
J. Math. Soc. Japan
Vol. 41, No. 4, 1989

On the Milnor number of a generic hyperplane section

By Shintaro MIMA

(Received Sept. 13, 1988)

\S 0. Introduction.

Let $F(z_{1}, \cdots , z_{n})$ be an analytic function on an open neighbourhood of the
origin $\vec{0}$ in $C^{n}$ with $F(\vec{O})=0$ and let $V=F^{-1}(0)$ . Suppose that $F(z)$ has an isolated
critical point at the origin. Then for sufficiently small $\epsilon>0$ , the map $\phi$ : S\’e--
$K_{\epsilon}arrow S^{1}$ which is defined by $\phi(z)=F(z)f|F(z)|$ gives a smooth fiber bundle, which
is called the Milnor fibration. Here $S_{\epsilon}=\{z\in C^{n}||z|=\epsilon\}$ , $K.=S_{\epsilon}\cap V$ and $S^{1}=$

$\{z\in C||z|=1\}$ . Moreover the fiber $X_{t}=\phi^{-1}(t)$ is an $(n-2)$-connected $2(n-1)-$

dimensional smooth manifold and has the homotopy type of a bouquet $S^{n-}‘$ $\vee\cdots$

$\vee S^{n-1}$ of $(n-1)$-spheres ([3]). $\mu^{(n)}=the$ $(n-1)$-th Betti number of $X_{t}$ is usually
called the Milnor number of $F$ (or $V$). It is important to calculate the Milnor
number in order to study topological properties of $V$. Suppose that $F$ is non-
degenerate and convenient, then the beautiful formula by Kouchnirenko ([2])

says that $\mu^{(n)}=\nu^{(n)}$ , where $\nu^{(n)}$ is the Newton number of $F$ (\S 1). By this
formula, we can calculate the Milnor number via the Newton boundary of $F$.

Let $L=\{z_{n}=a_{1}z_{1}+\cdots+a_{n-1}z_{n-1}\}$ be a generic hyperplane through the origin
$\vec{0}$ . $V\cap L=f^{-1}(0)$ is called a generic hyPerplane section, where $f(z_{1}, \cdots , z_{n-1})=$

$F$ ( $z_{1},$
$\cdots$ , Zn-l’ $a_{1}z_{1}+\cdots+a_{n- 1}z_{n-1}$ ). $f$ has also an isolated critical point at the

origin and its Milnor number $\mu^{(n-1)}$ is independent of the choice of $L$ . Similarly
$\mu^{(i)}(1\leqq i\leqq n-1)$ can be defined and we define $\mu^{*}$ by $\mu^{*}=(\mu^{(n)}, \mu^{(n- 1)}, \cdots , \mu^{(1)})$ .
It is known that $\mu^{*}$ is determined by $F$ ([7]). However it is not known how
$\mu^{*}$ can be calculated for a given $F$. Because, even if $F$ is non-degenerate, $f$ is
not necessarily non-degenerate. Hence we cannot apply Kouchnirenko’s formula
even to $\mu^{(n-1)}$ . If $f$ is degenerate, then $\mu^{(n-1)}\geqq\nu^{(n-1)}$ ([2]) and similarly $\mu^{(i)}\geqq\nu^{(i)}$

$(1\leqq i\leqq n-1)$ . Thus in order to calculate $\mu^{*}$ , we want to know how the de-
generacy index $\alpha^{(i)}=\mu^{(i)}-\nu^{(i)}$ ([4]) is determined by $F$. In this paper, we will
show the following result.

THEOREM A. Let $F(x, y, z)$ be an analytic function on an open neighbour-
hood of the origin in $C^{3}$ with $F(\vec{0})=0$ . $SuPPose$ that $F$ has an isolated cntical
point at the ongin and that $F$ is non-degenerate and convenient. Let $z=ax+by$

be a genenc hyperplane and let $f(x, y)=F(x, y, ax+by)$ . Let $\mu^{(2)}$ and $\nu^{(2)}$ be
the Milnor number and the Newton number of $f$ respectjvely. Then the degeneracy
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index $\alpha^{(2)}=\mu^{(2)}-\nu^{(2)}$ is given by $a^{(2)}=D(F’)$ , where $F’$ is the associated function
of $F$ and $\hat{\nu}$ is the reduced Newton number (\S 1).

By this formula, we can calculate the Milnor number of $f$.

ACKNOWLEDGEMENTS. The author thinks it his pleasure to express his
thanks to Prof. Mutsuo Oka for suggesting him to study this problem and for
critical proof-reading.

\S 1. Preliminaries.

(1) The Newton boundary ([2], [5]). Let $f(z_{1}, \cdots , z_{n})$ be an analytic
function on an open neighbourhood of the origin in $C^{n}$ with $f(\vec{0})=0$ . Let
$f(z_{1}, \cdots , z_{n})=\Sigma_{\nu}a_{\nu}z^{\nu}(z^{v}=z_{1}^{\nu_{1}}\cdots z_{n}^{v_{n}})$ be the Taylor expansion of $f$. We define
the polyhedron $\Gamma_{+}(f)$ in $R_{+}^{n}=\{(x_{1}, \cdots , x_{n})\in R^{n}|x_{i}\geqq 0(1\leqq i\leqq n)\}$ by the convex
hull of $\{\nu+R_{\tau}^{n}|a_{\nu}\neq 0\}$ . Let $\Gamma(f)$ be the compact polyhedron which is the
union of the compact faces of $\Gamma_{+}(f)$ and we call $\Gamma(f)$ the Newton boundary of
$f$. We also define $\Gamma_{-}(f)$ by the cone of $\Gamma(f)$ with the origin $\vec{0}$ . For any face
$\Delta$ of $\Gamma(f)$ , we associate a weighted homogeneous polynomial $f_{\Delta}(z)=\Sigma_{\nu\in\Delta}a_{\nu}z^{\nu}$ .
We say that $f$ is non-degenerate on $\Delta$ if $\partial f_{\Delta}/\partial z_{1}=\ldots=\partial f_{\Delta}/\partial z_{n}=0$ has no solu-
tion in $(C^{*})^{n}$ . We say that $f$ is non-degenerate if $f$ is non-degenerate on any
face of $\Gamma(f)$ . We say that $f$ is convenient if for $i=1,$ $\cdots,$ $n,$ $\Gamma(f)^{(i)}=\{(x_{1}, \cdots , x_{n})$

$\in\Gamma(f)|x_{j}=0$ for $j\neq i$ } is non-empty. In other words, it means that for every
$i(1\leqq i\leqq n),$ $f$ has some monomials $z_{i}^{m_{i}}$ with the non-zero coefficient.

REMARK. In general, a different coordinate gives a different Newton bound-
ary. Therefore if we want to specify the coordinate, we denote the Newton
boundary by $\Gamma(f;(z_{1}, \cdots , z_{n}))$ ([4]).

(2) The Newton number ([2], [6]). Let $W$ be a polyhedron in $R_{+}^{n}$ . The
Newton number $\nu(W)$ is defined by $\Sigma_{I}(-1)^{n-|I|}|I|- dim$ . volume $(W^{I})$ , where the
sum is taken for every subset $I$ of $\{$ 1, $\cdots$ , $n\}$ and $W^{I}=\{(x_{1}, \cdots , x_{n})\in W|x_{i}=0$

for $i\not\in I$ }. The corresponding term for $J=\emptyset$ is $(-1)^{n}$ or $0$ according to $\vec{0}\in W$

or not. Notice that by definition for $W=W_{1}\cup W_{2},$ $\nu(W)=\nu(W_{1})+\nu(W_{2})-\nu(W_{1}\cap W_{2})$ .
For a complex analytic function $f(z_{1}, \cdots , z_{n})$ with $f(0)=0arrow$ , the Newton number
$\nu^{(n)}$ (or $\nu(f)$) is defined by $\nu(\Gamma_{-}(f))$ .

(3) The associated function and the reduced Newton number. Let
$F(x, y, z)$ be a complex analytic function of three variables and convenient
$(F(\vec{0})=0)$ . $F$ has an expansion in homogeneous polynomials of the form $F=$

$\sum_{i}F_{i}$ , where $F_{i}$ is the i-th degree homogeneous polynomial. We define the de-
gree of $F$ by $d=d(F)= \min\{i|F_{i}\not\equiv 0\}$ and call $F_{d}$ the principal part of $F$. For
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$F$, we associate the function $F’(u, v)$ of two complex variables which is defined
by $F’(u, v)=F(u, u, uv)$ and we call it the associated function with respect to z-
coordinate of $F$. By definition, we can write $F’(u, v)=u^{d}F’’(u, v)$ , where $d=d(F)$

and $F’’(u, v)$ is convenient. For this $F’$ , we define the polyhedron $\tilde{\Gamma}_{-}(F’)$ in
$R_{+}^{2}$ by the cone of $\Gamma_{-}(F’)$ with the vertex $(d, 0)$ . Then $\tilde{\nu}(F’)$ is defined by
$\tilde{\nu}(F’)=\nu(\tilde{\Gamma}_{-}(F’))$ and we call it the reduced Newton number.

\S 2. Examples.

(1) $F(x, y, z)=x^{l}+y^{m}+z^{n}+x^{p}y^{q}z^{r}$ where $\frac{p}{l}+\frac{q}{m}+\frac{r}{n}<1$ .
Then

$f(x, y)=F(x, y, ax+by)=x^{l}+y^{m}+(ax+by)^{n}+x^{p}y^{q}(ax+by)^{r}$ .
Thus the Newton boundary is as in Figure 2.1. It follows that the Newton
number $\nu^{(2)}$ is

$\nu^{(2)}=\nu(f)=r(p+q+r)+p$ . min $(m, n)+q$ . min (1, n)–min $(m, n)$–min $(l, n)+1$

$=rd+ \min(m, n)\cdot(p-1)+min(l, n)\cdot(q-1)+1$ ,

where $d=d(F)=p+q+r$ . On the other hand, the associated function

$F’(u, v)=F(u, u, uv)=u^{l}+u^{m}+u^{n}v^{n}+u^{d}v^{r}$

Thus the Newton boundary of $F’$ is as in Figure 2.2.

Figure 2.1. Figure 2.2.

Hence
$\alpha^{(2)}=\mu^{(2)}-\nu^{(2)}=\hat{\nu}(F’)=(\min(l, m)-d)\cdot(r-1)$ .

Consequently,

$\mu^{(2)}=rd+\min(m, n)\cdot(P-1)+\min(1, n)\cdot$ ($q-$ l)+l+(min $(l,$ $m)-d$ ) $\cdot(r-1)$

$=$ min $(m, n) \cdot(P-1)+\min(l, n)\cdot(q-1)+\min(l, m)\cdot(r-1)+d+1$ .
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(2) (See [6] example 3.3.)

$F(x, y, z)=x^{l}+y^{l}+z^{8}+x^{2}z^{5}+x^{3}yz^{3}$ $(l\geqq 16)$ .
Then

$f(x, y)=F(x, J" ax+by)=x^{l}+y^{l}+(ax+by)^{8}+x^{2}(ax+by)^{5}+x^{3}y(ax+by)^{3}$ .

Thus the Newton boundary of $f$ is given in Figure 2.3. It follows that the
Newton number $\nu^{(2)}$ is

$\nu^{(2)}=\nu(f)=35+16-7-8+1=37$ .
On the other hand, the associated function

$F’(u, v)=F(u, u, uv)=2u^{l}+u^{8}v^{8}+u^{7}v^{5}+u^{7}v^{3}$ .
Thus the Newton boundary of $F’$ is as in Figure 2.4.

Figure 2.3. Figure 2.4.

Hence
$\alpha^{(2)}=\mu^{(2)}-\nu^{(2)}=\tilde{\nu}(F’)=2(l-7)$ .

Consequently,
$\mu^{(2)}=37+2(l-7)=2l+23$ .

(3) $F(x, y, z)=x^{l}+y^{l}+z^{l}+x^{5}y^{5}z^{5}+(xyz)^{3}(x^{7}+y^{7}+z^{7})$

$+(xyz)^{2}(x^{11}+y^{11}+z^{11})$ $(l\geqq 19)$ .
The Newton boundary of $F$ is given in Figure 2.5. On the other hand, the
associated function

$F’(u, v)=F(u, u, uv)=2u^{l}+u^{l}v^{l}+u^{15}v^{5}+u^{16}v^{3}(2+v^{7})+u^{17}v^{2}(2+v^{11})$ .
Thus the Newton boundary of $F’$ is as in Figure 2.6.
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$C=^{t}(5,5,5)$ $Q_{2}=^{t}(2,13,2)$

$P_{1}=^{t}(10,3,3)$ $Q_{3}=^{t}(2,2,13)$

$P_{2}=^{t}(3,10,3)$ $R_{1}=^{t}(l, 0,0)$

$P_{3}=^{t}(3,3,10)$ $R_{2}=^{t}(0, l, 0)$

$Q_{1}=^{t}(13,2,2)$ $R_{3}=^{t}(0,0, l)$

Figure 2.5. Figure 2.6.

Hence
$\alpha^{(2)}=\mu^{(2)}-v^{(2)}=\tilde{\nu}(F’)=5+4+2(l-15)-(l-15)=l-6$ .

This example shows that the degeneracy index $\alpha^{(2)}$ depends also on the outside
faces.

\S 3. Proof of Theorem A.

Let $F(x, y, z)$ be an analytic function on an open neighbourhood of the
origin in $C^{3}$ with $F(\vec{0})=0$ . Assume that $F$ has an isolated critical point at the
origin and that $F$ is non-degenerate and convenient. $V=F^{-1}(0)$ . Let $L=$

$\{z=ax+by\}$ be a generic hyperplane and let $V’=V\cap L=f^{-1}(0)$ , where $f(x, y)$

$=F(x, y, ax+by)$ . Let
$\pi;\tilde{V}’arrow V’$

$\tilde{\pi};\bigcap_{\tilde{C}^{2}}arrow\bigcap_{C^{2}}$

be the good minimal resolution of $V’$ . $\tilde{\pi}^{-1}(\vec{0})=D_{1}\cup\cdots\cup D_{r}$ is the irreducible
decomposition of the exceptional divisors $\tilde{\pi}^{-1}(\vec{0})$ . Let $m_{i}$ be the multiplicity of
$D_{i}$ in the divisor $\tilde{\pi}^{-1}(\vec{0})$ . Then we use the following lemma.

LEMMA 3.1 ([1]). The Euler characteristic $\chi$ of the Milnor fiber determined
by $f$ is given by

$\chi=\sum_{i=1}^{r}m_{i}(2-r_{i})$ , (3.2)

where $\gamma_{i}$ is the number of the curves which meet the divisor $D_{i}$ .
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Furthermore, since the second Betti number of two dimensional connected
non-compact manifold is zero, $x=1-\mu$ by the Euler-Poincar\’e formula. There-
fore combining this with (3.2), we get

$\mu=1+\sum_{i=1}^{r}m_{i}(r_{i}-2)$ (3.3)

By this formula, the Milnor number can be calculated via the resolution graph.
We define the Milnor number $\mu_{i}$ which is determined by the Euler characteristic
of each irreducible component of the exceptional divisors by

$\mu_{i}=m_{i}(r_{i}-2)$ . (3.4)

Then by (3.3), we have

$\mu=1+\sum_{i=1}^{r}\mu_{l}$ (3.5)

Now we consider the Newton boundary of $f$. The monomial $x^{p}y^{q}z^{r}$ of $F$

transforms into $x^{p}y^{q}(ax+by)^{r}$ by $z=ax+by$ and represents the lattice points on
the segment connecting two points $(p+r, q),$ $(p, q+r)$ in $\Gamma_{+}(f)$ . Let $\Delta_{i}(0\leqq i\leqq k)$

be the faces of $\Gamma(f)$ and let $\Delta_{0}$ be the face corresponding to the weight $P_{0}=$

$(\begin{array}{l}11\end{array})$ . In general, $f$ is not necessarily non-degenerate on $\Delta_{0}$ (for example, $F_{d}=$

$x^{p}y^{q}z^{r}(r\geqq 2))$ . However on the other faces $\Delta_{i}(1\leqq i\leqq k)f$ is non-degenerate.

LEMMA 3.6. $f$ is non-degenerate on $\Delta_{i}(1\leqq i\leqq k)$ .

PROOF. We will show that for any face $\Delta_{i}(1\leqq i\leqq k)$ , the equation

$\frac{\partial f_{\Delta_{i}}}{\partial x}=\frac{\partial f_{\Delta_{i}}}{\partial y}=0$ (3.7)

has no solution in $(C^{*})^{2}$ . We denote the dual vector (the weight vector) of $\Delta_{i}$

of $\Gamma(f)$ by $P_{i}=(\begin{array}{l}\alpha\beta\end{array})$ , where we assume $\alpha>\beta$ . Let $\tilde{\Delta}_{i}$ be the face of $\Gamma(F)$ corre-
sponding to the dual vector $\tilde{P}_{i}=(\begin{array}{l}\alpha\beta\beta\end{array})$ . Notice that $f_{\Delta_{i}}(x, y)=F_{\tilde{\Delta}_{i}}$( $x,$ $y$ , by). (3.7)

implies that

$\frac{\partial f_{\Delta_{i}}}{\partial x}=\frac{\partial F_{\tilde{\Delta}_{i}}}{\partial x}=0$ , (3.8)

$\frac{\partial f_{\Delta_{i}}}{\partial y}=\frac{\partial F\chi_{i}}{\partial y}+b\frac{\partial F_{1_{i}}}{\partial_{Z}}=0$ . (3.9)

Since $f_{\Delta_{i}}$ is weighted homogeneous with the weight $P_{i}$ , the Euler equation of
$f_{\Delta_{i}}$ says that $c\cdot f_{\Delta_{i}}=\alpha x(\partial f_{\Delta_{i}}/\partial x)+\beta y(\partial f_{\Delta_{i}}/\partial y)$ , where $c$ is a positive constant.
By (3.7), $f_{\Delta_{i}}(x, y)=0$ . Thus

$F_{\tilde{\Delta}_{i}}(x, y, by)=0$ . (3.10)
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Suppose that for any $b$ , the system of equations (3.8), (3.9), (3.10) has a solution
in $(C^{*})^{3}$ . Then by Curve Selection Lemma ([3]), we can find a real analytic
curve $p(t)=(x(t), y(t),$ $b(t)y(t))(0\leqq t\leqq\epsilon)$ such that

$F_{\tilde{\Delta}_{i}}(p(t))=F_{f_{i}}(x(t), y(t),$ $b(t)y(t))\equiv 0$ and $\frac{db}{dt}\not\equiv 0$ . (3.11)

Differentiating (3.11) in $t$ , we get

$\frac{\partial F_{\tilde{\Delta}_{i}}}{\partial t}=\frac{\partial F_{f_{i}}}{\partial x}\frac{dx}{dt}+\frac{\partial F_{1_{i}}}{\partial y}\frac{dy}{dt}+\frac{\partial Fp_{i}}{\partial z}(\frac{db}{dt}y(t)+b(t)\frac{dy}{dt})\equiv 0$ .

By (3.8) and (3.9), this implies that $(\partial F_{\tilde{\Delta}_{i}}/\partial z)(db/dt)y(t)\equiv 0$ . Since $db/dt\not\equiv O$ , we
get $\partial Fp_{i}/\partial z=0$ for some $t_{0}\in[0, \epsilon]$ . By (3.9), the last equality implies that
$\partial F_{\tilde{\Delta}_{i}}/\partial y=0$ . Therefore on the curve $p(t)\in(C^{*})^{3}$ , we have $\partial F_{\tilde{\Delta}_{i}}/\partial x=\partial F_{\tilde{\Delta}\ell}/\partial y=$

$\partial F_{\tilde{\Delta}_{i}}/\partial z=0$ . However this contradicts the assumption that $F$ is non-degenerate.
It follows that for some $b$ the system of equations (3.8), (3.9), (3.10) has no
solution in $(C^{*})^{3}$ . Therefore (3.7) has no solutions in $(C^{*})^{2}$ either. In the case
of $\alpha<\beta$ , the proof can be done similarly. Q. E. D.

We consider a toroidal blowing-up $\hat{\pi}$ : $\tilde{C}^{2}arrow C^{2}$ which is associated with the
dual Newton diagram of $f$. (We use the same terminology of M. Oka [5] unless
otherwise stated.) It is obvious by Lemma 3.6 that $R^{-1}(0)$ has only normal

crossing singularities except on the divisor $E(P_{0})$ where $P_{0}=(\begin{array}{l}11\end{array})$ . Therefore

by Lemma 3.1, the non-degenerate face of $\Gamma(f)$ does not contribute to the de-
generacy index and in order to calculate $\alpha^{(2)}$ it suffices to calculate the contri-
bution of $\Delta_{0}$ , on which $f$ is degenerate, to $\mu^{(2)}$ and $\nu^{(2)}$ . We denote these con-
tributions by $\mu_{0}$ and $\nu_{0}$ respectively. To carry out calculation, we distinguish
two cases.

Case 1) $\Delta_{0}\cap$ { $the$ x-axis} $=\emptyset$ and $\Delta_{0}\cap$ { $the$ y-axis} $=\emptyset$ . Assume that the
principal part of $F_{d}$ of $F$ has the form

$F_{d}=a_{\nu_{1}}x^{p_{1}}y^{q_{1}}z^{r_{1}}+\cdots+a_{\nu_{t}}x^{p_{t}}y^{q_{t}}z^{r_{l}}$ , $P_{J}+q_{j}+r_{j}=d$ $(1\leqq]\leqq i)$ . (3.12)

Define $p_{\min}= \min\{p_{j}\},$ $q_{\min}= \min\{q_{j}\}$ and $r_{\min}= \min\{r_{j}\}$ . Then the face $\Delta_{0}$ of
$\Gamma(f)$ is given in Figure 3.13. From this

$\nu_{0}=$ det $(\begin{array}{ll}d-q_{\min} p_{\min}q_{\min} d-p_{\min}\end{array})=d(d-p_{\min}-q_{\min})$ . (3.14)

Next we will study the divisor $\hat{\pi}^{-1}(0)$ on $\hat{E}(P_{0})$ . By (3.12), the dual vector

of $\Delta_{0}$ is $P_{0}=(\begin{array}{l}11\end{array})$ . Let $Q$ be the vertex of $\Sigma*$ which is adjacent to $P_{0}$ as in

Figure 3.15.
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Figure 3.13.

$\Sigma^{*}$

$(\begin{array}{l}0l\end{array})(\begin{array}{l}l0\end{array})\ovalbox{\tt\small REJECT} QQ’(\begin{array}{l}ll\end{array})$

Figure 3.15.

By the assumption, $P_{0}$ is not adjacent to $(\begin{array}{l}01\end{array})$ or $(\begin{array}{l}10\end{array})$ . Let $Q=(\begin{array}{l}\alpha-1\alpha\end{array})$ and let

$(y_{1}, y_{2})$ be the coordinate of the affine space $C_{\sigma}^{2}$ where $\sigma=(P_{0}, Q)$ . Then $(x, y)$

can be written as follows in the local coordinate $(y_{1}, y_{2})$

$\{_{y=y_{1}y_{2}^{a}}^{x=y_{1}y_{2}^{\alpha-1}}$

. (3.16)

On the other hand,

$f_{\Delta_{0}}(x, y)=F_{d}(x, y, ax+by)$

$=a_{\nu_{1}}x^{p_{1}}y^{q_{1}}(ax+by)^{r_{1}}+\cdots+a_{\nu_{t}}x^{p_{t}}y^{q_{t}}(ax+by)^{r_{t}}$ .
We want to write $f_{\Delta_{0}}$ in the coordinate $(y_{1}, y_{2})$ . Define $M_{j}=a_{\nu_{j}}x^{p_{j}}y^{q_{j}}(ax+by)^{r_{j}}$

$(1\leqq j\leqq t)$ . By (3.16), in the local coordinate $(y_{1}, y_{2})$

$M_{j}=a_{v_{j}}y_{1}^{d}y_{2}^{p_{J^{(\alpha-1)+q}J^{\alpha+r}J^{(\alpha-1)}}}(a+by_{2})^{r_{j}}$ (3.17)

$=a_{\nu_{j}}y_{1}^{a}y_{2}^{d(a-1)+q_{j}}(a+by_{2})^{r_{j}}$ (by 3.12). (3.18)

Since $q_{\min}\leqq q_{j}$ and $r_{\min}\leqq r_{j}$ , we can write

$f_{\Delta_{0}}( \hat{\pi}(y))=\sum_{j=1}^{t}M_{j}(\hat{\pi}(y))=y_{1}^{d}y_{2}^{d(\alpha- 1)+q\min}(a+by_{2})^{r_{\min}}g(y_{2})$ ,
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where $g(y_{2})$ is the polynomial with $g(O)\neq 0$ . Now we will calculate the degree
of $g(y_{2})$ . By (3.18), the degree of $M_{j}$ in $y_{2}$ is equal to $d(\alpha-1)+q_{j}+r_{j}=d\alpha-p_{j}$

(by 3.12). Since $p_{\min}\leqq p_{j}$, the degree of $g(y_{2})$ is equal to $d\alpha-p_{\min}-(d(\alpha-1)$

$+q_{\min}+r_{\min})=d-p_{\min}-q_{\min}-r_{\min}$ . Since $a$ and $b$ are generic, we may assume
that $g(y_{2})=0$ has only simple roots. Then in the local coordinate $(y_{1}, y_{2})$ , we
can write

$f_{\Delta_{0}}=y_{1}^{d}y_{2}^{d(a-1)+q\min}(a+by_{2})^{r_{\min}} \prod_{j=1}^{d-p\min-q\min-r\min}(y_{2}+\xi_{j})$ . (3.19)

Consequently the graph of $\hat{\pi}^{-1}(0)$ is given in Figure (3.20).

Figure 3.20.

However, since this still has a singularity at $y_{1}=0,$ $a+by_{2}=0$ , we need to
resolve it. Put $a+by_{2}=b\tilde{y}_{2},$ $-a/b=a’$ , then $y_{2}=\tilde{y}_{2}+a’$ . Therefore in the local
coordinate $(y_{1},\tilde{y}_{2})$ ,

$f(x, y)=F(x, y, ax+by)$

$=F(y_{1}y_{2}^{a-1}, y_{1}y_{2}^{\alpha}, y_{1}y_{2}^{a-1}(a+by_{2}))$ by (3.16)

$=F(y_{1}(\tilde{y}_{2}+a’)^{a- 1}, y_{1}(\tilde{y}_{2}+a’)^{\alpha},$ $y_{1}(\tilde{y}_{2}+a’)^{\alpha- 1}\tilde{y}_{2})$ .
Now consider the monomial $h(x, y, z)=a_{s}x^{p}y^{q}z^{r}(p+q+r=s)$ of $F$.

$h(y_{1}(\tilde{y}_{2}+a’)^{a-1}, y_{1}(\tilde{y}_{2}+a’)^{a},$ $y_{1}(\tilde{y}_{2}+a’)^{\alpha-1}\tilde{y}_{2})=a_{s}y_{1}^{s}\tilde{y}_{2}^{r}(\overline{y}_{2}+a’)^{d(\tilde{P})}$ ,

where $d(\tilde{P})=p(\alpha-1)+q\alpha+r(\alpha-1)$ . Since this polynomial becomes $d(\tilde{P})+1$

vertices $(s, r),$ $(s, r+1),$ $\cdots$ , $(s, r+d(\tilde{P}))$ in $\Gamma_{+}(h;(y_{1},\tilde{y}_{2}))$ , the vertices other than
$(s, r)$ do not influence the Newton boundary of $h$ . Then
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$\Gamma(h(y_{1}(\tilde{y}_{2}+a’)^{\alpha-1}, y_{1}(\tilde{y}_{2}+a’)^{\alpha},$ $y_{1}(\tilde{y}_{2}+a’)^{\alpha-1}\tilde{y}_{2});(y_{1},\overline{y}_{2}))$

$=\Gamma(h(a^{\prime a-1}y_{1}, a^{\prime\alpha}y_{1}, a^{\prime a-1}y_{1}\tilde{y}_{2});(y_{1},\tilde{y}_{2}))$ .
Therefore

$\Gamma(f;(y_{1},\tilde{y}_{2}))=\Gamma(F(y_{1}(\tilde{y}_{2}+a’)^{a- 1}, y_{1}(J^{i_{2}}+a’)^{a},$ $y_{1}(\tilde{y}_{2}+a’)^{\alpha-1}\tilde{y}_{2});(y_{1},\tilde{y}_{2}))$

$=\Gamma(F(a^{\prime\alpha-1}y_{1}, a^{\prime\alpha}y_{1}, a^{\prime a-1}y_{1}\tilde{y}_{2});(y_{1},\tilde{y}_{2}))$ . (3.21)

Since the coordinate change (linear transformation) $(x, y, z)-$ ( $a^{\prime\alpha-1}x,$ ay, $a^{\prime a-1}z$)

in $C^{3}$ does not change the Newton boundary, by (3.21)

$\Gamma(f;(y_{1},\tilde{y}_{2}))=\Gamma(F(y_{1}, y_{1}, y_{1}\tilde{y}_{2});(y_{1},\tilde{y}_{2}))$ . (3.22)

Consider the associated function of $F$ (\S 1) $F’(u, v)=F(u, u, uv)$ . Then by
(3.22), $\Gamma(f;(y_{1},\tilde{y}_{2}))=\Gamma(F’(u, v);(u, v))$ . By definition, we can write $F’(u, v)$

$=u^{d}F’’(u, v)$ where $d=d(F)$ and $F’’$ is convenient. Moreover the principal part
$F_{d}$ can be written $F_{d}(u, u, uv)=u^{d}v^{r_{\min}}k(v)$ where $k(v)$ is the polynomial with
$k(O)\neq 0$ . Therefore $\Gamma(f;(y_{1},\tilde{y}_{2}))$ is as in Figure (3.23).

Figure 3.23.

LEMMA 3.24. $f(y_{1},\tilde{y}_{2})$ is non-degenerate.

PROOF. By (3.21) it suffices to show that $f_{P}(y_{1},\tilde{y}_{2}):=F(c^{\alpha-1}y_{1}, c^{a}y_{1}, c^{\alpha-1}y_{1}\tilde{y}_{2})$

is non-degenerate. (We denote $a’$ by $c.$ ) In other words, we will show that for
any face a of $\Gamma(f_{P} ; (y_{1},\tilde{y}_{2}))$ ,

$\frac{\partial f_{P,\overline{\Delta}}}{\partial y_{1}}=\frac{\partial f_{P,\overline{\Delta}}}{\partial\tilde{y}_{2}}=0$ (3.25)

has no solution in $(C^{*})^{2}$ . We denote the dual vector of $\overline{\Delta}$ by $(\begin{array}{l}\sigma\tau\end{array})$ , where we
assume $\sigma<\tau$ . Let $\tilde{\Delta}$ be the face of $\Gamma(F)$ corresponding to the dual vector

$(\begin{array}{l}\sigma\tau\sigma\end{array})$ . Then (3.25) implies that
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$\frac{\partial f_{P.\overline{\Delta}}}{\partial y_{1}}=c^{\alpha- 1}\frac{\partial F_{f}}{\partial x}+c^{\alpha}\frac{\partial Fp}{\partial y}+c^{\alpha-1}\tilde{y}_{2}\frac{\partial F_{\tilde{\Delta}}}{\partial z}=0$ , $\frac{\partial f_{P.\overline{\Delta}}}{\partial\tilde{y}_{2}}=c^{\alpha-1}y_{1}\frac{\partial F_{j}}{\partial z}=0$ .

We may assume $c\neq 0$ . Thus we get on $(C^{*})^{3}$

$\frac{\partial Fp}{\partial x}+c\frac{\partial F\chi}{\partial y}=0$ , (3.26)

$\frac{\partial Fp}{\partial z}=0$ . (3.27)

As in the proof of Lemma 3.6,

$F_{f}(c^{\alpha-1}y_{1}, c^{\alpha}y_{1}, c^{a-1}y_{1}\tilde{y}_{2})=]0$ . (3.28)

Suppose that for any $c$ the system of equations (3.26), (3.27), (3.28) has a solu-
tion in $(C^{*})^{3}$ . Then by the Curve Selection Lemma ([3]) we can find a real
analytic curve $P(t)=(c(t)^{\alpha-1}y_{1}(t), c(t)^{\alpha}y_{1}(t),$ $c(t)^{\alpha-1}y_{1}(t)\tilde{y}_{2}(t))(0\leqq t\leqq\epsilon)$ such that

$F_{j}(P(t))=Fp(c(t)^{\alpha-1}y_{1}(t), c(t)^{\alpha}y_{1}(t),$ $c(t)^{\alpha-1}y_{1}(t)\tilde{y}_{2}(t))\equiv 0$ (3.29)

and $dc/dt\not\equiv O$ . Differentiating (3.29) in $t$ , we get

$\frac{\partial Fp}{\partial t}=\frac{\partial F_{\tilde{\Delta}}}{\partial x}(c(t)^{\alpha-1}\frac{dy_{1}}{dt}+(\alpha-1)c(t)^{\alpha-2}y_{1}(t)\frac{dc}{dt})$

$+ \frac{\partial F_{f}}{\partial y}(c(t)^{\alpha}\frac{dy_{1}}{dt}+\alpha c(t)^{\alpha-1}y_{1}(t)\frac{dc}{dt})+\frac{\partial F_{1}}{\partial z}\frac{d}{dt}(c(t)^{\alpha-1}y_{1}(t)\tilde{y}_{2}(t))\equiv 0$ .

Using (3.27), we rewrite this as follows:

$c^{\alpha-1} \frac{dy_{1}}{dt}(\frac{\partial Fp}{\partial x}+c\frac{\partial F_{f}}{\partial y})+\alpha c^{\alpha- 1}y_{1}\frac{dc}{dt}(\frac{\partial Fp}{\partial x}+c\frac{\partial F_{\tilde{\Delta}}}{\partial y})-c^{a-2}y_{1}\frac{\partial F_{f}}{\partial x}\frac{dc}{dt}\equiv 0$ .

By (3.26), we obtain $c(t)^{\alpha-2}y_{1}(t)(\partial F_{\tilde{\Delta}}/\partial x)(dc/dt)\equiv 0$ . Since $c(t)^{\alpha-2}y_{1}(t)dc/dt\not\equiv 0$ , for
some $t_{0}\in[0, \epsilon]$ , we get $\partial F_{\tilde{\Delta}}/\partial x=0$ . By (3.26), we have $\partial Fp/\partial y=0$ . Therefore
on the curve $p(t)\in(C^{*})^{3}$ , we obtain $\partial F_{\tilde{\Delta}}/\partial x=\partial F_{\tilde{\Delta}}/\partial y=\partial F_{j}/\partial z=0$ . However this
contradicts the assumption that $F$ is non-degenerate. It follows that for some
$c$ the system of equations (3.26), (3.27), (3.28) has no solution in $(C^{*})^{3}$ . There-
fore (3.25) has no solutions in $(C^{*})^{2}$ , either. Q. E. D.

Using again the troidal blowing-up for $f(y_{1},\tilde{y}_{2})$ , we can see that the resolu-
tion graph is given in Figure 3.30. By Lemma 3.24, the Milnor number of the
divisors $E(P_{0})$ is the Newton number of $\Gamma(F’)$ , that is $\nu(F’)$ . By (3.4), we get
$\mu_{0}=\nu(F’)+d(d-p_{\min}-q_{\min}-r_{\min}+1)$ . Then

$\alpha^{(2)}=\mu^{(2)}-\nu^{(2)}=\mu_{0}-\nu_{0}$

$=\nu(F’)+d(d-p_{\min}-q_{\min}-r_{\min}+1)-d(d-p_{\min}-q_{\min})$

$=\nu(F’)-(dr_{\min}-d)=v(F’)-\nu(W)=\tilde{\nu}(F’)$ .
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Figure 3.30.

Here the polyhedron $W=\{(u, v)\in R_{+}^{2}|r_{\min}u\geqq dv, 0\leqq u\leqq d, v\geqq 0\}$ (see Figure
3.31) and $\nu(W\cap\tilde{\Gamma}_{-}(F’))=0$. We complete the proof of Case 1).

Case 2) $\Delta_{0}\cap\{thex- axis\}\neq\emptyset$ or $\Delta_{0}\cap\{they- axis\}\neq\emptyset$ . We may assume
that $\Delta_{0}\cap$ { $the$ x-axis} $\neq\emptyset$ and $\Delta_{0}\cap$ { $the$ y-axis} $=\emptyset$ . The other cases can be
proved similarly. The face $\Delta_{0}$ of $\Gamma(f)$ is given in Figure 3.32.

Figure 3.31. Figure 3.32.

From this

$\nu_{0}=\det(\begin{array}{ll}d p_{\min}0 d-p_{\min}\end{array})-d=d(d-p_{\min})-d$ . (3.33)

The dual Newton diagram $\Gamma^{*}(f)$ of $\Gamma(f)$ is as in Figure (3.34). Recall that the
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dual vector of $\Delta_{0}$ is $P_{0}=(\begin{array}{l}11\end{array})$ .

$\Gamma^{*}(f)(\begin{array}{l}0l\end{array})(0)\ovalbox{\tt\small REJECT}_{1}$

$(\begin{array}{l}l1\end{array})$

Figure 334.

By the assumption $P_{0}$ is adjacent to $(\begin{array}{l}01\end{array})$ , but not to $(\begin{array}{l}10\end{array})$ . Notice that $q_{\min}=0$ ,

as in the case 1) (see Figure 3.30) we draw the resolution graph as in Figure
3.35.

Figure 3.35.

Since $P_{0}$ is adjacent to $(\begin{array}{l}01\end{array})$ , the exceptional divisor $D$ corresponding to $(\begin{array}{l}01\end{array})$

contributes to $\mu_{0}$ . Therefore as in the case 1), by (3.4)

$\mu_{0}=\nu(F’)+d(d-p_{\min}-r_{\min}+1)-d$ .
Since $\Gamma(f;(y_{1},\tilde{y}_{2}))$ is the same as that of the case 1) (see Figure 3.23), by (3.33)

$\alpha^{(2)}=\mu_{0}-\nu_{0}=\nu(F’)+d(d-p_{\min}-r_{\min}+1)-d-(d(d-p_{\min})-d)$

$=\nu(F’)-(dr_{\min}-d)=\hat{\nu}(F’)$ . Q. E. D.

COROLLARY 3.36. SuppOse that $F(x, y, z)$ is a complex analytic function with
an isolated critical pojnt at the ongin $\vec{0}\in C^{3}$ and that $F$ is non-degenerate and
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convenient. Then $\mu^{(2)}=\nu^{(2)}$ if and only if the principal part $F_{d}$ of $F$ is the poly-
nomial whose degree in $z$ is equal or less than one (where the O-th degree poly-
nomial in $z$ means that it is independent of $z$).

PROOF. We first show sufficiency. We consider two cases.
1) $F_{d}$ is the l-st degree polynomial in $z$ .
2) $F_{d}$ is the O-th degree polynomial in $z$ .
Case 1) Since we can write $F(x, y, z)=ax^{\alpha}y^{\beta}z+[degree\geqq\alpha+\beta+1]$ . $F’(u, v)$

$=F(u, u, uv)=au^{\alpha+\beta+1}v+$ [$higher$ terms]. The Newton boundary of $F’$ is given
in Figure 3.37. Then $\alpha^{(2)}=\mu^{(2)}-\nu^{(2)}=\tilde{\nu}(F’)=(m-(\alpha+\beta+1))\cdot 1-(m-(\alpha+\beta+1))$

$=0$ .
Case 2) We can write $F(x, y, z)=bx^{d}+[degree\geqq d]$ or $by^{d}+[degree\geqq d]$ .

Then $F’(u, v)=bu^{d}+$ [$higher$ terms]. By definition, $\alpha^{(2)}=0$ .
Next we show necessity. Assume that the Newton boundary of $F’$ is given

in Figure 3.38.

Figure 3.37. Figure 3.38.

Take the cone of each face $\Delta_{i}’(1\leqq i\leqq k)$ with the vertex $(d, 0)$ . We denote its
Newton number by $\nu_{i}’$ respectively. By the definition of the Newton number

$\nu_{\ell}’>0$ $(1\leqq i\leqq k-1)$ , $\nu_{k}’=(v_{k}-1)(u_{k+1}-d)\geqq 0$ . (3.39)

On the other hand, $\alpha^{(2)}=\tilde{\nu}(F’)=\nu_{1}’+\cdots+\nu_{k}’$ . Suppose that $\alpha^{(2)}=0$ , then it fol-
lows that $\Gamma(F’)$ cannot have the faces $\Delta_{1}’,$ $\cdots$ , $\Delta_{k-1}’$ by (3.39) and that $\nu_{k}’=$

$(v_{k}-1)(u_{k+1}-d)=0$ . Therefore we get $v_{k}=1$ or $u_{k+1}=d$ , which correspond to
Case 1) and Case 2) respectively. Q. E. D.

So far we have fixed the generic hyperplane $z=ax+by$ . However if the
principal part $F_{d}$ has the variable whose degree is equal or less than one, say
$x$ , then we are well to think of $x=by+cz$ as the generic hyperplane. In this
case, since by Lemma 3.36 the degeneracy index is equal to zero, we can cal-
culate $\mu^{(2)}$ directly via the Newton boundary (of $F(by+cz,$ $y,$ $z)$).
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REMARK. (1) Recall that the resolution graph of $V’$ is as in Figure 3.30.
There we took $z=ax+by$ as the generic hyperplane. The resolution graph
remains the same as Figure 3.30, however, in fact, even if we take $x=by+cz$

Figure 3.40.

$L_{x}$ : $x=by+cz$

Figure 3.41.
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or $y=ax+cz$ as the generic hyperplane. Recall the resolution of $V’$ . Even often
we perform the toroidal blowing-up from $\Gamma(f)$ , the singularity still remains
because $\Gamma(f)$ has the degenerate face. And again we perform the toroidal
blowing-up. Then we obtain the resolution graph of Figure 3.30.

(2) We simplify Figure 3.30 and denote the exceptional divisors by $D_{x},$ $D_{y}$ ,
$D_{z}$ as Figure 3.40. Then the troidal resolutions are as Figure 3.41 according
as we take $x=by+cz$, $y=ax+cz$ or $z=ax+by$ as the generic hyperplane
respectively.
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