J. Math. Soc. Japan Vol. 42, No. 1, 1990

A generalization of Axiom A

By Tadatoshi MIYAMOTO

(Received Oct. 11, 1988)

§1. Introduction.

In [1], J. Baumgartner introduced the class of partial orderings for Axiom A which includes c.c.c. p.o. sets, ω_1 -closed p.o. sets and various notions of forcing which add new subsets of ω . If partial orderings which satisfy Axiom A are iterated under countable support, then the iteration, regardless of its length, satisfies the following covering property: If X is a countable subset of the ordinals in the generic extension via the iteration, then there is $X \in V$ (the ground model) which is countable in V with $X \subseteq X$. This covering property implies that ω_1 is preserved. The main procedure involved in showing this is to produce what we call a fusion sequence which has a lower bound. It is not plausible, however, that the iteration itself satisfies Axiom A.

In this paper we generalize the class of partial orderings for Axiom A so that our generalization is iterable under countable support. The difference between these two classes is that: When we construct a nice descending sequence (fusion sequence) $\langle p_n \rangle_{n < \omega}$, the choice of p_{n+1} depends only on p_n for Axiom A and depends on p_0, \dots, p_n for our generalization.

Let us begin with a quick review of definitions.

§2. Preliminaries.

A binary relation (P, \leq) is a *preordering* if (P, \leq) is reflexive and transitive. A preordering (P, \leq) satisfies Axiom A if there is a sequence $\langle \leq_n \rangle_{n < \omega}$ such that

(1) (P, \leq_n) is a preordering for all $n < \omega$,

- (2) if $p \leq q$, then $p \leq q$,
- (3) if $p \leq_{n+1} q$, then $p \leq_n q$,

(4) if $\langle p_n \rangle_{n < \omega}$ is a sequence of conditions from P with $p_{n+1} \leq p_n$ for each $n < \omega$, then there is a condition p in P such that $p \leq p_n p_n$ for all $n < \omega$,

(5) for any n in ω , any p in P and any dense subset D of P below p (i.e.

This paper is part of the author's Ph. D. thesis written at Dartmouth College under the direction of Professor James Baumgartner to whom the author is indebted for his aid and encouragement.

Τ. Μιγαμοτο

for any r in P, if $r \leq p$, then there is a condition d in D with $d \leq r$, there are q in P and a countable subset D' of D such that $q \leq p$ and $q \leq \forall D'$ (i.e. for any condition r with $r \leq q$, there are d in D' and a in P with $a \leq r$ and $a \leq d$).

An infinite game G for a preordering P is played by two players I and II. I initiates a play by choosing a condition p_0 in P, then II follows by choosing a condition p_1 with $p_1 \leq p_0$, then I picks a condition p_2 with $p_2 \leq p_1$, and II picks p_3 with $p_3 \leq p_2$, ... etc. This way, they finish the play $\langle p_n \rangle_{n < \omega}$. If the play had a lower bound, then II wins, otherwise I wins the play. By a winning strategy σ for II, we mean a function from the collection of finite sequences of P into P such that any play of the form:

$$p_0 \geq \sigma(p_0) \geq p_2 \geq \sigma(p_0, p_2) \geq p_4 \geq \cdots$$

has a lower bound.

For a regular uncountable cardinal θ , $H(\theta)$ denotes the collection of sets which are hereditarily of size less than θ . For each countable ordinal δ , let $S(\delta, H(\theta))$ be the collection of sequences $\langle a_i \rangle_{i \leq \beta}$ such that

- (1) $\beta \leq \delta$,
- (2) for each $i \leq \beta$ a_i is a countable subset of $H(\theta)$ and

(3) $\langle a_i \rangle_{i \leq \beta}$ is continuously increasing. (i.e. $j \leq i \leq \beta$ implies $a_j \leq a_i$ and if $i \leq \beta$ is a limit ordinal, then $a_i = \bigcup_{j < i} a_j$.)

A sequence $\langle N_i \rangle_{i \leq \delta}$ is nice if

(1) for each $i \leq \delta$ (N_i, \in) is a countable elementary substructure of $(H(\theta), \in)$, which we denote by $N_i \prec H(\theta)$,

(2) for each $i < \delta$, $\langle N_j \rangle_{j \le i} \in N_{i+1}$ and

(3) $\langle N_i \rangle_{i \leq \delta}$ is continuous.

Note that since $N_i \in N_{i+1}$ and N_i is countable, $N_i \subseteq N_{i+1}$ holds. For a condition q in P and a set N, q is (P, N)-generic if for each dense subset D of P in N, $q \leq \bigvee (D \cap N)$ holds.

For any uncountable set A, let $[A]^{\omega}$ be the collection of subsets of A which has size ω . A subset D of $[A]^{\omega}$ is closed unbounded if D is closed (i.e. for $\langle X_n \rangle_{n < \omega}$ with $X_n \in D$ and $X_n \subseteq X_{n+1}$ for all $n < \omega$, $\bigcup_{n < \omega} X_n \in D$) and cofinal (i.e. for any $X \in [A]^{\omega}$, there is $Y \in D$ s.t. $X \subseteq Y$).

A preordering (P, \leq) is δ -proper if there are a regular uncountable cardinal θ with $P \in H(\theta)$ and a function C from $S(\delta, H(\theta)) \cup \{\emptyset\}$ into the collection of closed unbounded sets of $[H(\theta)]^{\omega}$ such that for any nice sequence $\langle N_i \rangle_{i \leq \delta}$ with $N_0 \in C(\emptyset)$ and $N_{i+1} \in C(\langle N_j \rangle_{j \leq i})$ for all $i < \delta$ and for any $p \in N_0 \cap P$, there is a condition q in P such that $q \leq p$ and q is (P, N_i) -generic for all $i \leq \delta$.

 $((P_{\beta}, \leq_{\beta}, 1_{\beta})_{\beta \leq \alpha}, (\check{Q}_{\beta}, \leq_{\beta}, \dot{1}_{\beta})_{\beta < \alpha})$ is a countable support iteration of length $\alpha+1$ if

(1) the elements of P_{β} are sequences of length β and $(P_{\beta}, \leq_{\beta})$ is a preordering with a greatest element 1_{β} ,

(2) $\Vdash_{P_{\beta}}$ " $(\mathring{Q}_{\beta}, \stackrel{\circ}{\leq}_{\beta})$ is a preordering with a greatest element $\mathring{1}_{\beta}$ ",

(3) $P_{\beta+1} \subseteq \{p^{\uparrow}\langle \tau \rangle \colon p \in P_{\beta} \text{ and } \Vdash_{P_{\beta}} \tau \in \mathring{Q}_{\beta}\},\$

(4) if $p \Vdash_{P_{\beta}} \tau \in \mathring{Q}_{\beta}$, then there is a condition q in $P_{\beta+1}$ such that $q \upharpoonright \beta = p$ and $p \Vdash_{P_{\beta}} q(\beta) = \tau$,

- (5) if $p \in P_{\beta}$ and $q \in P_{\beta+1}$, then $p^{\langle q(\beta) \rangle \in P_{\beta+1}}$,
- (6) $p \leq_{\beta+1} q$ iff $p \upharpoonright \beta \leq_{\beta} q \upharpoonright \beta$ and $p \upharpoonright \beta \Vdash_{P_{\beta}} p(\beta) \leq_{\beta} q(\beta)$,
- (7) $1_{\beta+1}=1_{\beta} \langle 1_{\beta} \rangle$.

If β is a limit ordinal, then

(8) P_{β} is the collection of sequences of length β such that for each $\rho < \beta$ $p \upharpoonright \rho \in P_{\rho}$ holds and $\operatorname{supp}(p) = \{\rho < \beta \colon p(\rho) \neq \mathring{1}_{\rho}\}$ is countable,

(9) $p \leq_{\beta} q$ iff for all $\rho < \beta \ p \upharpoonright \rho \leq_{\rho} q \upharpoonright \rho$ and (10) $1_{\beta} = \langle \mathring{1}_{\rho} \rangle_{\rho < \beta}$.

If G_{β} is a P_{β} -generic filter over V (the ground model) and τ is a P_{β} -name, then the object decided by τ and G_{β} is denoted by $\tau[G_{\beta}]$. We simply write $(P_{\beta}, \mathring{Q}_{\beta})_{\beta \leq \alpha, \beta < \alpha}$ for an iteration.

§3. The Axiom C.

DEFINITION 1. A preordering (P, \leq) satisfies Axiom C if there is a subset R of the collection of finite sequences of P such that

(1) R(p) for all p in P,

(2) $R(p_0, \dots, p_n)$ implies $p_0 \ge \dots \ge p_n$,

(3) for any $n < \omega$ and any sequence of conditions $\langle p_k \rangle_{k < \omega}$ from P if $R(p_0, \dots, p_n, \dots, p_{n+i})$ holds for all $i < \omega$, then there is a condition p in P such that $R(p_0, \dots, p_i, p)$ holds for all $i \ge n-1$,

(4) if $R(p_0, \dots, p_n)$ and D is dense below p_n , then there are a condition $p_{n+1} \in P$ and a countable subset D' of D such that $R(p_0, \dots, p_n, p_{n+1})$ and $p_{n+1} \leq \bigvee D'$ hold.

We call the sequence $\langle p_k \rangle_{k < \omega}$ appeared in (3) a fusion sequence and the condition p, a fusion of the fusion sequence.

PROPOSITION 2.

(0) (4) in Definition 1 is equivalent to: If $R(p_0, \dots, p_n)$ and $p_n \Vdash_P \tau$ is an ordinal", then there are a condition p_{n+1} in P and a countable collection of ordinals X such that $R(p_0, \dots, p_n, p_{n+1})$ and $p_{n+1} \Vdash_P \tau \in X$.

- (1) If (P, \leq) satisfies Axiom A, then (P, \leq) satisfies Axiom C.
- (2) If (P, \leq) satisfies Axiom C, then (P, \leq) is δ -proper for all $\delta < \omega_1$.
- (3) Countable support iterations of Axiom A of arbitrary length satisfy

Τ. Μιγαμοτο

Axiom C.

(4) Countable support products of perfect set forcing satisfy Axiom C.

(5) If the player II has a winning strategy in the game G for P, then the preordering P satisfies Axiom C.

PROOF. (0) Suppose (4) in Definition 1. Suppose $R(p_0, \dots, p_n)$ and $p_n \Vdash \tau$ is an ordinal". Define $D = \{p \in P: \text{ there is an ordinal } \alpha \text{ s.t. } p \Vdash \tau = \alpha\}$. D is dense below p_n . Thus by (4) in Definition 1, we have p_{n+1} in P and a countable subset D' of D such that $R(p_0, \dots, p_n, p_{n+1})$ and $p_{n+1} \leq \bigvee D'$ hold. Let X = $\{\alpha: \exists d \in D' \ d \Vdash \tau = \alpha\}$. X works.

Conversely, assume $R(p_0, \dots, p_n)$ and D is dense below p_n . We want to show that the conclusion of (4) in Definition 1 holds. Let $\langle d_{\xi} \rangle_{\xi < \rho}$ be an enumeration of D. Since D is dense below p_n , we have a P-name $\mathring{\xi}$ s.t. $p_n \Vdash d_{\mathring{\xi}} \in \mathring{G}$, where \mathring{G} is the canonical name for a P-generic filter. Therefore there is a condition p_{n+1} in P and a countable collection of ordinals X such that $R(p_0, \dots, p_n, p_{n+1})$ and $p_{n+1} \Vdash \mathring{\xi} \in X$. Let $D' = \{d_{\xi} : \mathring{\xi} \in X \cap \rho\}$. D' works.

(1) Suppose (P, \leq) satisfies Axiom A with $\langle \leq_n \rangle_{n < \omega}$. We define R as follows: R(p) if and only if $p \in P$; and for p_0, \dots, p_{n+1} in P, $R(p_0, \dots, p_{n+1})$ if and only if $p_{n+1} \leq_n \dots \leq_1 p_1 \leq_0 p_0$. This R works.

(2) Suppose (P, \leq) satisfies Axiom C with R. Take a regular uncountable cardinal θ with $P \in H(\theta)$ and define the function C with the domain $S(\delta, H(\theta)) \cup \{\emptyset\}$ such that $C(\emptyset) = \{N \prec H(\theta): N \text{ is countable and } P, \leq, R \in N\}$ and for any $\sigma \in S(\delta, H(\theta)), C(\sigma) = \{N \prec H(\theta): N \text{ is countable}\}$. Let $\langle N_i \rangle_{i \leq \delta}$ be a nice sequence with $N_0 \in C(\emptyset)$ and $N_{i+1} \in C(\langle N_j \rangle_{j \leq i})$ for all $i < \delta$. It suffices to show that

(a) For any p in $P \cap N_0$, there is a condition p_0 such that $p_0 \leq p$ and p_0 is (P, N_0) -generic.

(b) For all α , β with $\alpha < \beta \leq \delta$, if $R(p_0, \dots, p_n)$ with $p_0, \dots, p_n \in N_{\alpha+1}$ and p_n is (P, N_i) -generic for all $i \leq \alpha$, then there is a condition p_{n+1} such that $R(p_0, \dots, p_n, p_{n+1})$ and p_{n+1} is (P, N_i) -generic for all $i \leq \beta$.

To show (a), let p be a condition in $P \cap N_0$ and let $\langle D_n \rangle_{n < \omega}$ enumerate the dense subsets of P which belong to N_0 . By (1) and (4) in Definition 1 we have a condition a_0 and a countable subset D'_0 of D_0 such that $R(p, a_0)$ and $a_0 \leq \bigvee D'_0$ hold. Since p, R, \leq, D_0 and P are all in N_0 , there are a_0 and D'_0 in N_0 as such. Since D'_0 is countable, D'_0 is a subset of N_0 . Therefore, we have $a_0 \leq \bigvee (D_0 \cap N_0)$. We repeat this argument for D_1, D_2, D_3 and so forth to get $\langle a_n \rangle_{n < \omega}$ and $\langle D'_n \rangle_{n < \omega}$ such that $R(p, a_0, \dots, a_n)$ and $a_n \leq \bigvee (D_n \cap N_0)$ for all $n < \omega$. By (3) in Definition 1, we have a condition p_0 such that $R(p, a_0, \dots, a_{n-1}, p_0)$ for all $n < \omega$. By (2) in Definition 1 we have $a_n \geq p_0$ for all $n < \omega$. Thus $p_0 \leq \bigvee (D_n \cap N_0)$ for all $n < \omega$, and so p_0 is (P, N_0) -generic. Note that we can retake such a p_0 in N_1 , if $1 \leq \delta$.

To show (b), we proceed by induction on β (for all $\alpha < \beta$). Notice that if $x \leq y$ and y is (P, M)-generic, then so is x. Also notice that if x is (P, M_j) -generic for all j < i, then x is $(P, \bigcup_{j < i} M_j)$ -generic. We use these facts. The rests are similar to the above argument.

(3) We assume that the reader is familiar with Lemmas 7.2 and 7.3 in [1]. Let $(P_{\alpha}, \mathring{Q}_{\alpha})_{\alpha \leq \nu, \alpha < \nu}$ be a countable support iteration of preorderings such that $\Vdash_{P\alpha} \mathring{Q}_{\alpha}$ satisfies Axiom A with $\langle \stackrel{*}{\leq} \stackrel{\alpha}{n} \rangle_{n < \omega}$ for all $\alpha < \nu$. For each $p, q \in P_{\nu}$, $n < \omega$ and a finite subset F of ν , we define as in [1] $q \geq_{F,n} p$ if $q \geq p$ and for any α in $F p \upharpoonright \alpha \Vdash_{P_{\alpha}} \mathring{p}(\alpha) \stackrel{*}{\leq} \stackrel{\alpha}{n} q(\alpha)$ holds. For each p in P_{ν} , let us fix a function f_p from ω such that $\nu \supseteq f_p \ "\omega \supseteq \operatorname{supp}(p)$. (Here we assume $\nu \neq 0$.) We define $F_{p_0, \dots, p_n} = f_{p_0} \ "(n+1) \cup \cdots \cup f_{p_n} \ "(n+1)$ for each $p_0, \dots, p_n \in P_{\nu}$ and define inductively a subset R of the finite sequences of P_{ν} .

(a) R(p) if $p \in P_{\nu}$.

(b) $R(p_0, \dots, p_{n+1})$ if $R(p_0, \dots, p_n)$ and $p_n \ge F, n p_{n+1}$ holds, where $F = F_{p_0, \dots, p_n}$.

This R works.

(4) Similar to (3) using Lemma 1.6 and Corollary 1.10 in [2].

(5) Let σ be a winning strategy for the player II. We define R as follows: R(p) if and only if p in P; and for p_0, \dots, p_{n+1} in P $R(p_0, \dots, p_{n+1})$ if and only if $p_0 \ge \sigma(p_0) \ge p_1 \ge \sigma(p_0, p_1) \ge \dots \ge \sigma(p_0, \dots, p_n) \ge p_{n+1}$. This R works. Q. E. D.

It is known concerning Axiom A:

THEOREM (J. Baumgartner, unpublished). Let $(P_{\alpha}, \mathring{Q}_{\alpha})_{\alpha \leq \nu, \alpha < \nu}$ be a countable support iteration such that $\Vdash_{P_{\alpha}} \mathring{Q}_{\alpha}$ satisfies Axiom A" for all $\alpha < \nu$. If $\nu < \omega_1$, then we may show that P_{ν} satisfies Axiom A.

PROOF. Since ν is countable, we may fix a sequence of finite sets $\langle F_n \rangle_{n < \omega}$ such that $F_n \subseteq F_{n+1} \subseteq \nu$ for all $n < \omega$ and $\bigcup_{n < \omega} F_n = \nu$. Suppose that $\Vdash_{P_{\alpha}} "\mathring{Q}_{\alpha}$ satisfies Axiom A with $\langle \stackrel{\diamond}{\leq} \stackrel{\alpha}{n} \rangle_{n < \omega}$ " for all $\alpha < \nu$. For $p, q \in P_{\nu}$ define $q \leq_n p$ if and only if $q \leq p$ and for any α in $F_n q \upharpoonright \alpha \Vdash_{P_{\alpha}} "q(\alpha) \stackrel{\diamond}{\leq} \stackrel{\alpha}{n} p(\alpha)$ ". This is the same as (3) in Proposition 2. The difference is that the choice of the F_n is this time independent of $p, q \in P_{\nu}$. This $\langle \leq_n \rangle_{n < \omega}$ works. Q. E. D.

THEOREM 3. Let $(P_{\alpha}, \mathring{Q}_{\alpha})_{\alpha \leq \nu, \alpha < \nu}$ be a countable support iteration such that $\Vdash_{P_{\alpha}} \mathring{Q}_{\alpha}$ satisfies Axiom C" for all $\alpha < \nu$. We can show that P_{ν} satisfies Axiom C.

To show Theorem 3, we fix a countable support iteration $(P_{\alpha}, \mathring{Q}_{\alpha})_{\alpha \leq \nu, \alpha < \nu}$ and a sequence of names $\langle \mathring{R}_{\alpha} \rangle_{\alpha < \nu}$ such that $\Vdash_{P_{\alpha}} \mathring{Q}_{\alpha}$ satisfies Axiom C with \mathring{R}_{α} " for each $\alpha < \nu$. We first observe the following fusion lemma:

LEMMA 4. Given a sequence $\langle E_n \rangle_{n < \omega}$ of disjoint finite subsets of δ with $\delta \leq \nu$

and a sequence of conditions $\langle p_n \rangle_{n < \omega}$ from P_{δ} . If we assume that:

- (1) $i < \omega$,
- (2) $\forall n < \boldsymbol{\omega} \ p_n \geq p_{n+1},$
- (3) $\bigcup_{n < \omega} \operatorname{supp}(p_n) \subseteq \bigcup_{n < \omega} E_n$,

(4) $\forall n \ge i \ \forall k < n \ \forall \alpha \in E_k$ $p_n \upharpoonright \alpha \Vdash \mathring{R}_{\alpha}(p_k(\alpha), \dots, p_n(\alpha))$, then there is a condition p in P_{δ} such that

- (5) $\forall n < \boldsymbol{\omega} \quad p_n \geq p$,
- (6) $\forall n \geq i \ \forall k < n \ \forall \alpha \in E_k \ p \upharpoonright \alpha \Vdash \mathring{R}_{\alpha}(p_k(\alpha), \dots, p_{n-1}(\alpha), p(\alpha)).$

PROOF. We construct the condition p by induction on $\alpha < \delta$. Suppose we have constructed $p \upharpoonright \alpha$ such that

- (7) $\forall n < \omega \quad p_n \upharpoonright \alpha \geq p \upharpoonright \alpha$,
- (8) $\forall n \geq i \ \forall k \leq n \ \forall \beta \in E_k \cap \alpha \quad p \upharpoonright \beta \Vdash \mathring{R}_{\beta}(p_k(\beta), \dots, p_{n-1}(\beta), p(\beta)).$

It suffices to get $p(\alpha)$: If α is not in any of E_n , then we put $p(\alpha) = \mathring{1}_{\alpha}$. If α is in some E_k , let us fix such a unique k. If k < i holds, then for all $n \ge i$ and for all β in $E_k p_n \lceil \beta \Vdash \mathring{R}_{\beta}(p_k(\beta), \dots, p_n(\beta))$ holds. But by (7) we have $p \lceil \alpha \Vdash \mathring{R}_{\alpha}(p_k(\alpha), \dots, p_n(\alpha))$ for all $n \ge i$. Applying fusion inside the forcing relation, we have $p(\alpha)$ such that $p \lceil \alpha \Vdash \mathring{R}_{\alpha}(p_k(\alpha), \dots, p_{n-1}(\alpha), p(\alpha))$ for all $n \ge i$. And so it is easy to see $p \lceil \alpha \Vdash p_n(\alpha) \ge p(\alpha)$ for all $n < \omega$. If $i \le k$ holds, then this time for all n > k and for all β in $E_k p_n \lceil \beta \Vdash \mathring{R}_{\beta}(p_k(\beta), \dots, p_n(\beta))$ holds. But by (7) again, we have $p \lceil \alpha \Vdash \mathring{R}_{\alpha}(p_k(\alpha), \dots, p_n(\alpha))$ for all n > k. Therefore as in the previous case there is $p(\alpha)$ such that $p \lceil \alpha \Vdash \mathring{R}_{\alpha}(p_k(\alpha), \dots, p_{n-1}(\alpha), p(\alpha))$ holds for all n > k and so $p \lceil \alpha \Vdash p_n(\alpha) \ge p(\alpha)$ for all $n < \omega$. Note that $\sup (p) \subseteq \bigcup_{n < \omega} E_n$.

LEMMA 5. Suppose $\langle E_i \rangle_{i < n}$ is a sequence of disjoint finite subsets of ρ with $\rho \leq \nu$ and $\langle p_i \rangle_{i \leq n}$ is a sequence of conditions from P_{ρ} such that

(1) $p_0 \geq \cdots \geq p_n$,

(2) $\forall k < n \quad \forall \alpha \in E_k \quad p_n \upharpoonright \alpha \Vdash \mathring{R}_{\alpha}(p_k(\alpha), \cdots, p_n(\alpha)).$

If E_n is a finite subset of ρ disjoint from E_0 through E_{n-1} and D is a dense subset of P_{ρ} below p_n , then there are a condition p_{n+1} in P_{ρ} and a countable subset D' of D such that

- (3) $p_n \geq p_{n+1}$,
- (4) $\forall k < n+1 \quad \forall \alpha \in E_k \quad p_{n+1} \upharpoonright \alpha \Vdash \mathring{R}_{\alpha}(p_k(\alpha), \cdots, p_{n+1}(\alpha)),$
- (5) $p_{n+1} \leq \bigvee D'$.

PROOF. We show by induction on $\rho \leq \nu$. There are two cases:

Case 1. $\bigcup_{i \leq n} E_i$ is bounded below ρ , say by $\delta < \rho$:

Since D is dense below p_n , we may fix a subset E of D such that (6) $\forall e \in E$ $e \leq p_n$,

(7) $\forall e, e' \in E$ (if $e \neq e'$, then $e \upharpoonright \delta$ and $e' \upharpoonright \delta$ are incompatible in P_{δ}),

(8) $p_n \upharpoonright \delta \leq \lor \{e \upharpoonright \delta : e \in E\}.$

Applying the induction hypothesis to $\langle E_i \rangle_{i \leq n}$, $\langle p_i \upharpoonright \delta \rangle_{i \leq n}$ and $\{b \in P_{\delta} : \exists e \in E \\ b \leq e \upharpoonright \delta\}$, we have a condition $p_{n+1} \upharpoonright \delta$ (a notational abuse) and a countable subset D' of E such that (4) and $p_{n+1} \upharpoonright \delta \leq \lor \{e \upharpoonright \delta : e \in D'\}$. Since D' is countable we have a condition p_{n+1} in P_{ρ} such that $p_n \geq p_{n+1}$ and $e \leq e \upharpoonright \delta \upharpoonright p_{n+1} \upharpoonright [\delta, \rho)$ and $e \geq e \upharpoonright \delta \upharpoonright p_{n+1} \upharpoonright [\delta, \rho)$ for each e in D'. Now it is easy to check p_{n+1} and D' work.

Case 2. $\rho = \delta + 1$ and $\delta \in E_k$ for some δ and some k with $0 \le k \le n$:

Since D is dense below p_n , we have $p_n \upharpoonright \delta \Vdash \overline{D} = \{d(\delta) [G_{\delta}] : d \in D \text{ and } d \upharpoonright \delta \in G_{\delta}\}$ is dense below $p_n(\delta)$. Thus we may fix P_{δ} -names $p_{n+1}(\delta)$ and \overline{D}' such that $p_n \upharpoonright \delta$ forces:

- $(9) \quad p_{n+1}(\delta) \leq \bigvee \overline{D}',$
- (10) $p_{n+1}(\delta) \leq p_n(\delta)$,

(11) \overline{D}' is a countable subset of \overline{D} ,

(12) $\check{R}_{\delta}(p_k(\delta), \cdots, p_n(\delta), p_{n+1}(\delta)).$

Since \overline{D}' is countable, we may fix a sequence of P_{δ} -names $\langle d_m \rangle_{m < \omega}$ such that for each P_{δ} -generic filter G_{δ} over V with $p_n \upharpoonright \delta \in G_{\delta}$:

(13) $\forall m < \omega$ $(\mathring{d}_m[G_{\delta}] \in D \text{ and } \mathring{d}_m[G_{\delta}] \upharpoonright \delta \in G_{\delta})$ and

(14) $\overline{D}'[G_{\delta}] = \{ d_m[G_{\delta}](\delta)[G_{\delta}] : m < \omega \}$ hold.

And so for each $m < \omega D_m = \{q \in P_\delta : \exists d \in D \ q \Vdash d_m = d\}$ is dense below $p_n \upharpoonright \delta$. By applying the induction hypothesis to $\langle E_i \cap \delta \rangle_{i \leq n}$, $\langle p_i \upharpoonright \delta \rangle_{i \leq n}$ and $\langle D_m \rangle_{m < \omega}$ repeatedly and by Lemma 4, we take a sequence $\langle D'_m \rangle_{m < \omega}$ and a condition $p_{n+1} \upharpoonright \delta$ in P_δ such that

- (15) $\forall m < \omega$ (D'_m is a countable subset of D_m),
- (16) $\forall m < \omega \quad p_{n+1} \upharpoonright \delta \leq \vee D'_m$,
- $(17) \quad p_n \upharpoonright \delta \ge p_{n+1} \upharpoonright \delta,$
- (18) $\forall l < n+1 \ \forall \alpha \in E_l \cap \delta \quad p_{n+1} \upharpoonright \alpha \Vdash \mathring{R}_{\alpha}(p_l(\alpha), \cdots, p_{n+1}(\alpha)).$

Let $p_{n+1} = p_{n+1} \lceil \delta^{\wedge}(p_{n+1}(\delta))$, then it is easy to check that $p_{n+1} \leq \forall \{d \in D: \exists m < \omega \ \exists q \in D'_m \ q \Vdash d_m = d\}$ and $p_{n+1} \lceil \alpha \Vdash \mathring{R}_{\alpha}(p_l(\alpha), \cdots, p_{n+1}(\alpha))$ holds for all l < n+1 and for all $\alpha \in E_l$. Q. E. D.

PROOF OF THEOREM 3. For each p in P_{ν} , let us fix a function f_p from ω with $\nu \supseteq f_p \omega \supseteq \operatorname{supp}(p)$. For each p in P_{ν} , let $E_p = f_p u$ and for each $p_0, \dots, p_{n+1} \in P_{\nu}$, let $E_{p_0,\dots,p_{n+1}} = [f_{p_0}(n+2) \cup \dots \cup f_{p_{n+1}}(n+2)] - [f_{p_0}(n+1) \cup \dots \cup f_{p_n}(n+1)]$. We define a subset R of the collection of finite sequences of P_{ν} such that

(a) $R(p_0)$ for all $p_0 \in P_{\nu}$ and

(b) $R(p_0, \dots, p_{n+1})$ if $p_0 \ge \dots \ge p_{n+1}$ and $p_{n+1} \upharpoonright \alpha \Vdash \mathring{R}_{\alpha}(p_k(\alpha), \dots, p_{n+1}(\alpha))$ holds for all k < n+1 and for all $\alpha \in E_{p_0, \dots, p_k}$.

It is easy to check that this R works using Lemmas 4 and 5. Q.E.D.

QUESTION. I do not know any example which is Axiom C but not Axiom A.

Τ. Μιγαμοτο

References

- [1] J. Baumgartner, Iterated forcing, in Surveys in Set Theory, London Math. Soc. Lecture Note Ser., 87, 1983.
- [2] J. Baumgartner, Sacks forcing and the total failure of Martin's Axiom, Topology Appl., 19 (1985), 211-225.

Tadatoshi MIYAMOTO Department of Mathematics Nagoya University Nagoya 464 Japan