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$0$ . Introduction.

A complete Riemannian manifold $M$ is said to be without conjugate pOjnts
if no geodesic contains a pair of mutually conjugate points. E. Hopf ([9]) and
L. W. Green ([7]) have proved that the integral of the scalar curvature of a
compact Riemannian manifold without conjugate points is nonpositive, and it
vanishes only if the metric is flat. The non-conjugacy hypothesis was discussed
in [10] and [11]. Namely, it follows that a compact Riemannian manifold is
without focal points if there is a point which cannot be a focal point to any
geodesic, although a pole and a point which is not a pole can exist simultaneously
in a torus $T^{2}$ of revolution. Recently, N. Innami ([12]) has proved that the
integral of the scalar curvature of a complete simply connected Riemannian
manifold $R^{n}$ without conjugate points is nonpositive if the Ricci curvature is
summable on the unit tangent bundle, and it vanishes only if the metric is
flat. Here a function is called summable if its absolute integral exists. The
purpose of the present paper is to improve the topological hypothesis more.

Let $M$ be a complete Riemannian manifold and let $SM$ be the unit tangent
bundle of $M$. Let $f^{t}$ : $SMarrow SM$ be the geodesic flow, $i.e.,$ $f^{t}v=\dot{\gamma}_{v}(t)$ for any
$v\in SM$ where $\gamma_{v}$ : $(-\infty, \infty)arrow M$ is the geodesic with 2’ $v(0)=v$ . We say that a
$v\in SM$ is non-wandering if there exist sequences $\{v_{n}\}\subset SM$ and $\{t_{n}\}\subset R$ such
that $t_{n}arrow\infty,$ $v_{n}arrow v$ and $f^{t_{n}}v_{n}arrow v$ as $narrow\infty$ . We denote by $\Omega$ the set of all non-
wandering points in $SM$ under the geodesic flow.

THEOREM. Let $M$ be a complete Riemannian manifold without conjugate
Points. SuppOse $\Omega$ decompOses into at most countably many $f^{t}$-invariant sets each
of which has finite volume and the Ricci curvature is summable on $SM$. Then,
the integral of the scalar curvature of $M$ is nonpOsjtjve, and it vanishes only if
$M$ is flat.

If the manifold $M$ is flat outside a compact set, then the assumption of
summability for the Ricci curvature is automatically satisfied. Furthermore, the
theorem is true without assumption put on the set $\Omega$ of all non-wandering
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points (see Corollary 3). The proof of Theorem divides into two parts: One
is for $SM-\Omega$ and the other is for $\Omega$ . The typical cases are the following.

COROLLARY 1 ([12]). Let $M$ be a complete simPly connected Riemannian
manifold without conjugate Points. If the Ricci curvature of $M$ is summable on
$SM$, then the integral of the scalar curvature of $M$ is nonpOsjtjve, and it vanishes
only if $M$ is Euclidean.

S. Cohn-Vossen ([4]) has proved that a plane without conjugate points has
the nonpositive integral curvature if it exists ([2]). Corollary 1 is the answer
of the question when it vanishes. L. W. Green and R. Gulliver ([8]) give a
partial answer as an application of the theorem of E. Hopf also, proving that a
plane whose metric differs from the canonical flat metric at most on a compact

set is Euclidean if there is no conjugate point.

COROLLARY 2. Let $M$ be a comPlete Riemannian manifold without conjugate
poinfs and with finite volume. If the Ricci curvature of $M$ is summable on $SM$,

then the integral of the scalar curvature of $M$ is nonpOsjtjve, and it vanishes only

if $M$ is flat.

It is the difficulty of the proof that the summability of tr $A$ on $SM$ is not
established where $A(v)$ is the limit of the second fundamental forms at $\pi(v)$ of
the geodesic spheres $S(\pi(v), \gamma_{v}(t))$ with center $\gamma_{v}(t)$ and through $\pi(v)$ in $M$ as
$tarrow\infty$ , where $\pi$ is the projection of $SM$ to $M$. In fact, Corollary 2 is a direct
consequence of the method of E. Hopf and L. W. Green if we assume in addition
any condition which ensure the summability of tr $A$ on $SM$, for example, that
the sectional curvature of $M$ is bounded below ([7]). To escape from the sum-
mability argument we use the Fubini theorem for $SM-\Omega$ and the Birkhoff
ergodic theorem for $\Omega$ . This is why we assume tbat $\Omega$ decomposes into at
most countably many $f^{t}$-invariant sets each of which has finite volume.

There is a special case that we can calculate the integral of the Ricci cur-
vature over $\Omega$ without assumption of decomposition.

COROLLARY 3. Let $M$ be a complete Riemannian manifold without conjugate
points which is flat outside some compact set. Then, the integral of the scalar
curvature of $M$ is nonpositjve, and it vanishes only if $M$ is flat.

The author would like to express his hearty thanks to the referee who
suggests Corollary 3 without proof.



Manifolds with integral curvature zero 253

1. Preliminaries.

Let $M$ be a complete Riemannian manifold and let $SM$ be the unit tangent
bundle. Let $f^{t}$ : $SMarrow SM$ be the geodesic flow, $i.e.,$ $f^{t}v=\dot{\gamma}_{v}(t)$ for any $t\in$

$(-\infty, \infty)$ where $\gamma_{v}$ : $(-\infty, \infty)arrow M$ is the geodesic with $\dot{\gamma}_{v}(0)=v$ . Let $d\sigma$ be the
volume form induced from the Riemannian metric of $M$ and let $d\theta$ be the
canonical volume form on the unit sphere in the Euclidean space $E^{n},$ $n=\dim M$.
Then, $d\omega=d\sigma\Lambda d\theta$ is a volume form on $SM$ and $f^{t}$-invariant.

We define a Riemannian metric $g_{1}$ on $SM$ as follows: Let $\xi\in T_{v}SM,$ $v\in SM$

and let $c:(-\epsilon, \epsilon)arrow SM$ be a curve with $6(0)=\xi$ . If $c(t)=(c_{1}(i), c_{2}(t))$ for any
$t\in(-\epsilon, \epsilon)$ by the local trivialization, then

$g_{1}(\xi, \xi)=g(\dot{c}_{1}(0),\dot{c}_{1}(0))+g(\nabla_{c_{1}}c_{2}(0), \nabla_{c_{1}}c_{2}(0))$

where $g$ is the Riemannian metric of $M$ and $\nabla_{c_{1}}c_{2}$ is the covariant derivative
along $c_{1}$ . The orbits of the geodesic flow are geodesics in $SM$ with the Rie-
mannian metric $g_{1}$ . If $\gamma:[a, b]arrow M$ is a minimizing geodesic $(a=-\infty,$ $b=\infty$

admitted), then the lift $\dot{\gamma}$ of $\gamma$ to $SM$ is a minimizing geodesic in $SM$ also.

1.1. The trajectories of the geodesic flow. We say that a $v\in SM$ is non-
wandering if there exist sequences $\{v_{n}\}\subset SM$ and $\{t_{n}\}\subset R$ such that $t_{n}arrow\infty$ ,
$v_{n}arrow v$ and $f^{t_{n}}v_{n}arrow?$). We denote by $\Omega$ the set of all non-wandering points in
$SM$ under the geodesic flow. It follows that $\Omega$ is closed and $f^{t}$-invariant. We
introduce an equivalence $relation\sim inSM-\Omega$ in such a way that $v\sim w$ if $v=f^{t}w$

for some $t\in(-\infty, \infty)$ , where $v,$
$w\in SM-\Omega$ . Let $N$ be the set of all equivalence

classes $[v]$ , $v\in SM-\Omega$ . Since $SM-\Omega$ is open and $f^{t}$-invariant, there exists
locally a hypersurface $H$ in $SM-\Omega$ containing $v$ and diffeomorphic to an open
subset in $E^{2n-2}$ such that $[w]\cap H=\{w\}$ and $H$ intersects $[w]$ transversely for
any $w\in H$. The collection of such hypersurfaces $H$ yields a differentiable struc-
ture of $N$ with dimension $2n-2$ . We define the volume form $d\eta$ on $N$ such
that $d\eta_{[v]}\Lambda dt=d\omega_{v}$ for any $[v]\in N$. Then we have, for any summable func-
tion $F$ on $SM-\Omega$ ,

(1.1) $\int_{SM-Q}Fd\omega=\int_{[v]\in N}d\eta\int_{-\infty}^{\infty}F(f^{t}v)dt$ ,

where $F_{[v]}$ : $[v]arrow R$ is given by $F_{[v]}(w)=F(w)$ for any $w\in[v]$ .

1.2. The Birkhoff ergodic theorem. Let $D$ be an $f^{t}$-invariant subset of $SM$

with finite volume. The Birkhoff ergodic theorem says that for any summable
function $F$ on $D$

1) $F^{*}(v)= \lim_{Tarrow\infty}\frac{1}{T}\int_{0}^{T}F(f^{t}v)dt$



254 N. INNAMI

exist and are $f^{t}$-invariant for almost all $v\in D$ ,
2) for any $f^{t}$-invariant measurable subset $B\subset D$ ,

$\int_{B}F^{*}d\omega=\int_{B}Fd\omega$ .

We say that a $v\in D$ is uniformly recurrent if for any neighborhood $U$ of $v$ ,

we have

$\lim_{Tarrow}\inf_{\infty}\frac{1}{T}\int_{0}^{T}\chi_{U}(f^{t}v)dt>0$ ,

where $x_{U}$ ; $Darrow R$ is the characteristic function of $U$ . We denote by $W(D)$ the
set of all uniformly recurrent vectors in $D$ . It follows from the Birkhoff ergodic
theorem that $W(D)$ has full measure in $D$ ([1]).

1.3. The limit of the second fundamental forms of geodesic spheres.
Let $R$ be the curvature tensor of $M$. For any $v\in SM$ let $R(v):v^{\perp}arrow v^{\perp}$ be a
symmetric linear map given by $R(v)(x)=R(x, v)v$ for any $x\in v^{\perp}$ , where $v^{\perp}=$

$\{w\in T_{\pi(\iota)}M;\langle v, w\rangle=0\}$ .
We assume hereafter that $M$ is without conjugate points unless otherwise

stated. Let $\tilde{M}$ be the universal covering space of $M$. Then, $\tilde{M}$ is diffeomorphic
to $R^{n}$ and all geodesics are minimizing in $\tilde{M}$ . For any $v\in S\tilde{M}$ let $\tilde{A}_{s}(v)$ be the
second fundamental form at $\pi(v)$ of the geodesic sphere $S(\pi(v),\dot{\gamma}_{v}(s))$ with center
$\gamma_{v}(s)$ through $\pi(v)$ relative to $-v$ . It follows from [5], [6], [7], [9], [13] that

$\lim_{sarrow\infty}\tilde{A}_{s}(v)=\tilde{A}(v)$

exists and

$| \langle\tilde{A}(v)x, x\rangle|\leqq\max\{|\langle\tilde{A}_{-1}(v)y, y\rangle|, |\langle\tilde{A}_{1}(v)y, y\rangle| ; y\in v^{\perp}, |y|=1\}$

for any $v\in S\tilde{M}$ and any $x\in v^{\perp},$ $|x|=1$ . The map
$\tilde{A}$ : $S\tilde{M}arrow\bigcup_{v_{\overline{\subset}}S\overline{M}}L(v^{\perp})$

satisfies the following, where $L(v^{\perp})=$ { $h;h$ is a linear map of $v^{\perp}$ into itself}.
1) tr $\tilde{A}$ is measurable.
2) $\tilde{A}(v)$ is symmetric for any $v\in S\tilde{M}$ .
3) $\tilde{A}(f^{t}v)$ is of class $C^{\infty}$ for $t\in(-\infty, \infty)$ .
4) $\tilde{A}’(f^{t}v)+\tilde{A}(f^{t}v)^{2}+R(f^{t}v)=0$

for any $r\in(-\infty, \infty)$ , where $\tilde{A}’(f^{t}v)$ is the covariant derivative of $\tilde{A}(f^{t}v)$ along
$\gamma_{v}$ at $\gamma_{v}(t)$ .

5) For any compact set KcM there is a constant $C(K)>0$ such that
$\Vert\tilde{A}(v)\Vert<C(K)$ for any $v\in SK$, where $\Vert\tilde{A}(v)\Vert$ is the norm of $A(v)$ .

By the construction of the map $\tilde{A}$ we can induce the map $A$ on $SM$ which
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satisfies the same properties above.

1.4. The solution of a matrix equation of Riccati type. We consider the
following $(n-1)\cross(n-1)$ matrix differential equation of Riccati type.

(J) $X’(t)+X(t)^{2}+R(t)=0$

on $t\in(-\infty, \infty)$ , where $R(t)$ is a symmetric matrix and tr $R$ is summable on
$(-\infty, \infty)$ . The following lemma will be used in the case that $R(t)=R(f^{t}v)$ and
tr $R(t)=Ric(f^{t}v)$ for almost all $v\in SM$ such that the Ricci curvature Ric $(f^{t}v)$ is
summable over $(-\infty, \infty)$ .

LEMMA 1. SuppOse there exists a symmetric solution $A(t)$ of (J) on $t\in$

$(-\infty, \infty)$ . Then, the integral of tr $R(t)$ on $(-\infty, \infty)$ is $nonpo\alpha tive$ . If it vanishes,

then both $A(t)$ and $R(t)$ must be identically zero on $(-\infty, \infty)$ .
PROOF. The proof is the same as in [12]. We first prove that there exist

sequences $\{a_{n}\}$ and $\{b_{n}\}\subset R$ such that $a_{n}arrow\infty,$ $b_{n}arrow-\infty$ , tr $A(a_{n})arrow 0$ and tr $A(b_{n})$

$arrow 0$ as $narrow\infty$ . Suppose for indirect proof that an $\epsilon>0$ and an $s$ exist such that
$|trA(t)|>\epsilon$ for any $t>s$ . Since

$($tr $A(t))^{2}\leqq n$ tr $A(t)^{2}$

for any $t\in(-\infty, \infty)$ , and, hence,

$\int_{s}^{t}$ tr $A(t)^{2}dt\geqq(\epsilon^{2}/n)(t-s)$

for any $t>s$ , and since

tr $A(t)- trA(s)+\int_{s}^{t}$ tr $A(t)^{2}dt+ \int_{s}^{t}$ tr $R(t)dt=0$

for any $t>s$ , we see that tr $A(t)arrow-\infty$ as $tarrow\infty$ , since tr $R(t)$ is summable over
$(-\infty, \infty)$ . If we take a $u>s$ such that tr $A(t)|>1$ for any $t\geqq u$ , then

$\frac{t-u}{n}\leqq\int_{u}^{t}\frac{trA(t)^{2}}{(trA(t))^{2}}dt\leqq|\int_{u}^{t}\frac{trA’(t)}{(trA(t))^{2}}dt|+|\int_{u}^{t}\frac{trR(t)}{(trA(t))^{2}}dt|$

$\leqq|-\frac{1}{trA(t)}+\frac{1}{trA(u)}|+\int_{u}^{t}$ tr $R(t)|dt$ ,

a contradiction, because the right hand side is bounded above. The existence
of a sequence $\{b_{n}\}\subset R$ we want is proved similarly.

Integrating (J) after taking the trace on $[b_{n}, a_{n}]$ and taking $narrow\infty$ , we obtain

$\int_{-\infty}^{\infty}trR(t)dt=-\int_{-\infty}^{\infty}trA(t)^{2}dt\leqq 0$ .

If the equality holds, then
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tr $A(t)^{2}=0arrow A(t)=0arrow A’(t)=0arrow R(t)=0$

for any $t\in(-\infty, \infty)$ . Lemma 1 is proved.

2. The integral of the Ricci curvature on $SM-\Omega$ .
Let $M$ be a manifold as in Theorem. We will prove the following.

LEMMA 2. The integral of the Ricci curvature of $M$ on $SM-\Omega$ is $nonp_{0X-}$

tive, and it vanishes only if $R(v)=R(\cdot, v)v=0$ for any $v\in SM-\Omega$ .

PROOF. Since the Ricci curvature is summable and by the formula (1.1), the
integral of the absolute Ricci curvature is finite along the geodesic $\gamma_{v}$ : $(-\infty, \infty)$

$arrow M$ with $\dot{\gamma}_{v}(0)=v$ for almost all $v\in SM-\Omega$ . It follows from (1.3.4) and Lemma
1 that

$\int_{-\infty}^{\infty}Ric(f^{t}v)dt\leqq 0$

for almost all $v\in SM-\Omega$ . Integrating it on $N$ as in 1.1, we obtain

$\int_{SM-\Omega}$ Ric $d \omega=\int_{[v]\in N}d\eta\int_{-\infty}^{\infty}Ric(f^{t}v)dt\leqq 0$ .

The equality means from Lemma 1 that $R(v)=R(\cdot, v)v=0$ for almost all $v\in$

$SM-\Omega$ . Since $R(v)$ depends continuously on the points $v\in SM$, we see that $R$

is identically zero on $SM-\Omega$ . Lemma 2 is proved.

3. The integral of the Ricci curvature on $\Omega$ .
Let $M$ be a manifold as in Theorem and let $Q_{1}\subset\Omega$ be an $f^{t}$-invariant set

which has finite volume. We will prove the following.

LEMMA 3. The integral of the Ricci curvature of $M$ over $\Omega_{1}$ is nonposjtive,
and it vanishes only if $R(v)=R(\cdot, v)v=0$ for any $v\in\Omega_{1}$ .

PROOF. Let $X(\Omega_{1})$ be the set of all vectors $v$ such that Ric*(v) exists as in
(1.2.1). Then, $X(\Omega_{1})\cap W(\Omega_{1})$ has full measure in $\Omega_{1}$ . Let a $v\in X(\Omega_{1})\cap W(\Omega_{1})$

and let $K$ be a compact neighborhood of $v$ in $\Omega_{1}$ . It follows from (1.3.5) that
there exists a constant $C(K)>0$ such that $\Vert A(w)\Vert<C(K)$ for any $w\in K$. Since
$v$ is uniformly recurrent, there exists a sequence $\{T_{n}\}\subset R$ such that $T_{n}arrow\infty$ ,
$f^{\tau_{n}}varrow v$ as $narrow\infty$ and $f^{\tau_{n}}v\in K$ for all $n$ . By (1.3.4), we have

$\frac{1}{T_{n}}$ (tr $A(f^{r_{n}}n)-trA(v)$ ) $+ \frac{1}{T_{n}}\int_{0}^{\tau_{n}}trA(f^{t}v)^{2}dt+\frac{1}{T_{n}}\int_{0}^{\tau_{n}}Ric(f^{t}v)dt=0$ .

Taking $narrow\infty$ we obtain
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Ric*(v) $=- \lim_{narrow\infty}\frac{1}{T_{n}}\int_{0}^{\tau_{n}}trA(f^{t}v)^{2}dt\leqq 0$ .

Hence, by the Birkhoff ergodic theorem (1.2.2), we get

$\int_{\Omega_{1}}$ Ric $d \omega=\int_{\Omega_{1}}Ric^{*}d\omega\leqq 0$ .

Suppose the equality holds. Then, $X_{0}(\Omega_{1})=\{v\in\Omega_{1} ; Ric^{*}(v)=0\}$ has full
measure in $\Omega_{1}$ , and, hence, $X_{0}(\Omega_{1})\cap W(\Omega_{1})$ has full measure in $\Omega_{1}$ . We will
prove that Ric $(v)=0$ for any $v\in X_{0}(\Omega_{1})\cap W(\Omega_{1})$ . The idea of the proof is seen
in [14]. Let a $v\in X_{0}(\Omega_{1})\cap W(\Omega_{1})$ and let $\gamma:[0, \infty$ )$arrow SM$ be a geodesic with
$\gamma(t)=f^{t}v$ for any $t\in(-\infty, \infty)$ . We put $A(t)=A(f^{t}v)$ and Ric $(t)=Ric(f^{t}v)$ for all
$t\in(-\infty, \infty)$ . Choose a positive $l$ such that the geodesic open ball $B(l)$ in $SM$

with center $v$ and radius $l$ is strongly convex. The convex ball $B(l)$ has a
property that for any points $p,$ $q\in\overline{B(l}$) there is the unique minimizing geodesic
joining $P$ and $q$ which is contained in $B(l)$ possibly except for $P$ and $q$ , where
$\overline{B(l)}$ is the closure of $B(l)$ in $SM$. Since $Ric^{*}(v)=0$ and $v\in W(\Omega_{1})$ , it follows
from the argument above that

$\lim_{narrow\infty}\frac{1}{T_{n}}\int_{0}^{\tau_{n}}trA(t)^{2}dt=0$ ,

if a sequence $\{T_{n}\}\subset R$ is such that $T_{n}arrow\infty$ as $narrow\infty$ and $\gamma(T_{n})$ lie in the boundary
of $B(l)$ for all $n$ .

ASSERTION. There exzsts a sequence $\{t_{n}\}\subset[0, \infty$ ) sucb that
1) $t_{n}arrow\infty$ as $narrow\infty$ ,
2) if $A_{n}(t)$ is the matrix given by $A_{n}(t)=A(t_{n}+t)$ for any $t\in[0, l]$ , then

$\int_{0}^{t}$ tr $A_{n}(t)^{2}dtarrow 0$ as $narrow\infty$ ,

and tr $A_{n}(t)arrow 0$ for almost all $t\in[0,1]$ as $narrow\infty$ ,
3) if $\gamma_{n}$ : $[0, l]arrow SM$ is the geodestc given by $\gamma_{n}(t)=f^{t_{n}+t}v$ for any $t\in[0,1]$ ,

then $\gamma_{n}$ converges to the geodestc $\gamma_{0}$ : $[0, l]arrow SM$ with $\gamma_{0}(t)=f^{t-l/2}v$ for any $t\in$

$[0, l]$ as $narrow\infty$ .

PROOF OF ASSERTION. Let $k\geqq 4$ be an integer. Since $B(l/k)$ is a convex
ball and $\gamma$ is a geodesic, $\gamma^{-1}(B(l/k))$ is the union of intervals whose lengths are
less than or equal to $2l/k$ , say

$(a_{1}’, b\{),$ $(a_{2}’, b_{2}’),$ $\cdots$ , $(a_{i}’, b_{i}’),$ $\cdots$ ;

$a_{1}’<b_{1}’<a_{2}’<b_{2}’<\ldots<a_{i}’<b_{i}’<\ldotsarrow\infty$ .
Put

$a_{i}= \frac{a_{i}’+b_{i}^{f}}{2}-\frac{l}{2}$ ; $b_{i}= \frac{a_{i}’+b_{i}’}{2}+\frac{l}{2}$
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for each $i=1,2,$ $\cdots$ . Then, $\gamma([a_{i}, b_{i}])\subset B(l)$ and $\gamma(a_{i}),$ $\gamma(b_{i})\not\in B(l/k)$ , since

$d_{1}(\gamma(t), v)\leqq d_{1}(\gamma(t),$ $\gamma(a_{i}+\frac{l}{2}))+d_{1}(\gamma(a_{i}+\frac{l}{2}),$ $v)< \frac{l}{2}+\frac{l}{k}<1$

for any $t\in[a_{i}, b_{i}]$ , and since

$d_{1}(\gamma(a_{i}), v)\geqq d_{1}(\gamma(a_{i}),$ $\gamma(a_{i}+\frac{l}{2}))-d_{1}(\gamma(a_{i}+\frac{l}{2}),$ $v)> \frac{l}{2}-\frac{l}{k}\geqq\frac{l}{k}$ ,

from the choice of $k$ , where $d_{1}(\cdot, \cdot)$ is the distance induced from the Rieman-
nian metric defined on $SM$ in Section 1. It follows similarly that $d_{1}(\gamma(b_{i}), v)>$

$l/k$ . Suppose

$\lim_{iarrow}\inf_{\infty}\int_{a_{i}}^{b_{i}}trA(t)^{2}dt>\alpha>0$ .

For any $n$ , we have

$\frac{1}{T_{n}}\int_{0}^{\tau_{n}}$ tr $A(t^{2})dt \geqq\frac{1}{T_{n}}[\sum_{i=1}^{m_{n}}\int_{a_{i}}^{b_{i}}trA(t)^{2}dt]$

$\geqq\frac{1}{T_{n}}[\sum_{i=1}^{m}\int_{a_{i}}^{b_{i}}trA(t)^{2}dt]+\frac{\alpha}{lT_{n}}\sum_{i=m+1}^{m_{n}}(b_{i}-a_{i})$

$\geqq\frac{\alpha}{lT_{n}}\sum_{i=m+1}^{m_{n}}(b_{i}’-a_{i}’)=\frac{\alpha}{lT_{n}}\int_{0}^{\tau_{n}}\chi_{B(t/k)}(\gamma(t))dt-\frac{\alpha}{lT_{n}}\sum_{i=1}^{m}$ ( $b_{i}’$ -a $i’$ ),

where $m_{n}$ and $m$ are chosen so that

$b_{m_{n}}<T_{n}<a_{m_{n}+1}$ and

This implies that

$\inf_{l\geqq m}\int_{a_{i}}^{b_{i}}trA(t)^{2}dt>\alpha$ .

$0= \lim_{narrow\infty}\frac{1}{T_{n}}\int_{0}^{\tau_{n}}$ tr $A(t)^{2}dt \geqq\frac{\alpha}{l}\lim_{Tarrow}\inf\frac{1}{T}\int_{0}^{T}\chi_{B(t/k)(f^{t}v)dt}>0$ ,

a contradiction. Thus we can find an integer $i(k)\geqq k$ such that

$\gamma(\frac{a_{i(k)}+b_{t(k)}}{2})\in B(l/k)$ and $\int_{\alpha_{i(k)}}^{b_{i(k)}}trA(t)^{2}dt\leqq\frac{1}{k}$ .

If $t_{k}=a_{i(k)}$ for all $k\geqq 4$ , the sequence $\{t_{k}\}$ satisfies the condition 1) and the first
part of 2). For the second part of 2) and 3) we have only to choose a suitable
subsequence $\{t_{n}\}$ of $\{t_{k}\}$ if necessary.

We return to the proof of Ric $(v)=0$ . Rewritting (1.3.4) in terms of 2), we
get for each $n$

(3.4) tr $A_{n}’(t)+trA_{n}(t)^{2}+Ric_{n}(t)=0$

for any $t\in[0, l]$ , where $Ric_{n}(t)=Ric(t_{n}+t)$ . It should be noted that $Ric_{n}(t)$ con-
verges to Ric $(t-1/2)$ uniformly in $t\in[0,1]$ as $narrow\infty$ . Suppose Ric $(O)=Ric(v)\neq 0$ ,
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say Ric $(v)>0$ . Then, there exist $a$ and $b\in[0,1],$ $a<l/2<b$ , such that Ric $(t-1/2)$

$>0$ for any $t\in[a, b]$ and $trA_{n}(a),$ $trA_{n}(b)arrow 0$ as $narrow\infty$ . On the other hand, by
integrating (3.4) on the interval $[a, b]$ and taking $n$ to infinity, we have

$\int_{a}^{b}$ Ric $(t- \frac{l}{2})dt=0$ ,

a contradiction. Therefore, Ric $(v)=0$ for any $v\in X_{0}(\Omega_{1})\cap W(\Omega_{1})$ . It follows
from Lemma 1 that $R(v)=R(\cdot, v)v=0$ for any $v\in X_{0}(\Omega_{1})\cap W(\Omega_{1})$ . Since $R(v)$

depends continuously on the points $v\in SM$, we see that $R$ is identically zero on
$\Omega_{1}$ . Lemma 3 is proved.

4. Proof of Theorem.

By Lemmas 2 and 3, we have

$\frac{\theta_{n-1}}{n}\int_{M}Sd\sigma=\int_{SH}Ricd\omega=\int_{SM-\Omega}Ricd\omega+\sum_{i=1}^{\infty}\int_{\Omega_{i}}Ricd\omega\leqq 0$ ,

where $\theta_{n-1}$ is the volume of the unit sphere in $E^{n},$ $S$ is the scalar curvature
of $M$ and $\Omega=\Sigma_{i=1}^{\infty}\Omega_{i}$ is the decomposition of $f^{t}$-invariant sets each of which
has finite volume. If the equality holds, then

$\int_{SH-\Omega}$ Ric $d \omega=\int_{\Omega_{i}}Ricd\omega=0$ ,

for all $i=1,2,$ $\cdots$ . Lemmas 2 and 3 state that the curvature tensor $R(\cdot, \iota))v$ is
zero for any $v\in SM$ . Therefore, $M$ is flat. This completes the proof of
Theorem.

5. Proof of Corollaries.

If a complete simply connected Riemannian manifold $M$ is without conjugate
points, then all geodesics are minimizing in $M$. This implies that $\Omega$ is a empty
set. Hence, Corollary 1 follows from Theorem. For Corollary 2 we have
nothing to prove.

For the proof of Corollary 3 we need the notion of totally convex sets.
We say that a set $C$ in a complete Riemannian manifold $M$ is totally convex if
for any points $p,$ $q\in C$ all geodesic curves joining $p$ and $q$ are entirely contained
in $C$ . It follows that any totally convex closed set $C$ is an imbedded submani-
fold in $M$ (possibly with not differentible boundary), and if $\gamma:[0, \infty$ )$arrow M$ is a
geodesic such that $\gamma(0)$ is in the interior of $C$ and $\gamma(s)$ is in the boundary of $C$

for some $s$ , then $\gamma(t)$ is outside $C$ for any $t\in(s, \infty)$ . G. Thorbergsson ([15])

proved by a slight modification of the Cheeger and Gromoll basic construction
([3]) that if $M$ is a complete Riemannian manifold with nonnegative sectional
curvature outside some compact set, then there is a family $\{K_{t} ; t>0\}$ of com-
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pact totally convex sets with $M=\cup K_{t}$ and $K_{t}\subset K_{s}$ for $t\leqq s$ .

5.1. Proof of Corollary 3. Let $M$ be as in Corollary 3 and let $K$ be a com-
pact set in $M$ such that the sectional curvature is zero outside $K$ . By Thorber-
gsson’s result we can find a compact set $C$ such that the interior $C^{0}$ of $C$ con-
tains $K$. We want to prove that $SC^{0}\cap\Omega$ is $f^{t}$-invariant, where $SC^{0}=\{v\in SM$ ;
$\pi(v)\in C^{0}\}$ . If this were not true, then there is a $v\in SC^{0}\cap\Omega$ such that $\pi(f^{s}v)$

is in $M-C$ for some $s>0$ , since $\Omega$ is $f^{t}$-invariant and $C$ is a totally convex
set. We can choose sequences $\{v_{n}\}\subset SC^{0}$ and $\{t_{n}\}cR$ such that $t_{n}arrow\infty,$ $v_{n}arrow v$

and $f^{c_{n}}v_{n}arrow v$ as $narrow\infty$ , since $v$ is a non-wandering point under the geodesic
flow. Then it follows that $f^{s}v_{n}arrow f^{s}\iota$) as $narrow\infty$ . Hence, we can find a sufficiently
large $m$ such that $\pi(v_{m})\in C^{0},$ $\pi(f^{t_{m}}v_{m})\in C^{0}$ and $\pi(f^{s}v_{m})\not\in C$ . This contradicts
that $C$ is a totally convex set in $M$, since $\gamma:[0, \infty$ )$arrow M$ given by $\gamma(t)=\pi(f^{t}v_{m})$

for any $t$ is a geodesic with $\gamma(0)\in C^{0},$ $\gamma(t_{m})\in C^{0}$ and $\gamma(s)\not\in C$ .
Thus, we can use Lemma 3 to integrate the Ricci curvature over $SC^{0}\cap\Omega$ ,

since $SC^{0}\cap\Omega$ has finite volume. Now we have in the same notation in Sec-
tion 4

$\frac{\theta_{n-1}}{n}\int_{M}Sd\sigma=\int_{SM}Ricd\omega=\int_{SM-\Omega}$ Ric $d \omega+\int_{SC^{0}\cap\Omega}$ Ric $d \omega+\int_{(SM-SC^{0})\cap\Omega}$ Ric $d\omega\leqq 0$ ,

because the third term in the right is zero, since the sectional curvature is zero
on $M-C^{0}$ . If the equality holds, then

$\int_{SM-\Omega}$ Ric $d \omega=\int_{SC^{0}\cap\Omega}Ricd\omega=0$ .

Lemmas 2 and 3 state that the curvature tensor $R(\cdot, v)v$ is zero for any $v\in$

$(SM-\Omega)\cup(SC^{0}\cap\Omega)$ . Therefore, $M$ is flat. This completes the proof of Corol-
lary 3.
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