On the Milnor number of a generic hyperplane section

By Shintaro MIMA

(Received Sept. 13, 1988)

§ 0. Introduction.

Let $F\left(z_{1}, \cdots, z_{n}\right)$ be an analytic function on an open neighbourhood of the origin $\overrightarrow{0}$ in \boldsymbol{C}^{n} with $F(\overrightarrow{0})=0$ and let $V=F^{-1}(0)$. Suppose that $F(z)$ has an isolated critical point at the origin. Then for sufficiently small $\varepsilon>0$, the map $\phi: S_{\varepsilon}-$ $K_{\mathrm{s}} \rightarrow S^{1}$ which is defined by $\phi(z)=F(z) /|F(z)|$ gives a smooth fiber bundle, which is called the Milnor fibration. Here $S_{\varepsilon}=\left\{z \in \boldsymbol{C}^{n}| | z \mid=\varepsilon\right\}, K_{\varepsilon}=S_{\varepsilon} \cap V$ and $S^{1}=$ $\left\{z \in \boldsymbol{C}||z|=1\}\right.$. Moreover the fiber $X_{t}=\phi^{-1}(t)$ is an ($n-2$)-connected $2(n-1)$ dimensional smooth manifold and has the homotopy type of a bouquet $S^{n-1} \vee \cdots$ $\vee S^{n-1}$ of $(n-1)$-spheres ([3]). $\mu^{(n)}=$ the $(n-1)$-th Betti number of X_{t} is usually called the Milnor number of F (or V). It is important to calculate the Milnor number in order to study topological properties of V. Suppose that F is nondegenerate and convenient, then the beautiful formula by Kouchnirenko ([2]) says that $\mu^{(n)}=\nu^{(n)}$, where $\nu^{(n)}$ is the Newton number of $F(\S 1)$. By this formula, we can calculate the Milnor number via the Newton boundary of F.

Let $L=\left\{z_{n}=a_{1} z_{1}+\cdots+a_{n-1} z_{n-1}\right\}$ be a generic hyperplane through the origin $\overrightarrow{0}$. $V \cap L=f^{-1}(0)$ is called a generic hyperplane section, where $f\left(z_{1}, \cdots, z_{n-1}\right)=$ $F\left(z_{1}, \cdots, z_{n-1}, a_{1} z_{1}+\cdots+a_{n-1} z_{n-1}\right)$. f has also an isolated critical point at the origin and its Milnor number $\mu^{(n-1)}$ is independent of the choice of L. Similarly $\mu^{(i)}(1 \leqq i \leqq n-1)$ can be defined and we define μ^{*} by $\mu^{*}=\left(\mu^{(n)}, \mu^{(n-1)}, \cdots, \mu^{(1)}\right)$. It is known that μ^{*} is determined by $F([7])$. However it is not known how μ^{*} can be calculated for a given F. Because, even if F is non-degenerate, f is not necessarily non-degenerate. Hence we cannot apply Kouchnirenko's formula even to $\mu^{(n-1)}$. If f is degenerate, then $\mu^{(n-1)} \geqq \nu^{(n-1)}([2])$ and similarly $\mu^{(i)} \geqq \nu^{(i)}$ ($1 \leqq i \leqq n-1$). Thus in order to calculate μ^{*}, we want to know how the degeneracy index $\alpha^{(i)}=\mu^{(i)}-\nu^{(i)}([4])$ is determined by F. In this paper, we will show the following result.

Theorem A. Let $F(x, y, z)$ be an analytic function on an open neighbourhood of the origin in \boldsymbol{C}^{3} with $F(\overrightarrow{0})=0$. Suppose that F has an isolated critical point at the origin and that F is non-degenerate and convenient. Let $z=a x+b y$ be a generic hyperplane and let $f(x, y)=F(x, y, a x+b y)$. Let $\mu^{(2)}$ and $\nu^{(2)}$ be the Milnor number and the Newton number of f respectively. Then the degeneracy
index $\alpha^{(2)}=\mu^{(2)}-\nu^{(2)}$ is given by $\alpha^{(2)}=\tilde{\nu}\left(F^{\prime}\right)$, where F^{\prime} is the associated function of F and $\tilde{\Sigma}$ is the reduced Newton number ($\S 1$).

By this formula, we can calculate the Milnor number of f.
Acknowledgements. The author thinks it his pleasure to express his thanks to Prof. Mutsuo Oka for suggesting him to study this problem and for critical proof-reading.

§ 1. Preliminaries.

(1) The Newton boundary ([2], [5]). Let $f\left(z_{1}, \cdots, z_{n}\right)$ be an analytic function on an open neighbourhood of the origin in \boldsymbol{C}^{n} with $f(\overrightarrow{0})=0$. Let $f\left(z_{1}, \cdots, z_{n}\right)=\sum_{\nu} a_{\nu} z^{\nu}\left(z^{\nu}=z_{1}^{\nu} \cdots z_{n}^{\nu n}\right)$ be the Taylor expansion of f. We define the polyhedron $\Gamma_{+}(f)$ in $\boldsymbol{R}_{+}^{n}=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \boldsymbol{R}^{n} \mid x_{i} \geqq 0(1 \leqq i \leqq n)\right\}$ by the convex hull of $\left\{\nu+\boldsymbol{R}_{+}^{n} \mid a_{\nu} \neq 0\right\}$. Let $\Gamma(f)$ be the compact polyhedron which is the union of the compact faces of $\Gamma_{+}(f)$ and we call $\Gamma(f)$ the Newton boundary of f. We also define $\Gamma_{-}(f)$ by the cone of $\Gamma(f)$ with the origin $\overrightarrow{0}$. For any face Δ of $\Gamma(f)$, we associate a weighted homogeneous polynomial $f_{\Delta}(z)=\sum_{\nu \in \Delta} a_{\nu} z^{\nu}$. We say that f is non-degenerate on Δ if $\partial f_{\Delta} / \partial z_{1}=\cdots=\partial f_{\Delta} / \partial z_{n}=0$ has no solution in $\left(\boldsymbol{C}^{*}\right)^{n}$. We say that f is non-degenerate if f is non-degenerate on any face of $\Gamma(f)$. We say that f is convenient if for $i=1, \cdots, n, \Gamma(f)^{(i)}=\left\{\left(x_{1}, \cdots, x_{n}\right)\right.$ $\in \Gamma(f) \mid x_{j}=0$ for $\left.j \neq i\right\}$ is non-empty. In other words, it means that for every $i(1 \leqq i \leqq n), f$ has some monomials $z_{i}^{m i}$ with the non-zero coefficient.

Remark. In general, a different coordinate gives a different Newton boundary. Therefore if we want to specify the coordinate, we denote the Newton boundary by $\Gamma\left(f ;\left(z_{1}, \cdots, z_{n}\right)\right)$ ([4]).
(2) The Newton number ([2], [6]). Let W be a polyhedron in \boldsymbol{R}_{+}^{n}. The Newton number $\nu(W)$ is defined by $\Sigma_{I}(-1)^{n-|I|}|I|$-dim. volume $\left(W^{I}\right)$, where the sum is taken for every subset I of $\{1, \cdots, n\}$ and $W^{I}=\left\{\left(x_{1}, \cdots, x_{n}\right) \in W \mid x_{i}=0\right.$ for $i \notin I\}$. The corresponding term for $I=\varnothing$ is $(-1)^{n}$ or 0 according to $\overrightarrow{0} \in W$ or not. Notice that by definition for $W=W_{1} \cup W_{2}, \nu(W)=\nu\left(W_{1}\right)+\nu\left(W_{2}\right)-\nu\left(W_{1} \cap W_{2}\right)$. For a complex analytic function $f\left(z_{1}, \cdots, z_{n}\right)$ with $f(\overrightarrow{0})=0$, the Newton number $\nu^{(n)}$ (or $\nu(f)$) is defined by $\nu\left(\Gamma_{-}(f)\right)$.
(3) The associated function and the reduced Newton number. Let $F(x, y, z)$ be a complex analytic function of three variables and convenient ($F(\overrightarrow{0})=0) . \quad F$ has an expansion in homogeneous polynomials of the form $F=$ $\Sigma_{i} F_{i}$, where F_{i} is the i-th degree homogeneous polynomial. We define the degree of F by $d=d(F)=\min \left\{i \mid F_{i} \neq 0\right\}$ and call F_{d} the principal part of F. For
F, we associate the function $F^{\prime}(u, v)$ of two complex variables which is defined by $F^{\prime}(u, v)=F(u, u, u v)$ and we call it the associated function with respect to z coordinate of F. By definition, we can write $F^{\prime}(u, v)=u^{d} F^{\prime \prime}(u, v)$, where $d=d(F)$ and $F^{\prime \prime}(u, v)$ is convenient. For this F^{\prime}, we define the polyhedron $\tilde{\Gamma}_{-}\left(F^{\prime}\right)$ in \boldsymbol{R}_{+}^{2} by the cone of $\Gamma_{-}\left(F^{\prime}\right)$ with the vertex $(d, 0)$. Then $\tilde{\nu}\left(F^{\prime}\right)$ is defined by $\tilde{\mathcal{L}}\left(F^{\prime}\right)=\nu\left(\tilde{\Gamma}_{-}\left(F^{\prime}\right)\right)$ and we call it the reduced Newton number.

§ 2. Examples.

(1) $\quad F(x, y, z)=x^{l}+y^{m}+z^{n}+x^{p} y^{q} z^{r}$, where $\frac{p}{l}+\frac{q}{m}+\frac{r}{n}<1$.

Then

$$
f(x, y)=F(x, y, a x+b y)=x^{l}+y^{m}+(a x+b y)^{n}+x^{p} y^{q}(a x+b y)^{r} .
$$

Thus the Newton boundary is as in Figure 2.1. It follows that the Newton number $\nu^{(2)}$ is

$$
\begin{aligned}
\nu^{(2)}=\nu(f) & =r(p+q+r)+p \cdot \min (m, n)+q \cdot \min (l, n)-\min (m, n)-\min (l, n)+1 \\
& =r d+\min (m, n) \cdot(p-1)+\min (l, n) \cdot(q-1)+1,
\end{aligned}
$$

where $d=d(F)=p+q+r$. On the other hand, the associated function

$$
F^{\prime}(u, v)=F(u, u, u v)=u^{l}+u^{m}+u^{n} v^{n}+u^{d} v^{r} .
$$

Thus the Newton boundary of F^{\prime} is as in Figure 2.2.

Figure 2.1.

Figure 2.2.

Hence

$$
\alpha^{(2)}=\mu^{(2)}-\nu^{(2)}=\tilde{\nu}\left(F^{\prime}\right)=(\min (l, m)-d) \cdot(r-1) .
$$

Consequently,

$$
\begin{aligned}
\mu^{(2)} & =r d+\min (m, n) \cdot(p-1)+\min (l, n) \cdot(q-1)+1+(\min (l, m)-d) \cdot(r-1) \\
& =\min (m, n) \cdot(p-1)+\min (l, n) \cdot(q-1)+\min (l, m) \cdot(r-1)+d+1 .
\end{aligned}
$$

(2) (See [6] example 3.3.)

$$
F(x, y, z)=x^{l}+y^{l}+z^{8}+x^{2} z^{5}+x^{3} y z^{3} \quad(l \geqq 16) .
$$

Then

$$
f(x, y)=F\left(x, y^{\prime}, a x+b y\right)=x^{l}+y^{l}+(a x+b y)^{8}+x^{2}(a x+b y)^{5}+x^{3} y(a x+b y)^{3} .
$$

Thus the Newton boundary of f is given in Figure 2.3. It follows that the Newton number $\nu^{(2)}$ is

$$
\nu^{(2)}=\nu(f)=35+16-7-8+1=37 .
$$

On the other hand, the associated function

$$
F^{\prime}(u, v)=F(u, u, u v)=2 u^{l}+u^{8} v^{8}+u^{7} v^{5}+u^{7} v^{3} .
$$

Thus the Newton boundary of F^{\prime} is as in Figure 2.4.

Figure 2.3.

Figure 2.4.

Hence

$$
\alpha^{(2)}=\mu^{(2)}-\nu^{(2)}=\tilde{\nu}\left(F^{\prime}\right)=2(l-7) .
$$

Consequently,

$$
\mu^{(2)}=37+2(l-7)=2 l+23 .
$$

$$
\begin{align*}
F(x, y, z)= & x^{l}+y^{l}+z^{l}+x^{5} y^{5} z^{5}+(x y z)^{3}\left(x^{7}+y^{7}+z^{7}\right) \tag{3}\\
& +(x y z)^{2}\left(x^{11}+y^{11}+z^{11}\right) \quad(l \geqq 19) .
\end{align*}
$$

The Newton boundary of F is given in Figure 2.5. On the other hand, the associated function

$$
F^{\prime}(u, v)=F(u, u, u v)=2 u^{l}+u^{l} v^{l}+u^{15} v^{5}+u^{16} v^{3}\left(2+v^{7}\right)+u^{17} v^{2}\left(2+v^{11}\right) .
$$

Thus the Newton boundary of F^{\prime} is as in Figure 2.6.

Figure 2.5.

Figure 2.6.

Hence

$$
\alpha^{(2)}=\mu^{(2)}-\nu^{(2)}=\tilde{\nu}\left(F^{\prime}\right)=5+4+2(l-15)-(l-15)=l-6 .
$$

This example shows that the degeneracy index $\alpha^{(2)}$ depends also on the outside faces.

§ 3. Proof of Theorem A.

Let $F(x, y, z)$ be an analytic function on an open neighbourhood of the origin in \boldsymbol{C}^{3} with $F(\overrightarrow{0})=0$. Assume that F has an isolated critical point at the origin and that F is non-degenerate and convenient. $V=F^{-1}(0)$. Let $L=$ $\{z=a x+b y\}$ be a generic hyperplane and let $V^{\prime}=V \cap L=f^{-1}(0)$, where $f(x, y)$ $=F(x, y, a x+b y)$. Let

$$
\begin{aligned}
& \pi: \tilde{V}^{\prime} \longrightarrow V^{\prime} \\
& \tilde{\pi}: \tilde{\boldsymbol{C}}^{2} \longrightarrow \cap^{2}
\end{aligned}
$$

be the good minimal resolution of $V^{\prime}, ~ \tilde{\pi}^{-1}(\overrightarrow{0})=D_{1} \cup \cdots \cup D_{r}$ is the irreducible decomposition of the exceptional divisors $\tilde{\pi}^{-1}(\overrightarrow{0})$. Let m_{i} be the multiplicity of D_{i} in the divisor $\tilde{\pi}^{-1}(\overrightarrow{0})$. Then we use the following lemma.

Lemma 3.1 ([1]). The Euler characteristic χ of the Milnor fiber determined by f is given by

$$
\begin{equation*}
\chi=\sum_{i=1}^{r} m_{i}\left(2-r_{i}\right), \tag{3.2}
\end{equation*}
$$

where r_{i} is the number of the curves which meet the divisor D_{i}.

Furthermore, since the second Betti number of two dimensional connected non-compact manifold is zero, $\chi=1-\mu$ by the Euler-Poincaré formula. Therefore combining this with (3.2), we get

$$
\begin{equation*}
\mu=1+\sum_{i=1}^{r} m_{i}\left(r_{i}-2\right) . \tag{3.3}
\end{equation*}
$$

By this formula, the Milnor number can be calculated via the resolution graph. We define the Milnor number μ_{i} which is determined by the Euler characteristic of each irreducible component of the exceptional divisors by

$$
\begin{equation*}
\mu_{i}=m_{i}\left(r_{i}-2\right) \tag{3.4}
\end{equation*}
$$

Then by (3.3), we have

$$
\begin{equation*}
\mu=1+\sum_{i=1}^{r} \mu_{i} \tag{3.5}
\end{equation*}
$$

Now we consider the Newton boundary of f. The monomial $x^{p} y^{q} z^{r}$ of F transforms into $x^{p} y^{q}(a x+b y)^{r}$ by $z=a x+b y$ and represents the lattice points on the segment connecting two points $(p+r, q),(p, q+r)$ in $\Gamma_{+}(f)$. Let $\Delta_{i}(0 \leqq i \leqq k)$ be the faces of $\Gamma(f)$ and let Δ_{0} be the face corresponding to the weight $P_{0}=$ $\binom{1}{1}$. In general, f is not necessarily non-degenerate on Δ_{0} (for example, $F_{d}=$ $x^{p} y^{q} z^{r}(r \geqq 2)$). However on the other faces $\Delta_{i}(1 \leqq i \leqq k) f$ is non-degenerate.

Lemma 3.6. f is non-degenerate on $\Delta_{i}(1 \leqq i \leqq k)$.
Proof. We will show that for any face $\Delta_{i}(1 \leqq i \leqq k)$, the equation

$$
\begin{equation*}
\frac{\partial f_{\Lambda_{i}}}{\partial x}=\frac{\partial f_{\Lambda_{i}}}{\partial y}=0 \tag{3.7}
\end{equation*}
$$

has no solution in $\left(\boldsymbol{C}^{*}\right)^{2}$. We denote the dual vector (the weight vector) of Δ_{i} of $\Gamma(f)$ by $P_{i}=\binom{\alpha}{\beta}$, where we assume $\alpha>\beta$. Let $\tilde{\Delta}_{i}$ be the face of $\Gamma(F)$ corresponding to the dual vector $\tilde{P}_{i}=\left(\begin{array}{l}\boldsymbol{\alpha} \\ \boldsymbol{\beta} \\ \boldsymbol{\beta}\end{array}\right)$. Notice that $f_{\Lambda_{i}}(x, y)=F_{\tilde{\Lambda}_{i}}(x, y, b y)$. (3.7) implies that

$$
\begin{align*}
& \frac{\partial f_{\Lambda_{i}}}{\partial x}=\frac{\partial F_{\tilde{\Lambda}_{i}}}{\partial x}=0, \tag{3.8}\\
& \frac{\partial f_{\Lambda_{i}}}{\partial y}=\frac{\partial F_{\tilde{\Lambda}_{i}}}{\partial y}+b \frac{\partial F_{\tilde{\Delta}_{i}}}{\partial z}=0 . \tag{3.9}
\end{align*}
$$

Since $f_{\Delta_{i}}$ is weighted homogeneous with the weight P_{i}, the Euler equation of $f_{\Delta_{i}}$ says that $c \cdot f_{A_{i}}=\alpha x\left(\partial f_{\Delta_{i}} / \partial x\right)+\beta y\left(\partial f_{A_{i}} / \partial y\right)$, where c is a positive constant. By (3.7), $f_{\Lambda_{i}}(x, y)=0$. Thus

$$
\begin{equation*}
F_{\tilde{\Delta}_{i}}(x, y, b y)=0 . \tag{3.10}
\end{equation*}
$$

Suppose that for any b, the system of equations (3.8), (3.9), (3.10) has a solution in $\left(\boldsymbol{C}^{*}\right)^{3}$. Then by Curve Selection Lemma ([3]), we can find a real analytic curve $p(t)=(x(t), y(t), b(t) y(t))(0 \leqq t \leqq \varepsilon)$ such that

$$
\begin{equation*}
F_{\tilde{\beth}_{i}}(p(t))=F_{\tilde{y}_{i}}(x(t), y(t), b(t) y(t)) \equiv 0 \quad \text { and } \quad \frac{d b}{d t} \not \equiv 0 . \tag{3.11}
\end{equation*}
$$

Differentiating (3.11) in t, we get

$$
\frac{\partial F_{\tilde{\mathcal{A}}_{i}}}{\partial t}=\frac{\partial F_{\tilde{a}_{i}}}{\partial x} \frac{d x}{d t}+\frac{\partial F_{\tilde{\Lambda}_{i}}}{\partial y} \frac{d y}{d t}+\frac{\partial F_{\tilde{\Lambda}_{i}}}{\partial z}\left(\frac{d b}{d t} y(t)+b(t) \frac{d y}{d t}\right) \equiv 0 .
$$

By (3.8) and (3.9), this implies that $\left(\partial F_{\tilde{\boldsymbol{u}}_{i}} / \partial z\right)(d b / d t) y(t) \equiv 0$. Since $d b / d t \not \equiv 0$, we get $\partial F_{\tilde{d}_{i}} / \partial z=0$ for some $t_{0} \in[0, \varepsilon]$. By (3.9), the last equality implies that $\partial F_{\tilde{\Lambda}_{i}} / \partial y=0$. Therefore on the curve $p(t) \in\left(\boldsymbol{C}^{*}\right)^{3}$, we have $\partial F_{\tilde{\Lambda}_{i}} / \partial x=\partial{\tilde{\tilde{u}_{i}}}_{i} / \partial y=$ $\partial F_{\tilde{y}_{i}} / \partial z=0$. However this contradicts the assumption that F is non-degenerate. It follows that for some b the system of equations (3.8), (3.9), (3.10) has no solution in $\left(\boldsymbol{C}^{*}\right)^{3}$. Therefore (3.7) has no solutions in $\left(\boldsymbol{C}^{*}\right)^{2}$ either. In the case of $\alpha<\beta$, the proof can be done similarly.
Q.E.D.

We consider a toroidal blowing-up $\hat{\pi}: \widetilde{\boldsymbol{C}}^{2} \rightarrow \boldsymbol{C}^{2}$ which is associated with the dual Newton diagram of f. (We use the same terminology of M. Oka [5] unless otherwise stated.) It is obvious by Lemma 3.6 that $\hat{\pi}^{-1}(0)$ has only normal crossing singularities except on the divisor $\hat{E}\left(P_{0}\right)$ where $P_{0}=\binom{1}{1}$. Therefore by Lemma 3.1, the non-degenerate face of $\Gamma(f)$ does not contribute to the degeneracy index and in order to calculate $\alpha^{(2)}$ it suffices to calculate the contribution of Δ_{0}, on which f is degenerate, to $\mu^{(2)}$ and $\nu^{(2)}$. We denote these contributions by μ_{0} and ν_{0} respectively. To carry out calculation, we distinguish two cases.

Case 1) $\Delta_{0} \cap\{$ the x-axis $\}=\varnothing$ and $\Delta_{0} \cap\{$ the y-axis $\}=\varnothing$. Assume that the principal part of F_{d} of F has the form

$$
\begin{equation*}
F_{d}=a_{\nu_{1}} x^{p_{1}} y^{q_{1}} z^{r_{1}}+\cdots+a_{\nu_{t}} x^{p_{t}} y^{q} z^{q_{t}}, \quad p_{j}+q_{j}+r_{j}=d \quad(1 \leqq j \leqq t) . \tag{3.12}
\end{equation*}
$$

Define $p_{\min }=\min \left\{p_{j}\right\}, q_{\min }=\min \left\{q_{j}\right\}$ and $r_{\min }=\min \left\{r_{j}\right\}$. Then the face Δ_{0} of $\Gamma(f)$ is given in Figure 3.13. From this

$$
\nu_{0}=\operatorname{det}\left(\begin{array}{lr}
d-q_{\min } & p_{\min } \tag{3.14}\\
q_{\min } & d-p_{\min }
\end{array}\right)=d\left(d-p_{\min }-q_{\min }\right) .
$$

Next we will study the divisor $\hat{\pi}^{-1}(0)$ on $\hat{E}\left(P_{0}\right)$. By (3.12), the dual vector of Δ_{0} is $P_{0}=\binom{1}{1}$. Let Q be the vertex of Σ^{*} which is adjacent to P_{0} as in Figure 3.15.

Figure 3.13.

Figure 3.15.
By the assumption, P_{0} is not adjacent to $\binom{0}{1}$ or $\binom{1}{0}$. Let $Q=\binom{\alpha-1}{\alpha}$ and let $\left(y_{1}, y_{2}\right)$ be the coordinate of the affine space $\boldsymbol{C}_{\sigma}^{2}$ where $\sigma=\left(P_{0}, Q\right)$. Then (x, y) can be written as follows in the local coordinate (y_{1}, y_{2})

$$
\left\{\begin{array}{l}
x=y_{1} y_{2}^{\alpha-1} \tag{3.16}\\
y=y_{1} y_{2}^{\alpha} .
\end{array}\right.
$$

On the other hand,

$$
\begin{aligned}
f_{\Lambda_{0}}(x, y) & =F_{d}(x, y, a x+b y) \\
& =a_{\nu_{1}} x^{p_{1}} y^{q_{1}}(a x+b y)^{r_{1}}+\cdots+a_{\nu_{t}} x^{p_{t}} y^{q_{t}}(a x+b y)^{r_{t}} .
\end{aligned}
$$

We want to write $f_{A_{0}}$ in the coordinate $\left(y_{1}, y_{2}\right)$. Define $M_{j}=a_{\nu_{j}} x^{p_{j}} y^{q_{j}}(a x+b y)^{r_{j}}$ $(1 \leqq j \leqq t)$. By (3.16), in the local coordinate (y_{1}, y_{2})

$$
\begin{align*}
M_{j} & =a_{\nu j} y_{1}^{d} y_{2}{ }^{p_{j}(\alpha-1)+q_{j} \alpha+r_{j}(\alpha-1)}\left(a+b y_{2}\right)^{r_{j}} \tag{3.17}\\
& =a_{\nu j} y_{1}^{d} y_{2}^{d(\alpha-1)+q_{j}}\left(a+b y_{2}\right)^{r_{j}} \quad(\text { by } 3.12) . \tag{3.18}
\end{align*}
$$

Since $q_{\min } \leqq q_{j}$ and $r_{\min } \leqq r_{j}$, we can write

$$
f_{A_{0}}(\hat{\pi}(y))=\sum_{j=1}^{t} M_{j}(\hat{\pi}(y))=y_{1}^{d} y_{2}^{d(\alpha-1)+q_{\min }\left(a+b y_{2}\right)^{r_{\min }} g\left(y_{2}\right), ~, ~, ~}
$$

where $g\left(y_{2}\right)$ is the polynomial with $g(0) \neq 0$. Now we will calculate the degree of $g\left(y_{2}\right)$. By (3.18), the degree of M_{j} in y_{2} is equal to $d(\alpha-1)+q_{j}+r_{j}=d \alpha-p_{j}$ (by 3.12). Since $p_{\min } \leqq p_{j}$, the degree of $g\left(y_{2}\right)$ is equal to $d \alpha-p_{\min }-(d(\alpha-1)$ $\left.+q_{\min }+r_{\min }\right)=d-p_{\min }-q_{\min }-r_{\min }$. Since a and b are generic, we may assume that $g\left(y_{2}\right)=0$ has only simple roots. Then in the local coordinate $\left(y_{1}, y_{2}\right)$, we can write

$$
\begin{equation*}
f_{\Delta_{0}}=y_{1}^{d} y_{2}^{d(\alpha-1)+q_{\min }\left(a+b y_{2}\right)^{r_{\min }} \prod_{j=1}^{d-p_{\min }-q_{\min }-r_{\min }}\left(y_{2}+\xi_{j}\right)} \tag{3.19}
\end{equation*}
$$

Consequently the graph of $\hat{\pi}^{-1}(0)$ is given in Figure (3.20).

Figure 3.20.
However, since this still has a singularity at $y_{1}=0, a+b y_{2}=0$, we need to resolve it. Put $a+b y_{2}=b \tilde{y}_{2},-a / b=a^{\prime}$, then $y_{2}=\tilde{y}_{2}+a^{\prime}$. Therefore in the local coordinate (y_{1}, \tilde{y}_{2}),

$$
\begin{aligned}
f(x, y) & =F(x, y, a x+b y) \\
& =F\left(y_{1} y_{2}^{\alpha-1}, y_{1} y_{2}^{\alpha}, y_{1} y_{2}^{\alpha-1}\left(a+b y_{2}\right)\right) \\
& =F\left(y_{1}\left(\tilde{y}_{2}+a^{\prime}\right)^{\alpha-1}, y_{1}\left(\tilde{y}_{2}+a^{\prime}\right)^{\alpha}, y_{1}\left(\tilde{y}_{2}+a^{\prime}\right)^{\alpha-1} \tilde{y}_{2}\right) .
\end{aligned} \text { by (3.16) }
$$

Now consider the monomial $h(x, y, z)=a_{s} x^{p} y^{q} z^{r}(p+q+r=s)$ of F.

$$
h\left(y_{1}\left(\tilde{y}_{2}+a^{\prime}\right)^{\alpha-1}, y_{1}\left(\tilde{y}_{2}+a^{\prime}\right)^{\alpha}, y_{1}\left(\tilde{y}_{2}+a^{\prime}\right)^{\alpha-1} \tilde{y}_{2}\right)=a_{s} y_{1}^{s} \tilde{y}_{2}^{r}\left(\tilde{y}_{2}+a^{\prime}\right)^{d(\tilde{P})},
$$

where $d(\tilde{P})=p(\alpha-1)+q \alpha+r(\alpha-1)$. Since this polynomial becomes $d(\tilde{P})+1$ vertices $(s, r),(s, r+1), \cdots,(s, r+d(\tilde{P}))$ in $\Gamma_{+}\left(h ;\left(y_{1}, \tilde{y}_{2}\right)\right)$, the vertices other than (s, r) do not influence the Newton boundary of h. Then

$$
\begin{gathered}
\Gamma\left(h\left(y_{1}\left(\tilde{y}_{2}+a^{\prime}\right)^{\alpha-1}, y_{1}\left(\tilde{y}_{2}+a^{\prime}\right)^{\alpha}, y_{1}\left(\tilde{y}_{2}+a^{\prime}\right)^{\alpha-1} \tilde{y}_{2}\right) ;\left(y_{1}, \tilde{y}_{2}\right)\right) \\
=\Gamma\left(h\left(a^{\prime \alpha-1} y_{1}, a^{\prime \alpha} y_{1}, a^{\alpha-1} y_{1} \tilde{y}_{2}\right) ;\left(y_{1}, \tilde{y}_{2}\right)\right) .
\end{gathered}
$$

Therefore

$$
\begin{align*}
\Gamma\left(f ;\left(y_{1}, \tilde{y}_{2}\right)\right) & =\Gamma\left(F\left(y_{1}\left(\tilde{y}_{2}+a^{\prime}\right)^{\alpha-1}, y_{1}\left(\tilde{y}_{2}+a^{\prime}\right)^{\alpha}, y_{1}\left(\tilde{y}_{2}+a^{\prime}\right)^{\alpha-1} \tilde{y}_{2}\right) ;\left(y_{1}, \tilde{y}_{2}\right)\right) \\
& =\Gamma\left(F\left(a^{\prime \alpha-1} y_{1}, a^{\prime \alpha} y_{1}, a^{\prime \alpha-1} y_{1} \tilde{y}_{2}\right) ;\left(y_{1}, \tilde{y}_{2}\right)\right) . \tag{3.21}
\end{align*}
$$

Since the coordinate change (linear transformation) $(x, y, z) \mapsto\left(a^{\prime \alpha-1} x, a^{\prime \alpha} y, a^{\alpha-1} z\right)$ in \boldsymbol{C}^{3} does not change the Newton boundary, by (3.21)

$$
\begin{equation*}
\Gamma\left(f ;\left(y_{1}, \tilde{y}_{2}\right)\right)=\Gamma\left(F\left(y_{1}, y_{1}, y_{1} \tilde{y}_{2}\right) ;\left(y_{1}, \tilde{y}_{2}\right)\right) . \tag{3.22}
\end{equation*}
$$

Consider the associated function of $F(\S 1) F^{\prime}(u, v)=F(u, u, u v)$. Then by (3.22), $\Gamma\left(f ;\left(y_{1}, \tilde{y}_{2}\right)\right)=\Gamma\left(F^{\prime}(u, v) ;(u, v)\right)$. By definition, we can write $F^{\prime}(u, v)$ $=u^{d} F^{\prime \prime}(u, v)$ where $d=d(F)$ and $F^{\prime \prime}$ is convenient. Moreover the principal part F_{d} can be written $F_{d}(u, u, u v)=u^{d} v^{r_{\min }} k(v)$ where $k(v)$ is the polynomial with $k(0) \neq 0$. Therefore $\Gamma\left(f ;\left(y_{1}, \tilde{y}_{2}\right)\right)$ is as in Figure (3.23).

Figure 3.23.
Lemma 3.24. $f\left(y_{1}, \tilde{y}_{2}\right)$ is non-degenerate.
Proof. By (3.21) it suffices to show that $f_{P}\left(y_{1}, \tilde{y}_{2}\right):=F\left(c^{\alpha-1} y_{1}, c^{\alpha} y_{1}, c^{\alpha-1} y_{1} \tilde{y}_{2}\right)$ is non-degenerate. (We denote a^{\prime} by c.) In other words, we will show that for any face $\bar{\Delta}$ of $\Gamma\left(f_{P} ;\left(y_{1}, \tilde{y}_{2}\right)\right)$,

$$
\begin{equation*}
\frac{\partial f_{P, \bar{U}}}{\partial y_{1}}=\frac{\partial f_{P, \bar{U}}}{\partial \tilde{y}_{2}}=0 \tag{3.25}
\end{equation*}
$$

has no solution in $\left(\boldsymbol{C}^{*}\right)^{2}$. We denote the dual vector of $\bar{\Delta}$ by $\binom{\boldsymbol{\sigma}}{\tau}$, where we assume $\sigma<\tau$. Let $\tilde{\Delta}$ be the face of $\Gamma(F)$ corresponding to the dual vector $\left(\begin{array}{l}\boldsymbol{\sigma} \\ \tau \\ \boldsymbol{\sigma}\end{array}\right)$. Then (3.25) implies that

$$
\frac{\partial f_{P, \bar{U}}}{\partial y_{1}}=c^{\alpha-1} \frac{\partial F_{\tilde{A}}}{\partial x}+c^{\alpha} \frac{\partial F_{\tilde{A}}}{\partial y}+c^{\alpha-1} \tilde{y}_{2} \frac{\partial F_{\tilde{A}}}{\partial z}=0, \quad \frac{\partial f_{P, \tilde{I}}}{\partial \tilde{y}_{2}}=c^{\alpha-1} y_{1} \frac{\partial F_{\tilde{\mathcal{A}}}}{\partial z}=0 .
$$

We may assume $c \neq 0$. Thus we get on $\left(C^{*}\right)^{3}$

$$
\begin{gather*}
\frac{\partial F_{\tilde{\sim}}}{\partial x}+c \frac{\partial F_{\tilde{\sim}}}{\partial y}=0, \tag{3.26}\\
\frac{\partial F_{\tilde{\sim}}}{\partial z}=0 . \tag{3.27}
\end{gather*}
$$

As in the proof of Lemma 3.6,

$$
\begin{equation*}
F_{\tilde{\partial}}\left(c^{\alpha-1} y_{1}, c^{\alpha} y_{1}, c^{\alpha-1} y_{1} \tilde{y}_{2}\right)=10 . \tag{3.28}
\end{equation*}
$$

Suppose that for any c the system of equations (3.26), (3.27), (3.28) has a solution in $\left(\boldsymbol{C}^{*}\right)^{3}$. Then by the Curve Selection Lemma ([3]) we can find a real analytic curve $p(t)=\left(c(t)^{\alpha-1} y_{1}(t), c(t)^{\alpha} y_{1}(t), c(t)^{\alpha-1} y_{1}(t) \tilde{y}_{2}(t)\right)(0 \leqq t \leqq \varepsilon)$ such that

$$
\begin{equation*}
F_{\tilde{y}}(p(t))=F_{\tilde{X}}\left(c(t)^{\alpha-1} y_{1}(t), c(t)^{\alpha} y_{1}(t), c(t)^{\alpha-1} y_{1}(t) \tilde{y}_{2}(t)\right) \equiv 0 \tag{3.29}
\end{equation*}
$$

and $d c / d t \not \equiv 0$. Differentiating (3.29) in t, we get

$$
\begin{aligned}
\frac{\partial F_{\tilde{u}}}{\partial t}= & \frac{\partial F_{\tilde{d}}}{\partial x}\left(c(t)^{\alpha-1} \frac{d y_{1}}{d t}+(\alpha-1) c(t)^{\alpha-2} y_{1}(t) \frac{d c}{d t}\right) \\
& +\frac{\partial F_{\tilde{\tilde{d}}}}{\partial y}\left(c(t)^{\alpha} \frac{d y_{1}}{d t}+\alpha c(t)^{\alpha-1} y_{1}(t) \frac{d c}{d t}\right)+\frac{\partial F_{\tilde{u}}}{\partial z} \frac{d}{d t}\left(c(t)^{\alpha-1} y_{1}(t) \tilde{y}_{2}(t)\right) \equiv 0 .
\end{aligned}
$$

Using (3.27), we rewrite this as follows:

$$
c^{\alpha-1} \frac{d y_{1}}{d t}\left(\frac{\partial F_{\tilde{A}}}{\partial x}+c \frac{\partial F_{\tilde{A}}}{\partial y}\right)+\alpha c^{\alpha-1} y_{1} \frac{d c}{d t}\left(\frac{\partial F_{\tilde{A}}}{\partial x}+c \frac{\partial F_{\tilde{A}}}{\partial y}\right)-c^{\alpha-2} y_{1} \frac{\partial F_{\tilde{J}}}{\partial x} \frac{d c}{d t} \equiv 0 .
$$

By (3.26), we obtain $c(t)^{\alpha-2} y_{1}(t)\left(\partial F_{\tilde{\mu}} / \partial x\right)(d c / d t) \equiv 0$. Since $c(t)^{\alpha-2} y_{1}(t) d c / d t \equiv 0$, for some $t_{0} \in[0, \varepsilon]$, we get $\partial F_{\tilde{\jmath}} / \partial x=0$. By (3.26), we have $\partial F \tilde{y} / \partial y=0$. Therefore on the curve $p(t) \in\left(C^{*}\right)^{3}$, we obtain $\partial F_{\tilde{\jmath}} / \partial x=\partial F_{\tilde{\jmath}} / \partial y=\partial F_{\tilde{\jmath}} / \partial z=0$. However this contradicts the assumption that F is non-degenerate. It follows that for some c the system of equations (3.26), (3.27), (3.28) has no solution in $\left(\boldsymbol{C}^{*}\right)^{3}$. Therefore (3.25) has no solutions in $\left(\boldsymbol{C}^{*}\right)^{2}$, either.
Q.E.D.

Using again the troidal blowing-up for $f\left(y_{1}, \tilde{y}_{2}\right)$, we can see that the resolution graph is given in Figure 3.30. By Lemma 3.24, the Milnor number of the divisors $\hat{E}\left(P_{0}\right)$ is the Newton number of $\Gamma\left(F^{\prime}\right)$, that is $\nu\left(F^{\prime}\right)$. By (3.4), we get $\mu_{0}=\nu\left(F^{\prime}\right)+d\left(d-p_{\min }-q_{\text {min }}-r_{\text {min }}+1\right)$. Then

$$
\begin{aligned}
\alpha^{(2)} & =\mu^{(2)}-\nu^{(2)}=\mu_{0}-\nu_{0} \\
& =\nu\left(F^{\prime}\right)+d\left(d-p_{\min }-q_{\min }-r_{\min }+1\right)-d\left(d-p_{\min }-q_{\min }\right) \\
& =\nu\left(F^{\prime}\right)-\left(d r_{\min }-d\right)=\nu\left(F^{\prime}\right)-\nu(W)=\tilde{\nu}\left(F^{\prime}\right) .
\end{aligned}
$$

Figure 3.30 .
Here the polyhedron $W=\left\{(u, v) \in \boldsymbol{R}_{+}^{2} \mid r_{\min } u \geqq d v, 0 \leqq u \leqq d, v \geqq 0\right\}$ (see Figure 3.31) and $\nu\left(W \cap \tilde{\Gamma}_{-}\left(F^{\prime}\right)\right)=0$. We complete the proof of Case 1).

Case 2) $\Delta_{0} \cap\{$ the x-axis $\} \neq \varnothing$ or $\Delta_{0} \cap\{$ the y-axis $\} \neq \varnothing$. We may assume that $\Delta_{0} \cap\{$ the x-axis $\} \neq \varnothing$ and $\Delta_{0} \cap\{$ the y-axis $\}=\varnothing$. The other cases can be proved similarly. The face Δ_{0} of $\Gamma(f)$ is given in Figure 3.32.

Figure 3.31 .

Figure 3.32.

From this

$$
\nu_{0}=\operatorname{det}\left(\begin{array}{cc}
d & p_{\min } \tag{3.33}\\
0 & d-p_{\min }
\end{array}\right)-d=d\left(d-p_{\min }\right)-d .
$$

The dual Newton diagram $\Gamma^{*}(f)$ of $\Gamma(f)$ is as in Figure (3.34). Recall that the
dual vector of Δ_{0} is $P_{0}=\binom{1}{1}$.

Figure 334.
By the assumption P_{0} is adjacent to $\binom{0}{1}$, but not to $\binom{1}{0}$. Notice that $q_{\text {min }}=0$, as in the case 1) (see Figure 3.30) we draw the resolution graph as in Figure 3.35.

Figure 3.35 .
Since P_{0} is adjacent to $\binom{0}{1}$, the exceptional divisor D corresponding to $\binom{0}{1}$ contributes to μ_{0}. Therefore as in the case 1), by (3.4)

$$
\mu_{0}=\nu\left(F^{\prime}\right)+d\left(d-p_{\min }-r_{\min }+1\right)-d
$$

Since $\Gamma\left(f ;\left(y_{1}, \tilde{y}_{2}\right)\right)$ is the same as that of the case 1) (see Figure 3.23), by (3.33)

$$
\begin{aligned}
\alpha^{(2)}=\mu_{0}-\nu_{0} & =\nu\left(F^{\prime}\right)+d\left(d-p_{\min }-r_{\min }+1\right)-d-\left(d\left(d-p_{\min }\right)-d\right) \\
& =\nu\left(F^{\prime}\right)-\left(d r_{\min }-d\right)=\tilde{\nu}\left(F^{\prime}\right) . \quad \text { Q.E.D. }
\end{aligned}
$$

Corollary 3.36. Suppose that $F(x, y, z)$ is a complex analytic function with an isolated critical point at the origin $\overrightarrow{0} \in \boldsymbol{C}^{3}$ and that F is non-degenerate and
convenient. Then $\mu^{(2)}=\nu^{(2)}$ if and only if the principal part F_{d} of F is the polynomial whose degree in z is equal or less than one (where the 0-th degree polynomial in z means that it is independent of z).

Proof. We first show sufficiency. We consider two cases.

1) F_{d} is the 1 -st degree polynomial in z.
2) F_{d} is the 0-th degree polynomial in z.

Case 1) Since we can write $F(x, y, z)=a x^{\alpha} y^{\beta} z+[$ degree $\geqq \alpha+\beta+1] . F^{\prime}(u, v)$ $=F(u, u, u v)=a u^{\alpha+\beta+1} v+[$ higher terms $]$. The Newton boundary of F^{\prime} is given in Figure 3.37. Then $\alpha^{(2)}=\mu^{(2)}-\nu^{(2)}=\tilde{\nu}\left(F^{\prime}\right)=(m-(\alpha+\beta+1)) \cdot 1-(m-(\alpha+\beta+1))$ $=0$.

Case 2) We can write $F(x, y, z)=b x^{d}+[$ degree $\geqq d]$ or $b y^{d}+[$ degree $\geqq d]$. Then $F^{\prime}(u, v)=b u^{d}+[$ higher terms $]$. By definition, $\alpha^{(2)}=0$.

Next we show necessity. Assume that the Newton boundary of F^{\prime} is given in Figure 3.38.

Figure 3.37

Figure 3.38.

Take the cone of each face $\Delta_{i}^{\prime}(1 \leqq i \leqq k)$ with the vertex ($d, 0$). We denote its Newton number by ν_{i}^{\prime} respectively. By the definition of the Newton number

$$
\begin{equation*}
\nu_{i}^{\prime}>0 \quad(1 \leqq i \leqq k-1), \quad \nu_{k}^{\prime}=\left(v_{k}-1\right)\left(u_{k+1}-d\right) \geqq 0 \tag{3.39}
\end{equation*}
$$

On the other hand, $\alpha^{(2)}=\tilde{\nu}\left(F^{\prime}\right)=\nu_{1}^{\prime}+\cdots+\nu_{k}^{\prime}$. Suppose that $\alpha^{(2)}=0$, then it follows that $\Gamma\left(F^{\prime}\right)$ cannot have the faces $\Delta_{1}^{\prime}, \cdots, \Delta_{k-1}^{\prime}$ by (3.39) and that $\nu_{k}^{\prime}=$ $\left(v_{k}-1\right)\left(u_{k+1}-d\right)=0$. Therefore we get $v_{k}=1$ or $u_{k+1}=d$, which correspond to Case 1) and Case 2) respectively.
Q.E.D.

So far we have fixed the generic hyperplane $z=a x+b y$. However if the principal part F_{d} has the variable whose degree is equal or less than one, say x, then we are well to think of $x=b y+c z$ as the generic hyperplane. In this case, since by Lemma 3.36 the degeneracy index is equal to zero, we can calculate $\mu^{(2)}$ directly via the Newton boundary (of $F(b y+c z, y, z)$).

Remark. (1) Recall that the resolution graph of V^{\prime} is as in Figure 3.30. There we took $z=a x+b y$ as the generic hyperplane. The resolution graph remains the same as Figure 3.30, however, in fact, even if we take $x=b y+c z$

Figure 3.40 .

$$
\begin{aligned}
& \text { where }\left(l_{x}, 0,0\right)=\Gamma(F) \cap\{y=z=0\} \\
& \left(0, l_{y}, 0\right)=\Gamma(F) \cap\{x=z=0\}, \quad\left(0,0, l_{z}\right)=\Gamma(F) \cap\{x=y=0\}
\end{aligned}
$$

Figure 3.41.
or $y=a x+c z$ as the generic hyperplane. Recall the resolution of V^{\prime}. Even often we perform the toroidal blowing-up from $\Gamma(f)$, the singularity still remains because $\Gamma(f)$ has the degenerate face. And again we perform the toroidal blowing-up. Then we obtain the resolution graph of Figure 3.30.
(2) We simplify Figure 3.30 and denote the exceptional divisors by D_{x}, D_{y}, D_{z} as Figure 3.40. Then the troidal resolutions are as Figure 3.41 according as we take $x=b y+c z, y=a x+c z$ or $z=a x+b y$ as the generic hyperplane respectively.

References

[1] E. Brieskorn and H. Knörror, Plane algebraic curves, Birkhäuser, (English edition), 1986, pp. 559-569.
[2] A.G. Kouchnirenko, Polydres de Newton et nombres de Milnor, Invent. Math., 32 (1976), 1-31.
[3] J. Milnor, Singular points of complex hypersurfaces, Ann. of Math., Studies, 61 (1968).
[4] M. Oka, On the stability of the Newton boundary, Proc. Sympos. Pure Math., 40 (1983), 259-268.
[5] M. Oka, On the resolution of the hypersurface singularities, Complex analytic singularities, Adv. Stud. Pure Math., 8 (1986), 405-436.
[6] M. Oka, On the weak simultaneous resolution of a negligible truncation of the Newton boundary, to appear in the Proc. IOWA singularity Conference, 1986.
[7] B. Teissier, Cycles évanescents, sections planes et conditions de Whitney, Astérisque, 7-8 (1972), 285-362.

Shintaro Mima
Investment Technology and Research Division The Nikko Securities Co., Ltd.
3-1, Marunouchi 3-chome
Chiyoda-ku, Tokyo 100
Japan

