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§1. Introduction.

The strongest useful equivalence for the study of orbit structures of
homeomorphisms will be topological conjugacy. Our investigation will be within
the context of the conjugacy problem for homeomorphisms with expansiveness
and the pseudo-orbit tracing property (abbrev. POTP). The author proved in
that every compact surface which admits such homeomorphisms is the
2-torus and moreover that such a homeomorphism of the 2-torus is topologically
conjugate to a hyperbolic toral automorphism. Thus it seems that orbit
structures of homeomorphisms of the n-torus will be determined under the
assumption of expansiveness and POTP. And so it will be natural to ask
whether every homeomorphism with expansiveness and POTP of the n-torus is
topologically conjugate to a hyperbolic toral automorphism. An answer of this
problem is given as follows.

THEOREM. Let f:T"—T" be a homeomorphism of the n-torus. If f is
expansive and has POTP, then f is topologically conjugate to a hyperbolic toral
automorphism.

The notion of “c¢-map” is introduced for (self-) covering maps. The class
of covering maps with this notion is wider than that of homeomorphisms having
expansiveness and POTP. Recently in [2] N. Aoki and the author obtain some
interesting results for c-maps, which relate to our theorem.

Let (X, d) be a metric space and f: X—X be a (self-) homeomorphism. We
say that f is expansive if there is ¢>0 (called an expansive constant) such that
if x, yeX and x+#y then d(f"(x), f*(y))>c for some n=Z. A sequence
{x:}icz Of X is a 8-pseudo-orbit of f if d(f(x;), x:+1)<8 for all ;=Z. A point
xeX e-traces a sequence {x;}:=z of X if d(fi(x), x;)<e for all ;i=€Z. We say
that f has POTP if for ¢>0 there is d>0 such that every d-pseudo-orbit of f
is e-traced by some point of X. Note that if X is compact, then expansiveness
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and POTP are independent of the metrics compatible with original topology,
and preserved under topological conjugacy. For materials on topological
dynamics on compact manifolds, the reader may refer to A. Morimoto [16].

For global analysis of our homeomorphisms, we prepare the notion of
generalized foliations on topological manifolds.

Let M be a connected topological manifold without boundary and & be a
family of subsets of M. We say that & is a generalized foliation on M if the
following hold ;

(1) & is a decomposition of M,

(2) each L& (called a leaf) is arcwise connected,

(3) if xM then there exist non-trivial connected subsets D,, K, with
D.NK,={x}, a connected open neighborhood N, of x in M and a homeo-
morphism ¢, : D; X K;—N, (called a local coordinate (around x)) such that

(@) ¢alx, x)=x,

(d) ¢u(y, x)=y (y£D,) and ¢ilx, 2) =z (z€K,),

(¢) for any L&9 there is an at most countable set BC K, such that
N.NL=¢,(D;XB).

Let I be a generalized foliation on M. For fixed L& let @, be a family
of subsets of L defined as follows; De@Q; if and only if there is an open
subset O of M such that D is a connected component in ONL. The topology
generated by Q is called the leaf topology of L.

If x L and D, is as in (3), then D,C L and D, is open in L (with respect
to Q). Moreover the relative topology of D, by the leaf topology coincides
with that of D, by the topology of M. Note that the leaf topology has
countable base.

If f: M—M is a homeomorphism such that f(F)=%, then it is easily checked
that for every L%, f: L—f(L) is a homeomorphism (with respect to @, and
Qrwy)-

Let & and &’ be generalized foliations on M. We say that F’ is transverse
to ¢ if to x=M there exist non-trivial connected subsets D., D, with
D.ND,={x}, a connected open neighborhood N, of x in M (such a neighborhood
N, is called a coordinate domain) and a homeomorphism ¢, : D, XD;—N, (called
a canonical coordinate (around x)) such that

(@)" ¢ulx, x) =x,

(b)Y ¢y, x)=y (y&D,) and ¢.(x,2) =2z (z=D5),

(¢)) for any L&9 there is an at most countable set B’C D/ such that
N:N\L=¢(D.XB"),

(dY for any L’'&eg’ there is an at most countable set BC D, such that
N:NL' =@ (BXD%).

Let &’ be transverse to §. We denote by L(x) and L’(x) the leaves of &
and &’ through-x respectively. Let N be a coordinate domain and write D(x)
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and D’(x) the connected components of x in NN\ L(x) and NN L’(x) respectively.
For x, yeN it is not difficult to see that D'(x)N\D(y) is a single point. And

so we can define a map
TN NXN-—>N

by (x, y)—D'(x)ND(y), and have then 7y is continuous and

Talx, x)=x, ralx, 78y, 2) =71n(x, 2),
ra(ralx, 3), 2) =75(x, 2).

If Nand N are coordinate domains and if U is a coordinate domain such
that UCNNN, then the following is checked from the definition

TU = TNWUXU = T}VIUXU-

Let f be a homeomorphism of a metric space (X, d). For x=X, define the
stable set W*(x) and the unstable set W¥(x) by

Wix) = {yeX: d(f"(x), f{(y)—0 as n—oo},

WH(x) = {yeX: d(f*(x), fM(y)—0 as n——co}
and put
G5 = {W(x): x&€X} (o=s, u).

Then % is a decomposition of X and f(F%)=F9.
For the proof of we need the following two propositions.

PROPOSITION A. Let M be a closed topological manifold and f: M—M be a
homeomorphism. If f is expansive and has POTP, then % (o6=s, u) are general-
ized foliations on M and F% is transverse to F¥%.

When & is a generalized foliation on M and there exists a generalized
foliation transverse to &, the orientability for & will be defined (see §4).

PROPOSITION B. Let f: M—M be as in Proposition A. If the generalized
foliation F% is orientable, then there exists IEN such that for any m=l all the
fixed points of f™ have the same fixed point index 1 or —1.

If we establish Proposition B, then our theorem will be obtained by using
skilfully the techniques of J. Franks [9], M. Brin and A. Manning and the

author [12].

§2. Geometric properties of homeomorphisms.

This section contains the proof of Proposition A and results about local
behaviors of homeomorphisms with expansiveness and POTP.
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Let M be a closed topological manifold and d be a metric for M. Let
f:M—M be a homeomorphism. For ¢>0 and x&M we define the local stable
set Wi(x) and the local unstable set W%(x) by

Wix) = {yeM: d(f"(x), ["(y)=e, n=0},
Wi(x) = {yeM: d(f"(x), fr(y)=e, n=0}.
Let f be expansive with expansive constant ¢>0. Then we know (cf. [14]) that
(1) for every e>0 there exists N>0 such that
FTWEx) CWUf™(x)), [T"Wix) T Wi(f~"(x))
for all n=N and all x= M.

By using (I) it is easily checked that
2.1) W(x) ZanJOf‘"Wi(f”(x)), WH(x) Zg’f"W?(f'”(X))

for all 0<e=<c¢ and all x=M.

If in addition f satisfies POTP, then the following (II), (I) and (IV) are
proved in [11].

(L) Let eq=c/4. Then there exists 0<8,<e, such that if d(x, y)<&, then
Wi ()NWE(y) is a single point, which is denoted by a(x, y).

(I0) Let 0<0,<¢, be as above and put
406,) = {(x, y)EMXM: d(x, y)<8}.
Then a: 4(6,)—M is a continuous map and
alx, x)=x, a(x, a(y, 2)) = alx, z).
a(a(x, y), 2) = a(x, 2)
whenever the two sides of these relations are defined.
(IV) For every & with 0<86<8,/2, define
Wio(x) = {yeWi(x): d(x, y)<8}  (o=s, u),
Nz 5= a(W¥, s(x)XW, 5(x)).

Then there exist 0<8,<<0:/2 and p,>0 such that for every x=M
(@) Ng,s, s open in M and diam(N;,;,)<J,,
(b) a: W& s (x)XWi,s(x)—=Nyz,s, is a homeomorphism,

(€) N5, DB, (x) where B, (x) denotes the closed ball of radius p, centered -
at x.
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Let 0<0,<0,/2 be as above. We denote by D% the connected component of
x in W¢,5(x) for ¢=s, u, and define

N, = a(D¥XD3), az=aiyu, s: DEXDS—N,.
Then it is easily checked that

{ axx, x)=x,

@2) @y, ¥) =y (yEDY) and au(x, 2) =z (z€ D).

Moreover we obtain the following (see for the proof).

PRrROPOSITION 2.1 (Local product structure). For every x&M
(a) N, is connected and open in M and diam(N,)<d,,

(b) az:DiXDi-—->N, is a homeomorphism,

(¢) there exists 0<p<eg, such that N;DB,(x) for all x&M,
(d) D32{x} for g=s, u.

LEMMA 2.2. For x, yEM there exist at most countable sets B'C D% and
Bc D% such that

(@) N.NW*(y) = a,(DiXB’),

(b) N.NW*(y) = a(BXD3).

PrROOF. We prove (b). If this is done, then (a) is obtained in the same
way. Take zeD% and put D% ,=N.NWi(z). Then it is checked that
D% ,=a,({z} X D). Indeed, by the definitions of N, and «,, we have that
Di . Da({z} XD%). Conversely, if we D3, ,, then there are usD% and ve DS
such that w=a.(u, v). Since weW? (1) and weW{|(z), obviously u, zeW: (w).
Since u, ze D3CW¥(x), by expansiveness z=u, and therefore D% ,Ca({z} XD%).

By the above result and [Proposition 2.1{(b), we have

N,=\U D%, (disjoint union).

2€D%
Cram 1. If D, .NW(3)+ @D for some z= D%, then D%, ,CW*(y).

PrROOF. Let weD;, AW (y)#@. Since D ,CW:(z), by (1) there is
n=0 such that f™w)ef™(Ds,,)CW:,(f*(z)). By the definition of W3(y),
Frw)eWs,(f(y)) for sufficiently large n=0. Hence f"(D%,.,)CW{(f"(y)), and
therefore D3,,CW*(y) by (I).

Let B=D!NW3(y). Then we have
NNW(y)= U Dz, ."Wy) =ng§,z = a(BXDY).

©
2€D

Hence it remains only to prove the following
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CLAIM 2. B is at most countable.

PrROOF. By [2.1), W(y)=Unz0Sa(¥) where s.(3)=f""W(f™(y). Fix n=0
and let p&s,(y). Then DjNs,(y) is open in s,(y) (under the relative topology
of M). This is proved as follows. We set

K= {ueDi: d(f(p), f{(u)<e, 0=i<n}.

Obviously K% is open in D% and so L,=a,(K%XxD3) is open in M by
IProposition 2.1. Hence L,Ns.(y) is open in s,(y). If we establish that
L,Nsa(y)=D3Nsa(y), then our requirement is obtained.

To get the conclusion, let a= L,Ns,(y). Then there are uc K% and veDj
such that a=a,(u, v). Hence a€Wi(u) and acsWi(v). Since a, pEsa(y),
obviously f"(a), f"(P)EWL(f"(»)), and so f(@)EWi,(f"(p)). Since vEW((p),
we have f"(v)eWi (f"(p)), and hence f*(a)cWi. (f"(v)). For 0=</<n, we have

d(f¥a), ') £ d(f(@), flu)+d(fiw), fLPN+d(fAP), f{v)

< got-&0+6 = 3¢,

and hence acWi, ()N\W¥w)={v}. Therefore L,Ns,(y)CDj. Since p&Kj,
Diy=a,({p} XD3)T L, and so0 Dp,Nsa(y)=LpNsi(y).

Since s.(y) is compact, there is a finite set {p;}Cs.(y) such that
so(Y)C\Ui D, C\UWE(D). Let zy, z2eE8.(y)ND%.  If 2y, 2,€WE(ps) for some i,
then z,eWi (z)NWE(x)={z}, and so z;=z,. This implies that s.(y)N\D% is
finite. Since

B =W3)NDE = (Usu())NDE = \(sa(INDY),
B is at most countable.

The conclusion of Proposition A is obtained in proving the following

PROPOSITION 2.3. Under the above assumptions and notations

) F% (o=s, u) are generalized foliations on M,

(2) % is transverse to F%,

3) for any x&M, a,: D XD5—N, is a canonical coordinate around x.

PrROOF. Let p be as in[Proposition 2.1. Then it follows that for every x&M

2.3) Wo(x) C D% (o=s, u).

Indeed, since Wi(x)CB,(x) and B,(x)CN, by [Proposition 2.1(c), we have y& N,
when yeWi(x). Since N,=a(DiXD3), obviously y=a(u, v) for some ucD:
and veD;. Hence a(x, y)=a(x, a(u, v))=a(x,v) by (). Since p<e, we
have Wi(x)cWi(x) and hence yeW$(x). By the definition of a, y=
a(x, EW: (x)NWE(y). Since veD;CW: (x), we have also a(x, v)=v. From
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the above calculations we have y=veD3. In the same way, the result for
o=u is checked.
By and [2.3) we have that for every x&M
We(x) :nkgjof_"Dsfn(x), W*(x) =\ f*D}-nczy.

nzo

Since D9 (¢=s, u) are arcwise connected (by [Proposition 2.1{a), (b)), so are
We(x). Hence by (2.2), [Proposition 2.1l and Lemma 2.2 the conclusion is obtained.

Let n=dim M. We take an atlas {(U,, g;)} of M such that

{ each g;:Ug—R"™ is a homeomorphism, {U;} is

2.4) finite and a Lebesgue number of {U;} is r,>0.

Let d, be as in (II). Since J, is taken sufficiently small, we can assume that
0,<r:.. Thus diam(N,)<r, for all x&M (by Proposition 2.1(a)).
Let p>0 be as in Proposition 2.1 and choose a finite open cover {V,;} of M
such that
each diameter of V; is less than p and there
are an open set VDV, and a homeomorphism
h;:Vi—=R™ such that V;=h;~ (V") where V"
denotes the unit open ball in R™.

(2.5)

Then we can take a Lebesgue number r, with 0<r,<p.
Since M is compact, by (M) there is 0<7; <7, such that for all xeM

a(B, (x)X{x})C B,,(x).
And we choose a new atlas {(W;, h;)} of M such that

(2.6) { each h;:WR™ is a homeomorphism, {W;} is

finite and each diameter of W, is less than 7,

and let 0<r,<7; be a Lebesgue number of {W;}.
By (I) there is />0 such that for x&M and m=!

2.7 D C W (f™(x), [f-mDi C Wi (f~™(x)).
Fix m=![ and take x<Fix(f™). We write
K:= ™Dy, Ki=[f"D3).
PROPOSITION 2.4, For x&Fix(f™) the following hold;
(@) KzCB.(x) (o=s,u)

(b) K¢ is an open subset of D5(x) (6=s, u),
(c) the diagram
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mX m
K:x D} f7xJ > DY X K3

(le lax
fm

a (KX D}) ————> a(DiXK;)

commutes.

PROOF. (a) is clear. Since 7,<p, by [2.3) we have K5CD5. Since D3 is
open in W?(x) by Proposition 2.3 and f™:W?(x)—W?%x) is a homeomorphism
under the leaf topology, K°(x) is open in W?(x), and hence K¢ is open in D%.
(b) was proved.

To show (c), take (y, z2)&€K%“XD3%. Then we have by the definition

(2.8) a=ay(y, z) € Wi (n)NWE(2).

On the other hand, since

(2.9) ™y e fMKY) = D%

(2.10) f™=e) e K; C Dg,

we have

(2.11) b= a,(f™y), f™2) € WL(SMNNWE(f™(2).

Since for 0</<m
d(fXa), fi(x)) = d(f(a), AN+, fi(x),
by using and we have
d(f¥a), fi(x) <2¢  (0=i=m).
If a’=f-™(b), then
d(fa"), f{x) = d(f¥a"), fH2)+d(f2), f{x)
and hence from [2.11) and the fact that ze D5CW? (x),
d(fi(a"), fix) =2¢  (0<i<m).
Hence we have d(fi(a), f¥a’))<4e, for 0<i<m. For i=m, we have
d(f¥a), f{a") = d(f¥(a), f*=™b))
< d(fia), FAyN+d(fi=™e f™(p), (b))
and so by [2.8) and [2.11)
d(f¥(a), fla")=2&  (Gzm).
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From [2.8) and [(2.11)

d(f¥a), fia") = d(f¥a), fU)+d(f=™s f™2), fi-™(b))
= 250 (Z§_O)

Since 4e,=c is an expansive constant for f, we have a=a’ and the proof is
completed.

§3. Lifting of the geometric properties.

Let M be a closed topological manifold and = :M—M be a covering projec-
tion. Let d be a metric for M. Then we know (cf. [8]) that there exist a
metric d for M and r,>0 such that

(i) if x, yeM and d(x, y)<2r,, then d(x(x), n(y)=d(x, y),

(ii) if xeM, yeM and d(z(x), y)<2r,, then there is a unique y’&M such
that y’€zx-'(y) and d(x, y)=d(x(x), ¥),

(iii) all covering transformations are isometries,

(iv) d is complete.

If B,,(x) denotes the closed ball of radius 7, centered at x<M, then
Tig, s’ Brox)=Br(a(x)) is an isometry (by (i) and (if)).

Let G(x) be the group of all covering transformations for . Let f: M—M
and f:M—M be homeomorphisms such that fex=m-f. Then there is a group
automorphism A : G(x)—G(x) such that f-f=A(B)-f for all B=G(x), in which
case A is denoted by fs.

The following is easily checked (cf. [16]).

(v) f:M—M is biuniformly continuous under d.

By this fact there is 0<5,<7, such that if d(x, y)<7,, then max{d(f(x), F(»)),
d(f~x), F N <ro/2.

LEMMA 3.1. If f has POTP, then f has POTP.

ProOF. Let 0<e<7%, Since f has POTP, there is 0<0=<r,/2 such that
every d-pseudo-orbit of f is e-traced by some point of M. To show that f has
POTP, let {x;}:icz be a d-pseudo-orbit of f. Since d<r, we have that
{m(x:)}icz 18 a d-pseudo-orbit of f. Hence there is x=M which e-traces
{m(x:)}icz. Since e<n,<r,, we can take =M such that xezx%x) and
d(%, xs)<e. Then we have

d(f(%), ) < d(F(X), Fxo)+d(F(xe), x1) £ 10/2+0 < 7y,

and hence d(f(%), x1)=d(f(x), n(x,))<e. Inductively, d(F{Z), x)<e for i=0.
In the same way, we have d(f¥(), x;)<e for i<0, and therefore f has POTP.



366 K. HIRAIDE

For x&M and >0, let W(x) and W¥(x) be the local stable and unstable
sets of f respectively.

LEMMA 3.2. For 0<e<w, and xeM, m: Wix)»Wix(x)) is an isometry
(o=s, u).

Proor. If yeW:(x) and =0, then we have

e = d(f¥(x), F{y) = d(fren(x), fren(y)),

and hence n(y)sWi(z(x)). To see that T sy is surjective, let yeW:i(x(x)).
Then there is y’€M such that y’ex~'(y) and d(y’, x)<e. Since e<7, we
have that d(7(x), f(y"))<r, and so

d(f(x), F(3") = d(fer(x), f(¥) <.

Inductively, we have d(Fi(x), fi(y')<e for i=0, and therefore y’< W(x). Since
Wi(x)C B, (x), we proved that = : Wi(x)—»W(x(x)) is an isometry. In the same
way, the conclusion for ¢=u is obtained.

LEMMA 3.3. If f is expansive and 0<c=<%, is an expansive constant for f,
then f is expansive and c is an expansive constant for f.

PROOF. By and the fact that ¢ is an expansive constant for f,
we have

(W )NWHx)) = a(Wix)Na(WE(x)) = Wia(x )W (z(x)) = {=(x)},
and hence Wi(x)N\W¥(x)={x}. This implies that f is =xpansive and ¢ is an
expansive constant for f.

By §2 (I) and we have the following

LEMMA 3.4. Under the assumptions in Lemma 3.3, for ¢>0 there is N=0

such that
FrWix) C W(fr(x)), FWix)c WHFx))

for all n=N and all x&M.

For x=M, let W*(x) and W*(x) be the stable and unstable sets of f

respectively.
ensures the following

LEMMA 3.5. Under the assumptions in Lemma 3.3

Wex)=\J FrWifr(e), W) =\ FrWaF="(x))

nao

for all 0<e<c and all x=M.
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LEMMA 3.6. For B=G(x) and x&M
BWo(x)y=W(B(x)) (o=s, u).

Proor. If yeW(x), then
d(f™eB(x), Fm=B(y) = d(FE(B)F™(x), FEB)F™(3))
=d(f"(x), F"()—0,

and hence B(y)eW*(B(x)). Conversely, B(y)=W(B(x)) implies yeW(x).
Therefore SW*(x)=W?*B(x)). In the same way, we have BW*(x)=W*(B(x)).

Hereafter let f is expansive and fix its expansive constant 0<c<7.
Moreover let f have POTP. Let 0<d,<<e;=c¢/4 be as in §2. If we set

4(80) = {(x, YEMXM :d(x, )<},

then (z(x), n(y)=4(d,) when (x, y)=4(d,). Hence we have {a(z(x), #(¥))}
=W (a(x)DNWE(n(y)). Since d(n(x), a(m(x), n(y)))=e,<r,, there is a unique
a(x, y)eM such that d(x, a(x, y)<e, and w-alx, y)=a(z(x), 7(y)).

LEMMA 3.7.
1 Aalx, i} = Wi ()NWE(y) for all (x, y)E 4(60).
(2) @:4(3,)—M is a continuous map and

alx, x)=1x, alx,a(y,z)=dax, z),
a(a(x, y), z) = a(x, z)

whenever the two sides of these relations are defined.

PROOF. Since &,<7, and &+8,<7,, (1) is obtained from (2)
holds by §2 (W) and (1).

Let x&M and let D%, (6=s, u) and N, be the subsets constructed in
§2. We define

RQI

[l

”'gro(x))—l(D‘;(z)) (c=s, u)

(
r = (ﬂlgro(x))-l(Nn(x)) .

2

Since D%, is a connected component of z(x) in W, 5 (z(x)), by D3,
is a connected component of x in W9 ;(x). Since Nicoy=a(D¥%XDics) and
a(x, N=(T5, )7 eal@(x), 2(y)), we have

N-z = (xlgro(x))‘l"a(D%(x) XD?T(IL‘))

= A((715, ) (Db X (@1, ) (Dicor)) = &DEXDY),
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and so we can define
a@,: DixDs —> N,

Then the following is obtained from [Proposition 2.1,

by Xe=Q\pu, 1

8e

ProPOSITION 3.8 (Local product structure on M). For every x&M
(a) N, is connected and open in M and diam (N,) < &,

(b) @z: DXDS— N is a homeomorphism,

(¢©) N, D B,(x) where p is as in Proposition 2.1(c),

@ Di2{x}  (o=s, w).

Let F be a generalized foliation on M. Let & be a family of subsets of M
defined as follows; L& & if and only if there is L&J such that L is an arc-
wise connected component in x~}(L). Then it is easily checked that & is a
generalized foliation on M and for all Led, n(l)eF and z: L-x(L) is a
covering map. We say that & is the lift of & by =. If ¥’ is a generalized
foliation on M transverse to &, then the lift &’ is transverse to &.

Since f: M—M is expansive and has POTP, we know that F% (¢=s, u) are
generalized foliations on M and &% is transverse to F% (see Proposition A).
Note that

F2={W(x): xcM} (o=s,u).

PROPOSITION 3.9. Under the above assumptions and notations

¢y % (6=s, u) are generalized foliations on M,

(2) % is transverse to F%,

(3) for any x&M, a,: D*xDs—N, is a canonical coordinate around x.
Moreover for ¢=s, u the following hold;

(4)  F% is the lift of % by =,

(5) m: Wo(x)-W(x(x)) is a homeomorphism for all xeM.

Proor. Use Lemmas B.3, B.4, B.5 and and [Proposition 3.8 and run on
the proofs of and Proposition 2.5 Then we see that (1), (2) and
(3) hold. To obtain (4) and (5), we show that m: W*(x)-W*(=(x)) is bijective.

Let yeW?(x(x)). Since W¥x(x))C D%, by [2.3), there is n=0 such that
SMDEDjnaw»=D%ojncz>. Remark that D-i?nun:(?frBro(f—n(m,)_l(D?rof‘ncx>)- Then
we can take y,&D% s such that m(y,)=f"(y). Let y’'=fF""*(y,). Then y'<
Wi(x) and =(y’)=y, and hence zm(W*(x))DW?*z(x)). Conversely, by the defini-
tion (W (x))CW(x(x)), and so m(W(x))=W*x(x)). Let y., v.=W(x) and let
r(y)=n(v.). Then d(Ff™(v.), f"(y:))<r, for some n=0. Since 7mof™*(y,)=
frem(y)=f"om(y)=m°f"(y2), we have f"(y,)=F"(y.) and hence y,=3y,. There-
fore m: W(x)—W?(x(x)) is bijective.




Expansive homeomorphisms of n-tori 369

By the above result we have

T (Wi (w(x)) = \U  W:¢x’)  (disjoint union),

rer=l(z(x))

and hence by (1) each W*(x’) is an arcwise connected component in z (W *(x(x))).
Therefore % is the lift of 4% by . In the same way, we have F7% is the lift
of 9% by =. (5) follows from the fact that z: W(x)—»W?(xn(x)) is bijective
(c=s, u).

§4. Orientability of generalized foliations.

Let X be a topological space which satisfies
Z i=n
HOX XNED={
for all x€X, and V., be a connected open neighborhood of x in X. We say
that V. is a canonical neighborhood if there is O,=H,(X, X\V,) such that
7,4(0z) is a generator of H,(X, X\{z}) for all z&V, where 7,: (X, X\V,)
(X, X\{z}) denotes the inclusion. Such an element O is called a fundamental
class of H(X, X\V,).

If, in particular, X is Hausdorff and O, = H,(X, X\V,)is the other fundamental
class, it follows from the definition of singular homology that either 7,(0%)=
1,4(03) for all zeV,, or 7,4(0%)=—17,+(0;) for all zeV,.

Let M be a topological n-manifold without boundary. In this case we have
always that for all xeM, H(M, M\{x})=Z (i=n) and =0 (+n), and that for
each x&M, there is a canonical neighborhood of x in M.

LEMMA 4.1 (Bredon [4]). Let X and Y be non-trivial topological spaces and
X XY denote the product topological space. If X XY is a connected topological
n-mani fold without boundary, then

(1) there are p, ¢>0 with p+qg=n such that

Z (=

HiX, X\ {x}) = {0 gq&ﬁ; (xeX),
VA [ =

mrysoh={] 20 wen,

(2) each point of X (resp. Y) has a canonical neighborhood in X (resp. Y).

LEMMA 4.2. Let M be a connected topological manifold without boundary and

G be a generalized foliation on M. Then there exists 0<p<dim(M) such that
for each leaf LT
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Z  G@=p)
Hi(L, L\ = i xel).
L I ={ " el
PrROOF. Let ¢p: DXK— N be a local coordinate. Then there is 0<p <dim(M)
such that
Z  (i=p)
0 (i#D)

for yeD (by Lemma 4.1). Take z&N and let LEF be the leaf through z.
Then there is ye D such that

Hy(D, DN{yD) = {

Hi(L, L\{z}) = H(D, DN{y})  (z0).

For, if D’ denotes the connected component of z in NNL, there is z’ K such
that ¢( , z’): D—D’ is a homeomorphism, from which

Hy(D', D'\{z}) = Hi(D, DN{»})  (120)

where z=¢(y, z’). Since D’ is open in L and D'G,L is a C° embedding, by
applying excision isomorphism theorem we have

Hi(L, L\{z}) = Hi(D’, D'\{z})  (1=0)
and therefore the lemma holds.

Let & be a generalized foliation on M and p be as in The
natural number p is called the dimension of ¥ and we write p=dim (). If g’
is a generalized foliation transverse to &, then dim(F)4+dim(F’')=dim (M) holds.

Assume that there exists a generalized foliation transverse to ¢. From
now on we introduce the orientability for F. To do this, for any path o: [0, 1]
—M we construct an isomorphism

@x: Hy(L(@(0)), L)) {w(0)}) —> Hp(L(w(1), LieO)Mao(D}),

where L(x) denoteés the leaf of & through x, such that the following hold;

(a) (constant path),=id

(b) (@1 W2)x = Wasowsx

(¢) if w, is homotopic to w, rel {0, 1}, then w;x=w,x.

Let ¢: DXD'—N be a canonical coordinate around some a=M. Then N is
expressed as the disjoint union N=\J,cp D, of subsets D, where D,=¢@(DX {x})
for x€D’. We note that D, is the connected component of x in NNL(x). By
[Lemma 4.1(2) there is a canonical neighborhood of a in D which is denoted by
V. Then R=¢(VXD') (CN) is a coordinate domain. Obviously R=\J,cp V;
where V,=¢@(VX{x}) for x&D’. Since ¢(a, x)=x and ¢(, x): D—D, is a
bomeomorphism, we see that O,=¢( , x)x(O)EH,(D,, D\V;) is a fundamental
class if so is O= H,(D, D\V).
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For x, x'€D’ define a homeomorphism ¢, 5 : (Dz, D\NV)—~(Dyry Dy \Vy)
such that the diagram

(D.t; Dx\V:c) Sbr'zl —> (Dx'; D.r‘\Vz')
SD( 1& Ay ’ x’)
(D, DN\NV)

commutes. Then ¢, «(0z)=0, holds.
For z&R choose x,€D’ such that z& V,,CD,,. Since D, is the connected
component of z in NN L(z), the composition map

i,
Jurt HyDsyp Do V) —> Hy(Ds., Da Nz}

’

% H(LG@), Lonen=2

sends the fundamental class O, to a generator of Z where 7,:(D,,, D:\V3,)
¢+(Ds,, Dz Nz}) and 252 (Do, Do N2zHS(L(2), L(z)Nz}). And so for z, weER
we define an isomorphism

DY et Hp(L(2), L(z)\z}) —> Hp(L(w), L(w)Mw})

by @2 r(j.4(0z,))=7wx(0z,). It is clear that for z, w, w'ER

(@ PiLr=id,

(b) PYr= 0y DR,

©) (Prp)" = D% r.

Taking b=M, for a canonical coordinate ga:ﬁxﬁ’—»ﬁ around b we can
choose a canonical neighborhood ¥ of bin D. As we saw above, N=¢(Dx ")
and K’=¢(I7><ﬁ’) are expressed as the disjoint unions ﬁzuyeﬁrﬁy (ﬁy:—-
e(Dx{y}) and R=\U,csV, (V,=a(V x{y}). Let OcHy(D, D\V) be a funda-
mental class and define O,=@( , »«(O)eHy(D,, D,\V,) for yel'. For y, '
e, let u.y=¢(, 3)°¢(, »)7* Then gzzy,y,*(py):éy, holds.

For z&R, choose y,= D’ such that z&V,,CD,,. Then the composition map

jz*: Hp(ﬁyz» ﬁyz\v‘l/z) - Hp(ﬁyz; ﬁyz\{z})
—> Hy(L(2), L(e)\Me}) = Z
sends O~yz to a generator of Z. For z, weﬁ, as above we define
OPr: Hy(L(2), L(z)\Nz}) —> Hp(L(w), Lw)N{w})

by D% a(fk(0y ) =7 uwx(0y,).
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CLAIM. Suppose RNR is non-empty and w, z= RNR. If there exists a path
©: [0, 11>RNR such that w(0)=z and w(l)=w, then Qv r=0% » holds.

ProOOF. Since o([0, 1) NNN and N and N are coordinate domains, there
is a coordinate domain U such that ([0, 1])cU and UCNNN. Then we have

4.1) Tv=TNvuxv =TFwUxU

where 7y, v and 75 are as in §1. For usU, let E, be the connected com-
ponent of u in UNL(u). Since z, welU, we have

TU('; w)lEz: Ez —> Ew .
Since UC NNN, obviously E.cD, ND,, and E,cD, ND,,. Remark that

¢z,w =71, w)Isz: sz —> wa
and
gZz,w =7rx(-, w>;5yzl D,,—D,,.

Then from it follows that
4.2) DeowiE, = .. wig, = Tv(*, W)k, .

Since w([0, 1])CR(\§(\U , we can take a coordinate domain W such that a([0, 1])
CW and cl(W)CRNRNU. For ucsW, let F, be the connected component of
u in WNL(u). Since cl(W)CU, cl(F,)CE, for all usW. Hence by applying
the excision theorem the isomorphisms induced by the inclusion maps are ob-

tained ;
= Hp(Dr,, sz\Fz) =4,
/kl*
HP(Ez; Ez\Fz)

o~

ki H,(D,, B, NF) =1,
= Hp(Dzw» D.tw\Fw) =4,
kox
Hy(Ew, EuNF.) 5
ks Hy Dy, Dy NF) =25 -

Since WCRNR, obviously F.cV. NV, and F,cV, N7, and hence we
have the homomorphisms induced by the inclusion maps:

Lk
Hp(sz; D:rz\v.rz) — 4,

Ly

H,D,,, D, \V,)— 4,
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lox
Hp(way wa\ wa) —> Az

lax

HyD,,, Dy V) —> 4.
It ]'z*(Oxz)zfz*(Oyz)eH,,(L(z), L(z)N\{z}), then by the commutativity of the

inclusion maps we have
Moo kikelix(02,) = noxokikel1(0y,)
where n,:(E,, E,NF,)G(E,, ExN{z}). Since kiiel1x(0.,) and E;;oil*(éyz) are

fundamental classes, for all z’F, we have

nose krkelin(0a,) = npsekikel1n(0,,)
and hence by
¢z,w*°nz'*°k1_>|x<°ll*(oxz> = S‘Ez, w*°nz'*°i€;>|1<°ll*(0yz) .
Since ¢, ,» and §, , commute with the inclusion maps, it follows that for all

wekF,
Mgy %° k;*lflz*"gbz, w*(O.rz) = Moy °k;>t£°lz*°¢z, w*(OyZ) ’

where 7y 2 (Ey, EwNFp)H(Ew, EuNw’)). Since ¢, 4(0:,)=0,, and &, »x(0,,)
=0, and since weF,, we have

Mk kikolox(Oz,) = Muse Bt lx(04,,)
and therefore
jw*(Ozw) = ].w*(Oyu)

by the commutativity of the inclusion maps. This implies that Q¥ z=0¥ z.
Let w:[0, 1]—M be a path. Then we can find a sequence
$5=0s5;,s5, <5, =1
and a sequence x,, ---, x, of points of M such that
o([si-1, 5:]) T R,

where R;,;=¢. (V. XD%)), ¢z,: D; XD,,—N,, is a canonical coordinate around
x; and V., is a canonical neighborhood of x; in D,,. Now we define an iso-
morphism

0y Hy(L(@(0)), Liw0)N{w(0)}) — H,y(L(w(1)), L) {w1)})
by

— (o w(sy)
Oy = Yulsy DRy, @ o} Ry,

It is not difficult to see that w—w, is well-defined and satisfies all our require-
ments.
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From the definition of w4 we see that the functor w—wy satisfies the fol-
lowing

LEMMA 4.3. Let M; be a connected topological manifold without boundary and
F; be a generalized foliation on M; to which there exists a transverse generalized
foliation F;, where i=1, 2. If f: M,—M, is a covering map and F, (resp. F1) is
the lift of F, (resp. F3) by f, then for any path w

frews = (fow)xo [«

where fy denotes the induced isomorphism Hy(L, LN{x})—H,(f(L), f(LN{F(0}),
xeled, and p=dim(F,).

A generalized foliation & on M, to which there exists a transverse gener-
alized foliation F’, is called orientable if for [w]= (M), w4 is the identity. Let
dim(Z)=p. We call an orientation of F a family {O,€H,(L, L\{x}): O, is a
generator and x€ L F} if wx(Oyuy)=04q, for any path w. If F is orientable,
then there are exactly two orientations for &.

LEMMA 4.4. If & is non-orientable, then there exists a double covering map
7 M—M such that

(1) the lift G is orientable,

(2) if f: M—>M is a homeomorphism and if f(F)=F and f(F')=F', then
there is a lift f: M—M of f by =.

ProOOF. Let A={[w]Em,(M): wy=id}. Obviously 4 is a subgroup of z,(M)
with index 2, and then there exist a topological manifold M and a double
covering map = : M—M such that wy(z (M)=A. Let F be the lift of F by =.
Since myowe=(m-w)xo7wx for [w]=x, (M) (Cemma 4.3), we have rmycws=ms be-
cause [w-w]= 4, and so w,=id. Thus & is orientable. For [w]=A4 we have

S = faowsx = (fow)so [«

and so (few),=id, from which [f-w]= 4. This implies the existence of a lift
f of f by =.

§5. Proof of Proposition B.

A topological space X is called an Euclidean neighborhood retract (abbrev.
ENR) if there exist an open subset O of some Euclidean space R™ and con-
tinuous maps 7: X—0, »: O—X such that re/=id. Let X be an ENR and V be
an open subset of X. Let g: V—X be a continuous map such that the fixed
point set Fix(g) is compact. Then we define the fixed point index of g by
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I(g) = the fixed point index of jeogor

where 7: X—0 and r: O—X are as in the definition of ENR. For the details
of fixed point indices the reader may refer to R. Brown and A. Dold [7].

Let f: M—M be as in By (I) of §2 there is />0 such that
holds. Take and fix m=I. Let x&Fix(f™). As in §2 we define D% and
K (6=s, u), and put

Fos=f™p: DI—>K; and F,,= f™gu: K§ — D%.

Since x is in DiNK%Y, the point x is a fixed point of F, , (¢=s, u). Since
DscWi(x) and KiCDiCWi(x), by (I) of §2 we see that x is the only fixed
point of F, ,. From [Proposition 2.1(a) and (b) it follows that D’ (¢=s, u) are
ENRs. By [Proposition 2.4(b) K? is an open subset of D3. Hence, as above we
can define the fixed point indices of the following maps;

Feoo Fzloy FouXFas, FipoXF3l, F7luXFg
where o=s, u. We denote by Ifm(x) the fixed point index at x of f™.
LEMMA 5.1. For every x=Fix(f™)

Ifm(x) = I(qu)I(F.rs)

ProOOF. Combining [Proposition 2.1/(a) and (b) with [Proposition 2.4(b), we
see that a ,(K%XD%) is an open neighborhood of x in A. Hence I n(x)=
I(F. ,XF. ) by Proposition 2.4c) and the property of fixed point index. Since
I(F,  ,XF.o=IF.,- IF,; by the property of fixed point index, the con-
clusion is obtained.

Let n=dim (M). Hereafter we fix an orientation of R"; {0, H,(R", R"\{z}):
0, is a generator and z& R"}. When V is an open subset of R™ and ze V, we
denote by 7% the inclusion (V, V~{z}).(R®, R*~{z}). Obviously i induces an
isomorphism

(st Ho(V, VN{z}) —> Ho(R", R™{2}).

LEMMA 5.2. For every x=Fix(f™)
(@ I(F.s=1IF3)=1,
(b) I(F. ) is either 1 or —1.

PrROOF. (a): Let p and 7, be as in §2 and {(W;, h;)} be the atlas of
Since r, is a Lebesgue number of {W;}, there is W, h)e{(W,, h;)} such that
B, (x)CWCB,(x)CN,. By Proposition 2.4(a) we have K:CB, (x). Define a
homotopy H: D3 x[0, 1]-Ds3 by

H(y, 1) = Pteaz'oh ! (theF 4, «(x))
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where P*: DYXDs—D5 is the natural projection. Then it is easily checked that
H(y, 0) is a constant and H(y, 1)=F, «(y). Since the image of H is contained
in a compact set P-a;'(B,(x)), obviously {y&D3: H(y, t)=y for some t&
[0, 1]} is compact, and hence I(F. ;)=1 by the property of fixed point index.
In the same way, we have I(F;!,)=1.

(b): Let r,>0 and {(U;, g:)} beasin[2.4] Since r, is a Lebesgue number
and diam (N,)<r,, there is (U, g)={(U;, g:)} such that N,cCU. We define a C°
embedding ¥ : D*XD*—R" by ¥=ge-a,, and write

V=T(KtxXK)?) and a=¥(x, x).
Since V is open in R", by the definition of fixed point index we have

Gy (135 (0a) = I(F 2, XF 310,
where
G ={d—V(F; . XF3)T"): (V, V\{a})— (R", R*"\{0}).

Let £: R*—R"™ be the homeomorphism defined by z——z. Then it follows that

G= E°Gl°[w‘°(F.z.uXF;,ls>°w-l]
where
Gy = ({d—=T(F'uXF7, )T ") (g(No), gNoINa}) — (R*, R*™\{0}).
Note that ¥<(F, ,XF3;',)-¥-! is a homeomorphism from V onto g(N,). Then
we have
I(quXles): iI(F;.luXF.z‘s)
since Gix°((§ v )% (0a)=I(F3'u X F,5)0, by the definition of fixed point index. By

@) I(FF3uXF, =I(F;',) - I(F; =1 and hence +1=I(F, ,XF3)=I(F; .)-
I(F;t). Therefore I(F,,,) is either 1 or —1.

We recall that g% (¢=s, u) are generalized foliations on M and % is
transverse to % (see Proposition A). Let T be a coordinate domain. As we
saw in §1, a continuous map 7r: T XT—T is defined. For a C° embedding
¢: T—R" and fixed x&T, we define a continuous map Rf 4(-): ¢(T)—R" by
(6.1) Rf,4(2) = ¢ore(x, ¢ (2)—de11(p7(2), x).

It is easily checked that R% ,(z)=0 if and only if z=¢(x), and hence we have
Rf 41 (P(T), (T)NP(x)}) —> (R, R™{0}).

LEMMA 5.3. Let D be a connected open subset of M and ¢: D—R" be a C°
mbedding.  Then there exists kEZ such that for any coordinate domain T in D
and for any x&T

R7, 452 (4% (Oyar) = kO,
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PROOF. Since T is open, for x<T thereis 6>0 such that ¢(T)DB; where
Bs={zeR": |¢(x)—z[=0}. Let Viy,={zeR": |{(x)—z[<d/2}. Then there
is €>0 such that

[RE 4l = ¢  (z€B\Vy5).

Since 77, ¢ and ¢~' are continuous, we can find 0<8<0/2 such that for yeT
with ¢(y)=Bg
| Rf,4(2)—RE, 4(2)| = e/2  (z€B,).

Define H: B;x[0, 1]—R" by

H(z, t) = (1=t)R%, y(2)+1 R}, 4(2) .
Then we have
| H(z, DIl = | RF, (2)+1(RE, y(z)— RE, 4(2))]|
= | RE, 4(2)Il—tl| R}, 4(2)— R¥, 4(2)]|
>e—~te/2>0 (z€B\Vy),

and hence Rf, and R}, , are homotopic continuous maps from (B;, Bs\ Vi) to
(R™, R®™\{0}). Hence

(RE.pip e = (Rbgigp )t HalBs, BiNVan) —> HA(R*, R™N{0}),

and so
RE gx = Rb.yxt Ho((T), G(T)\Vip) —> Ho(R", R™{0}).

Since ¢(x), ¢(y)E Vs/2, obviously

= H (T, fTIN{P0D

Ho(@(T), STINVaro)
T Ha (T, DN,

and therefore
RE, 552 (5 E)% (O gar) = RE, 52 GEEHF (O gcyd) -
Since T is connected, there is k= Z such that for every xT
RE, 44 G5F)¥ (O gcar) = kO, .

Let T, T’ be coordinate domains in D. If TNT’# @, then there exists a
coordinate domain 7”7 in TNT’. In this case we have Yr=7r prxr=¥71" 17777,
which means that for x&T”

RE, 452 GHEDF (Ogcer) = Rir, o G5 FNF (O gcar) «
Since D is connected, the conclusion of the lemma is obtained.

PrOOF OF PropPOSITION B. By Lemmas b.1l and 5.2 it is enough to show
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that I(F,. .) is a constant for x<Fix(f™). Let p=dim(F%). Since F% is
orientable, there exists an orientation of F%;

{Ore H,WX(z), W*(z)\{z}): Of is a generator and z& M}.
Since f™(Z%)=9%% (o=s, u), by Lemma 4.3 there is a constant e==+1 such that
(5.2) f20Y =€0%n,, ("z&M).
For x&Fix(f™), define the inclusion maps
ip 1 (K3, KiN{x}) & WH(x), WH(x)N{x}),
Jzt (D%, DEN{x}) s (WH(x), W {x}).

Then i, and j, are C° embeddings (Propositions 2.3 and 2.4(b)), and so the
induced isomorphisms are obtained ;

~

fowt Ho(KY, Ki\{x})) —> H,W*(x), W*GNx))

~

Fewt Hy(DE DEN{x}) —> HyW(x), W*N (x}).
By we have
(5.3) F3lusej7x(0%) = eizk(0%)  (YxeFix(f™)).

For fixed x&Fix(f™), let ¢: N,—R" be a C° embedding. We consider
continuous maps i=¢pz and

r = Pteaz'o¢7': H(N;) —> K%

where P¥%: KX D3—K¥ denotes the natural projection and Ny=a (K% X D$)CN,.
Then we have

Gy =(d—iFyuor): (PN, JINONP(x)}) —> (R", R™{0})
and by the definition
(6.4 GG F % (Ogear) = I(F 2,4)0, .
Let ¥=¢e-a,: DiXD5i—¢(N,) and define

K,=G ¥ (F3ly Xid)-¥'.
Then we have
Ky: ((N2), NN {P(x)}) —> (R™, R*\{0}).

By Kiinneth formula there is a generator OS<H,_,(D%, DiN{x}) such that
w;l°(ig¢bEIZV)I));l(Og[)(I)):]';}kOgXO%;, and hence
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(5.5) K¢*°(z'§/,”§fv)z>);l(0¢(z)) = G1*°W*°(Fﬂu*Xid)°¢;l°(Z$Efv)z))¥l(0¢<z))
= Guaeo¥so (F21ux Xid)(524(0%) X 0%)
= G ¥u(eiz:(09)X0%)  (by
= 561*°(l'235fv)1))§<1(0¢(x))
=el(F;,.)0, (by [5.4).

By the definition of G, it follows that K, is of the form
(5.6) Kyz)=¢eaz-(Fz'y Xid)eaz' e~ (2)—7(2)
where 7(z2)=¢°P*-az'¢7(2).
Let {(W;, hy)} be the atlas of M such that holds. Since 7, is a
Lebesgue number of {W;}, there is (W, h)e {(W;, h;)} such that
FzluD%) = K%t C B, (x) CW C B, (x).
Hence we define 8: ¢(N,)X[0, 1]-R" by
Bz, t) =theF3;'ys Pheaz'ep~(2)+(1—t)h(x)
and next H: ¢(N)X[0, 1]-R" by
H(z, t) = ¢ea(P¥eaz'-h™'=f(z, t), P’oaz'op™(2)~7(2) .
Let {V;} be the finite cover of M as in[2.5) Since 7, is a Lebesgue num-
ber of {V,}, we can take Ve&{V,} such that B,,(x)CV.

CLamM. (1) H: (¢(N.), GINING(V)XLO, 1]—(R™, R™{0}),
(2) H is a homotopy between Rf, ., and K.

PrROOF. (1): Let t€[0,1]. For zed(N)N\g(V), put z;=h"'f(z, t). Since
WCB,(x), it follows that z,€ B, (x), and H(z, t) is expressed as

H(z, t) = ¢gea (P eaz'(z)), Peaz'-¢p™'(2))~7(2).

Since P*-az'(z;)€B.,(x) by the choice of 7; and ¢~'(2)é VOB, (x), it is checked
that
Ptoazlep(2)#x == H(z, )#0,
Poazlep™H(z)=x == z&¢(D*) and so
H(z, t) = ¢oPhoaz'(z))—2+ 0,
from which (1) holds.
(2): Let z&¢(N,). Then we can calculate that

H(z,0) = ¢ra.(x, P'eaz'ed(2))—71(2)
= ¢eP*oazl e ()~ Peaz’«¢7!(2)
=@t (x, ¢ @N—¢Tn,(P7(2), x) = RF,.¢
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and next that
H(z, 1) = ¢ea(Poaz'e F3lye Pteaz'-¢p"(2), P'oaz!=p(2))—71(2)
= ¢ea (F3luePYoaz «™(2), Proaz’=¢p™(2))—1(2)
(since P*eaz'(y) =y for y&D})
= Qeao(FzluXid)oaz' ¢ (2)—71(2)
= K¢(Z) (by .
By Claim we have
Kyx = R, gxt Hau(P(Nz), PN NG(V)) —> Hy(R?, R™N{0}).

Since VCB,(x)CN., by the choice of V it follows that V is a canonical neigh-
borhood of ¢)(x) in ¢(N.), and hence

Kyx = R g5 Hu(QIN2), QIN:INMP(x)}) —> Hi(R?, R™N{0}).
Therefore, by (5.5) we can conclude that
(6.7) R%,. o5 (05F0)% (Oyay) = el(F, )0,  ("x&Fix(f™)).

Let x, yeFix(f™). Then we can find an open subset D of M with x, yeD
such that D is homeomorphic to R". Obviously for z&D there exists a coordi-
nate domain 7T, around z such that T,CDNN,. Let {(U:, g:)} be the atlas of
M such that holds. Since 7, is a Lebesgue number of {U,} and diam (N,)
<r,, there is (U, g)={(U;, g:)} such that N,cU. Take é>0 such that
g (Vg T, where Vig(z)={y=R": |y—g(2)||<d}. Since T,CN,CU, we
can construct a C° embedding 7,: N,— g% (Vsg(z))) such that r,=id on
g ' (Vs12(g(2))). Let ¢p: D—R"™ be a homeomorphism and put ¢,=¢-7r,. Then
¢,: N,»R" is a C° embedding and ¢,=¢ on g '(V;:(g(2))), which implies that

R, 0,450 )5 (0g0)) = R% 4525 E )% (0 g25).
Combining this fact with [5.7), we have
RE , gxc (15 F0)x (Oyzr) = el(F 2, 4)0,
RE 552 @58),)% (O ) = eI(Fy,4)0s .
By we have ¢I(F,,,)=¢I(F, ), and therefore I(F, )=I(F, .).

and

§6. Proof of Theorem.

Let (X, d) be a compact metric space and f: X—X be a homeomorphism.
We denote by Per(f) the set of all periodic points of f and by £(f) the non-
wandering set of f. The following is checked in N. Aoki [1].
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PROPOSITION 6.1. If f is expansive and has POTP, then the following hold;

(1) Per(f) is dense in 2(f),

(2) 2(NH)=8,U - UL, where each 2;is a pairwise disjoint closed subset such
that f(2:)=%2; and f g, is topologically transitive, and

Qi =X \J - UXin,,

where each X, ; is a pairwise disjoint closed subset such that f(X; )=2Xi ju
(Xivng1=Xi1) and " x, ;1 Xi, 7> Xi,; is topologically mixing,
(3) fiacs is not topologically transitive if 2(f)SX.

Let T™ be the n-torus R*/Z" and = : R*—T™" be the covering projection.
We note that if f: T"—>T™" is a continuous map, then there is a unique group
endomorphism A: T"—T" homotopic to f (cf. [17]). Define a metric d for
T" by

d(x, )= min{llx’'—y'|l: x'€x X (x), y'ex"(y)}.

Then it is easily checked that the Euclidean metric satisfies (i)~(iv) of § 3 for d.

PROPOSITION 6.2. Let f: T"—T" be a homeomorphism and A: T"—T" be
the group automorphism homotopic to f. If f is expansive and has POTP, then
A is hyperbolic.

PrROOF. By taking the double cover of T" if necessary, we may assume
that the generalized foliation &% is orientable (see [Proposition 3.9 and Lemmas
B.1, B.3 and 44). Then by Proposition B there is /&N such that for m=>! all
fixed points of f™ have the same fixed point index 1 or —1.

Since f is expansive and has POTP, by Lemma 6.1(2) there is a decom-
position

an =1 X,

such that f"(X; ;)=X.; and f™x, ; is topologically mixing. Let g=f'"1""s,
Then g: T"—>T™" is expansive and has POTP, and moreover it is homotopic to
B=A'"1""s, It is enough to show that B is hyperbolic. To do this, let 4, ---, 2,
be all eigenvalues of g«=Bx: H(T"; R)—»H,(T"; R). Then the Lefschetz
number of g™ (meN) is given by

Ag™) = AB™) = I11-a1).
Since all fixed points of g™ have the same index 1 or —1, we have

N@gm =1 2 L.l =Ig")

zeFix(g™)

where N(g™) and I(g™) denote the number of fixed points of g™ and the fixed
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point index of g™ respectively. Hence by the Lefschetz formula
(6.1) N(g™) = [[1 1—am|  (“meN).

Let ¢>0 be an expansive constant for g. Then there is ¢>0 such that any
e-pseudo-orbit of g is ¢/3-traced by some point of T". Since g is topologically
mixing on X, ; there is £>0 such that g*(K)NK’'+ @ for any e-balls K and
K’ in X; ;. Let x=X;,; be a fixed point of g™ and choose y=.X; ; such that
d(x, y)<e and d(x, g*(y))<e. Then it is clear that

x, g(x), =+, g™ M x), v, gy), -, g '(y), x

is a (m-+k)-periodic e-pseudo-orbit. Let z,=T™ be its ¢/3-tracing point. By
expansiveness we see that g™+*(z,)=z, and z,#z, for x, yFix(g™) with x#y.
Therefore N(g™)<N(g™**) and so by

(6.2) 1:11 11— < 11 I1—2m+t|  (YmeN).

Combining with the fact that Per(g)# @ (Lemma 6.1(1)), it follows
that 4; is not a root of unity. To obtain that |4;] #1 for 1<7<n, assume that
[A:]=1 (1<Zi<s), |4 <1l (s+1<:i<t) and 14;]>1 ((+1<:/<n). Then by
we have
Thfoen | 1= AP Tl | 474 — 2% _ TTiey [ 1— 27
Il | 1 —AP 5 TI i | 25 ™ %=1 = TI5< | 1—A7|
Obviously the left hand side of tends to TIP:+:1147%| as m—oo. Since |4;]
=1 and 4; is not a root of unity (1<7<s), we can find a subsequence {m;} such

that A7"»—A4;* as j—oo. Therefore the right hand side of [(6.3) tends to 0, thus
contradicting.

(6.3)

COROLLARY 6.3. If a homeomorphism f:T"—T" is expansive and has
POTP, then f has fixed points.

PrROOF. By [Proposition 6.2 we see that f: H(T"; R)y—»H,(T"; R) is hyper-
bolic, and so A(f)#0. Hence Fix(f)# @ by the fixed point theorem.

COROLLARY 6.4. Let f: T*>T™ be a homeomorphism and A: T"—>T" be
the group automorphism homotopic to f. If f is expansive and has POTP and if
x0&T™ is a fixed point of f, then there exists a continuous map h: T"—T"
homotopic to the identity map such that h(x,)=e and A-h=hef where ¢ denotes
the identity of T".

PROOF. Since A is hyperbolic by [Proposition 6.2, this follows from Prop-

osition 2.1 of [10].
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LEMMA 6.5. Let f: T"—T™" be a homeomorphism and f: R*—R" be a lift
of f by m. If fis expansive and has POTP, then f has exactly one fixed point.

Proor. Let A: T"—T™ be the group automorphism homotopic to f and
A: R">R" be the linear automorphism which covers A. Then by Proposition
6.2, A is hyperbolic, and hence

p = inf |A(x)—x| >0.
Since A is homotopic to f, it is easily checked that
K= sup || F(x)—Ax)| < oo .
TERT
Choose >0 such that ur>K. Then for x&R" with |[x]|=7 we have
(6.4) lx—7F0) = x =A@ =11 Ax)—F)] =z ur—K >0,

and so Fix(f)cB,(0) where B.(0)={x=R":|x|<r}. By this fact the fixed
point index I(f) can be defined.

Let H: R*X[0, 1]J-R" be defined by H(x, t)=tA(x)+(1—t)f(x). As
we would be able to show that {x&R": H(x, t)=x for some 0=5t<1}C B, (0),
and so I(A)=I(f). Since 4 is hyperbolic, clearly I(A)==+1 and therefore I(f)
#0. This implies that Fix(f)# @.

Next let us show that Fix(f) is exactly one point. By taking the double
cover of T" if necessary, we may assume the generalized foliation F% is
orientable. Then by Proposition B there is m& N such that all fixed points of
f™ has the same index 1 or —1. Since mof™=f"or, all fixed points of fF™
also has the same index 1 or —1, and hence

Nf™ =1 X Imx)|=IF™=IA™] =1

zeFix(fm)

which ensures that our assertion holds.

PROPOSITION 6.6. If a homeomorphism f: T"—=T" is expansive and has
POTP, then Q(f)=T".

ProOOF. We may assume F% is orientable (take the double cover of T'" if
necessary). Then by Proposition B there is [N such that for m=/ all fixed
points of f™ has the same index 1 or —1. To obtain the conclusion, assuming
QNHST, put g=f*% Then Qg)ST" Let B: T">T™ be the group auto-
morphism homotopic to g. Since g is expansive and has POTP, by
6.2 B is hyperbolic and hence

(6.5) Ng™) = |1(g™| = [I(B™)| = NB™) ("m&N).

By Corollaries 6.3, 6.4 there is a continuous map h: T"—T" homotopic to the



384 K. HIRAIDE

identity map such that Beh=h-g. For fixed meN let x&Fix(B™). Then
h~'(x) is a g™-invariant closed set.

CLAIM 1. g™ n-1xy: BN x)—h"Y(x) is expansive and has POTP.

PrROOF. By the definition it is easily checked that g™ ,-i1c.» IS expansive.
To show g™ n-1:> has POTP, letting ¢>0 be an expansive constant for B™,
we choose ¢>0 such that d(x, y)<e implies d(h(x), h(x))<c. Then there is
0>0 such that any d-pseudo-orbit of g™ is e-traced. Let {x;}.czCh '(x) be a
o-pseudo-orbit of g™ and let z&T" be its e-tracing point. Then {A(x;)}icz is
c-traced by h(z). Since h{(x;)=x, by expansiveness we have A(z)=x and so
zeh *(x), which means that g,;-1,y has POTP.

Let =x~(x) and let 42: R"—R" be a lift of h. Then it is easily checked
that =(h~Y(%))=h"'(x).

CLAIM 2. =m: h~Y&)—h~Y(x) is injective.

ProOOF. If a, beh~Y(%) and m(a)=m(b), there is a=G(x) such that b=a(a).
Since 4 is homotopic to the identity map, we have A.(a)=a, and hence
% = h(b) = h(a(a)) = hy(a)-h(a) = a(X)

which means that « is the identity map. Therefore a=b and so the claim
holds.

By Claim 2 we can find a lift §: R"—R" of g™ by = such that g(h (%)=
h-Y(x). Then by Claim 1 it follows that &,5-1s: A Y(%)—A"Y(%) is expansive
and has POTP. If h~'(x) is not one point, then so is A#~(%). By
6.1(1), (3), &is-1z has at least two periodic points, which centradicting
6.5. Hence A~'(x) consists of exactly one point. Thus we proved that x&
Fix (B™) implies A~'(x)eFix(g™).

Since 2(g)S T", according to [Proposition 6.1[(2) we decompose

-Q(g) = 1\:)1 2,

where g o, is topologically transitive. Then there is Q;< {£;}i., such that
h(2;)=T", and hence by the above result M(g™ o,)=N(B™), which means that
N(g™>N(B™) for sufficiently large m>0, thus contradicting

Hereafter let f: T"—T"™ be a homeomorphism with expansiveness and
POTP. By we may assume f(e)=e. Then there is a lift
7:R*—R" of f by & such that f(0)=0. For x=R", let W*x) and W*(x) be
the stable and unstable sets of f under the Euclidean metric respectively. As
before let

g% = {W(x): x&R"} (6=s, u).
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Then by [Proposition 3.9, 9% (¢=s, u) are generalized foliations on R™ and & ;
is transverse to F%.

LEMMA 6.7. For x, yeR"®, W(x)N\W*(y) is at most one point.

PROOF. Assume that a, be W (x)N\W*(y) and a=#b. Then there is a
coordinate domain U around a such that b&cl(U). For g=s, u, let Vo=
{zeR™: W(z)N\U+@}. Since U is open in R" and g% is a generalized folia-
tion, it is easily checked that V° is open in R*. Since b= V:N\V* and b&cl(U),
we have VNV cl(U) is a non-empty open set. By [Proposition 6.1(1) and
IProposition 6.6 we can find y'eV:N\V*\cl(U) such that n(y’)=Per(f). Since
U is a coordinate domain, there is x’ W(y)N\W*(y")N\U=@. Choose kN
such that f*(z(y"))=n(y’), and put g=f* Then there is a lift g: R"—R" of
g such that g(y")=y’. Since g=f*, clearly g=B-f* for some B=G(x). Since
g is expansive and has POTP, g also is expansive and has POTP (Lemmas
and 3.3). Let ¢>0 be an expansive constant for g and let e=min {¢/2, [|x"—y’[/2}.
Then there is §>0 such that any d-pseudo-orbit of g is e-traced. Since x'<
W (y" YN We(y"), we have

12™(xN—y" = 12™(x")— 5™l = (B F*)™(x")—(B F¥)™(3")|
= [Bmef™* (x")=BmoF™* (3"  (for some B, G(x))
= [|f™*x)—f™* Il —> 0 (as |m|—o0).

Hence there is m>0 such that ||g™(x’)—y’||<d and ||g~-™(x")—3’||<d, which
means

y' &8TMx), e, g7, 7, B(xT), e, TN, Y

is a (2m+1)-periodic d-pseudo-orbit of 3. Let z=R™ be a tracing point of this
pseudo-orbit. Then by the choice of e it follows that z# y’ and z&Per(g), and

so z, y'eFix(g") for some /=N, thus contradicting (since @' is a
lift of gb).

LEMMA 6.8. For x, yeR", W'(x)"\W“(y) is exactly one point.

Proor. Combining with [Proposition 6.2 and [Corollary 6.4, by
the technique of J. Franks [9] the conclusion is obtained.

By we see that R™ is a coordinate domain, and hence the con-
tinuous map

7: R*XR*—> R*,
which sends (x, v) to 7(x, y)= Wi (x)N\W+(y), is obtained. Let us define
For WH0)X W3(0) —> R™®



386 K. HiRAIDE

by Fo=7 iwucoyxiwscy- Lhen 7, is a homeomorphism.

Let 0<c<7n, be as in §3. We recall that ¢ is an expansive constant for
f. Put e;=c/4. For xR", let Wi (x) and W= (x) be the local stable and un-
stable sets of f under the Euclidean metric respectively. Then for every x=R”
a canonical coordinate @&, : D%XxD%— N, is constructed as in §3 (Proposition 3.9).
Note that &,=7 5z, 55 for all xER".

For ye W*(x) define

d(x, y; Wx)) = min {m=0: f™(y)€ W (F™x))}.

Then by we see easily that d(x, y; W¥(x))<co. Similarly for ye
W*(x) we define

d(x, y; WH(x)) = min {m=0: f=™(y)& Wi (F~™x)} < oo

Note that if yeW(x) (¢=s, u) then Blye W”(ﬁ(x)) for every B=G(x) (see
[Lemma 3.6).

LEMMA 6.9. For BeG(xm) and y<= Wo(x) (6=s, u)

d(x, 5 W(x) = d(B(x), B(y); W(B(x))).

Proor. For yeW?(x) and BeG(m), let m=d(B(x), B(»); W*(B(x))). By the
definition f™(B(y)EW,(f™=B(x)). Remark that f™B=pf,-7™ for some fn<
G(m). Then Bnef™(»)EW:(Bn-Ff™x)). By Lemma3.2it is easily checked that
Wi (BmeF™(x)=BnWi(f™(x)), and hence f™(y)eW:(f™(x)), which implies
d(x, v;Wix)<m. In the same way we have d(B(x), B(»); W (BN
d(x, y; W3x)), and therefore the conclusion for ¢=s is obtained. The ana-
logous result for ¢=u is obtain in the same manner.

For m=0, define
B?(m) = {x&W?’0): d(x, 0; W 0)<m)} (6=s, u).

Since f(0)=0, by the definition we see that

Bimy= ) F-We0),  BGm) = \J FV2,0),

and hence B°(m) is compact in W?0). Since 7, is a homeomorphism, B(m)=
7o(B*(m)X B*(m)) is compact in R*. For m=0, let U(m)=f "D and U*(m)=
F™D%. Since D3 is open in W?(0), it follows that U°(m) also is open in W°(0).
Hence U(m)=7,U*m)>XU*(m)) is open in R". Note that U(m)B@mn) for all
m=0. By we have

(6.6) R*= \J B(n) = 77&J{)U(m) .

mzo0
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LEmMA 6.10. For m=0 and o=s, u
{d(x, y; We(x)): x, yeB(m), yeW(x)}
is bounded in N.

PROOF. Since B(m) is compact and U(m) is open, by for m=0 there
is £=0 such that B(m)CU(%k). Remark that cl(U(k)) is compact (since U(k)C
B(k)). Since each N, is open in R", we can find a finite set {x;}i.Ccl(U(k))
such that cl(U(k))CULIZVIi. To obtain the conclusion for ¢=s, let D(x)=
Ws(x)Ncl(U(k)) for x=B(m). Then we claim that D(x) is connected. Indeed,
since 7, is a homeomorphism, cl(U(k))=7.(cl(U*R)Xcl(Uk))). Since x&
cl(U(R)), there are x;=cl(U%(k)) and x,=cl(U°*(k)) such that Fo(x;, x,)=x. By
the definition of 7,, W*(x)=7.({x,} XxW*Q)), and hence

D(x) = 7ol {21} XWONNTo(cL(U(R) X U ()))
= To({x1} Xcl(U*(R))

which implies D(x) is connected.

Let K={i{l, -+, I} : D(x)"\N;,#@}. Then D(x)C\UicxN.,. Choose y;&
D(x)NN,, for i€K. Then it is checked that D(x)N\N,,CWi.(y:). Indeed,
recall

N.,= U D:,. (disjoint union)

i
zCD”
Zg

where E;i,zzl\—lxiﬂW2o(z). Since R" is a coordinate domain we see easily that
D(x)N\N,,cDs,, for some z&D%, and so y,D%, .. Therefore D(x)NN,,C
Wgsg(yi)- .

By the above result, D(x)C\UJicxWi.(»:). Since D(x) is connected, for
i, j= K there is {z'l, -, i}CK such that i,=i, i;=j and Wi (y: ) Wi (3:,,,)
#+@ for n=1,2,--,s—1. By Lemma 3.4 we can find LeN such that
FEWse o)W a(F L(Z)) Then FUD(x)CW$,o(fX(x)) and therefore d(x, y; W*(x))
<L if yeWx)NB(m)CD(x). Since L is independent of x< B(m), the con-
clusion for o=s is obtained. The analogous result for ¢=u is obtained in the
same way.

PROOF OF THEOREM. Let A: T"—>T" be the group automorphism homo-
topic to f. Then by [Proposition 6.2 A is hyperbolic. Since f(e)=e, by Corol-
lary 6.4 there is a continuous map h: T*—T" homotopic to the identity map
id such that h(e)=e and A-h=h-f. Therefore it is enough to prove that % is
a homeomorphism. To do this, we take lifts 4 and % by = such Aeh=h-f
holds. Since A4 is homotopic to id, there is M,>0 such that for all x&R*

(6.7) 1A —xll < M.
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To show that 7 is injective, assuming that there are x, y=R™ such that
h(x)=Ah(y), put z=F(x, y). Then we have
lhefiz)—h-Fix)Il  (F=0)
IheFi—heFiDI G=0).
Since zeW*(x)NW*(y), by we can find M, >0 such that || A% h(z)— A% h(y)
<M, for all ;=Z. Since A is hyperbolic, M, is an expansive constant for A
and hence A(z)=Ah(y). Now we claim that there is M,= N such that if z&W*(y)
and A(z)=h(y), then d(y, z; W*(y)<M, Indeed, let KCR" is a compact
covering domain for z. Since % is proper by [6.7), there is m=0 such that
R-(K)c B(m). Take f&G(x) such that B(h(z))eK. Then we have

h(B(z)) = Boh(z) = B-h(y) = h(B(y) € K
and hence 8(z), B(y)= B(m). By there is

1At R(2)— ARl = {

, =max{d(x, y; W*x)): x, yEB(m), y=Wx)},

and so d(8(»), B(z); WX B(»)<M,. ByLemma6.9we have d(y, z; W*(3))<M,,
and therefore the claim holds.

If y+#z then by expansiveness there is /&N such that d(fYy), fi(z);
W*(FY(y)))>M,, which contradicts the above claim since

he fly) = Aleh(y) = Aleh(z) = h-f'(2).

Therefore y=z. In the same way, we have x=z, and so # is injective. We
know by Brouwer’s that 4 is a covering map. Since i is homotopic
to id, h is a homeomorphism. The proof of our theorem is completed.
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