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A note on Martin boundary of angular regions
for Schrodinger equations

By Toshimasa TADA

(Received Nov. 27, 1987)

We denote by $\Omega$ the punctured unit disk $0<|z|<1$ and consider the Martin
compactification $\Omega_{P}^{*}$ ([4, p. 166]) of $\Omega$ with respect to a Schrodinger equation

(1) $(-\Delta+P(z))u(z)=0$ $( \Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}},$ $z=x+yi)$

with its potential $P$ on $\Omega$ . The potential $P$ on $\Omega$ is assumed to be nonnegative
and locally Holder continuous on $0<|z|\leqq 1$ . We also consider the Martin com-
pactification $A_{P}^{*}$ of an angular region $A$ with radius 1 and vertex at the origin
$z=0$ with respect to (1). Let $\overline{\Omega}$ and $\overline{A}$ be the Euclidean closures of $\Omega$ and $A$ ,
respectively. One might ask the following

QUESTION 1. Does $Af=\overline{A}$ for all angular regions $A$ imply $\Omega f=\overline{\Omega}P$

Here the equality $\Omega_{P}^{*}=\overline{\Omega}$ ( $A_{P}^{*}=\overline{A}$ , resp.) means that the identity mapping
of $\Omega$ ( $A$ , resp.) can be extended to a homeomorphism of $\Omega_{P}^{*}$ ( $A_{P}^{*}$ , resp.) onto $\overline{\Omega}$

( $\overline{A}$ , resp.).

For a point $p$ in the Euclidean boundary $\partial\Omega$ ( $\partial A$ , resp.) of $\Omega$ ( $A$ , resp.), we
denote by $\Omega_{P}^{*}(p)$ ( $A_{P}^{*}(p)$ , resp.) the set of all Martin boundary point $\zeta^{*}$ of $\Omega(A$ ,
resp.) for which there exists a sequence $\{\zeta_{n}\}_{1}^{\infty}$ in $\Omega$ ( $A$ , resp.) converging to $P$

with respect to the Euclidean topology and at the same time converging to $\zeta^{*}$

with respect to the Martin topology. We call $\Omega_{P}^{*}(p)$ ( $A_{P}^{*}(p)$ , resp.) the Martin
boundary of $\Omega$ ( $A$ , resp.) over $p$ . We also denote by $\Omega_{P.1}^{*}(p)$ ( $A_{P,1}^{*}(p)$ , resp.) the
set of Martin minimal boundary points over $p,$ $i.e$ . the subset of $\Omega_{P}^{*}(p)(A_{P}^{*}(p)$ ,
resp.) consisting of minimal points. In terms of $\Omega_{P,1}^{*}(0)$ and $A_{P.1}^{*}(0)$ , Question 1
can be reformulated as

QUESTION 2. Does $A_{P,1}^{*}(0)=$ { $one$ pojnt} for all angular regions $A$ imply
$\Omega B_{1}(0)=\{one$ point $\}^{\mathcal{P}}$

Since $P$ is locally Holder continuous apart from the origin, we have $\Omega_{P}^{*}-\Omega_{P}^{*}(0)$

$=\overline{\Omega}-\{0\}$ and $A_{P}^{*}-A_{P}^{*}(0)=\overline{A}-\{0\}$ (cf. [1]). By an argument similar to that
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in no. 2.2 we can see that the Martin kernel with pole in $A_{P}^{*}(0)$ vanishes on
$\partial A-\{0\}$ , and hence it is represented as the integral of the minimal Martin
kernel with pole in $Af_{1}(0)$ . Therefore A$, $1(0)=$ { $one$ point} if and only if $A_{P}^{*}(0)$

$=$ { $one$ point}. Similarly $\Omega_{P,1}^{*}(0)=$ { $one$ point} if and only if $\Omega_{P}^{*}(0)=$ { $one$ point}.
Our main purpose of this note is to construct a potential $P$ on $\Omega$ for which the
answer to the above question is in the negative:

THEOREM. There exists a p0tential $P$ on $\Omega$ such that $AB_{1}(0)=$ { $one$ point}
for all angular regions $A$ with radius 1 and vertex at the origin and yet $\Omega \mathfrak{F}_{1}(0)$

$=$ { $two$ points}.

\S 1. Construction of the potential in the theorem.

1.1. We take four positive numbers $a,$ $b,$ $c,$
$d$ with $3/4<d<c<b<a<1$ and

consider the following closed subsets of $\Omega$ which are of spiral shaped and con-
verge to the origin windingly around it:

$S_{1}=\{re^{i\theta} : 2^{-\theta/2\pi}b\leqq r\leqq 2^{-\theta/2\pi}a, 0\leqq\theta<\infty\}$ ,
$S_{2}=\{re^{i\theta} : 2^{-\theta/2\pi}d\leqq r\leqq 2^{-\theta/2\pi}c, 0\leqq\theta<\infty\}$ .

There exists a conformal mapping from the simply connected region

$U=\{0<|z|\leqq\infty\}-(S_{1}\cup S_{2})$

onto the exterior $\{1<|z|\leqq\infty\}$ of the unit circle. By the Carath\’eodory theorem
every boundary element of $U$ over the origin corresponds to a point in the unit
circle. Here the boundary elements of $U$ over the origin consist of two ele-
ments defined by two fundamental sequences $\{\alpha_{n}\}_{1}^{\infty}$ and $\{\beta_{n}\}_{1}^{\infty}$ of cross cuts

$\alpha_{n}=[2^{-n}c, 2^{-n}b]$ and $\beta_{n}=[2^{-n- 1}a, 2^{-n}d]$ .
Therefore there exist exactly two Martin minimal boundary points of $U$ over
the origin.

The subregion
$V=\Omega-(S_{1}\cup S_{2})$

of $\Omega$ is essential for the construction of the potential $P$ on $\Omega$ . Since $V$ is a
subregion of $U$ and $U-V$ is compact, the set $V_{1}^{*}(0)$ of Martin minimal boundary
points of $V$ over the origin also consists of two points.

1.2. Let $\{\delta_{n}\}_{1}^{\infty}$ be a sequence in $(0, \pi)$ with $\lim_{n}\delta_{n}=0$ . We set

$S_{1n}=\{re^{t\theta} : 2^{-\theta/2\pi}b\leqq r\leqq 2^{-\theta/2\pi}a, 2(n-1)\pi\leqq\theta\leqq 2n\pi-\delta_{n}\}$ ,
$S_{2n}=\{re^{i\theta} : 2^{-\theta/2\pi}d\leqq r\leqq 2^{-\theta/2\pi}c, 2(n-1)\pi\leqq\theta\leqq 2n\pi-\delta_{n}\}$

and consider the subregion
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$W= \Omega-\bigcup_{n=1}^{\infty}(S_{1n}\cup S_{2n})$

of $\Omega$ . By the reasoning similar to that in [5, Example 1 on pp. 7-10] we can
show that the cardinal number of the set $W_{1}^{*}(0)$ of Martin minimal boundary
points of $W$ over the origin is equal to that of $V_{1}^{*}(0)$ if we choose $\{\delta_{n}\}$ con-
vergent to zero enough rapidly. The sequence $\{S_{jn}\}_{j=1,2;n\geq 1}$ of closed Jordan
regions $S_{jn}$ satisfies that $S_{jn}\cap S_{km}\neq\emptyset((j, n)\neq(k, m))$ and there exist only a
finite number of $S_{jn}$ such that $S_{jn}\cap\{\epsilon\leqq|z|<1\}=\emptyset$ for any $\epsilon>0$ . Such a
sequence of closed Jordan regions $S_{jn}$ is referred to as a $\mathcal{Y}$-sequence in $\Omega$ .

Consider a potential $P$ on $\Omega$ with its support contained in the closed subset

$S= \bigcup_{n=1}^{\infty}(S_{1n}\cup S_{2n})$

of $\Omega$ . We denote by $PP(\Omega;\partial\Omega-\{0\})$ ($HP(W;\partial W-\{0\})$ , resp.) the set of non-
negative solutions $u$ of (1) on $\Omega$ (nonnegative harmonic functions $u$ on $W$ , resp.)

with vanishing boundary values on $\partial\Omega-\{0\}$ ( $\partial W-\{0\}$ , resp.). We also denote
by $H_{u}^{W}$ for each $u$ in $PP(\Omega;\partial\Omega-\{0\})$ the least nonnegative harmonic function
on $W$ with boundary values $u$ on $\partial W-\{0\}$ . If the mapping $T_{P}$ from
$PP(\Omega;\partial\Omega-\{0\})$ to $HP(W;\partial W-\{0\})$ defined by $T_{p}u=u-H_{u}^{W}$ happens to be bijec-
tive, then the potential $P$ is said to be canonically associated with the $\mathcal{Y}$-sequence
$\{S_{jn}\}$ . If a potential $P$ on $\Omega$ is canonically associated with the $\mathcal{Y}$-sequence
$\{S_{jn}\}$ , then the cardinal number of $\Omega_{P,1}^{*}(0)$ is equal to that of $W_{1}^{*}(0)$ . In view
of [5, Theorem on p. 3] there exists a potential on $\Omega$ canonically associated
with the $\mathcal{Y}$-sequence $\{S_{jn}\}$ . From now on our potential $P$ is supposed to be
chosen on $\Omega$ so as to be canonically associated with the $\mathcal{Y}$-sequence $\{S_{jr}.\}$ , and
therefore $supp$ . $P\subset S$ and $\Omega_{P,1}^{*}(0)=$ { $two$ points}.

\S 2. The set $A_{P,1}^{*}(0)$ .
2.1. In order to complete the proof of the theorem we will show that

$A\_{1}(0)=$ { $one$ point} for the potential $P$ on $\Omega$ constructed in \S 1 and for all
angular regions $A$ with radius 1 and vertex at the origin:

$A=\{re^{i\theta} ; 0<r<1, \sigma<\theta<\tau\}$

with numbers $\sigma,$ $\tau$ satisfying $0\leqq\sigma<\tau\leqq\sigma+2\pi<4\pi$ . We set

$A_{n}=\{re^{i\theta}$ : $\frac{1}{2}2^{-\theta/2-}<r<\frac{3}{4}2^{-\theta/2\pi},$ $\sigma<\theta-2(n-1)\pi<\tau\}$

$(n=1, 2, )$ . Let $u$ and $v$ be positive solutions of (1) on $A_{n}$ with vanishing
boundary values on $\partial A\cap\partial A_{n}$ . Since the support of $P$ is contained in $S=$

$\bigcup_{1}^{\infty}(S_{1n}\cup S_{2n})$ and $S\cap A_{n}=\emptyset$ , the solutions $u$ and $v$ are harmonic on $A_{n}$ . Then
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the boundary Harnack inequality

(2) $\frac{u(z)}{u(z_{n})}\leqq c_{n^{\frac{v(z)}{v(z_{n})}}}$ $(z\in\gamma_{n})$

is valid on the curve

$\gamma_{n}=\{re^{i\theta}$ : $r= \frac{5}{8}2^{-\theta/2\pi},$ $\sigma<\theta-2(n-1)\pi<\tau\}$

for a positive constant $c_{n}$ being independent of $u$ and $v$ , where $z_{n}$ is the point
in $\gamma_{n}$ with its argument $(\sigma+\tau)/2$ ([ $3$ , Theorem 2.2] and its revisions by [6,

Theorem 1 on p. 148] and also [1, Th\’eor\‘eme 5.1 on p. 188], among others).

The conformal equivalence of $A_{n},$ $\gamma_{n},$ $z_{n}$ and $A_{1},$ $\gamma_{1},$ $z_{1}$ implies $c_{n}=c_{1}(n=2,3, \cdots)$ .
We say that the boundary Harnack Principfe is valid at the origin for the class
of positive solutions of (1) on $A$ with vanishing boundary values on $\partial A-\{0\}$ if
the constant $c_{n}$ in (2) can be chosen independent of $n$ , which we have just
established.

2.2. Although it is rather standard to derive that the set of Martin minimal
boundary points over Euclidean boundary point $p$ consists of one point from the
boundary Harnack principle at $p$ (see [1, pp. 193-195], cf. also [2], among
others), we briefly include its proof in nos. 2.2-2.3 for the convenience sake.

We denote by $g_{P}(\cdot, \zeta)$ the Green’s function on $A$ with its pole at $\zeta$ with
respect to (1) and by $k_{P}(\cdot, \zeta)=g_{P}(\cdot, \zeta)/g_{P}(z_{1}, \zeta)$ the Martin kernel on $A$ , where
$z_{1}$ is the point in $\gamma_{1}$ with its argument $(\sigma+\tau)/2$ . Let $\zeta^{*}$ be an arbitrary point
in $A_{P.1}^{*}(0)$ . We remark that $A_{P.1}^{*}(0)$ contains at least one point by the definition.
There exists a sequence $\{\zeta_{m}\}_{1}^{\infty}$ in $A$ converging to the origin such that $\{k_{P}(\cdot, \zeta_{m})\}$

converges to $k_{P}(\cdot, \zeta^{*})$ uniformly on every compact subset of $A$ . Consider the
solution $\omega_{n}$ of (1) on the subregion

$B_{n}=\{re^{i\theta}$ : $\frac{1}{2}2^{-\theta/2\pi}<r<1,$ $\sigma<\theta-2(n-1)\pi<\tau\}$

of $A$ with boundary values zero on $\partial B_{n}\cap\partial A$ and 1 on $\partial B_{n}\cap A(n=1, 2, )$ .
Recall that $c_{n}=c_{1}(n=1,2, \cdots)$ . Applying (2) with $c_{n}=c_{1}$ to $u=k_{P}(\cdot, \zeta_{m})$ and
$v=\omega_{n}$ , we have

$\frac{k_{P}(z,\zeta_{m})}{k_{P}(z_{n},\zeta_{m})}\leqq c_{1}\frac{\omega_{n}(z)}{\omega_{n}(z_{n})}$ $(\underline{7}\in\gamma_{n})$

if $\zeta_{m}\not\in B_{n}$ . By the maximum principle the above inequality is valid for $z$ in the
subregion

$D_{n}=\{re^{i\theta}$ : $\frac{5}{8}2^{-\theta/2\pi}<r<1,$ $\sigma<\theta-2(n-1)\pi<\tau\}$

of $A$ . The usual Harnack inequality for positive solutions of (1) yields $k_{P}(z_{n}, \zeta_{m})$

$\leqq c_{n}’k_{p}(z_{1}, \zeta_{m})=c_{n}’$ for a positive constant $c_{n}’$ and $m$ with $\zeta_{m}\not\in B_{n}$ . Then $k_{P}(\cdot, \zeta^{*})$
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is dominated by $(c_{1}c_{n}’/\omega_{n}(z_{n}))\omega_{n}$ on $D_{n}$ . Therefore $k_{P}(\cdot, \zeta^{*})$ has vanishing
boundary values on $\partial D_{n}\cap\partial A(n=1,2, \cdots)$ and hence on $\partial A-\{0\}$ .

2.3. Let $u$ and $v$ be positive solutions of (1) on $A$ with vanishing boundary
values on $\partial A-\{0\}$ . We also assume that $u(z_{1})=v(z_{1})=1$ . By (2) with $c_{n}=c_{1}$

and the maximum principle we have

$c_{1}^{-1} \frac{v(z)}{v(z_{n})}\leqq\frac{u(z)}{u(z_{n})}\leqq c_{1}\frac{v(z)}{v(z_{n})}$ $(z\in D_{n} ; n=1,2, \cdots)$ .

If we set $z=z_{1}$ in the above inequalities, then we have $c_{1}^{-1}\leqq u(z_{n})/v(z_{n})\leqq c_{1}$ .
Hence $C_{1}^{-2}U\leqq \mathcal{U}\leqq c_{1}^{2}v$ is valid on $A$ . Set

$\lambda_{0}=\sup\{\lambda>0:\lambda v\leqq c_{1}^{2}u\}$ .

The nonnegative solution $w=c_{1}^{2}u-\lambda_{0}v$ of (1) on $A$ has vanishing boundary

values on $\partial A-\{0\}$ . If $w$ is positive, then $u\leqq c_{1}^{2}w/w(z_{1})$ is valid on $A$ and we
have the contradiction

$\lambda_{0}v\leqq(c_{1}^{2}-\frac{w(z_{1})}{c_{1}^{2}})u$ .

Therefore $w\equiv 0$ so that $v\equiv(c_{1}^{2}/\lambda_{0})u$ . This means that $A_{P,1}^{*}(0)$ contains at most
one point.

The proof of the theorem is herewith complete.

2.4. We remark that the theorem is valid even if we replace the condition
$\Omega_{P.1}^{*}(0)=$ { $two$ points} with the condition $\Omega_{P.1}^{*}(0)=$ { $n$ points} $(n=3,4, \cdots)$ . For
the purpose we consider disjoint closed subsets $T_{1},$ $\cdots$ , $T_{n}$ of $\Omega$ which are of
spiral shaped and converge to the origin windingly around it. In \S 1 we asso-
ciated the potential $P$ on $\Omega$ with the closed subsets $S_{1}$ and $S_{2}$ of $\Omega$ . Similarly
we associate a potential $Q$ on $\Omega$ with $T_{1},$ $\cdots$ , $T_{n}$ . Then $Q$ satisfies that $A5_{1}(0)$

$=$ { $one$ point} for all angular regions $A$ and $\Omega\S_{1}(0)=$ { $n$ points}. Moreover we
can construct a potential $Q$ on $\Omega$ such that $A\S_{1}(0)=$ { $one$ point} for all angular
regions $A$ and the cardinal number of $\Omega\int_{1}(0)$ is that of the countable infinite
set (the continuum, resp.). The constructions for the above two cases go along
the same line as that for the case $\Omega_{P.1}^{*}(0)=$ { $n$ points} but this time by imitating
[5, Example 2 on pp. 10-12] or [5, Example 3 on pp. 12-14] instead of [5,
Example 1 on pp. 7-10] but the detail will be left to the reader.
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