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1. Introduction.

The purpose of this paper is to investigate some fundamental properties for
an occupation time of a measure-valued branching diffusion process $X(t)$ . The
process $X(t)$ arises as a high density limit of a critical branching Brownian
motion on $R^{d}$ (see Dawson [1] and Watanabe [7]), hence $X(t)$ may be considered
as a model describing an evolution of population with spatial migration.

One of the most important problems is concerned with the limiting distri-
bution of the process $X(t)$ as $tarrow\infty$ . It is well-known that if the initial state
$X(O)$ is a finite measure, then the total mass process of $X(t)$ is equivalent to a
one-dimensional continuous state critical branching process and hence extinction
occurs almost surely. But if $X(O)$ has an infinite total mass, then interesting
phenomena arise. Namely, assuming that $X(O)$ is the Lebesgue measure on $R^{d}$ ,

Dawson [1] proved the following:
(i) If $d\leqq 2$ , then $X(t)$ converges vaguely to the zero measure as $tarrow\infty$ in

probability.
(ii) If $d\geqq 3$ , then the distribution of $X(t)$ converges weakly to a non-trivial

stationary distribution as $tarrow\infty$ .
Furthermore, under the same initial condition, Iscoe [3] obtained the following

limit theorems for the occupation time process $Y(t)= \int_{0}^{t}X(s)ds$ .
(iii) If $d=1$ , then $P( \lim_{tarrow\infty}Y(t, K)<\infty)=1$ for every compact set $K$.
(iv) If $d=2$ , then $P( \lim_{tarrow\infty}Y(t, G)=\infty)=1$ for every non-empty open set $G$ .
(v) If $d\geqq 3$ , then $P( \lim_{tarrow\infty}Y(t)/t=\lambda(vaguely))=1$ , where $\lambda$ denotes the

Lebesgue measure on $R^{d}$ .
However, since the above results (iii) and (iv) seem rather crude, we would

like to investigate more detailed properties for the occupation time process $Y(t)$ .
It is well known that the Brownian local time is often used to characterize

the limiting process concerning an occupation time of a one-dimensional Brownian
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motion (cf. [2], p. 137). For the measure-valued branching diffusion process
$X(t)$ , if $Y(t)$ has a density with respect to the Lebesgue measure, the density
process $Y(t, x)$ would play a role of the Brownian local time, therefore, the
limiting process for a suitably rescaled process of $Y(i)$ could be characterized
by means of $Y(t, x)$ . Indeed, it will be justified in the case $d\leqq 3$ .

The main purpose of this paper is to show the existence of a density
process $Y(t, x)$ for the occupation time process $Y(t)$ , to investigate some smooth-
ness properties of $Y(t, x)$ , and to prove two limit theorems for rescaled processes
of $Y(t)$ . In Section 2 the results will be summarized, and the following sections
3 to 6 will be devoted to the proofs. The first four theorems are concerned
with the existence of the density process and its smoothness. The last two
theorems are concerned with scaling limit theorems for $Y(t)$ . Theorem 1 states
that $X(t, dx)$ has a jointly continuous density $X(t, x)$ with respect to the Lebesgue
measure, which was proved in [5]. In Theorem 2 we show that the occupation
time process $Y(t, dx)$ has a jointly continuous density $Y(t, x)$ with respect to
the Lebesgue measure when $d\leqq 3$ , for which we need a smoothness condition
for the initial state in the case $d=2$ or 3. Theorem 2 will be proved in Section 3.
Theorem 3 states that $Y(t, x)$ is lower semi-continuous in general when $d=2$ or
3, which will be proved in Section 4. Furthermore, we can discuss the differ-
entiability of $Y(t, x)$ when $d=1$ . By Theorem 1, $Y(t, x)$ clearly is continuously
differentiable in $t$ . In Theorem 4 we show that $Y(t, x)$ is differentiable in $x$

also, which will be proved in Section 5. Theorems 5 and 6 are limit theorems
for the rescaled process of $Y(t)$ , which will be proved in Section 6 by apPlying
the preceding theorems together with a scaling property of $Y(t)$ .

The author would like to express his thanks to the referee for his valuable
advices.

2. Summary of results.

Let $C(R^{d})$ be the Banach space of bounded continuous functions on $R^{d}$ with
the usual sup norm $\Vert\cdot\Vert$ and $C_{K}(R^{d})$ be the subspace of $C(R^{d})$ whose members
have compact support. For any Radon measures $\mu$ and $\nu$ on $R^{d},$ $\mu\leqq\nu$ means
that $\mu(A)\leqq l)(A)$ holds for any Borel set $A$ of $R^{d}$ . A Radon measure $\mu$ on $R^{d}$

is said to be atomless if $\mu(\{x\})=0$ for any $x\in R^{d}$ . The Lebesgue measure is
denoted by $\lambda$ . We denote, by $|x|$ , the Euclidean norm of $x\in R^{d}$ . Let $M_{p}(R^{d})$ ,

$p\geqq 0$ , be the space of all Radon measures on $R^{d}$ such that $\int(1+|x|)^{-p}\mu(dx)<\infty$ .
We set $M(R^{d})= \bigcup_{p\geq 0}M_{p}(R^{d})$ .

For a function $\phi$ and a measure $\mu$ we use the notations
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(2.1) $\langle\mu, \phi\rangle=\int\phi(x)\mu(dx)$ ,

(2.2) $(\phi\mu)(dx)=\phi(x)\mu(dx)$ ,

(2.3) $( \mu\phi)(x)=\int\phi(x-y)\mu(dy)$ .

The topology of $M_{p}(R^{cJ})$ is defined as follows; $\{\mu_{n}\}_{n\geqq 1}$ converges to $\mu$ as
$narrow\infty$ if $\lim_{narrow\infty}\langle\mu_{n}, \phi\rangle=\langle\mu, \phi\rangle$ holds for any $\phi\in C_{K}(R^{d})$ and $\phi(x)=(1+|x|)^{-p}$ .

Let $P\geqq 0$ be fixed. Then for any $\mu\in M_{p}(R^{d})$ there exists a unique diffusion
process, or strong Markov process with continuous sample paths $(P_{\mu}, X(t))$ on
the state space $M_{p}(R^{d})$ such that $X(O)=\mu$ and the transition function is character-
ized by the following Laplace functional

(2.4) $E_{\nu}[\exp(-\langle X(t), \phi\rangle)]=\exp(-\langle\nu, u(t)\rangle)$ ,

$\nu\in M(R^{d})$ , $t\geqq 0$ , $\phi\in C_{K}(R^{d})$ , $\phi\geqq 0$ ,

where $u(t)=u(t, x)$ is the solution of

(2.5) $\frac{\partial u}{\partial t}=\frac{\Delta}{2}u-\frac{1}{2}u^{2}$ , $u(0)=\phi$ .

See Iscoe [3] and Appendix in Konno and Shiga [5].

First we mention a result of Konno and Shiga [5].

THEOREM 1([5]). If $d=1$ and $\mu\in M(R)$ then there exists a family of non-
negative random variables $\{X(t, x), t>0, x\in R\}$ such that the following (i) and
(ii) hold $(P_{\mu}-a.s.)$ ;

(i) $X(t, x)$ is jointly continuous in $t>0$ and $x\in R$,
(ii) for every $\phi\in C_{K}(R)$ and $t>0$ ,

$\langle X(t), \phi\rangle=\int X(t, x)\phi(x)dx$ .

Set

(2.6) $Y(t)= \int_{0}^{t}X(s)ds$ ,

(2.7) $p_{t}(x)=p(t, x)=(2\pi t)^{-d/2}\exp(-|x|^{2}/(2t))$ , $t>0$ , $x\in R^{d}$ ,

(2.8) $q_{t}(x)=q(t, x)= \int_{0}^{t}p_{s}(x)ds$ , $t\geqq 0$ , $x\in R^{d}$ .

Our first result is

THEOREM 2. Let $d\leqq 3$ and $\mu\in M(R^{d})$ . When $d=2$ or 3 we assume that

(2.9) $(\mu q_{t})(x)$ is jointly continuous in $t\geqq 0$ and $x\in R^{d}$ .
Then there exists a family of nonnegative random vanables $\{Y(t, x), t\geqq 0, x\in R^{d}\}$
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such that the following (i) and (ii) hold $(P_{\mu}-a.s.)$ ;
(i) $Y(t, x)$ is jointly continuous in $t\geqq 0$ and $x\in R^{d}$ ,
(ii) for every $\phi\in C_{K}(R^{d})$ and $t\geqq 0$ ,

$\langle Y(t), \phi\rangle=\int Y(t, x)\phi(x)dx$ .

Moreover, for any $R>0$ there exists $c(R)>0$ such that

(2.10) $E_{\mu}[\exp(|\theta Y(t, x)|)]<\infty$

holds for every $t\leqq R,$ $x\in R^{d}$ and $|\theta|<c(R)$ .

We shall prove this theorem in Section 3.

REMARK 1. If $d=1$ and $\mu\in M(R)$ then (2.9) is always satisfied by Prop-
osition 3.1 in Section 3.

PROPOSITION 1. Let $d=2$ or 3 and $\mu(dx)=g(x)dx$ . Then (2.9) is satisfied if
one of the following conditions holds;

(i) $g(x)\leqq C(1+|x|)^{p}$ holds for some $C>0$ and $p\geqq 0$ ,
(ii) $g(x)=|x-a|^{-p}$ for some $a\in R^{d}$ and $0<p<2$ .
This will be proved at the end of Section 3.
If $d=2$ or 3, for a general $\mu\in M(R^{d})$ we obtain a weaker result than

Theorem 2. To this end we prepare a lemma which asserts that $Y(t)-Y(\epsilon)$ ,
$t\geqq\epsilon$ , has a continuous density for every fixed $\epsilon>0$ .

LEMMA 1. Let $d=2$ or 3 and $\mu\in M(R^{d})$ . Then for any fixed $\epsilon>0$ there
exists a family of nonnegative random variables $\{Y_{\epsilon}(i, x), t\geqq\epsilon. x\in R^{d}\}$ such that
the following (i) and (ii) hold $(P_{\mu}-a.s.)$ ;

(i) $Y_{\epsilon}(t, x)$ is jointly continuous in $t\geqq\epsilon$ and $x\in R^{d}$ .
(ii) for any $\phi\in C_{K}(R^{d})$ and $t\geqq\epsilon$ ,

$\int_{\epsilon}^{t}\langle X(s), \phi\rangle ds=\int Y_{\epsilon}(t, x)\phi(x)dx$ .

This will be proved in Section 4.
We extend $Y_{\epsilon}(t, x)$ by defining

(2.11) $Y_{\epsilon}(t, x)=0$ , $t<\epsilon$ , $x\in R^{d}$ .
Then $Y_{\epsilon}(t, x)$ increases as $\epsilon$ decreases. Hence we can define

(2.12) $Y(t, x)=\lim_{\epsilon\downarrow 0}Y_{\epsilon}(t, x)$ , $t\geqq 0$ , $x\in R^{d}$ .

THEOREM 3. Let $d=2$ or 3, $\mu\in M(R^{d})$ and $Y(t, x)$ be given by (2.12). Then
the following (i) and (ii) hold $(P_{\mu}-a.s.)$ ;
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(i) $Y(t, x)$ is jointly lower semicontinuous in $t\geqq 0$ and $x\in R^{d}$ ,
(ii) for every $\phi\in C_{K}(R^{d})$ and $t\geqq 0$ ,

$\langle Y(t), \phi\rangle=\int Y(t, x)\phi(x)dx$ .

Moreover, $Y(t, x)$ can be modified to be continuous on the set of continuity points
for $(\mu q_{t})(x)$ .

The above theorem will be proved in Section 4.

REMARK 2. Let $\mu$ be given by one of the following (i) and (ii);
$(i])$ $d=2$ or 3 and $\mu=\delta_{a}$ ,
(ii) $d=3$ and $\mu(dx)=|x-a|^{-p}dx$ for some $2\leqq p<3$ .

Then it is easy to see that $(\mu q_{t})(a)=\infty,$ $t>0$ , but $(\mu q_{t})(x)$ is continuous on
$[0, \infty)\cross(R^{d}-\{a\})$.

We can discuss the differentiability of $Y(t, x)$ in the case $d=1$ . We denote,
by $D_{x}f(x)$ (resp. $D_{x}^{+}f(x),$ $D_{x}^{-}f(x)$), the derivative (resp. right derivative, left
derivative) of $f(x)$ . If $d=1$ then $D_{t}Y(t, x)=X(t, x)$ is continuous on $(0, \infty)\cross R$

by Theorem 1.

THEOREM 4. If $d=1$ and $\mu\in M(R)$ then the following (i) and (ii) hold
$(P_{\mu}-a.s.)$ ;

(i) $Z(t, x)=Y(t, x)-E_{\mu}[Y(t, x)]$ is differentiable with respect to $x$ ,
(ii) $D_{x}Z(t, x)$ is jointly continuous in $t\geqq 0$ and $x\in R$,

(2.13) $D_{x}^{+}E_{\mu}[Y(t, x)]-D_{x}^{-}E_{\mu}[Y(t, x)]=-2\mu(\{x\})$ , $t>0$ , $x\in R$ .
In particular, if $\mu$ is atomless, then $D_{x}E_{\mu}[Y(t, x)]$ is continuous and so $Y(t, x)$

is differentiable nith respect to $x$ and $D_{x}Y(t, x)$ is continuous $(P_{\mu}-a.s.)$ . More-
over, for any $R>0$ there exists $c(R)>0$ such that

(2.14) $E_{\mu}[\exp(|\theta D_{x}Z(t, x)|)]<\infty$

holds for every $t\leqq R,$ $x\in R$ and $|\theta|<c(R)$ .

We shall prove this theorem in Section 5.
Finally we shall study the continuous process $(\langle Y(t), \phi\rangle, Y(t, a))$ for some

fixed $\phi\in C_{K}(R^{d})$ and $a\in R^{d}$ in the case $d\leqq 3$ . Let $W^{n}$ be the space of all
continuous functions from $[0, \infty$ ) to $R^{n}$ endowed with the topology of uniform
convergence on each finite interval. For any continuous process $(P, X(t)),$ $P^{X}$

denotes the probability measure on $W^{n}$ induced from $P$ by $X=(X(t))$ . Two
continuous processes $(P_{1}, X(t))$ and $(P_{2}, Y(i))$ are said to be equivalent if $P_{1}^{X}$ and
$P_{2}^{Y}$ coincide. A family of continuous processes $\{(P_{\rho}, X_{\rho}(t)), \rho>0\}$ is said to be
convergent to a continuous process $(P, X(t))$ as $\rhoarrow\infty$ if $P_{\rho}^{x_{\rho}}$ converges to $P^{X}$

weakly as $\rhoarrow\infty$ .
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For any $\mu\in M(R^{d})$ and $\rho>0$ we define $\mu(\rho\cdot)\in M(R^{d})$ by

(2.15) $\langle\mu(\rho\cdot), \phi\rangle=\langle\mu, \phi(\rho^{-1}\cdot)\rangle$ .

Hence if $\mu=g\lambda$ then we have

(2.16) $\mu(\rho\cdot)=\rho^{d}g(\rho\cdot)\lambda$ .

THEOREM 5. Let $d\leqq 3$ and $\mu\in M(R^{d})$ . When $d=2$ or 3 we assume that
(2.9) holds. Then for every fixed $\phi\in C_{K}(R^{d})$ and $a\in R^{d}$ , the family of continuous
$P^{rocesses}$

$(P_{\rho^{2}\mu(\rho}-1\cdot),$ $\rho^{d-4}(\langle Y(\rho^{2}t), \phi\rangle, Y(\rho^{2}t, a)))$ , $\rho>0$ ,

converges to the continuous prOcess $(P_{\mu}, (\langle\lambda, \phi\rangle, 1)Y(t, 0))$ as $\rhoarrow\infty$ .

THEOREM 6. If $d=1$ and $\mu\in M(R)$ is atomless, then for any fixed $\phi\in C_{K}(R)$

and $a\in R$ the family of continuous prOcesses

$(P_{\rho^{2}\mu(\rho- 1\cdot)},$ $\rho^{-2}(\int(Y(\rho^{2}t, x)-Y(\rho^{2}t, O))\phi(x)dx,$ $D_{x}Y(\rho^{2}t, a)))$ , $\rho>0$ ,

conrerges to the continuous Process $(P_{\mu},$ $( \int x\phi(x)dx,$ $1)D_{x}Y(t, 0))$ as $\rhoarrow\infty$ .

REMARK 3. If $\mu(dx)=|x|^{2-d}\chi(x)dx$ , where $\chi$ is an indicator function of a
cone in $R^{d}$ , then by (2.16) we have $\rho^{2}\mu(\rho^{-1}\cdot)=\mu$ . Hence, in Theorems 5 and 6,
the probability laws of the rescaled processes coincide with the original ones.

REMARK 4. Theorem 5 implies that the rescaled process $\rho^{d-4}Y(\rho^{2}t)$ under
$P_{\rho^{2}\mu(\rho- 1)}$ converges as $\rhoarrow\infty$ to the measure valued process $Y(t, 0)\lambda$ under $P_{\mu}$ ,

and an analogous statement holds for Theorem 6 also.

We shall prove the last two theorems in Section 6.

3. Proof of Theorem 2.

We shall prove Theorem 2 by showing the following three propositions.
Set

(3.1) $Y_{h}(t, a)=\int p_{h}(a-x)Y(t, dx)$ .

PROPOSITION 3.1. If $\mu\in M(R^{d})$ then for any $t\geqq 0$ and $a\in R^{d}$ we have

(3.2) $\lim_{harrow 0}E_{\mu}[Y_{h}(t, a)]=(\mu q_{t})(a)$ .

If $d=1$ then $(\mu q_{t})(x)$ is jointly continuous in $t\geqq 0$ and $x\in R^{d}$ .
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Set

(3.3) $Z_{h}(t, x)=Y_{h}(t, x)-E_{\mu}[Y_{h}(t, x)]$ .

PROPOSITION 3.2. If $d\leqq 3,$ $\mu\in M(R^{d})$ and (2.9) holds for $d=2,3$ , then for
any $t\geqq 0$ and $a\in R^{d}$ there exists

(3.4) 1.$harrow 0i.m.Z_{h}(t, a)=Z_{0}(t, a)$ with respect to $P_{\mu}$ .

For the existence of a continuous version of $Z_{0}(t, x)$ , by Totoki’s theorem
it suffices to get the following estimates.

PROPOSITION 3.3. If $d\leqq 3,$ $\mu\in M(R^{d})$ and (2.9) holds for $d=2,3$ , then for
each $n\geqq 1$ there exist $po\alpha tive$ constants $\alpha,$ $\beta,$ $c_{n}$ such that

(3.5) $E_{\mu}[|Z_{0}(t, a)-Z_{0}(t, b)|^{\alpha}]\leqq c_{n}|a-b|^{d+1+\beta}$ ,

(3.6) $E_{\mu}[|Z_{0}(t, a)-Z_{0}(s, a)|^{\alpha}]\leqq c_{n}|t-s|^{d+1+\beta}$ ,

hold for every $0\leqq s,$ $t\leqq n$ and $|a|,$ $|b|\leqq n$ .
We shall show (2.10) after the proof of Proposition 3.3.

PROOF OF PROPOSITION 3.1. It is needed to estimate several moments of
$Y(t)$ . We use the following expression of Laplace functionals, which is found
in Iscoe [3]

(3.7) $E_{\mu}[\exp(-\langle Y(t), \phi\rangle)]=\exp(-\langle\mu, v(t)\rangle)$ , $t\geqq 0,$ $\phi\in C_{K}(R^{d}),$ $\phi\geqq 0$ ,

in which $v(i)=v(t, x)$ is the solution of

(3.8) $\frac{\partial v}{\partial t}=\frac{\Delta}{2}v-\frac{1}{2}v^{2}+\phi$ , $v(O)=0$ .

We define

(3.9) $P_{t} \phi(x)=\int p_{t}(x-y)\phi(y)dy$ , $Q_{t} \phi(x)=\int q_{t}(x-y)\phi(y)dy$ ,

(3.10) $(\mu P_{t})(dx)=(\mu p_{t})(x)dx$ , $(\mu Q_{t})(dx)=(\mu q_{t})(x)dx$ .

Then we have

(3.11) $\{\begin{array}{l}\langle\mu P_{t}, \phi\rangle=\langle\mu, P_{t}\phi\rangle=\int(\mu p_{t})(x)\phi(x)dx,\langle\mu Q_{t}, \phi\rangle=\langle\mu, Q_{t}\phi\rangle=\int(\mu q_{t})(x)\phi(x)dx.\end{array}$

By (3.7) and (3.8) we obtain

(3.12) $E_{\mu}[\langle Y(t), \phi\rangle]=\langle\mu, Q_{t}\phi\rangle$ ,

(3.13) $E_{\mu}[ \langle Y(t)-\mu Q_{t}, \phi\rangle^{2}]=\int_{0}^{t}\langle\mu, P_{t-S}(Q_{s}\phi)^{2}\rangle ds$ .
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Hence we have

(3.14) $E_{\mu}[Y_{h}(t, a)]= \int_{h}^{t+h}ds\int p_{s}(a-x)\mu(dx)$ ,

and (3.2) follows easily.
We remark that for any $p\geqq 0$ there exists $C=C(P)>0$ such tbat

(3.15) $|x|^{p}p_{t}(x)\leqq Ct^{(p-d)/2}$ ,

(3.16) $(1+|x|)^{p}p_{t}(x)\leqq Ct^{-d/2}(1+t)^{p}$ ,

hold for every $t>0$ and $x\in R^{d}$ . Then it is easy to see that if $\mu\in M(R^{d})$ then
there exist $p\geqq 0$ and $C>0$ such that

(3.17) $(\mu p_{t})(x)\leqq Ct^{-d/2}(1+t)^{p}(1+|x|)^{p}$ , $t>0$ , $x\in R^{d}$ .

Hence if $d=1$ and $\mu\in M(R)$ then we have

(3.18) $\lim_{tarrow 0}(\mu q_{t})(x)=0$

uniformly on each compact set of $R$ . Thus the latter part of Proposition 3.1
follows.

PROOF OF PROPOSITION 3.2. Set

(3.19) $q_{t.h}(x)=P_{h}q_{t}(x)= \int_{h}^{t+h}p_{s}(x)ds$ .

Then by (3.13) we have

(3.20) $E_{\mu}[(Z_{h}(t, a)-Z_{k}(t, a))^{2}]= \int_{0}^{t}\langle\mu, P_{t-8}(q_{s.h}(a-\cdot)-q_{s.k}(a-\cdot))^{2}\rangle ds$ .

Since $\lim_{harrow 0}q_{t.h}(x)=q_{t}(x)$ it suffices to show that

(3.21) $\lim_{harrow 0}\int_{0}^{t}\langle\mu, P_{t-S}(q_{s.h}(a-\cdot)-q_{s}(a-\cdot))^{2}\rangle ds=0$ .

We remark that

(3.22) $q_{t.h}(x)-q_{t}(x)=(P_{t}q_{h})(x)-q_{h}(x)$ ,

(3.23) $P_{t}(P_{S}q_{h})^{2}(x)\leqq P_{t}P_{S}q_{h}(x)\Vert P_{S}q_{h}\Vert=P_{t+s}q_{h}(x)P_{S}q_{h}(0)$ .
Hence it suffices to show that

(3.24) $\int_{0}^{t}(\mu P_{t}q_{h})(a)P_{S}q_{h}(0)ds$ ,

(3.25) $\int_{0}^{t}ds\int(\mu p_{s})(x)q_{h}(a-x)^{2}dx$

converge to $0$ as $harrow 0$ . We remark that
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(3.26) $q_{t}(x)^{2}= \int_{0}^{t}ds\int_{0}^{t}dr(2\pi(r+s))^{-d/2}p(\frac{rs}{r+s}$ , $x)$ .

Then it suffices to show that (3.24) and

(3.27) $\int_{0}^{\hslash}dr\int_{0}^{h}dq(r+q)^{-d/2}\int_{0}^{t}(\mu p(s+\frac{rq}{r+q},$ $))(a)ds$

converge to $0$ as $harrow 0$ . But by the continuity of $(\mu q_{t})(x)$ it suffices to show that

(3.28) $\int_{0}^{t}ds\int_{s}^{s+h}r^{-d/2}dr$ ,

(3.29) $\int_{0}^{h}dr\int_{0}^{h}(r+q)^{-d/2}dq$

converge to $0$ as $harrow 0$ . But this follows from the assumption $d\leqq 3$ . Thus we
have shown Proposition 3.2.

Before proceeding to the proof of Proposition 3.3 we shall give some
remarks. By (3.7), (3.8) and a routine work we have

(3.30) $E_{\mu}[ \exp(\theta\langle Y(t)-\mu Q_{t}, \phi\rangle)]=\exp(2\sum_{n=2}^{\infty}(\frac{\theta}{2})^{n}\langle\mu, v_{n}(t)\rangle)$ ,

where $v_{n}(t),$ $n\geqq 2$ , are determined by

(3.31) $\{\begin{array}{l}v_{1}(i)=Q_{t}\phi,v_{n}(t)=\sum_{k=1}^{n-1}\int_{0}^{t}dsP_{t-s}(v_{k}(s)v_{n-k}(s)), n\geqq 2.\end{array}$

Then by (2.4), (2.5) and the Markov property we have

(3.32) $E_{\mu}[ \exp(\theta\langle Y(t+s)-Y(s)-\mu Q_{t+s}+\mu Q_{s}, \phi\rangle)]=\exp(2\sum_{n=2}^{\infty}(\frac{\theta}{2})^{n}\langle\mu, v_{n}(s, t)\rangle)$ ,

where $v_{n}(s, t),$ $n\geqq 2$ , are determined by

(3.33) $\{\begin{array}{l}v_{1}(s, t)=P_{s}v_{1}(t),v_{n}(s, t)=P_{s}v_{n}(t)+\sum_{k=1}^{n-1}\int_{0}^{s}drP_{s-r}(v_{k}(r, t)v_{n-k}(r, t)), n\geqq 2.\end{array}$

It is not difficult to justify (3.30) and (3.32) for each fixed $\mu\in M(R^{d})$ ,
$\phi\in C_{K}(R^{d})$ and $s,$

$t\geqq 0$ if $|\theta|$ is sufficiently small. We shall apply (3.30) and
(3.32) to prove Proposition 3.3. We notice that if the continuous density $Y(t, x)$

exists then $Y(t, a)$ is written as $\int\delta_{a}(x)Y(t, x)dx$ where $\delta_{a}$ is the delta function

at $a$ . But (3.30) and (3.32) may not have a meaning for $\phi=\delta_{a}$ . However (3.30)
and (3.32) hold even for a $\phi=\delta_{a}$ in a weak sense. To state this precisely we
introduce the following notion. For a random variable $X$, we say

(3.34) $E[ \exp(\theta X)]=\exp(\sum_{n\Leftarrow 1}^{\infty}a_{n}\theta^{n})$
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holds formally or we have formally (3.34), if $E[|X|^{n}]<\infty$ and

$E[X^{n}]=D_{\theta}^{n}( \exp(\sum_{k=1}^{n}a_{k}\theta^{k}))|_{\theta=0}$

holds for every $n\geqq 1$ , where $\{a_{n}\}$ is a sequence of real numbers. Then it is
easy to see that we have formally (3.30) and (3.32) for $\phi=\delta_{a}$ . The following
lemma is often useful.

LEMMA 3.1. Let $X$ be a random variable such that (3.34) holds formally.
(i) If for some integer $N$ there exist $r,$ $b>0$ such that

(3.35) $|a_{n}|\leqq br^{n}$ , for $1\leqq n\leqq 2N$ ,

then there exists $C=C(b, N)>0$ such that

(3.36) $E[X^{2N}]\leqq Cr^{2N}$ .
(ii) If $\sum_{n=1}^{\infty}a_{n}\theta_{0}^{n}$ converges for some $\theta_{0}>0$ then

(3.37) $E[\exp(|\theta X|)]<\infty$ for $|\theta|<\theta_{0}$ .

The proof of this lemma is easy and so we omit it.
Before proving (3.5) we need two more lemmas. By (3.30), (3.31) and the

definition of $Z_{0}(t, x)$ we have formally that

(3.38) $E_{\mu}[ \exp(\theta(Z_{0}(t, a)-Z_{0}(t, b)))]=\exp(2\sum_{n=2}^{\infty}(\frac{\theta}{2})^{n}\langle\mu, v_{n}(t)\rangle)$ ,

where $v_{n}(t),$ $n\geqq 2$ , are given by (3.31) with

(3.39) $v_{1}(t, x)=q_{t}(a-x)-q_{t}(b-x)$ .

LEMMA 3.2. Let $d\leqq 3$ , choose $a$ such that

(3.40) $0< \alpha<\min\{1,2-d/2\}$ ,

and set

(3.41) $\overline{v}(t, x)=\int_{0}^{2t}s^{-\alpha/2}(p_{s}(a-x)+p_{s}(b-x))ds$ .

Then for each $R>0$ there exist Positive constants $a_{n}=a_{n}(R),$ $n=1,2,$ $\cdots$ , such
that

(3.42) $|v_{n}(t, x)|\leqq a_{n}|a-b|^{n\alpha}\overline{v}(t, x)$

holds for every $t\leqq R,$ $a,$ $b,$ $x\in R^{d}$ and $n\geqq 1$ .
Before proceeding to the proof of this lemma we shall give some remarks.

It is easy to see that
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(3.43) $(p_{t}(x)+p_{t}(y))(p_{s}(x)+p_{s}(y))\leqq 3(p_{t}(x)p_{s}(x)+p_{t}(y)p_{s}(y))$

$\leqq 3(st)^{-d/4}(p(\frac{is}{t+s},$ $x)+p( \frac{ts}{t+s},$ $y))$ ,

$s,$ $t>0$ , $x,$ $y\in R^{d}$ .
For any $0<\alpha\leqq 1$ there exists $C=C(\alpha)>0$ such that

(3.44) $|p_{t}(x)-p_{t}(y)|\leqq Ct^{-\alpha/2}|x-y|^{\alpha}(p_{2t}(x)+p_{2t}(y))$ , $t>0$ , $x,$ $y\in R^{d}$ .
This is seen as follows. Set $D( \alpha)=\max\{2r^{2-\alpha}\exp(-r^{2});r\geqq 0\}$ . Then for any
$t\geqq s\geqq 0$ we have

$\exp(-s^{2})-\exp(-t^{2})=\int_{s}^{t}2r\exp(-r^{2})dr\leqq\alpha^{-1}D(\alpha)(t^{\alpha}-s^{\alpha})\leqq\alpha^{-1}D(\alpha)(t-s)^{\alpha}$ .
Then (3.44) follows from this and

$p_{t}(x)-p_{t}(y)=(8\pi t)^{d/2}(p_{2t}(x)-p_{2t}(y))(p_{2t}(x)+p_{2t}(y))$ .

PROOF OF LEMMA 3.2. Since the case $n=1$ follows from (3.44) it suffices
to show (3.42) in the case $n\geqq 2$ assuming that it holds for every $1\leqq k\leqq n-1$ .
Then we have

(3.45) $|v_{n}(t)| \leqq n-1\Sigma a_{k}a_{n-k}|a-b|^{na}\int_{0}^{t}dsP_{t-S}(\overline{v}(s)^{2})$ , $t\leqq R$ .
$k=1$

We set $z(t, x)=p_{t}(a-x)+p_{t}(b-x)$ for a while. By (3.43) we obtain

(3.46) $\overline{v}(t, x)^{2}\leqq 3\int_{0}^{2t}ds\int_{0}^{2t}dr(rs)^{-(d+2\alpha}‘/4z(\frac{rs}{r+s}$ , $x)$ .
Then it follows that

(3.47) $\int_{0}^{t}dsP_{t-s}(\overline{v}(s)^{2})(x)\leqq 3\int_{0}^{t}ds\int_{0}^{2S}dr\int_{0}^{l\}dq(rq)^{-(d+2\alpha)/4}z(t-s+\frac{rq}{r+q}$ , $x)$

$\leqq 3\int_{0}^{2t}dr\int_{0}^{2t}dq(rq)^{-(d+2\alpha)/4}\int_{0}^{2t}z(s, x)ds$

$=C_{1}( \alpha)t^{2-(d+2a)/2}\int_{0}^{2t}(p_{s}(a-x)+p_{s}(b-x))ds$ .
From this we have

(3.48) $\int_{0}^{t}dsP_{t-S}(\overline{v}(s)^{2})(x)\leqq C_{2}(\alpha)t^{2-(d+\alpha)/2}\overline{v}(t, x)$

and (3.42) follows from (3.45).

Combining Lemma 3.2 with (3.47) we obtain

LEMMA 3.3. If $d\leqq 3$ and $\alpha$ satisfies (3.40) then for any $R>0$ there exist
posrtive constants $b_{n}=b_{n}(R),$ $n=2,3,$ $\cdots$ , such that

(3.49) $|v_{n}(t, x)|\leqq b_{n}|a-b|^{na}(q_{2t}(a-x)+q_{2t}(b-x))$
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holds for every $t\leqq R,$ $a,$ $b,$ $x\in R^{d}$ and $n\geqq 2$ .
(3.5) in Proposition 3.3 now follows from (3.38), Lemma 3.3, Lemma 3.1, (i)

and the continuity of $(\mu q_{t})(x)$ .
Before proving (3.6) we prepare two more lemmas. By (3.32) we have

formally that

(3.50) $E_{\mu}[ \exp(\theta(Z_{0}(t+s, a)-Z_{0}(s, a)))]=\exp(2\sum_{n=2}^{\infty}(\frac{\theta}{2})^{n}\langle\mu, v_{n}(s, t)\rangle)$ ,

where $v_{n}(s, t),$ $n\geqq 2$ , are given by (3.31) and (3.33) with

(3.51) $v_{1}(t, x)=q_{t}(a-x)$ .

LEMMA 3.4. If $d\leqq 3$ then there exist $po\alpha tive$ constants $a_{n},$ $n=1,2,$ $\cdots$ such
that

(3.52) $v_{n}(t, x)\leqq a_{n}t^{(2-d/2)(n-1)}q_{2t}(a-x)$

holds for every $t\geqq 0,$ $a,$ $x\in R^{d}$ and $n\geqq 1$ , and

(3.53) $f( \theta)=\sum_{n=1}^{\infty}a_{n}\theta^{n}$

has a Positive radius of convergence.

PROOF. Since (3.52) is obvious in the case $n=1$ , we show (3.52) in the
case $n\geqq 2$ assuming that it holds for every $1\leqq k\leqq n-1$ . By (3.31) we have

(3.54) $v_{n}(t) \leqq\sum_{k=1}^{n-1}a_{k}a_{n-k}t^{(2-d/2)(n-2)}w(t)$

where

(3.55) $w(t, x)= \int_{0}^{t}ds\int_{0}^{2S}dr\int_{0}^{2S}dq(2\pi(r+q))^{-d/2}p(t-s+\frac{rq}{r+q},$ $a-x)$ .
By $q+r\geqq(qr)^{1/2},$ $w$ is dominated by

$\int_{0}^{2t}dr\int_{0}^{2t}dq(qr)^{-d/4}\int_{0}^{2t}p_{s}(a-x)ds=Kt^{2-d/2}q_{2t}(a-x)$

where $K=(1-d/4)^{-2}2^{2-d/2}$ . Hence we have shown (3.52). By the above argu-
ment, $a_{n},$ $n\geqq 1$ , may be determined by

(3.56) $a_{1}=1$ , $a_{n}=K \sum_{k=1}^{n-1}a_{k}a_{n-k}$ , $n\geqq 2$ .
Then $f(\theta)$ satisfies $f(\theta)-\theta=Kf(\theta)^{2},$ $i.e.,$ $f(\theta)=(1-(1-4K\theta)^{1/2})/(2K)$ . Then
(3.53) follows.

LEMMA 3.5. If $d\leqq 3$ then for any $R>0$ there exist $po\alpha tive$ constants $b_{n}=b_{n}(R)$ ,
$n=1,2,$ $\cdots$ , such that
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(3.57) $v_{n}(s, t, x)\leqq b_{n}t^{(n-1)/2}(P_{S}v_{1}(t))(x)$

holds for every $s,$ $t\leqq R,$ $a,$ $x\in R^{d}$ and $n\geqq 1$ , where $v_{1}(t, x)=q_{2t}(a-x)$ .
PROOF. Let $R>0$ be fixed and assume that $s,$ $t\leqq R$ . Since the case $n=1$

is clear we show (3.57) in the case $n\geqq 2$ assuming that it holds for every
$1\leqq k\leqq n-1$ . Set

(3.58) $\{\begin{array}{l}w_{0}(s, t)=P_{s}v_{n}(t),w_{k}(s, t)=\int_{0}^{s}drP_{s-r}(v_{k}(r, t)v_{n-k}(r, t)), 1\leqq k\leqq n-1.\end{array}$

It suffices to show that there exists $c(R)>0$ such that

(3.59) $w_{k}(s, t)\leqq c(R)t^{(n-1)/2}P_{S}v_{1}(t)$

holds for every $0\leqq k\leqq n-1$ . If $k=0$ then this is obvious by (3.52). If
$1\leqq k\leqq n-1$ then we have

(3.60) $w_{k}(s, t) \leqq c(R)t^{(n-2)/2}\int_{0}^{s}drP_{s-\tau}(P_{r}v_{1}(i))^{2}$ .
But by (3.23) we have

$P_{s-r}(P_{r}v_{1}(t))^{2} \leqq P_{S}v_{1}(t)\int_{r}^{2t+r}(2\pi q)^{-d/2}dq$ ,

and it follows that

(3.61) $w_{k}(s, t) \leqq c(R)t^{(n-2)/2}P_{S}v_{1}(t)\int_{0}^{s}dr\int_{r}^{2t+r}q^{-d/2}dq\leqq c_{1}(R)t^{(n-1)/2}P_{S}v_{1}(t)$ .

Hence we have completed the proof.

PROOF OF (3.6) OF PROPOSITION 3.3. We assume that $s,$ $t,$ $|a|\leqq N$ holds for
some fixed $N\geqq 1$ . We remark that

(3.62) $(P_{S}v_{1}(t))(x)= \int_{s}^{s+2t}p_{r}(a-x)dr$ .
Then by the continuity of $(\mu q_{t})(x)$ there exists $C(N)>0$ such that

(3.63) $\langle\mu, P_{S}v_{1}(t)\rangle\leqq C(N)$ .
By $n-1\geqq n/2$ for $n\geqq 2$ and (3.57) there exist positive constants $c_{n}=c_{n}(N)$ ,
$n=2,3,$ $\cdots$ , such that

(3.64) $\langle\mu, v_{n}(s, t)\rangle\leqq c_{n}t^{n/4}$

holds for $n\geqq 2$ . Hence (3.6) follows from (3.50) and Lemma 3.1, (i).

PROOF OF (2.10). By Lemma 3.4 we have
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(3.65) $\langle\mu, v_{n}(t)\rangle\leqq a_{n}t^{(2-d/2)(n- 1)}(\mu q_{2t})(a)$ , $n\geqq 1$ .
Then (2.10) follows from Lemma 3.4, Lemma 3.1, (ii) and the continuity of
$(\mu q_{t})(x)$ if we set $s=0$ in (3.50).

PROOF OF PROPOSITION 1. It suffices to show (2.9). To this end we have
only to show that

(3.66) $\lim_{tarrow 0}(\mu q_{t})(x)=0$

uniformly on each compact set of $R^{d}$ . If $P\geqq 0$ then there exists $C>0$ such that

(3.67) $\int(1+|y|)^{p}p_{t}(x-y)dy=\int(1+|x+t^{1/2}y|)^{p}p_{1}(y)dy$

$\leqq C(1+t)^{p}(1+|x|)^{p}\int(1+|y|)^{p}p_{1}(y)dy$ .

Hence (3.66) holds in the case (i). We shall show (3.66) in the case (ii). To
this end we need a lemma, see Lemma 3.2 in [4].

LEMMA 3.6. If $\phi$ is a nonnegative and decreaszng function on $[0, \infty$ ) then

(3.68) $\int p_{t}(x-z)\phi(|z|)dz\leqq\int p_{t}(y-z)\phi(|z|)dz$

holds for every $t>0$ and $|x|\geqq|y|$ .
By this lemma we have

(3.69) $\int|y-a|^{-p}p_{t}(x-y)dy\leqq\int|y|^{-p}p_{t}(y)dy=r^{-p/2}\int|y|^{-p}p_{1}(y)dy$ .
Then (3.66) follows easily in the case (ii) by $p<2$ .

4. Proof of Theorem 3.

We shall first show Lemma 1 by following the argument used in Section 3.
By (3.11) and (3.17) we have

LEMMA 4.1. If $d\leqq 3$ then for each fixed $t>0$ and $\mu\in M(R^{d})$

(4.1) $(\mu P_{t})(dx)=(\mu p_{\ell})(x)dx$

satisfies condition (i) in Proposition1.

We set

(4.2) $Y_{\text{\’{e}}}(t+ \epsilon)=\int_{\epsilon}^{t+\epsilon}X(s)ds$ , $t\geqq 0$ ,

(4.3) $Y_{\epsilon.h}(t+ \epsilon, a)=\int p_{h}(a-x)Y_{\epsilon}(t+\epsilon, dx)$ , $h>0$ , $t\geqq 0$ , $a\in R^{d}$ .
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Then it is easy to see that

(4.4) $\lim_{harrow 0}E_{\mu}[Y_{\epsilon.h}(t+\epsilon, a)]=(\mu P_{\epsilon}q_{t})(a)$

and this is continuous on $[0, \infty$ ) $\cross R^{d}$ by Lemma 4.1 and Proposition 1. Set

(4.5) $Z_{\epsilon.h}(i+\epsilon, a)=Y_{\epsilon.h}(t+\epsilon, a)-E_{\mu}[Y_{\epsilon,h}(t+\epsilon, a)]$ .

Then by (3.13) and the Markov property we have

(4.6) $E_{\mu}[(Z_{\epsilon,h}(t+\epsilon, a)-Z_{\epsilon,k}(t+\epsilon, a))^{2}]=E_{\mu}[E_{X(\epsilon)}[(Y_{h}(i, a)-Y_{k}(t, a))^{2}]]$

$= \int_{0}^{\ell}ds\langle\mu P_{\epsilon}, P_{t-s}(q_{s.h}(a-\cdot)-q_{s,k}(a-\cdot))^{2}\rangle$ .

Then by Lemma 4.1 and Proposition 1 we can follow the proof of Proposition
3.2. Hence there exists

(4.7) $1.i.m$ .$Z_{\epsilon.\hslash}(t+\epsilon harrow 0a)=Z_{\epsilon}(t+\epsilon, a)$ , $t\geqq 0$ , $a\in R^{d}$ ,

with respect to $P_{\mu}$ . Hence it suffices to show (3.5) and (3.6) for $Z_{\epsilon}(t+\epsilon, a)$ .
We shall show (3.5) in our case. By (2.4), (3.30) and the Markov property we
have formally that

(4.8) $E_{\mu}[\exp(\theta(Z_{\epsilon}(t+\epsilon, a)-Z_{\epsilon}(t+\epsilon, b)))]=E_{\mu}[E_{X(\epsilon)}[\exp(\theta(Z(t, a)-Z(t, b)))]]$

$= \exp(2\sum_{n=2}^{\infty}(\frac{\theta}{2})^{n}\langle\mu, v_{n}(\epsilon, t)\rangle)$ ,

where $v_{n}(s, t),$ $n\geqq 2$ , are determined by (3.31) and (3.33) with

(4.9) $v_{1}(t, x)=q_{t}(a-x)-q_{t}(b-x)$ .

The next lemma follows from Lemmas 3.2 and 3.3 as we have shown
Lemma 3.5 from Lemma 3.4.

LEMMA 4.2. Let $d\leqq 3$ and $\alpha$ be chosen to satisfy (3.40). Then for any fixed
$R>0$ there exist positive constants $a_{n}=a_{n}(R),$ $n=2,3,$ $\cdots$ , such that

(4.10) $|v_{n}(s, t, x)|\leqq a_{n}|a-b|^{n\alpha}(P_{s}\overline{v}(t))(x)$

holds for any $s,$ $t\leqq R,$ $a,$ $b,$ $x\in R^{d}$ and $n\geqq 2$ , where $\overline{v}(t, x)=q_{2t}(a-x)+q_{2t}(b-x)$ .

Then (3.5) in our case follows from Lemmas 4.1 and 4.2 as we have shown
(3.5) by using Lemma 3.3 in Section 3.

We shall show (3.6) in our case. By (3.50) and the Markov property we
have formally that

(4.11) $E_{\mu}[\exp(\theta(Z_{\text{\’{e}}}(t+s+\epsilon, a)-Z_{\text{\’{e}}}(s+\epsilon, a)))]$

$=E_{\mu}[ \exp(2\sum_{n=2}^{\infty}(\frac{\theta}{2})^{n}\langle X(\epsilon), v_{n}(s, t)\rangle)]$ ,
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where $v_{n}(s, t),$ $n\geqq 2$ , are those given by (3.50). Then by (2.4) and (2.5) we have
formally that

(4.12) $E_{\mu}[\exp(\theta(Z_{\epsilon}(i+s+\epsilon, a)-Z_{\epsilon}(s+\epsilon, a)))]$

$= \exp(2\sum_{n=2}^{\infty}(\frac{\theta}{2})^{n}\langle\mu, u_{n}(\epsilon, s, t)\rangle)$ ,

where $u_{n}(r, s, t),$ $n\geqq 2$ , are given by

(4.13) $\{\begin{array}{l}u_{1}(r, s, t)=P_{r}v_{1}(s, t),u_{n}(r, s, t)=P_{\tau}v_{n}(s, t)+\sum_{k=1}^{n-1}\int_{0}^{r}P_{r-r_{1}}(u_{k}(r_{1}, s, i)u_{n- k}(\gamma_{1}s, t))dr_{1}, n\geqq 2.\end{array}$

Then by the same method of the proof of Lemma 3.5 we obtain

LEMMA 4.3. If $d\leqq 3$ then for any fixed $R>0$ there exzst poxtjve constants
$a_{n}=a_{n}(R),$ $n=2,3,$ $\cdots$ , such that

(4.14) $u_{n}(r, s, t, x)\leqq a_{n}t^{(n-1)/2}(P_{r+s}v_{1}(t))(x)$ ,

holds for every $\gamma s,$ $t\leqq R,$ $a,$ $x\in R^{d}$ and $n\geqq 2$ , where $v_{1}(t, x)=q_{2\ell}(a-x)$ .
Then (3.6) in our case follows from Lemmas 4.1 and 4.3 as we have shown

(3.6) by using Lemma 3.5 in Section 3. Thus we have shown Lemma 1.

We shall show Theorem 3. Since the first part is obvious by the dePnition
of $Y(t, x)$ it suffices to show the second part. Let $A$ be the set of continuity
points for $(\mu q_{t})(x)$ and set

$A_{n}=\{(t, x)\in A:t, |x|, (\mu q_{t})(x)\leqq n\}$ , $n=1,2,$ $\cdots$

Then by Lemmas 3.3 and 3.5 we can show Proposition 3.3 for each $A_{n}$ . Then
$Y(t, x)$ can be modified to be continuous on each $A_{n}$ , see [6, p. 186, Remark 2].

Hence it suffices to prove

LEMMA 4.4. If $f(t, x)$ is continuous on each $A_{n}$ then $f$ is continuous on $A$ .
PROOF. It suffices to show that

(4.15) $\lim_{narrow}f(t_{n}, x_{n})=f(t_{0}, x_{0})$

holds for any $\{(t_{n}, x_{n});n\geqq 0\}\subset A$ assuming that $\lim_{narrow\infty}(t_{n}, x_{n})=(t_{0}, x_{0})$ . Then
there exists $m$ such that $(t_{0}, x_{0})\in A_{m}$ . Since $(\mu q_{\ell})(x)$ is continuous at $(t_{0}, x_{0})$

there exists $n_{0}$ such that $(t_{n}, x_{n})\in A_{m+1}$ holds for all $n\geqq n_{0}$ . Then (4.15) follows
from the continuity of $f$ on $A_{m+1}$ .
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5. Proof of Theorem 4.

The method of the proof is the same as that used in Section 3. Set

(5.1) $\overline{Y}_{h}(t, x)=h^{-1}(Y(t, x+h)-Y(t, x))$ ,

(5.2) $W_{h}(t, x)=\overline{Y}_{h}(t, x)-E_{\mu}[\overline{Y}_{h}(t, x)]$ .

We shall show

PROPOSITION 5.1. Let $\mu\in M(R)$ . For any $t\geqq 0$ and $x\in R$ there exist

(5.3) $\lim_{h\downarrow 0}E_{\mu}[\overline{Y}_{h}(t, x)]=f_{+}(t, x)$ , $\lim_{h\uparrow 0}E_{\mu}[\overline{Y}_{h}(t, x)]=f_{-}(t, x)$ ,

(5.4) 1.$harrow 0i.m.W_{\hslash}(t, x)=W_{0}(t, x)$ with respect to $P_{\mu}$ .

In particular, if $\mu$ is atomless, then $f_{+}=f_{-}$ and these are jointly continuous in
$t\geqq 0$ and $x\in R$ . Finally, for each $n\geqq 1$ there exist positive constants $\alpha,$ $\beta,$ $c_{n}$

such that

(5.5) $E_{\mu}[|W_{0}(t, a)-W_{0}(t, b)|^{\alpha}]\leqq c_{n}|a-b|^{2+\beta}$ ,

(5.6) $E_{\mu}[|W_{0}(t, a)-W_{0}(s, a)|^{a}]\leqq c_{n}|t-s|^{2+\beta}$ ,

hold for every $0\leqq s,$ $t\leqq n$ and $|a|,$ $|b|\leqq n$ .

The precise forms of $f_{+}$ and $f_{-}$ are given by (5.15) below. Let $W(t, x)$ be
the continuous version of $W_{0}(t, x)$ . Then it is easy to see that $Z(t, x)=Z(t, 0)$

$+ \int_{0}^{x}W(t, y)dy$ holds with $a.s.P_{\mu}$ . Then (2.13) follows from the differentiability

of $Z(t, x)$ and (5.15). We shall show (2.14) at the end of this section.
We shall Prst show (5.3). Set

(5.7) $q_{t.h}(x)=h^{-1}(q_{t}(x+h)-q_{t}(x))$ .

By (3.2) we have

(5.8) $E_{\mu}[ \overline{Y}_{h}(t, a)]=\int q_{t,h}(a-x)\mu(dx)$ .

Set

(5.9) $u_{\ell}(x)=u(t, x)=- \int_{0}^{t}\frac{x}{s}p_{s}(x)ds$ .

Then we obtain

(5.10) $\{(D_{x}q_{t})(x)=u_{t}(x),ifx\neq 0(D_{x}^{+}q_{t})(0)=-1,(D_{x}^{-}q_{t})(0)=1’$

, if $t>0$ ,

(5.11) $(P_{s}u_{\ell})(x)=- J_{s}^{s+t}\frac{x}{\gamma}p_{r}(x)dr$ .
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It is easy to see that

(5.12) $u_{t}(x)=-2 sgn(x)\int_{|x|}^{\infty}p_{t}(y)dy$ ,

where $sgn(x)=x/|x|$ if $x\neq 0$ and sgn(O) $=0$ . Then we have

(5.13) $|u(t, x)|\leqq 1$ , $t\geqq 0$ , $x\in R$ .
By (5.12) and the fact that $p_{1}$ is rapidly decreasing, for any $P\geqq 0$ there exists
$C=C(p)>0$ such that

(5.14) $|u(t, x)|\leqq C(1+t^{-1/2}|x|)^{-p}$ , $t>0$ , $x\in R$ .

Then from (5.10) and (5.14) it follows that

(5.15) $\{D_{x}^{+}(\mu q_{t})(x)=(\mu u_{t})(x)-\mu(\{xD_{x}^{-}(\mu q_{\ell})(x)=(\muu_{t})(x)+\mu(\{x\{\begin{array}{l}),),\end{array}$

$t>0$ , $x\in R$ ,

and especially if $\mu$ is atomless then

(5.16) $D_{x}(\mu q_{t})(x)=(\mu u_{t})(x)$ , $t\geqq 0$ , $x\in R$ .
Thus we have shown (5.3). The continuity of $(\mu u_{t})(x)$ follows from

LEMMA 5.1. If $\mu\in M(R)$ then there exist $p\geqq 0$ and $C>0$ such that

(5.17) $(\mu P_{s}|u_{t}|)(x)\leqq C(s^{-1}i)^{1/2}(1+s)^{p}(1+t)^{p}(1+|x|)^{p}$

holds for every $s,$ $t>0$ and $x\in R$ . If $\mu$ is atomless then $(\mu u_{t})(x)$ is continuous.

PROOF. By (3.9) and (5.9) we have

(5.18) $( \mu P_{s}|u_{t}|)(x)=\int_{0}^{\ell}dr\int(\mu p_{s})(x-y)\frac{|y|}{\gamma}p_{r}(y)dy$ .
By (3.17) this is dominated by

$Cs^{-1/2}(1+s)^{p} \int_{0}^{t}dr\int(1+|x-y|)^{p}\frac{|y|}{\gamma}p_{r}(y)dy$

$\leqq Cs^{-1/2}(1+s)^{p}(1+t)^{p}(1+|x|)^{p}\int_{0}^{t}r^{-1/2}dr\int(1+|y|)^{p}|y|p_{1}(y)dy$ ,

and (5.17) follows. To see the latter part it suffices to show that

(5.19) $\lim_{tarrow 0}(\mu u_{t})(x)=0$

uniformly on each finite interval. Choose $p>0$ to satisfy $\int(1+|x|)^{-p}\mu(dx)<\infty$ .
Then by (5.14) we have

(5.20) $|( \mu u_{\ell})(x)|\leqq C\int(1+i^{-1/2}|x-y|)^{-p}\mu(dy)$

$\leqq C(1+|x|)^{p}\int f(t, x-y)(1+|y|)^{-p}\mu(dy)$ ,
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where $f(t, x)=(1+t^{-1/2}|x|)^{-P}(1+|x|)^{p}$ . Remark that $\lim_{tarrow 0}\sup_{|x|\geqq\epsilon}f(t, x)=0$ for
any $\epsilon>0$ and $f(t, x)\leqq 1$ if $t\leqq 1$ . Then it suffices to notice that if $\mu$ is a finite
atomless measure on $R$ then for any $\epsilon>0$ and $K>0$ there exists $\delta>0$ such that
$\mu(I)<\epsilon$ holds for any interval $I$ contained in $[-K, K]$ with $\lambda(I)<\delta$ .

Next we shall show (5.4). By (3.13) we have

(5.21) $E_{\mu}[(W_{h}(t, a)-W_{k}(t, a))^{2}]= \int_{0}^{t}ds\langle\mu, P_{t-S}(q_{s,h}(a-\cdot)-q_{s.k}(a-\cdot))^{2}\rangle$ .

By (5.10) and (5.13) it suffices to show

$\lim_{harrow 0}\int_{0}^{t}ds\langle\mu, P_{t-S}(|q_{s.h}(a-\cdot)-u_{s}(a-\cdot)|)\rangle=0$ .

But this follows from (3.11), (3.17), (5.10) and (5.14).

We shall show (5.5). By (3.30) and the definition of $W_{0}(t, x)$ we have
formally that

(5.22) $E_{\mu}[ \exp(\theta(W_{0}(t, a)-W_{0}(t, b)))]=\exp(2\sum_{n=2}^{\infty}(\frac{\theta}{2})^{n}\langle\mu, v_{n}(t)\rangle)$ ,

where $v_{n}(t),$ $n\geqq 2$ , are given by (3.31) with

(5.23) $v_{1}(t, x)=u_{t}(a-x)-u_{\ell}(b-x)$ .
Set

(5.24) $\overline{v}(t)=\int_{0}^{t}P_{t-S}(|v_{1}(s)|)ds$ .

LEMMA 5.2. If $d=1$ and $R>0$ is fixed arbtrarily then there exist $po\alpha tive$

constants $a_{n}=a_{n}(R),$ $n=1,2,$ $\cdots$ , such that

(5.25) $\langle\lambda, v_{1}(t)^{2}\rangle\leqq a_{1}|a-b|$ ,

(5.26) $\langle\mu, v_{2}(t)\rangle\leqq a_{2}|a-b|$ ,

(5.27) $|v_{n}(t, x)|\leqq a_{n}|a-b|^{n/4}\overline{v}(t, x)$ , $x\in R$ , $n\geqq 3$ ,

hold for every $t,$ $|a|,$ $|b|\leqq R$ .
If this lemma is shown then we can prove (5.5) as follows. By (5.17) and

(5.27), for any fixed $R>0$ , there exist positive constants $c_{n}=c_{n}(R),$ $n=3,4,$ $\cdots$ ,
such that

(5.28) $\langle\mu, |v_{n}(t)|\rangle\leqq c_{n}|a-b|^{n/4}$

holds for every $n\geqq 3$ and $t,$ $|a|,$ $|b|\leqq R$ . Then (5.5) follows from (5.26), (5.28)

and Lemma 3.2, (i).
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PROOF OF LEMMA 5.2. In the course of the proof we assume that $s,$
$t$ ,

$|a|,$ $|b|\leqq R$ holds for some fixed $R>0$ . By an elementary calculation we have

(5.29) $\int v_{1}(t, x)^{2}dx=2\int_{0}^{t}ds\int_{0}^{t}\frac{dr}{r+s}(p_{r+s}(0)-p_{r+s}(a-b)+\frac{(a-b)^{2}}{r+s}p_{r+s}(a-b))$ .
Since $1-e^{-x}+2xe^{-x}\leqq 4x/(1+x)$ holds for $x\geqq 0$ we obtain

(5.30) $\langle\lambda, v_{1}(t)^{2}\rangle\leqq 8\int_{0}^{t}ds\int_{0}^{t}dr\frac{(r+s)^{-3/2}|a-b|^{2}}{r+s+|a-b|^{2}}$

$\leqq 8|a-b|\int_{0}^{\infty}ds\int_{0}^{\infty}dr(r+s)^{-S/2}(r+s+1)^{-1}$

and (5.25) follows.
Next we shall show (5.26). We may assume that $a<b$ . If $x>b$ or $x<a$

then by (5.12) we have

(5.31) $|v_{1}(t, x)| \leqq 2|\int_{|x-a|}^{1x-bI}p_{t}(y)dy|\leqq 2|a-b|(p_{t}(a-x)+p_{t}(b-x))$ ,

and if $a<x<b$ then by (5.13) we have $|v_{1}(t, x)|\leqq 2$ . Hence we obtain

(5.32) $v_{2}(t)\leqq 4|a-b|^{2}w(t)+4z(t)$ ,

where

(5.33) $\{\begin{array}{l}w(i, x)=\int_{0}^{t}ds\int p_{\ell-S}(x-y)(p_{s}(a-y)+p_{s}(b-y))^{2}dy,z(t, x)=\int_{a}^{b}q_{\ell}(x-y)dy.\end{array}$

By (3.17) there exists $c(R)>0$ such that

(5.34) $\langle\mu_{*}z(t)\rangle\leqq c(R)|a-b|$ .
By $(x+y)^{2}\leqq 2(x^{2}+y^{2})$ and $t/2\leqq t-s/2\leqq t$ for $0\leqq s\leqq t$ we have

(5.35) $w(t, x) \leqq\int_{0}^{t}dss^{-1/2}(p(t-s/2, a-x)+p(t-s/2, b-x))$

$\leqq 4t^{1/2}(p_{t}(a-x)+p_{\ell}(b-x))$ .
Then by (3.17) there exists $c(R)>0$ such that

(5.36) $\langle\mu, w(t)\rangle\leqq c(RI$ .
Hence (5.26) follows from (5.32), (5.34) and (5.36).

Before proceeding to the proof of (5.27) we shall show the following esti-
mates. There exist positive constants $b_{n}=b_{n}(R),$ $n=2,3,$ $\cdots$ , such that

(5.37) $|v_{n}(i)|\leqq b_{n}|a-b|^{n/2}$ ,

(5.38) $|v_{n}(t)|\leqq b_{n}\overline{v}(t)$ ,

hold for every $n\geqq 2$ .
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By (5.25) we have

(5.39) $v_{2}(t, x)= \int_{0}^{t}ds\int p_{t-s}(x-y)v_{1}(s, y)^{2}dy$

$\leqq\int_{0}^{t}ds(t-s)^{-1/2}\langle\lambda, v_{1}(s)^{2}\rangle\leqq 2a_{1}t^{1/2}|a-b|$ ,

and by (5.13) we have

(5.40) $v_{2}(t) \leqq 2\int_{0}^{t}dsP_{c-s}(|v_{1}(s)|)=2\overline{v}(t)$ .
Hence it suffices to show (5.37) and (5.38) in the case $n\geqq 3$ assuming that they
hold for every $2\leqq k\leqq n-1$ . Set

(5.41) $w_{n.k}(t)= \int_{0}^{t}dsP_{t-\theta}(|v_{k}(s)v_{n- k}(s)|)$ , $1\leqq k\leqq n-1$ .
Then it is sufficient to show that there exists $c(R)>0$ such that

(5.42) $w_{n.k}(t)\leqq c(R)$ min $\{|a-b|^{n/2},\overline{v}(t)\}$

holds for any $1\leqq k\leqq n-1$ . By (5.37) and $n-1\geqq 2$ we have

(5.43) $w_{n.1}(t)=w_{n.n-1}(t) \leqq b_{n-1}|a-b|^{(n-1)/2}\int_{0}^{t}dsP_{t-s}(|v_{1}(s)|)$

$=b_{n-1}|a-b|^{(n-1)/2}\overline{v}(t)$ .

By (5.25) and $P_{t}(\phi^{2})\geqq(P_{t}\phi)^{2}$ we obtain

(5.44) $w_{n,1}(t)=w_{n.n-1}(t) \leqq\int_{0}^{t}ds(P_{t-S}(v_{1}(s)^{2}))^{1/2}\cdot b_{n-1}|a-b|^{(n-1)/2}$

$\leqq c_{1}(R)\int_{0}^{t}ds(t-s)^{-1/4}\langle\lambda, v_{1}(s)^{2}\rangle^{1/2}|a-b|^{(n-1)/2}\leqq c_{2}(R)|a-b|^{n/2}$ .
If $2\leqq k\leqq n-2$ then by our assumption we have

(5.45) $w_{n,k}(t)\leqq tb_{k}b_{n-k}|a-b|^{n/2}$ ,

and by $|v_{1}(t)|\leqq 2$ it follows that

(5.46) $w_{n,k}(t) \leqq b_{k}b_{n-k}\int_{0}^{t}dsP_{\ell- S}(\overline{v}(s)^{2})\leqq c_{1}(R)\int_{0}^{t}P_{t-S}(\overline{v}(s))ds$

$=2c_{1}(R) \int_{0}^{t}ds\int_{0}^{s}drP_{t-\tau}(|v_{1}(r)|)\leqq c_{2}(R)\overline{v}(t)$ .

Thus we have shown (5.37) and (5.38).

Then (5.27) is shown as follows. It suffices to show that there exist posi-
tive constants $c_{n.k}=c_{n.k}(R),$ $1\leqq k\leqq n-1,$ $n=3,4,$ $\cdots$ , such that

(5.47) $w_{n,k}(t)\leqq c_{n,h}|a-b|^{n/4}\overline{v}(t)$

holds for every $n\geqq 3$ and $1\leqq k\leqq n-1$ . By (5.41) we have only to show this for
$1\leqq k\leqq n/2$ . If $k=1$ then by $n-1\geqq 2$ we have
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$w_{n.1}(t) \leqq b_{n- 1}|a-b|^{(n- 1)/2}\int_{0}^{t}dsP_{t-S}(|v_{1}(s)|)\leqq c(R)|a-b|^{n/4}\overline{v}(t)$ .

If $2\leqq k\leqq n/2$ then by $n-k\geqq n/2$ we obtain

$w_{n.k}(t) \leqq b_{k}b_{n-k}\int_{0}^{\ell}dsP_{t-S}(\overline{v}(s)|a-b|^{(n-k)/2})\leqq c(R)|a-b|^{n/4}\overline{v}(t)$ .

Thus we have completed the proof of Lemma 5.2.

We shall show (5.6). By (3.32) and the definition of $W_{0}(t, x)$ we have
formally that

(5.48) $E_{\mu}[ \exp(\theta(W_{0}(s+t, a)-W_{0}(s, a)))]=\exp(2\sum_{n=2}^{\infty}(\frac{\theta}{2})^{n}\langle\mu, v_{n}(s, t)\rangle)$ ,

where $v_{n}(s, t),$ $n\geqq 2$ , are given by (3.31) and (3.33) with

(5.49) $v_{1}(t, x)=u_{t}(a-x)$ .

LEMMA 5.3. If $d=1$ then there exist positive constants $a_{n},$ $n=1,2,$ $\cdots$ , and
$b_{n},$ $n=2,3,$ $\cdots$ , such that

(5.50) $|v_{n}(t, x)|\leqq a_{n}t^{n- 1}$ , $t\geqq 0$ , $a,$ $x\in R$ , $n\geqq 1$ ,

(5.51) $|v_{n}(s, x)|\leqq b_{n}s^{n- 2}Q_{s}(|v_{1}(t)|)(x)$ , $s\leqq t$ , $a,$ $x\in R$ , $n\geqq 2$ ,

and $f(\theta)=\Sigma_{n=2}^{\infty}b_{n}\theta^{n}$ has a $po\alpha tive$ radius of convergence.

PROOF. By (3.31) and (5.13) if we define $a_{n},$
$n\geqq 1$ , by

(5.52) $a_{1}=1$ , $a_{n}= \sum_{k=1}^{n-1}a_{k}a_{n-h}$ , $n\geqq 2$ ,

then (5.50) holds. We shall show (5.51) by defining $b_{n},$ $n\geqq 2$ , as follows

(5.53) $b_{2}=1$ , $b_{n}=2a_{n- 1}+n-1\Sigma b_{k}a_{n-k}$ , $n\geqq 3$ .
$k=2$

By (5.9) we have

(5.54) $tarrow|v_{1}(t, x)|=|u_{t}(a-x)|$ is nondecreasing.

Then by (5.13) we have

(5.55) $v_{2}(s)= \int_{0}^{s}drP_{s-r}(v_{1}(r)^{2})\leqq\int_{0}^{s}drP_{s-\gamma}(|v_{1}(t)|)=Q_{s}(|v_{1}(t)|)$ .

Hence it suffices to prove (5.51) in the case $n\geqq 3$ assuming that it holds for any
$2\leqq k\leqq n-1$ . Set

(5.56) $w_{k}(s)= \int_{0}^{s}drP_{s-r}(|v_{k}(r)v_{n- k}(r)|)$ , $1\leqq k\leqq n-1$ .

By (5.54) and $n\geqq 3$ we have
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(5.57) $w_{1}(s)=w_{n- 1}(s) \leqq a_{n- 1}\int_{0}^{s}drr^{n-3}P_{s-r}(|v_{1}(t)|)\leqq a_{n-1}s^{n- 2}Q_{s}(|v_{1}(t)|)$ .

If $2\leqq k\leqq n-2$ then by (5.50) and (5.51) we have

(5.58) $w_{k}(s) \leqq b_{k}a_{n-k}\int_{0}^{s}drr^{n- 3}P_{s-r}(Q_{r}(|v_{1}(t)|))$ .

Since $P_{s-r}Q_{r}(|v_{1}(t)|)\leqq Q_{s}(|v_{1}(t)|)$ we obtain

(5.59) $w_{k}(s)\leqq b_{k}a_{n-k}s^{n-2}Q_{s}(|v_{1}(t)|)$ .

Hence (5.51) holds for $b_{n},$ $n\geqq 2$ , given by (5.53).

Set $g(\theta)=\Sigma_{n=1}^{\infty}a_{n}\theta^{n}$ . Then $g(\theta)=(1-(1-4\theta)^{1/2})/2$ . By (5.53) $f(\theta)$ satisfies
$f(\theta)=2\theta g(\theta)+f(\theta)(g(\theta)-\theta),$ $i.e.$ ,

$f(\theta)=2\theta g(\theta)(1-g(\theta)+\theta)^{-1}$ .

Hence $f$ has a positive radius of convergence.

LEMMA 5.4. If $d=1$ then for any $R>0$ there exist positive constants
$c_{n}=c_{n}(R),$ $n=1,2,$ $\cdots$ , and $d_{n}=d_{n}(R),$ $n=2,3,$ $\cdots$ , such that

(5.60) $|v_{1}(s, t, x)|\leqq c_{1}$ min $\{1, (s^{-1}t)^{1/2}\}$ ,

(5.61) $|v_{n}(s, t, x)|\leqq c_{n}t^{n/4}$ , $n\geqq 2$ ,

(5.62) $|v_{n}(s, t, x)|\leqq d_{n}t^{(n- 2}‘/4((st)^{1/2}P_{s}(|v_{1}(t)|)+P_{s}Q_{t}(|v_{1}(t)|))(x)$ , $n\geqq 2$ ,

hold for every $a,$ $x\in R$ and $s,$ $t\leqq R$ .

PROOF. In the course of the proof we assume that $s,$ $t\leqq R$ holds for some
fixed $R>0$ . By (5.11) and (5.13) it is easy to see that (5.60) holds. Then (5.61)

is easily seen by (5.50), (3.33) and the induction argument. Since

(5.63) $v_{2}(s, t) \leqq P_{S}v_{2}(t)+\int_{0}^{s}drP_{s- r}(P_{r}v_{1}(t))^{2}$

$\leqq b_{2}P_{S}Q_{t}(|v_{1}(t)|)+\int_{0}^{s}drP_{s}(|v_{1}(t)|)\cdot\Vert P_{\tau}v_{1}(t)\Vert$ ,

(5.62) in the case $n=2$ follows from (5.60). Then it suffices to show (5.62) in
the case $n\geqq 3as_{1}suming$ that it holds for every $2\leqq k\leqq n-1$ . Set

(5.64) $\{\begin{array}{l}w_{0}(s, t)=P_{s}(|v_{n}(t)|),w_{k}(s, t)=\int_{0}^{s}drP_{s-\gamma}(|v_{k}(r, t)v_{n-k}(r, t)|), 1\leqq k\leqq n-1.\end{array}$

By (5.51) we have

(5.65) $w_{0}(s, t)\leqq b_{n}t^{n- 2}P_{s}Q_{t}(|v_{1}(t)|)$ .

Since $n-1\geqq 2$ , by (5.60) and (5.62), we obtain
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(5.66) $w_{1}(s, t)=w_{n-1}(s, t)$

$\leqq c_{1}d_{n-1}t^{(n-3)/4}\int_{0}^{s}dr(r^{-1}t)^{1/2}((rt)^{1/2}P_{s}(|v_{1}(t)|)+P_{s}Q_{t}(|v_{1}(t)|))$

$\leqq 2c_{1}d_{n-1}t^{(n- 2)/4}(st^{3/4}P_{s}(|v_{1}(t)|)+s^{1/2}t^{1/4}P_{s}Q_{\ell}(|v_{1}(t)|))$ .

If $2\leqq k\leqq n-2$ then by (5.61) and (5.62) we have

(5.67) $w_{k}(s, t) \leqq c_{k}d_{n- k}t^{(n-2)/4}\int_{0}^{s}dr((rt)^{1/2}P_{s}(|v_{1}(t)|)+P_{s}Q_{t}(|v_{1}(t)|))$

$\leqq c_{k}d_{n-k}t^{(n-2)/4}(s^{3/2}t^{1/2}P_{s}(|v_{1}(t)|)+sP_{s}Q_{t}(|v_{1}(t)|))$ .

Then (5.62) follows from these estimates and $|v_{n}(s, t)| \leqq\sum_{k=1}^{n-1}w_{k}(s, t)$ .

Then we can prove (5.6) as follows. Let $R>0$ be fixed arbitrarily. By
(5.17) there exists $c(R)>0$ such that

(5.68) $\langle\mu, P_{s}(|v_{1}(t)|)\rangle\leqq c(R)s^{-1/2}t^{1/2}$ ,

(5.69) $\langle\mu, P_{s}Q_{t}(|v_{1}(t)|)\rangle\leqq c(R)t^{1/2}$ ,

hold for $s,$ $t,$ $|a|\leqq R$ . Then by (5.62) there exist positive constants $e_{n}=e_{n}(R)$ ,
$n=2,3,$ $\cdots$ , such that

(5.70) $\langle\mu, |v_{n}(s, t)|\rangle\leqq e_{n}t^{n/4}$

holds for every $s,$ $t,$ $|a|\leqq R$ and $n\geqq 2$ . Then (5.6) follows from (5.48) and
Lemma 3.1, (i).

Finally, (2.14) follows from (5.17), (5.51) and Lemma 3.1, (ii) if we set $s=0$

in (5.48).

6. Proofs of Theorems 5 and 6.

The following lemma is fundamental in this section.

LEMMA 6.1. If $\mu\in M(R^{d})$ then, for any $\rho>0$ , the Process
$(P_{\rho^{2}\mu(\rho^{-1}\cdot)}, \rho^{-2}X(\rho^{2}t, \rho\cdot))$

is equivalent to the process $(P_{\mu}, X(t))$ .

PROOF. Since each process has the same initial point $\mu$ it suffices to show
that the transition functions coincide. Let $u(t, x, \phi)$ be the solution of (2.5).

Then $\rho^{2}u(\rho^{2}t, \rho x, \rho^{-2}\phi(\rho^{-1}\cdot))$ also satisfies (2.5). Hence by (2.4) we have

$E_{\rho^{2_{\nu}(\rho}}- 1)[ \exp(-\rho^{-2}\int\phi(x)X(\rho^{2}t, \rho dx))]=\exp(-\int u(t, x, \phi)\nu(dx))$

$=E_{\nu}[\exp(-\langle X(i), \phi\rangle)]$

and we have completed the proof.
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By the above lemma and Theorem 2 we obtain

COROLLARY 6.1. Let $d\leqq 3$ and $\mu\in M(R^{d})$ . We assume (2.9) in the case $d=2$

or 3. Then, for any $\rho>0$ and $\phi\in C_{K}(R^{d})$ , the continuous process

$(P_{\rho^{2}\mu(\rho^{-1}\cdot)},$ $\rho^{-4}\int Y(\rho^{2}t, x)\phi(\rho^{-1}x)dx)$

is equivalent to the continuous process $(P_{\mu}, \int Y(t, x)\phi(x)dx)$ .

Then we can prove Theorem 5 as follows. By Corollary 6.1, the process
$(P_{\rho^{2}\mu(\rho-1.)}, \rho^{d-4}(\langle Y(\rho^{2}t), \phi\rangle, Y(\rho^{2}t, a)))$ is equivalent to the process

$(P_{\mu},$ $( \int Y(t, \rho^{-1}x)\phi(x)dx,$ $Y(t, \rho^{-1}a)))$ .
Then by the continuity of $Y(t, x)$ , this process converges to the process
$(P_{\mu}, (\langle\lambda, \phi\rangle, 1)Y(t, 0))$ as $\rhoarrow\infty$ .

If $\mu\in M(R)$ is atomless then the process

$(P_{\rho^{2}\mu(\rho- 1\cdot)},$ $\rho^{-2}(\int(Y(\rho^{2}t, x)-Y(\rho^{2}t, O))\phi(x)dx,$ $D_{x}Y(\rho^{2}t, a)))$

is equivalent to the process

$(P_{\mu},$ $( \rho\int(Y(t, p^{-1}x)-Y(t, O))\phi(x)dx,$ $D_{x}Y(t, \rho^{-1}a)))$ .
By the continuity of $D_{x}Y(t, x)$ this process converges to the process

$(P_{\mu},$ $( \int x\phi(x)dx,$ $1)D_{x}Y(t, 0))$ as $\rhoarrow\infty$ .
Hence we have shown Theorem 6.
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