}=x(\omega^{*})$ . The proof is
now complete since from the first part of the proof $g(\omega)$ has a singularity at
$\omega^{*}=\rho e^{t\sigma^{*}}$ .

ii) The proof is similar to (i).

For more details on Hadamard’s argument and its applications, we refer the
reader to [5] and to a recent article by the author, Freund and G\"orlich [24]

where a more detailed version of the above argument is given.

4. Examples.

1) In (2.1), let $\rho=1,$ $R(\omega)=1,$ $F(u)=1/(1-u)$ and $z=x(\omega)=\omega$ . Then, it is easy
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to see that $P_{n}(z)=z^{n}$ and $q_{n}(z)=1/z^{n+1}$ . Therefore, $f(\zeta)=f(e^{i\sigma})$ is a hyperfunc-
tion on the unit circle if and only if

$f(e^{i\sigma})= \sum_{n=0}^{\infty}c_{n}e^{in\sigma}+\sum_{n=0}^{\infty}d_{n}e^{-\ell_{(n+1)\sigma}}=\sum_{n=-\infty}^{\infty}c_{n}e^{in\sigma}$

with $\lim\sup_{|n|arrow\infty^{1n|}}\sqrt{|c_{n}|}\leqq 1$ , where $d_{n}=c_{-(n+1)}$ .

This result was previously obtained by Sato [16] and Johnson [8].

2) In [24], we have shown that for $z=x(\omega)=1/2(\omega+1/\omega),$ $F(u)=1/(1-u)^{\lambda}$ ,
$\lambda\geqq-1/2,$ $\lambda\neq 0$ and $R(\omega)=\omega^{2\lambda}/(\omega^{2}+1)^{\lambda-1}(\omega^{2}-1)$ , the generalized Faber polynomials
are the Gegenbauer (ultraspherical) polynomials $C_{n}^{\dot{A}}(z)$ normalized by $C_{n}^{\lambda}(1)=$

$(\begin{array}{l}n+2\lambda-1n\end{array})$ . Therefore, $f(\zeta)$ is a hyperfunction on the ellipse $E=\{z:|z+1|+$

$\ovalbox{\tt\small REJECT} z-1|=\rho+1/\rho,$ $\rho>1\}$ , which is the image of the circle to $|=\rho$ under $\chi(\omega)$ , if
and only if

$f( \zeta)=\sum_{n=0}^{\infty}c_{n}C_{n}^{\lambda}(\zeta)+\sum_{n=0}^{\infty}d_{n}q_{n}^{\lambda}(\zeta)$ , $\zeta\in E$ (4.1)

with

$\lim_{narrow}\sup_{\infty}n_{\sqrt{|c_{n}|}\leqq}\frac{1}{\rho}$ $\lim_{narrow}\sup_{\infty}n_{\sqrt{|d_{n}|}}\leqq\rho$

where $(z^{2}-1)^{1/2-\lambda}q_{n}^{\lambda}(z)$ are the Gegenbauer functions of the second kind nor-
malized by

$q_{n}^{\lambda}(z)=[ \frac{\Gamma(2\lambda)}{2^{\lambda}\Gamma(\lambda+1/2)}]^{2}\frac{(2n+2\lambda)\Gamma(n+1)}{\Gamma(n+2\lambda)}\int_{-1}^{1}(1-t^{2})^{\lambda- 1/2}\frac{C_{n}^{\text{\‘{A}}}(t)}{z-t}dt$ ,

(see [22]).

In the interesting case where $\rho=1$ and the ellipse $E$ degenerates to the
interval [–1, 1], the representation (4.1) is no longer valid. This case was
studied earlier by the author in [26] where he obtained, by using different
techniques, a characterization of hyperfunctions on [–1, 1] in terms of series
of Gegenbauer polynomials. Similar characterizations for hyperfunctions on any
finite closed interval $[a, b]$ , in terms of series of a more general class of
orthogonal polynomials on $[a, b]$ have also been obtained by the author and
G. Walter in [25].
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