A note on Martin boundary of angular regions for Schrödinger equations

By Toshimasa TADA

(Received Nov. 27, 1987)

We denote by Ω the punctured unit disk $0<|z|<1$ and consider the Martin compactification Ω_{P}^{*} ($[4, \mathrm{p} .166]$) of Ω with respect to a Schrödinger equation

$$
\begin{equation*}
(-\Delta+P(z)) u(z)=0 \quad\left(\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}, z=x+y i\right) \tag{1}
\end{equation*}
$$

with its potential P on Ω. The potential P on Ω is assumed to be nonnegative and locally Hölder continuous on $0<|z| \leqq 1$. We also consider the Martin compactification A_{P}^{*} of an angular region A with radius 1 and vertex at the origin $z=0$ with respect to (1). Let $\bar{\Omega}$ and \bar{A} be the Euclidean closures of Ω and A, respectively. One might ask the following

Question 1. Does $A_{P}^{*}=\bar{A}$ for all angular regions A imply $\Omega_{P}^{*}=\bar{\Omega}$?
Here the equality $\Omega_{P}^{*}=\bar{\Omega}$ ($A_{P}^{*}=\bar{A}$, resp.) means that the identity mapping of Ω (A, resp.) can be extended to a homeomorphism of $\Omega_{P}^{*}\left(A_{P}^{*}\right.$, resp.) onto $\bar{\Omega}$ (\bar{A}, resp.).

For a point p in the Euclidean boundary $\partial \Omega(\partial A$, resp.) of Ω (A, resp.), we denote by $\Omega_{P}^{*}(p)\left(A_{P}^{*}(p)\right.$, resp.) the set of all Martin boundary point ζ^{*} of $\Omega(A$, resp.) for which there exists a sequence $\left\{\zeta_{n}\right\}_{1}^{\infty}$ in Ω (A, resp.) converging to p with respect to the Euclidean topology and at the same time converging to ζ^{*} with respect to the Martin topology. We call $\Omega_{P}^{*}(p)\left(A_{P}^{*}(p)\right.$, resp.) the Martin boundary of $\Omega\left(A\right.$, resp.) over p. We also denote by $\Omega_{P, 1}^{*}(p)\left(A_{P, 1}^{*}(p)\right.$, resp.) the set of Martin minimal boundary points over p, i.e. the subset of $\Omega_{P}^{*}(p)\left(A_{P}^{*}(p)\right.$, resp.) consisting of minimal points. In terms of $\Omega_{P, 1}^{*}(0)$ and $A_{P, 1}^{*}(0)$, Question 1 can be reformulated as

Question 2. Does $A_{P, 1}^{*}(0)=\{$ one point $\}$ for all angular regions A imply $\Omega_{P, 1}^{*}(0)=\{$ one point $\}$?

Since P is locally Hölder continuous apart from the origin, we have $\Omega_{P}^{*}-\Omega_{P}^{*}(0)$ $=\bar{\Omega}-\{0\}$ and $A_{P}^{*}-A_{P}^{*}(0)=\bar{A}-\{0\}$ (cf. [1]). By an argument similar to that

[^0]in no. 2.2 we can see that the Martin kernel with pole in $A_{P}^{*}(0)$ vanishes on $\partial A-\{0\}$, and hence it is represented as the integral of the minimal Martin kernel with pole in $A_{P, 1}^{*}(0)$. Therefore $A_{P, 1}^{*}(0)=\{$ one point $\}$ if and only if $A_{P}^{*}(0)$ $=\{$ one point $\}$. Similarly $\Omega_{P, 1}^{*}(0)=\{$ one point $\}$ if and only if $\Omega_{P}^{*}(0)=\{$ one point $\}$. Our main purpose of this note is to construct a potential P on Ω for which the answer to the above question is in the negative:

Theorem. There exists a potential P on Ω such that $A_{P, 1}^{*}(0)=$ \{one point $\}$ for all angular regions A with radius 1 and vertex at the origin and yet $\Omega_{P, 1}^{*}(0)$ $=\{$ two points $\}$.

§ 1. Construction of the potential in the theorem.

1.1. We take four positive numbers a, b, c, d with $3 / 4<d<c<b<a<1$ and consider the following closed subsets of Ω which are of spiral shaped and converge to the origin windingly around it:

$$
\begin{aligned}
& S_{1}=\left\{r e^{i \theta}: 2^{-\theta / 2 \pi} b \leqq r \leqq 2^{-\theta / 2 \pi} a, 0 \leqq \theta<\infty\right\}, \\
& S_{2}=\left\{r e^{i \theta}: 2^{-\theta / 2 \pi} d \leqq r \leqq 2^{-\theta / 2 \pi} c, 0 \leqq \theta<\infty\right\} .
\end{aligned}
$$

There exists a conformal mapping from the simply connected region

$$
U=\{0<|z| \leqq \infty\}-\left(S_{1} \cup S_{2}\right)
$$

onto the exterior $\{1<|z| \leqq \infty\}$ of the unit circle. By the Carathéodory theorem every boundary element of U over the origin corresponds to a point in the unit circle. Here the boundary elements of U over the origin consist of two elements defined by two fundamental sequences $\left\{\alpha_{n}\right\}_{1}^{\infty}$ and $\left\{\beta_{n}\right\}_{1}^{\infty}$ of cross cuts

$$
\alpha_{n}=\left[2^{-n} c, 2^{-n} b\right] \quad \text { and } \quad \beta_{n}=\left[2^{-n-1} a, 2^{-n} d\right] .
$$

Therefore there exist exactly two Martin minimal boundary points of U over the origin.

The subregion

$$
V=\Omega-\left(S_{1} \cup S_{2}\right)
$$

of Ω is essential for the construction of the potential P on Ω. Since V is a subregion of U and $U-V$ is compact, the set $V_{1}^{*}(0)$ of Martin minimal boundary points of V over the origin also consists of two points.
1.2. Let $\left\{\delta_{n}\right\}_{1}^{\infty}$ be a sequence in $(0, \pi)$ with $\lim _{n} \delta_{n}=0$. We set

$$
\begin{aligned}
& S_{1 n}=\left\{r e^{i \theta}: 2^{-\theta / 2 \pi} b \leqq r \leqq 2^{-\theta / 2 \pi} a, 2(n-1) \pi \leqq \theta \leqq 2 n \pi-\delta_{n}\right\}, \\
& S_{2 n}=\left\{r e^{i \theta}: 2^{-\theta / 2 \pi} d \leqq r \leqq 2^{-\theta / 2 \pi} c, 2(n-1) \pi \leqq \theta \leqq 2 n \pi-\delta_{n}\right\}
\end{aligned}
$$

and consider the subregion

$$
W=\Omega-\bigcup_{n=1}^{\infty}\left(S_{1 n} \cup S_{2 n}\right)
$$

of Ω. By the reasoning similar to that in [5, Example 1 on pp. $7-10$] we can show that the cardinal number of the set $W_{1}^{*}(0)$ of Martin minimal boundary points of W over the origin is equal to that of $V_{1}^{*}(0)$ if we choose $\left\{\boldsymbol{\delta}_{n}\right\}$ convergent to zero enough rapidly. The sequence $\left\{S_{j n}\right\}_{j=1,2 ; n \geq 1}$ of closed Jordan regions $S_{j n}$ satisfies that $S_{j n} \cap S_{k m} \neq \varnothing((j, n) \neq(k, m))$ and there exist only a finite number of $S_{j n}$ such that $S_{j n} \cap\{\varepsilon \leqq|z|<1\}=\varnothing$ for any $\varepsilon>0$. Such a sequence of closed Jordan regions $S_{j n}$ is referred to as a $q-$-sequence in Ω.

Consider a potential P on Ω with its support contained in the closed subset

$$
S=\bigcup_{n=1}^{\infty}\left(S_{1 n} \cup S_{2 n}\right)
$$

of Ω. We denote by $\operatorname{PP}(\Omega ; \partial \Omega-\{0\})(\operatorname{HP}(W ; \partial W-\{0\})$, resp. $)$ the set of nonnegative solutions u of (1) on Ω (nonnegative harmonic functions u on W, resp.) with vanishing boundary values on $\partial \Omega-\{0\}(\partial W-\{0\}$, resp.). We also denote by H_{u}^{W} for each u in $\operatorname{PP}(\Omega ; \partial \Omega-\{0\})$ the least nonnegative harmonic function on W with boundary values u on $\partial W-\{0\}$. If the mapping T_{P} from $\operatorname{PP}(\Omega ; \partial \Omega-\{0\})$ to $\operatorname{HP}(W ; \partial W-\{0\})$ defined by $T_{P} u=u-H_{u}^{W}$ happens to be bijective, then the potential P is said to be canonically associated with the q-sequence $\left\{S_{j n}\right\}$. If a potential P on Ω is canonically associated with the q-sequence $\left\{S_{j n}\right\}$, then the cardinal number of $\Omega_{P, 1}^{*}(0)$ is equal to that of $W_{1}^{*}(0)$. In view of [5, Theorem on p. 3] there exists a potential on Ω canonically associated with the q-sequence $\left\{S_{j n}\right\}$. From now on our potential P is supposed to be chosen on Ω so as to be canonically associated with the q_{-}-sequence $\left\{S_{j n}\right\}$, and therefore supp. $P \subset S$ and $\Omega_{P, 1}^{*}(0)=\{$ two points $\}$.

§ 2. The set $A_{P, 1}^{*}(0)$.

2.1. In order to complete the proof of the theorem we will show that $A_{P, 1}^{*}(0)=\{$ one point $\}$ for the potential P on Ω constructed in $\S 1$ and for all angular regions A with radius 1 and vertex at the origin:

$$
A=\left\{r e^{i \theta}: 0<r<1, \sigma<\theta<\tau\right\}
$$

with numbers σ, τ satisfying $0 \leqq \sigma<\tau \leqq \sigma+2 \pi<4 \pi$. We set

$$
A_{n}=\left\{r e^{i \theta}: \frac{1}{2} 2^{-\theta / 2 \pi}<r<\frac{3}{4} 2^{-\theta / 2 \pi}, \sigma<\theta-2(n-1) \pi<\tau\right\}
$$

$(n=1,2, \cdots)$. Let u and v be positive solutions of (1) on A_{n} with vanishing boundary values on $\partial A \cap \partial A_{n}$. Since the support of P is contained in $S=$ $\cup_{1}^{\infty}\left(S_{1 n} \cup S_{2 n}\right)$ and $S \cap A_{n}=\varnothing$, the solutions u and v are harmonic on A_{n}. Then
the boundary Harnack inequality

$$
\begin{equation*}
\frac{u(z)}{u\left(z_{n}\right)} \leqq c_{n} \frac{v(z)}{v\left(z_{n}\right)} \quad\left(z \in \gamma_{n}\right) \tag{2}
\end{equation*}
$$

is valid on the curve

$$
\gamma_{n}=\left\{r e^{i \theta}: r=\frac{5}{8} 2^{-\theta / 2 \pi}, \sigma<\theta-2(n-1) \pi<\tau\right\}
$$

for a positive constant c_{n} being independent of u and v, where z_{n} is the point in γ_{n} with its argument $(\sigma+\tau) / 2$ ($[3$, Theorem 2.2] and its revisions by [6, Theorem 1 on p. 148] and also [1, Théorème 5.1 on p. 188], among others). The conformal equivalence of A_{n}, γ_{n}, z_{n} and A_{1}, γ_{1}, z_{1} implies $c_{n}=c_{1}(n=2,3, \cdots)$. We say that the boundary Harnack principle is valid at the origin for the class of positive solutions of (1) on A with vanishing boundary values on $\partial A-\{0\}$ if the constant c_{n} in (2) can be chosen independent of n, which we have just established.
2.2. Although it is rather standard to derive that the set of Martin minimal boundary points over Euclidean boundary point p consists of one point from the boundary Harnack principle at p (see [1, pp. 193-195], cf. also [2], among others), we briefly include its proof in nos. 2.2-2.3 for the convenience sake.

We denote by $g_{P}(\cdot, \zeta)$ the Green's function on A with its pole at ζ with respect to (1) and by $k_{P}(\cdot, \zeta)=g_{P}(\cdot, \zeta) / g_{P}\left(z_{1}, \zeta\right)$ the Martin kernel on A, where z_{1} is the point in γ_{1} with its argument $(\boldsymbol{\sigma}+\boldsymbol{\tau}) / 2$. Let ζ^{*} be an arbitrary point in $A_{P, 1}^{*}(0)$. We remark that $A_{P, 1}^{*}(0)$ contains at least one point by the definition. There exists a sequence $\left\{\zeta_{m}\right\}_{1}^{\infty}$ in A converging to the origin such that $\left\{k_{P}\left(\cdot, \zeta_{m}\right)\right\}$ converges to $k_{F}\left(\cdot, \zeta^{*}\right)$ uniformly on every compact subset of A. Consider the solution ω_{n} of (1) on the subregion

$$
B_{n}=\left\{r e^{i \theta}: \frac{1}{2} 2^{-\theta / 2 \pi}<r<1, \sigma<\theta-2(n-1) \pi<\tau\right\}
$$

of A with boundary values zero on $\partial B_{n} \cap \partial A$ and 1 on $\partial B_{n} \cap A(n=1,2, \cdots)$. Recall that $c_{n}=c_{1}(n=1,2, \cdots)$. Applying (2) with $c_{n}=c_{1}$ to $u=k_{P}\left(\cdot, \zeta_{m}\right)$ and $v=\omega_{n}$, we have

$$
\frac{k_{P}\left(z, \zeta_{m}\right)}{k_{P}\left(z_{n}, \zeta_{m}\right)} \leqq c_{1} \frac{\omega_{n}(z)}{\omega_{n}\left(z_{n}\right)} \quad\left(z \in \gamma_{n}\right)
$$

if $\zeta_{m} \notin B_{n}$. By the maximum principle the above inequality is valid for z in the subregion

$$
D_{n}=\left\{r e^{i \theta}: \frac{5}{8} 2^{-\theta / 2 \pi}<r<1, \sigma<\theta-2(n-1) \pi<\tau\right\}
$$

of A. The usual Harnack inequality for positive solutions of (1) yields $k_{P}\left(z_{n}, \zeta_{m}\right)$ $\leqq c_{n}^{\prime} k_{P}\left(z_{1}, \zeta_{m}\right)=c_{n}^{\prime}$ for a positive constant c_{n}^{\prime} and m with $\zeta_{m} \notin B_{n}$. Then $k_{P}\left(\cdot, \zeta^{*}\right)$
is dominated by $\left(c_{1} c_{n}^{\prime} / \omega_{n}\left(z_{n}\right)\right) \omega_{n}$ on D_{n}. Therefore $k_{P}\left(\cdot, \zeta^{*}\right)$ has vanishing boundary values on $\partial D_{n} \cap \partial A(n=1,2, \cdots)$ and hence on $\partial A-\{0\}$.
2.3. Let u and v be positive solutions of (1) on A with vanishing boundary values on $\partial A-\{0\}$. We also assume that $u\left(z_{1}\right)=v\left(z_{1}\right)=1$. By (2) with $c_{n}=c_{1}$ and the maximum principle we have

$$
c_{1}^{-1} \frac{v(z)}{v\left(z_{n}\right)} \leqq \frac{u(z)}{u\left(z_{n}\right)} \leqq c_{1} \frac{v(z)}{v\left(z_{n}\right)} \quad\left(z \in D_{n} ; n=1,2, \cdots\right) .
$$

If we set $z=z_{1}$ in the above inequalities, then we have $c_{1}^{-1} \leqq u\left(z_{n}\right) / v\left(z_{n}\right) \leqq c_{1}$. Hence $c_{1}^{-2} v \leqq u \leqq c_{1}^{2} v$ is valid on A. Set

$$
\lambda_{0}=\sup \left\{\lambda>0: \lambda v \leqq c_{1}^{2} u\right\} .
$$

The nonnegative solution $w=c_{1}^{2} u-\lambda_{0} v$ of (1) on A has vanishing boundary values on $\partial A-\{0\}$. If w is positive, then $u \leqq c_{1}^{2} w / w\left(z_{1}\right)$ is valid on A and we have the contradiction

$$
\lambda_{0} v \leqq\left(c_{1}^{2}-\frac{w\left(z_{1}\right)}{c_{1}^{2}}\right) u .
$$

Therefore $w \equiv 0$ so that $v \equiv\left(c_{1}^{2} / \lambda_{0}\right) u$. This means that $A_{P, 1}^{*}(0)$ contains at most one point.

The proof of the theorem is herewith complete.
2.4. We remark that the theorem is valid even if we replace the condition $\Omega_{P, 1}^{*}(0)=\{$ two points $\}$ with the condition $\Omega_{P, 1}^{*}(0)=\{n$ points $\}(n=3,4, \cdots)$. For the purpose we consider disjoint closed subsets T_{1}, \cdots, T_{n} of Ω which are of spiral shaped and converge to the origin windingly around it. In $\S 1$ we associated the potential P on Ω with the closed subsets S_{1} and S_{2} of Ω. Similarly we associate a potential Q on Ω with T_{1}, \cdots, T_{n}. Then Q satisfies that $A_{Q, 1}^{*}(0)$ $=\{$ one point $\}$ for all angular regions A and $\Omega_{Q, 1}^{*}(0)=\{n$ points $\}$. Moreover we can construct a potential Q on Ω such that $A_{Q, 1}^{*}(0)=\{$ one point $\}$ for all angular regions A and the cardinal number of $\Omega_{Q, 1}^{*}(0)$ is that of the countable infinite set (the continuum, resp.). The constructions for the above two cases go along the same line as that for the case $\Omega_{P, 1}^{*}(0)=\{n$ points $\}$ but this time by imitating [5, Example 2 on pp. 10-12] or [5, Example 3 on pp. 12-14] instead of [5, Example 1 on pp. 7-10] but the detail will be left to the reader.

References

[1] A. Ancona, Principe de Harnack a la frontiere et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien, Ann. Inst. Fourier, 28 (1978), 169-213.
[2] R.A. Hunt and R.L. Wheeden, Positive harmonic functions on Lipschitz domains, Trans. Amer. Math. Soc., 147 (1970), 507-527.
[3] J. T. Kemper, A boundary Harnack principle for Lipschitz domains and the principle of positive singularities, Comm. Pure Appl. Math., 25 (1972), 247-255.
[4] M. Nakai, The space of non-negative solutions of the equation $\Delta u=P u$ on a Riemann surface, Kôdai Math. Sem. Rep., 12 (1960), 151-178.
[5] M. Nakai and T. Tada, The distributions of Picard dimensions, Kodai Math. J., 7 (1984), 1-15.
[6] J.-M. G. Wu, Comparisons of kernel functions, boundary Harnack principle and relative Fatou theorem on Lipschitz domain, Ann. Inst. Fourier, 28 (1978), 147-167.

Toshimasa TADA
Department of Mathematics Daido Institute of Technology
Daido, Minami, Nagoya 457
Japan

[^0]: This research was partially supported by Grant-in-Aid for Scientific Research (No. 60302004), Ministry of Education, Science and Culture.

 This work is completed while the author is engaged in the research at Department of Electrical and Computer Engineering, Nagoya Institute of Technology.

