A decision method for a set of first order classical formulas and its applications to decision problems for non-classical propositional logics

Dedicated to Professor Shôji Maehara for his sixtieth birthday

By Nobuyoshi Motohashi
(Received Dec. 15, 1988)

I. Main theorem.

Let L be the first order classical predicate logic without equality. We assume that L has a fixed binary predicate symbol R, unary predicate symbols P_{1}, \cdots, P_{N} and no other non-logical constant symbols. R-free formulas are formulas in L which has no occurrences of $R . R$-positive formulas are formulas in L which has no negative occurrences of R. R-formulas are formulas defined inductively as follows:
(1) All R-free formulas are R-formulas;
(2) If A and B are R-formulas, then $\neg A, A \wedge B, A \vee B, A \supset B$ are all R formulas ;
(3) If $A(x)$ is an R-formula and x is a free variable not occurring in $A(v)$, then $\forall v A(v), \quad \forall v(R(x, v) \supset A(v)), \quad \forall v(R(v, x) \supset A(v)), \quad \exists v A(v), \quad \exists v(R(x, v) \wedge A(v))$, $\exists v(R(v, x) \wedge A(v))$ are all R-formulas.

By R-quantifiers, we denote the quantifiers of the form:

$$
\begin{array}{ll}
\forall v(R(x, v) \supset \cdots v \cdots), & \forall v(R(v, x) \supset \cdots v \cdots), \\
\exists v(R(x, v) \wedge \cdots v \cdots), & \exists v(R(v, x) \wedge \cdots v \cdots),
\end{array}
$$

where $\cdots v \cdots$ has no occurrences of the free variable x. Then, R-formulas are formulas obtained from R-free formulas by applying propositional connectives, quantifiers and R-quantifiers.

For each R-formula A, let $R-\operatorname{deg}(A)$ be the non-negative integer, called the R-degree of A, defined as follows:
(1) $R-\operatorname{deg}(A)=0 \quad$ if A is R-free.
(2) $R-\operatorname{deg}(\neg A)=R-\operatorname{deg}(A)$,
$R-\operatorname{deg}(A \wedge B)=R-\operatorname{deg}(A \vee B)=R-\operatorname{deg}(A \supset B)=\max \{R-\operatorname{deg}(A), R-\operatorname{deg}(B)\}$,
(3) $\quad R-\operatorname{deg}(\forall v A(v))=R-\operatorname{deg}(\exists v A(v))=R-\operatorname{deg}(A(x)), \quad$ and

$$
\begin{aligned}
& R-\operatorname{deg}(\forall v(R(x, v) \supset A(v)))=R-\operatorname{deg}(\forall v(R(v, x) \supset A(v))) \\
& =R-\operatorname{deg}(\exists v(R(x, v) \wedge A(v)))=R-\operatorname{deg}(\exists v(R(v, x) \wedge A(v)))=R-\operatorname{deg}(A(x))+1 .
\end{aligned}
$$

Also, Tr is the sentence $\forall u \forall v \forall w(R(u, v) \wedge R(v, w) . \supset R(u, w))$ and Sym is the sentence $\forall u \forall v(R(u, v) \supset R(v, u))$. Let F be the set of finite conjunctions of sentences: R-sentences, R-positive sentences, Tr and Sym. For each sentence A in F, let $R-\operatorname{deg}(A)$ be $\max \left\{R-\operatorname{deg}\left(A_{i}\right) ; A\right.$ is $A_{1} \wedge A_{2} \wedge \cdots \wedge A_{m}$ and A_{i} is an R-sentence \}. For each non-negative integer n, let K_{n} be the integer defined by ; $K_{0}=2^{N}, K_{n+1}=K_{n} \times\left(2^{K n}\right) \times\left(2^{K n}\right)$. Then, our main theorem is:

Main Theorem. For each sentence A in F, if A has a model, then it has a model whose cardinality is at most K_{n}, where $n=R-\operatorname{deg}(A)$.

Suppose that X is a set of sentences in L. Then, a decision method for X is a method by which, given a sentence in X, we can decide in a finite number of steps whether or not it has a model. X is said to be decidable if there is a decision method for X. It is well-known that the set of all R-free sentences is decidable, but the set of all sentences in L is not. Our main theorem clearly implies:

Corollary. F is decidable.
In II below, we shall give some applications of our main theorem to decision problems of non-classical propositional logics. In III below, we shall give a proof of our main theorem.

II. Applications.

Suppose that L^{\prime} is a formal logic. Then a decision method for L^{\prime} is a method by which, given a formula of L^{\prime}, we can decide in a finite number of steps whether or not it is provable in L^{\prime}.

1) Intuitionistic propositional logic. Let IPL be the intuitionistic propositional logic whose propositional variables are $p_{1}, p_{2}, \cdots, p_{N}$. For each formula A in IPL, and each free variable x in L, let (A, x) be the formula in L defined by ;
$\left(p_{i}, x\right)$ is $P_{i}(x), \quad(\neg A, x)$ is $\forall v(R(x, v) \supset \neg(A, v))$, $(A \wedge B, x)$ is $(A, x) \wedge(B, x), \quad(A \vee B, x)$ is $(A, x) \vee(B, x), \quad$ and $(A \supset B, x)$ is $\forall v(R(x, v) \supset((A, v) \supset(B, v)))$.

Then, by Kripke's completeness theorem, we have:
Completeness theorem for IPL ([2]). A is provable in IPL iff the sentence $\operatorname{Tr} \wedge \operatorname{Tr}\left(P_{1}\right) \wedge \cdots \wedge \operatorname{Tr}\left(P_{N}\right) \wedge \exists v \neg(A, v)$ has no models, where $\operatorname{Tr}\left(P_{i}\right)$ is the R-sentence $\forall u\left(P_{i}(u) \supset \forall v\left(R(u, v) \supset P_{i}(v)\right)\right)$, for each formula A in IPL.

Since $\operatorname{Tr} \wedge \operatorname{Tr}\left(P_{1}\right) \wedge \cdots \wedge \operatorname{Tr}\left(P_{N}\right) \wedge \exists v \neg(A, v)$ belongs to F, our main theorem clearly implies that the logic IPL is decidable.
2) Modal propositional logics. Let MPL be the modal propositional language whose logical constants are $\neg, \wedge, \vee, \supset$ and \square, and whose propositional variables are $p_{1}, p_{2}, \cdots, p_{N}$. For each formula A in MPL, and each free variable x in L, let (A, x) be the formula in L defined by $;\left(p_{i}, x\right)$ is $P_{i}(x),(\neg A, x)$ is $\neg(A, x),(A \wedge B, x)$ is $(A, x) \wedge(B, x),(A \vee B, x)$ is $(A, x) \vee(B, x),(A \supset B, x)$ is $(A, x) \supset(B, x)$, and $(\square A, x)$ is $\forall v(R(x, v) \supset(A, v))$. Let $\mathrm{M}, \mathrm{S} 4, \mathrm{~B}, \mathrm{~S} 5$ be modal propositional logics in Kripke [1], whose language is MPL. Then, by Kripke's completeness theorem for modal logics, we have:

Completeness theorem for modal logics ([1]). For any formula A in MPL,
(i) A is provable in M iff $\forall u R(u, u) \wedge \exists v \neg(A, v)$ has no models,
(ii) A is provable in S 4 iff $\forall u R(u, u) \wedge \operatorname{Tr} \wedge \exists v \neg(A, v)$ has no models,
(iii) A is provable in B iff $\forall u R(u, u) \wedge \operatorname{Sym} \wedge \exists v \neg(A, v)$ has no models,
(iv) A is provable in S 5 iff $\forall u R(u, u) \wedge \operatorname{Tr} \wedge \operatorname{Sym} \wedge \exists v \neg(A, v)$ has no models.

Since $\forall u R(u, u)$, Tr, Sym, $\exists v \neg(A, v)$ belong to F, our main theorem clearly implies that four logics $\mathrm{M}, \mathrm{S} 4, \mathrm{~B}, \mathrm{~S} 5$ are all decidable.

III. A proof.

For each non-negative integer n, let Σ_{n} be the set defined as follows: $\Sigma_{0}=\operatorname{Pow}(\{1,2, \cdots, N\})$, and $\Sigma_{n+1}=\Sigma_{n} \times \operatorname{Pow}\left(\Sigma_{n}\right) \times \operatorname{Pow}\left(\Sigma_{n}\right)$, where $\operatorname{Pow}(Z)$ is the power set of Z. Let $\Sigma=\bigcup\left\{\Sigma_{n} ; n<\omega\right\}$. Then the cardinality of Σ_{n} is K_{n}. For each σ in Σ, let $A(\sigma, x)$ be the unary formula defined as follows:

If σ belongs to $\Sigma_{0}, A(\sigma, x)$ is $\wedge\left\{P_{i}(x) ; \boldsymbol{i} \in \sigma\right\} \wedge \wedge\left\{\neg P_{i}(x) ; i \notin \sigma\right\}$ and if $\sigma=\langle\nu, l, r\rangle \in \Sigma_{n+1}$,
$A(\sigma, x)$ is
$A(\nu, x) \wedge \wedge\{\exists v(R(v, x) \wedge A(\alpha, v)) ; \alpha \in l\} \wedge \wedge\{\neg \exists v(R(v, x) \wedge A(\alpha, v)) ; \alpha \notin l\}$ $\wedge \wedge\{\exists v(R(x, v) \wedge A(\alpha, v)) ; \boldsymbol{\alpha} \in r\} \wedge \wedge\{\neg \exists v(R(x, v) \wedge A(\alpha, v)) ; \boldsymbol{\alpha} \notin r\}$.
Then $A(\sigma, x)$ is an R-formula whose R-degree is n if σ belongs to Σ_{n}. From this definition we have:

Corollary 1. (i) Suppose that σ belongs to Σ_{n}. Then, $A(\sigma, x)$ is equivalent to the disjunction of the formulas: $A(\langle\sigma, l, r\rangle, x)$, where $l \leqq \Sigma_{n}$ and $r \cong \Sigma_{n}$, in L.
(ii) The disjunction of the formulas: $A(\sigma, x), \sigma \in \Sigma_{n}$, is provable in L for each non-negative integer n.
(iii) If σ and ν are distinct elements of Σ_{n}, then the sentence $\neg \exists v(A(\sigma, v)$
$\wedge A(\nu, v))$ is provable in L.
Lemma 2. Every R-formula $A(x, \cdots, y)$ of R-degree $\leqq n$, whose free variables are among x, \cdots, y, is equivalent to a Boolean combination $B(x, \cdots, y)$ of formulas of the forms: $\exists v(A(\boldsymbol{\sigma}, v)), A(\boldsymbol{\sigma}, x), \cdots, A(\boldsymbol{\sigma}, y), \boldsymbol{\sigma} \in \Sigma_{n}$. Moreover B is obtained from A, concretely. Therefore every R-sentence of R-degree $\leqq n$, is equivalent to a Boolean combination of sentences of the forms: $\exists v(A(\sigma, v)), \boldsymbol{\sigma} \in \Sigma_{n}$.

Suppose that \mathfrak{R} and \mathfrak{B} are L-structures and f is a homomorphism of \mathfrak{R} onto \mathfrak{B}. Then f is said to be a strong n-homomorphism of \mathfrak{R} to \mathfrak{B} if the following two conditions (a) and (b) hold: (a) For any elements a, b in \mathfrak{B}, if $\mathfrak{B} \models R(a, b)$, then there are a^{\prime}, b^{\prime} in \mathfrak{R} such that $f\left(a^{\prime}\right)=a, f\left(b^{\prime}\right)=b$ and $\mathfrak{\Re} \vDash R\left(a^{\prime}, b^{\prime}\right)$. (b) For any $\boldsymbol{\sigma} \in \Sigma_{n}$ and a in $\mathfrak{R}, \mathfrak{N} \models A(\boldsymbol{\sigma}, a)$ iff $\mathfrak{B} \models A(\sigma, f(a))$.

From this definition and Lemma 2, we have:
Corollary 3. Suppose that f is a strong n-homomorphism of \mathfrak{R} to \mathfrak{B}.
(iv) For each R-sentence A of R-degree $\leqq n$, if \mathfrak{R} is a model of A, then \mathfrak{B} is also a model of it.
(v) For each R-positive sentence A, if \mathfrak{R} is a model of A, then \mathfrak{B} is also a model of it.
(vi) If \mathfrak{R} is a model of Sym, then \mathfrak{B} is also a model of it.

But it is not generally true that if \mathfrak{R} is a model of Tr , then \mathfrak{B} is also a model of it.

For each L-structure \mathfrak{R}, let $\operatorname{tr}(\mathfrak{R})$ be the L-structure defined by:

$$
\begin{aligned}
&|\operatorname{tr}(\mathfrak{R})|=|\mathfrak{R}|, \quad \operatorname{tr}(\mathfrak{R})\left(P_{i}\right)=\mathfrak{R}\left(P_{i}\right), \quad i=1, \cdots, N, \quad \text { and } \\
& \operatorname{tr}(\mathfrak{R})(R)=\left\{\langle a, b\rangle ; \text { there is a finite sequence }\left\langle a_{1}, a_{2}, \cdots, a_{m}\right\rangle\right. \text { such that } \\
&\left.\quad a_{1}=a, a_{m}=b \text { and }\left\langle a_{i}, a_{i+1}\right\rangle \in \mathfrak{N}(R) \text { for each } i=1, \cdots, m-1\right\} .
\end{aligned}
$$

Then, we have:
Corollary 4. (vii) $\operatorname{tr}(\mathfrak{R})$ is a model of Tr .
(viii) If \mathfrak{R} is a model of Sym, then $\operatorname{tr}(\mathfrak{R})$ is also a model of it.
(ix) For any R-positive sentence A, if \mathfrak{R} is a model of A, then $\operatorname{tr}(\mathfrak{R})$ is also a model of $i t$.

But it is not generally true that if \Re is a model of A, then $\operatorname{tr}(\Re)$ is also a
 of \Re and each non-negative integer n, let $\operatorname{LI}(\Re, a, n)($ resp. $\operatorname{RI}(\Re, a, n)$) be the set of the elements σ in Σ_{n} such that \mathfrak{R} is a model of $\exists v(R(v, a) \wedge A(\sigma, v))$ (resp. $\exists v(R(a, v) \wedge A(\sigma, v))) . \quad \Re$ has the n-weak transitive property (abbreviated by n-w.t. p.) if $\operatorname{LI}(\Re, a, k)$ is a subset of $\operatorname{LI}(\Re, b, k)$ and $\operatorname{RI}(\Re, b, k)$ is a subset of $\operatorname{RI}(\Re, a, k)$, for each a and b in $\mathfrak{\Re}$ such that $\mathfrak{\Re}$ is a model of $R(a, b)$ and each
$k<n$. Then clearly if \mathfrak{R} is a model of Tr, then it has the n-w.t.p. for each n and every L-structure has 0 -w.t.p. On the other hand, we have:

Lemma 5. Suppose that \mathfrak{R} has the n-w.t. p. Then;
(x) For each element a in $\mathfrak{\Re}$ and σ in Σ_{n}, \mathfrak{R} is a model of $A(\sigma, a)$ iff $\operatorname{tr}(\mathfrak{N})$ is a model of it.
(xi) For each R-sentence A of R-degree $\leqq n, \mathfrak{N}$ is a model of A iff $\operatorname{tr}(\mathfrak{R})$ is a model of it.

Proof. By Lemma 2, it is obvious that (xi) follows from (x) immediately. So we prove (x) by induction on n.

If $n=0$, then (x) is trivial by the definition of $\operatorname{tr}(\mathfrak{P})$. Assume that (x) is true for n. We shall show that (x) is also true for $n+1$. By the definition of $A(\sigma, x), \sigma \in \Sigma_{n+1}$, it is sufficient to prove the following two facts:
(a) \mathfrak{R} is a model of $\exists v(R(v, a) \wedge A(\nu, v))$ iff $\operatorname{tr}(\Re)$ is a model of it, for each element a in \Re and each ν in Σ_{n}.
(b) \mathfrak{R} is a model of $\exists v(R(a, v) \wedge A(\nu, v))$ iff $\operatorname{tr}(\mathfrak{R})$ is a model of it, for each element a in $\mathfrak{\Re}$ and each ν in Σ_{n}.

Since "only if" parts of (a) and (b) above are obvious, we prove "if" parts of them. Assume that $\operatorname{tr}(\Re)$ is a model of $\exists v(R(v, a) \wedge A(\nu, v))$. Then there is an element b in $\operatorname{tr}(\Re)$ such that $\operatorname{tr}(\Re)$ is a model of $R(b, a) \wedge A(\nu, b)$. By the definition of $\operatorname{tr}(\mathfrak{R})$, there is a finite sequence $\left\langle a_{1}, a_{2}, \cdots, a_{m}\right\rangle$ such that $a_{1}=b$, $a_{m}=a$ and $\left\langle a_{i}, a_{i+1}\right\rangle \in \mathfrak{R}(R)$ for each $i=1, \cdots, m-1$. Since \mathfrak{R} has the ($n+1$)-w. t. p.,

$$
\nu \in \operatorname{LI}\left(\Re, a_{2}, n\right) \cong \operatorname{LI}\left(\Re, a_{3}, n\right) \cong \cdots \cong \mathrm{LI}\left(\Re, a_{m}, n\right)=\mathrm{LI}(\Re, a, n) .
$$

Hence we have that $\nu \in \operatorname{LI}(\Re, a, n)$. This means that \mathfrak{R} is a model of $\exists v(R(v, a)$ $\wedge A(\nu, v)$). Therefore (a) holds. Similarly (b) holds.
(q.e.d.)

On the other hand, we have the following:
Lemma 6. If $\mathfrak{\Re}$ has the n-w.t.p. and there is a strong n-homomorphism of \mathfrak{R} to \mathfrak{B}, then \mathfrak{B} has also the n-w.t. p.

Proof. By induction n. If $n=0$, then this lemma is obvious. Assume that this lemma holds for n, and \mathfrak{R} has the ($n+1$)-w.t. p. Let f be a strong ($n+1$)-homomorphism of \mathfrak{R} to \mathfrak{B} and a, b be two elements of \mathfrak{B} such that $\mathfrak{B} \models R(a, b)$. By the hypothesis of induction, it is sufficient to prove that
(a) $\mathrm{LI}(\mathfrak{B}, a, n) \cong \operatorname{LI}(\mathfrak{B}, b, n)$;
(b) $\operatorname{RI}(\mathfrak{B}, a, n) \supseteqq \operatorname{RI}(\mathfrak{B}, b, n)$.

Let $\sigma \in \operatorname{LI}(\mathfrak{B}, a, n)$. Then, \mathfrak{B} is a model of $\exists v(R(v, a) \wedge A(\sigma, v))$. Let a^{\prime}, b^{\prime} be two elements of \Re such that $f\left(a^{\prime}\right)=a, f\left(b^{\prime}\right)=b$ and $\mathfrak{R} \vDash R\left(a^{\prime}, b^{\prime}\right)$. Since, f is a strong ($n+1$)-homomorphism of \mathfrak{R} to \mathfrak{B} and $\exists v(R(v, x) \wedge A(\sigma, v))$ is a formula of $R-\operatorname{deg} \leqq n+1, \mathfrak{R}$ is a model of $\exists v\left(R\left(v, a^{\prime}\right) \wedge A(\sigma, v)\right)$. This means that $\boldsymbol{\sigma} \in \mathrm{LI}\left(\Re, a^{\prime}, n\right)$. Since \mathfrak{R} has the $(n+1)$-w.t. p., $\boldsymbol{\sigma} \in \operatorname{Ll}\left(\mathfrak{R}, b^{\prime}, n\right)$. Hence $\mathfrak{\Re}$ is a model of $\exists v\left(R\left(v, b^{\prime}\right)\right.$
$\wedge A(\sigma, v))$. Therefore, \mathfrak{B} is a model of $\exists v(R(v, b) \wedge A(\sigma, v))$. This means that $\sigma \in \operatorname{LI}(\mathfrak{B}, b, n)$. This shows that (a) above holds. Similarly (b) above holds.

For each L-structure $\mathfrak{\Re}$ and non-negative integer n, let f_{n} be the mapping from \mathfrak{R} to Σ_{n} defined by: $f_{n}(a)=\sigma$ such that \mathfrak{R} is a model of $A(\sigma, a)$ for each element a in \mathfrak{R}. By Corollary 1, there exists such σ uniquely for each a. Using this mapping, we define a new L-structure \Re_{n} as follows: The universe of \mathfrak{R}_{n} is the range of the mapping f_{n} and, $\mathfrak{\Re}_{n}\left(P_{i}\right),(1 \leqq i \leqq N), \mathfrak{\Re}_{n}(R)$ are images of $\mathfrak{\Re (P _ { i }) \text { , }}$ $(1 \leqq i \leqq N), \mathfrak{R}(R)$ under f_{n}, respectively. Then, we can easily prove the following:

Lemma 7. f_{n} is a strong n-homomorphism of \mathfrak{R} to \mathfrak{R}_{n}.
Combining these results we have:
Theorem 8. Suppose that \mathfrak{R} is an L-structure and n is a non-negative integer. Then;
(xii) The cardinality of the universe of \Re_{n} and $\operatorname{tr}\left(\Re_{n}\right)$ are no more than K_{n}.
(xiii) $\operatorname{tr}\left(\Re_{n}\right)$ is a model of Tr .
(xiv) If $\mathfrak{\Re}$ is a model of Sym, then $\mathfrak{\Re}_{n}$ and $\operatorname{tr}\left(\Re_{n}\right)$ are models of it.
(xv) For any R-positive sentence A, if \mathfrak{N} is a model of A, then \Re_{n} and $\operatorname{tr}\left(\Re_{n}\right)$ are models of $i t$.
(xvi) For each R-sentence A of R-degree $\leqq n$, if \Re is a model of A, then $\mathfrak{\Re}_{n}$ is a model of it.
(xvii) For each R-sentence A of R-degree $\leqq n$, if \mathfrak{R} is a model of A and Tr , then $\operatorname{tr}\left(\Re_{n}\right)$ is a model of A.

From Theorem 8 above we can easily prove our main theorem as follows: Suppose that A is a sentence in F. If A has a model \mathfrak{R}, then by Theorem 8 above, at least one of $\operatorname{tr}\left(\mathfrak{R}_{n}\right)$ and $\mathfrak{\Re}_{n}$ is a model of A, whose cardinality is no more than K_{n}, where $n=R-\operatorname{deg}(A)$. This completes a proof of our main theorem.

References

[1] S.A. Kripke, Semantical Analysis of modal logics I, Z. Math. Logik Grundlag. Math., 9 (1963), 67-96.
[2] S. A. Kripke, Semantical Analysis of intuitionistic logic I, in: Formal Systems and Recursive Functions, edited by J.N. Crossley and M. A. E. Dummett, North-Holland, Amsterdam, 1965, pp. 92-130.

Nobuyoshi Motohashi
Institute of Mathematics
University of Tsukuba Ibaraki 305
Japan

