A decision method for a set of first order classical formulas and its applications to decision problems for non-classical propositional logics

Dedicated to Professor Shôji Maehara for his sixtieth birthday

By Nobuyoshi MOTOHASHI

(Received Dec. 15, 1988)

I. Main theorem.

Let L be the first order classical predicate logic without equality. We assume that L has a fixed binary predicate symbol R, unary predicate symbols P_1, \dots, P_N and no other non-logical constant symbols. R-free formulas are formulas in L which has no occurrences of R. R-positive formulas are formulas in L which has no negative occurrences of R. R-formulas are formulas defined inductively as follows:

(1) All *R*-free formulas are *R*-formulas;

(2) If A and B are R-formulas, then $\neg A$, $A \land B$, $A \lor B$, $A \supset B$ are all R-formulas;

(3) If A(x) is an *R*-formula and x is a free variable not occurring in A(v), then $\forall v A(v)$, $\forall v(R(x, v) \supset A(v))$, $\forall v(R(v, x) \supset A(v))$, $\exists v A(v)$, $\exists v(R(x, v) \land A(v))$, $\exists v(R(v, x) \land A(v))$ are all *R*-formulas.

By R-quantifiers, we denote the quantifiers of the form:

 $\begin{aligned} &\forall v(R(x, v) \supset \cdots v \cdots), \qquad \forall v(R(v, x) \supset \cdots v \cdots), \\ &\exists v(R(x, v) \land \cdots v \cdots), \qquad \exists v(R(v, x) \land \cdots v \cdots), \end{aligned}$

where $\cdots v \cdots$ has no occurrences of the free variable x. Then, R-formulas are formulas obtained from R-free formulas by applying propositional connectives, quantifiers and R-quantifiers.

For each *R*-formula A, let R-deg(A) be the non-negative integer, called the *R*-degree of A, defined as follows:

- (1) R-deg(A) = 0 if A is R-free.
- (2) R-deg $(\neg A) = R$ -deg(A),

$$R\operatorname{-deg}(A \land B) = R\operatorname{-deg}(A \lor B) = R\operatorname{-deg}(A \supset B) = \max\{R\operatorname{-deg}(A), R\operatorname{-deg}(B)\},\$$

(3) R-deg $(\forall v A(v)) = R$ -deg $(\exists v A(v)) = R$ -deg(A(x)), and

N. Motohashi

 $\begin{aligned} R-\deg(\forall v(R(x, v) \supset A(v))) &= R-\deg(\forall v(R(v, x) \supset A(v))) \\ &= R-\deg(\exists v(R(x, v) \land A(v))) = R-\deg(\exists v(R(v, x) \land A(v))) = R-\deg(A(x))+1. \end{aligned}$

Also, Tr is the sentence $\forall u \forall v \forall w (R(u, v) \land R(v, w)) \supset R(u, w))$ and Sym is the sentence $\forall u \forall v (R(u, v) \supset R(v, u))$. Let F be the set of finite conjunctions of sentences: R-sentences, R-positive sentences, Tr and Sym. For each sentence A in F, let R-deg(A) be max{R-deg(A_i); A is $A_1 \land A_2 \land \cdots \land A_m$ and A_i is an R-sentence}. For each non-negative integer n, let K_n be the integer defined by; $K_0 = 2^N$, $K_{n+1} = K_n \times (2^{Kn}) \times (2^{Kn})$. Then, our main theorem is:

MAIN THEOREM. For each sentence A in F, if A has a model, then it has a model whose cardinality is at most K_n , where $n=R-\deg(A)$.

Suppose that X is a set of sentences in L. Then, a decision method for X is a method by which, given a sentence in X, we can decide in a finite number of steps whether or not it has a model. X is said to be decidable if there is a decision method for X. It is well-known that the set of all R-free sentences is decidable, but the set of all sentences in L is not. Our main theorem clearly implies:

COROLLARY. F is decidable.

In II below, we shall give some applications of our main theorem to decision problems of non-classical propositional logics. In III below, we shall give a proof of our main theorem.

II. Applications.

Suppose that L' is a formal logic. Then a decision method for L' is a method by which, given a formula of L', we can decide in a finite number of steps whether or not it is provable in L'.

1) Intuitionistic propositional logic. Let IPL be the intuitionistic propositional logic whose propositional variables are p_1, p_2, \dots, p_N . For each formula A in IPL, and each free variable x in L, let (A, x) be the formula in L defined by;

 (p_i, x) is $P_i(x)$, $(\neg A, x)$ is $\forall v(R(x, v) \supset \neg (A, v))$, $(A \land B, x)$ is $(A, x) \land (B, x)$, $(A \lor B, x)$ is $(A, x) \lor (B, x)$, and $(A \supset B, x)$ is $\forall v(R(x, v) \supset ((A, v) \supset (B, v)))$.

Then, by Kripke's completeness theorem, we have:

COMPLETENESS THEOREM FOR IPL ([2]). A is provable in IPL iff the sentence $\operatorname{Tr} \wedge \operatorname{Tr}(P_1) \wedge \cdots \wedge \operatorname{Tr}(P_N) \wedge \exists v \neg (A, v)$ has no models, where $\operatorname{Tr}(P_i)$ is the R-sentence $\forall u(P_i(u) \supset \forall v(R(u, v) \supset P_i(v)))$, for each formula A in IPL.

128

Since $\operatorname{Tr} \wedge \operatorname{Tr}(P_1) \wedge \cdots \wedge \operatorname{Tr}(P_N) \wedge \exists v \neg (A, v)$ belongs to F, our main theorem clearly implies that the logic IPL is decidable.

2) Modal propositional logics. Let MPL be the modal propositional language whose logical constants are \neg , \land , \lor , \supset and \Box , and whose propositional variables are p_1, p_2, \dots, p_N . For each formula A in MPL, and each free variable x in L, let (A, x) be the formula in L defined by; (p_i, x) is $P_i(x), (\neg A, x)$ is $\neg(A, x), (A \land B, x)$ is $(A, x) \land (B, x), (A \lor B, x)$ is $(A, x) \lor (B, x), (A \supset B, x)$ is $(A, x) \supseteq (B, x),$ and $(\Box A, x)$ is $\forall v(R(x, v) \supseteq (A, v))$. Let M, S4, B, S5 be modal propositional logics in Kripke [1], whose language is MPL. Then, by Kripke's completeness theorem for modal logics, we have:

COMPLETENESS THEOREM FOR MODAL LOGICS ([1]). For any formula A in MPL,

- (i) A is provable in M iff $\forall u R(u, u) \land \exists v \neg (A, v)$ has no models,
- (ii) A is provable in S4 iff $\forall u R(u, u) \land \operatorname{Tr} \land \exists v \neg (A, v)$ has no models,
- (iii) A is provable in B iff $\forall u R(u, u) \land \text{Sym} \land \exists v \neg (A, v)$ has no models,
- (iv) A is provable in S5 iff $\forall u R(u, u) \land \operatorname{Tr} \land \operatorname{Sym} \land \exists v \neg (A, v)$ has no models.

Since $\forall u R(u, u)$, Tr, Sym, $\exists v \neg (A, v)$ belong to F, our main theorem clearly implies that four logics M, S4, B, S5 are all decidable.

III. A proof.

For each non-negative integer n, let Σ_n be the set defined as follows: $\Sigma_0 = \text{Pow}(\{1, 2, \dots, N\})$, and $\Sigma_{n+1} = \Sigma_n \times \text{Pow}(\Sigma_n) \times \text{Pow}(\Sigma_n)$, where Pow(Z) is the power set of Z. Let $\Sigma = \bigcup \{\Sigma_n; n < \omega\}$. Then the cardinality of Σ_n is K_n . For each σ in Σ , let $A(\sigma, x)$ be the unary formula defined as follows:

If σ belongs to Σ_0 , $A(\sigma, x)$ is $\wedge \{P_i(x); i \in \sigma\} \wedge \wedge \{\neg P_i(x); i \notin \sigma\}$ and if $\sigma = \langle \nu, l, r \rangle \in \Sigma_{n+1}$,

 $A(\sigma, x)$ is

$$A(\nu, x) \land \land \{ \exists v(R(\nu, x) \land A(\alpha, \nu)); \alpha \in l \} \land \land \{ \neg \exists v(R(\nu, x) \land A(\alpha, \nu)); \alpha \notin l \}$$

 $\wedge \wedge \{\exists v(R(x, v) \land A(\alpha, v)); \alpha \in r\} \land \wedge \{\neg \exists v(R(x, v) \land A(\alpha, v)); \alpha \notin r\}.$

Then $A(\sigma, x)$ is an *R*-formula whose *R*-degree is *n* if σ belongs to Σ_n . From this definition we have:

COROLLARY 1. (i) Suppose that σ belongs to Σ_n . Then, $A(\sigma, x)$ is equivalent to the disjunction of the formulas: $A(\langle \sigma, l, r \rangle, x)$, where $l \subseteq \Sigma_n$ and $r \subseteq \Sigma_n$, in L.

(ii) The disjunction of the formulas: $A(\sigma, x), \sigma \in \Sigma_n$, is provable in L for each non-negative integer n.

(iii) If σ and ν are distinct elements of Σ_n , then the sentence $\neg \exists v(A(\sigma, v))$

N. Motohashi

 $\wedge A(\mathbf{v}, \mathbf{v})$) is provable in L.

LEMMA 2. Every R-formula $A(x, \dots, y)$ of R-degree $\leq n$, whose free variables are among x, \dots, y , is equivalent to a Boolean combination $B(x, \dots, y)$ of formulas of the forms: $\exists v(A(\sigma, v)), A(\sigma, x), \dots, A(\sigma, y), \sigma \in \Sigma_n$. Moreover B is obtained from A, concretely. Therefore every R-sentence of R-degree $\leq n$, is equivalent to a Boolean combination of sentences of the forms: $\exists v(A(\sigma, v)), \sigma \in \Sigma_n$.

Suppose that \mathfrak{N} and \mathfrak{B} are *L*-structures and *f* is a homomorphism of \mathfrak{N} onto \mathfrak{B} . Then *f* is said to be a strong *n*-homomorphism of \mathfrak{N} to \mathfrak{B} if the following two conditions (a) and (b) hold: (a) For any elements *a*, *b* in \mathfrak{B} , if $\mathfrak{B}\models R(a, b)$, then there are *a'*, *b'* in \mathfrak{N} such that f(a')=a, f(b')=b and $\mathfrak{N}\models R(a', b')$. (b) For any $\sigma\in\Sigma_n$ and *a* in \mathfrak{N} , $\mathfrak{N}\models A(\sigma, a)$ iff $\mathfrak{B}\models A(\sigma, f(a))$.

From this definition and Lemma 2, we have:

COROLLARY 3. Suppose that f is a strong n-homomorphism of \mathfrak{N} to \mathfrak{B} .

(iv) For each R-sentence A of R-degree $\leq n$, if \mathfrak{N} is a model of A, then \mathfrak{B} is also a model of it.

(v) For each R-positive sentence A, if \mathfrak{N} is a model of A, then \mathfrak{B} is also a model of it.

(vi) If \mathfrak{N} is a model of Sym, then \mathfrak{B} is also a model of it.

But it is not generally true that if \mathfrak{N} is a model of Tr, then \mathfrak{B} is also a model of it.

For each L-structure \mathfrak{N} , let $tr(\mathfrak{N})$ be the L-structure defined by:

 $|\operatorname{tr}(\mathfrak{N})| = |\mathfrak{N}|, \quad \operatorname{tr}(\mathfrak{N})(P_i) = \mathfrak{N}(P_i), \quad i=1, \dots, N,$ and

 $tr(\mathfrak{N})(R) = \{ \langle a, b \rangle; \text{ there is a finite sequence } \langle a_1, a_2, \cdots, a_m \rangle \text{ such that } \}$

 $a_1=a, a_m=b \text{ and } \langle a_i, a_{i+1} \rangle \in \mathfrak{N}(R) \text{ for each } i=1, \dots, m-1 \}.$

Then, we have:

COROLLARY 4. (vii) $tr(\mathfrak{N})$ is a model of Tr.

(viii) If \mathfrak{N} is a model of Sym, then $tr(\mathfrak{N})$ is also a model of it.

(ix) For any R-positive sentence A, if \mathfrak{N} is a model of A, then $tr(\mathfrak{N})$ is also a model of it.

But it is not generally true that if \mathfrak{N} is a model of A, then $\operatorname{tr}(\mathfrak{N})$ is also a model of it, for each R-sentence A. For each L-structure \mathfrak{N} , each element a of \mathfrak{N} and each non-negative integer n, let $\operatorname{LI}(\mathfrak{N}, a, n)$ (resp. $\operatorname{RI}(\mathfrak{N}, a, n)$) be the set of the elements σ in Σ_n such that \mathfrak{N} is a model of $\exists v(R(v, a) \land A(\sigma, v))$ (resp. $\exists v(R(a, v) \land A(\sigma, v)))$. \mathfrak{N} has the *n*-weak transitive property (abbreviated by *n*-w.t.p.) if $\operatorname{LI}(\mathfrak{N}, a, k)$ is a subset of $\operatorname{LI}(\mathfrak{N}, b, k)$ and $\operatorname{RI}(\mathfrak{N}, b, k)$ is a subset of $\operatorname{RI}(\mathfrak{N}, a, k)$, for each a and b in \mathfrak{N} such that \mathfrak{N} is a model of R(a, b) and each

130

A decision method

k < n. Then clearly if \mathfrak{N} is a model of Tr, then it has the *n*-w.t.p. for each n and every *L*-structure has 0-w.t.p. On the other hand, we have:

LEMMA 5. Suppose that \Re has the n-w.t.p. Then;

(x) For each element a in \mathfrak{N} and σ in Σ_n , \mathfrak{N} is a model of $A(\sigma, a)$ iff $tr(\mathfrak{N})$ is a model of it.

(xi) For each R-sentence A of R-degree $\leq n, \mathfrak{N}$ is a model of A iff $tr(\mathfrak{N})$ is a model of it.

PROOF. By Lemma 2, it is obvious that (xi) follows from (x) immediately. So we prove (x) by induction on n.

If n=0, then (x) is trivial by the definition of tr(\mathfrak{N}). Assume that (x) is true for *n*. We shall show that (x) is also true for n+1. By the definition of $A(\sigma, x), \sigma \in \Sigma_{n+1}$, it is sufficient to prove the following two facts:

(a) \mathfrak{N} is a model of $\exists v(R(v, a) \land A(v, v))$ iff $tr(\mathfrak{N})$ is a model of it, for each element a in \mathfrak{N} and each v in Σ_n .

(b) \mathfrak{N} is a model of $\exists v(R(a, v) \land A(\nu, v))$ iff $tr(\mathfrak{N})$ is a model of it, for each element a in \mathfrak{N} and each ν in Σ_n .

Since "only if" parts of (a) and (b) above are obvious, we prove "if" parts of them. Assume that $tr(\mathfrak{N})$ is a model of $\exists v(R(v, a) \land A(v, v))$. Then there is an element b in $tr(\mathfrak{N})$ such that $tr(\mathfrak{N})$ is a model of $R(b, a) \land A(v, b)$. By the definition of $tr(\mathfrak{N})$, there is a finite sequence $\langle a_1, a_2, \dots, a_m \rangle$ such that $a_1=b$, $a_m=a$ and $\langle a_i, a_{i+1} \rangle \in \mathfrak{N}(R)$ for each $i=1, \dots, m-1$. Since \mathfrak{N} has the (n+1)-w.t.p.,

 $\nu \in \mathrm{LI}(\mathfrak{N}, a_2, n) \subseteq \mathrm{LI}(\mathfrak{N}, a_3, n) \subseteq \cdots \subseteq \mathrm{LI}(\mathfrak{N}, a_m, n) = \mathrm{LI}(\mathfrak{N}, a, n).$

Hence we have that $\nu \in LI(\mathfrak{N}, a, n)$. This means that \mathfrak{N} is a model of $\exists v(R(v, a) \land A(\nu, v))$. Therefore (a) holds. Similarly (b) holds. (q. e. d.)

On the other hand, we have the following:

LEMMA 6. If \Re has the n-w.t.p. and there is a strong n-homomorphism of \Re to \mathfrak{B} , then \mathfrak{B} has also the n-w.t.p.

PROOF. By induction *n*. If n=0, then this lemma is obvious. Assume that this lemma holds for *n*, and \mathfrak{N} has the (n+1)-w.t.p. Let *f* be a strong (n+1)-homomorphism of \mathfrak{N} to \mathfrak{B} and *a*, *b* be two elements of \mathfrak{B} such that $\mathfrak{B}\models R(a, b)$. By the hypothesis of induction, it is sufficient to prove that

(a) $LI(\mathfrak{B}, a, n) \subseteq LI(\mathfrak{B}, b, n);$ (b) $RI(\mathfrak{B}, a, n) \supseteq RI(\mathfrak{B}, b, n).$

Let $\sigma \in LI(\mathfrak{B}, a, n)$. Then, \mathfrak{B} is a model of $\exists v(R(v, a) \land A(\sigma, v))$. Let a', b' be two elements of \mathfrak{N} such that f(a')=a, f(b')=b and $\mathfrak{N}\models R(a', b')$. Since, f is a strong (n+1)-homomorphism of \mathfrak{N} to \mathfrak{B} and $\exists v(R(v, x) \land A(\sigma, v))$ is a formula of R-deg $\leq n+1$, \mathfrak{N} is a model of $\exists v(R(v, a') \land A(\sigma, v))$. This means that $\sigma \in LI(\mathfrak{N}, a', n)$. Since \mathfrak{N} has the (n+1)-w.t.p., $\sigma \in LI(\mathfrak{N}, b', n)$. Hence \mathfrak{N} is a model of $\exists v(R(v, b')$ $\wedge A(\sigma, v)$). Therefore, \mathfrak{B} is a model of $\exists v(R(v, b) \land A(\sigma, v))$. This means that $\sigma \in LI(\mathfrak{B}, b, n)$. This shows that (a) above holds. Similarly (b) above holds. (q.e.d.)

For each L-structure \mathfrak{N} and non-negative integer n, let f_n be the mapping from \mathfrak{N} to Σ_n defined by: $f_n(a) = \sigma$ such that \mathfrak{N} is a model of $A(\sigma, a)$ for each element a in \mathfrak{N} . By Corollary 1, there exists such σ uniquely for each a. Using this mapping, we define a new L-structure \mathfrak{N}_n as follows: The universe of \mathfrak{N}_n is the range of the mapping f_n and, $\mathfrak{N}_n(P_i)$, $(1 \le i \le N)$, $\mathfrak{N}_n(R)$ are images of $\mathfrak{N}(P_i)$, $(1 \le i \le N)$, $\mathfrak{N}(R)$ under f_n , respectively. Then, we can easily prove the following:

LEMMA 7. f_n is a strong n-homomorphism of \mathfrak{N} to \mathfrak{N}_n .

Combining these results we have:

THEOREM 8. Suppose that \Re is an L-structure and n is a non-negative integer. Then;

(xii) The cardinality of the universe of \mathfrak{N}_n and $tr(\mathfrak{N}_n)$ are no more than K_n .

(xiii) $tr(\mathfrak{N}_n)$ is a model of Tr.

(xiv) If \mathfrak{N} is a model of Sym, then \mathfrak{N}_n and $tr(\mathfrak{N}_n)$ are models of it.

(xv) For any R-positive sentence A, if \mathfrak{N} is a model of A, then \mathfrak{N}_n and $tr(\mathfrak{N}_n)$ are models of it.

(xvi) For each R-sentence A of R-degree $\leq n$, if \mathfrak{N} is a model of A, then \mathfrak{N}_n is a model of it.

(xvii) For each R-sentence A of R-degree $\leq n$, if \mathfrak{N} is a model of A and Tr, then $tr(\mathfrak{N}_n)$ is a model of A.

From Theorem 8 above we can easily prove our main theorem as follows: Suppose that A is a sentence in F. If A has a model \mathfrak{N} , then by Theorem 8 above, at least one of $\operatorname{tr}(\mathfrak{N}_n)$ and \mathfrak{N}_n is a model of A, whose cardinality is no more than K_n , where $n=R\operatorname{-deg}(A)$. This completes a proof of our main theorem.

References

- [1] S.A. Kripke, Semantical Analysis of modal logics I, Z. Math. Logik Grundlag. Math., 9 (1963), 67-96.
- [2] S. A. Kripke, Semantical Analysis of intuitionistic logic I, in: Formal Systems and Recursive Functions, edited by J. N. Crossley and M. A. E. Dummett, North-Holland, Amsterdam, 1965, pp. 92-130.

Nobuyoshi Motohashi

Institute of Mathematics University of Tsukuba Ibaraki 305 Japan