
J. Math. Soc. Japan
Vol. 41, No. 1, 1989

Integral arithmetically Buchsbaum curves in $P^{3}$

By Mutsumi AMASAKI

(Received May 18, 1987)

Introduction.

When a curve $X$ (not assumed to be smooth nor reduced) in $P^{3}$ has the
property that its deficiency module $\oplus {}_{n}H^{1}(\mathcal{I}_{X}(n))$ is annihilated by the homogene-
ous coordinates $x_{1},$ $x_{2},$ $x_{3},$ $x_{4}$ of $P^{3}$ , it is called an arithmetically Buchsbaum
curve. In [1], we defined a numerical invariant “basic sequence” of a curve
in $P^{3}$ (see [1; Definition 1.4]) and classified arithmetically Buchsbaum curves
with nontrivial deficiency modules in terms of their basic sequences. But there,
an important problem was left unconsidered; to find a necessary and sufficient
condition for the existence of integral arithmetically Buchsbaum curves with a
given basic sequence. The aim of this paper is to give a complete answer to
this problem in the case where the base field has characteristic zero. The
existence theorems for some special cases, $e$ . $g$ . [ $1$ ; Theorem 4.4], [2; Corollary
2.6], [3; Proposition4.7] and [4; pp. 125-126], are now corollaries to our general
theorem.

NOTATION AND CONVENTION. The base field $k$ is algebraically closed. We
do not assume that char$(k)=0$ except in the main theorem. The word “curve”
means an equidimensional complete scheIhe over $k$ of dimension one without

any embedded points. Given a matrix $\Phi,$ $\Phi(\begin{array}{l}ij\end{array})$ denotes the matrix obta-ned by

deleting the i-th row and the j-th column from $\Phi$ . We say that a sequence of
integers $z_{1},$

$\cdots$ , $z_{n}$ is connected if $z_{i}\leqq z_{i+1}\leqq z_{i}+1$ for all $1\leqq i\leqq n-1$ or $n=0(i.e$ .
the sequence is empty). The ideal sheaf of a curve $X$ in $P^{3}$ is denoted by $\mathcal{I}_{X}$

and we set $I_{X,n}=H^{0}(\mathcal{I}_{X}(n)),$ $I_{X}=\oplus_{n}I_{X,n}\subset R$ , where $R=k[x_{1}, Y_{2}, x_{3}, x_{4}]$ . For
simplicity we abbreviate “arithmetically Buchsbaum” to $a$ . B.”.

\S 1. Preliminaries.

Given a curve $X$ in $P^{3}$ , we define the basic sequence of $X$ to be the sequence
of positive integers $(a;\nu_{1}, \cdots , v_{a} ; \nu_{a+1}, \cdots , \nu_{a+b})(b\geqq 0)$ which satisfies the
conditions (1.1), (1.2), (1.3) below and denote it by $B(X)$ (see [1; \S \S 1, 2]). Let
$x_{1},$ $x_{2},$ $x_{3},$ $x_{4}$ be generic homogeneous coordinates of $P^{3}$ and set $R’=k[x_{1}, x_{2}, x_{3}]$ ,
$R’=k[x_{3}, x_{4}]$ .
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(1.1) $a\leqq\nu_{1}\leqq\ldots\leqq\nu_{a},$ $\nu_{1}\leqq\nu_{a+1}\leqq\ldots\leqq\nu_{a+b}$ , where $(\nu_{a+1}, \cdots , \nu_{a+b})$ is empty if $b=0$ .
(1.2) There are generators $f_{0},$ $f_{1}$ , $f_{a},$ $f_{a+1}$ , $f_{a+b}$ of IX such that $\deg(f_{0})=a$ ,

$\deg(f_{i})=\nu_{i}(1\leqq i\leqq a+b)$ and

$I_{X}=Rf_{0} \oplus\bigoplus_{i=1}^{a}R’f_{i}\oplus\bigoplus_{j=1}^{b}R’’f_{a+j}$ .

(1.3) The deficiency module $M(X):=\oplus_{n}H^{1}(\mathcal{I}_{X}(n))$ has a minimal free resolution
of the form
$0 arrow\bigoplus_{j=1}^{b}R’’(-\nu_{a+j})arrow\bigoplus_{i=1}^{r_{1}}R’’(-\epsilon_{i}^{1})arrow\bigoplus_{i=1}^{r_{0}}R’’(-\epsilon_{i}^{0})arrow M(X)arrow 0$

as an $R’$ -module, where $\epsilon_{i}^{j}(1\leqq i\leqq r_{j}, j=0,1)$ are integers.

The basic sequences of $a$ . B. curves have some special properties. First of
all, a sequence $(a;\nu_{1}, \cdots , \nu_{a} ; \nu_{a+1}, \cdots , \nu_{a+b})$ of positive integers satisfying (1.1)

is the basic sequence of an $a$ . B. curve if and only if $a\geqq 2b$ and there are
$(m_{1}, \cdots , m_{a-2b}),$ $(n_{1}, \cdots , n_{b})(m_{1}\leqq\cdots\leqq m_{a-2b}, n_{1}\leqq\cdots\leqq n_{b})$ such that $(\nu_{a+1}, \cdots , \nu_{a+b})$

$=(n_{1}, \cdots , n_{b}),$ $(\nu_{1}, \cdots , \nu_{a})=(m_{1}, \cdots , m_{a-2b}, n_{1}, \cdots n_{b}, n_{1}, \cdots , n_{b})$ up to permutation
(see [1; Theorem 3.1, Lemma 4.2]). Furthermore $a$ . B. curves of the same
basic sequence are parameterized by a Zariski open subset of an affine space
over $k$ . Let $X$ be an $a$ . B. curve. With the notation above the sequence
$B_{sh}(X):=(a;m_{1}, \cdots , m_{a-2b} ; n_{1}, \cdots , n_{b})$ is called the short basic sequence of $X$

in [1] (cf. [1; Corollary 3.3, (4.1.4)]). It follows from (1.3) and the definition
of $a$ . B. curves that

(1.4) $M(X) \cong\bigoplus_{j=1}^{b}k(-n_{j}+2)$ .

Besides, examining the relation between IX and $M(X)$ closely, we find that the
R-module $\tilde{R}_{X}$ $;=\oplus_{n}H^{0}(\mathcal{O}_{X}(n))$ has a free resolution of the form

$0 arrow\bigoplus_{i\Rightarrow 1}^{a-2b}R(-m_{i}-1)\oplus(\bigoplus_{j=1}^{b}R(-n_{f}))^{3}$

(1.5) $arrow^{\tau}R(-a)\oplus\bigoplus_{i=1}^{a-2b}R(-m_{i})\oplus(\bigoplus_{j=1}^{b}R(-n_{j}+1))^{4}$

$arrow^{\sigma}R\oplus(\bigoplus_{r=1}^{b}R(-n_{j}+2))arrow^{\rho}\tilde{R}_{X}arrow 0$ ,

where $\sigma=(\overline{0x_{1}1_{b},x_{2}}*1_{b},$
$x_{3}1_{b},$

$x_{4}1_{b})$

with a $b\cross b$ unit matrix $1_{b}$ (see [1; (3.4.1)]).

\S 2. Short basic sequences of integral a.B. curves.

In the following argument the results concerning $a$ . B. curves will be stated
in the language of their short basic sequences.
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Let $F$ and $G$ be vector bundles on $P^{3}$ of rank $P$ and $q$ respectively $(p>1$ ,
$q>0)$ and let $X$ be a curve in $P^{3}$ whose ideal sheaf $\mathcal{I}_{X}$ has a locally free
resolution of the form

(2.1) $0 arrow\bigoplus_{i=1}^{p+q-1}o_{p3}(-d_{i})arrow^{v}F\oplus Garrow^{w}\mathcal{I}_{X}arrow 0$

(cf. [6; Lemma 1.1]). Here the map $v$ is defined by the multiplication by global sec-
tions $(v_{i}^{F}, v_{i}^{G})\in H^{0}((F\oplus G)\otimes \mathcal{O}_{p3}(d_{i}))(v_{i}^{F}\in H^{0}(F(d_{i})), v_{i}^{G}\in H^{0}(G(d_{i})),$ $1\leqq i\leqq P+q-1$ )

and locally it is represented by the $(p+q)\cross(p+q-1)$-matrix $v=(\begin{array}{l}v^{F}v^{G}\end{array})$ , where
$v^{F}=(v_{1}^{F}, v;+q-1)$ and $v^{G}=(v_{1}^{G}, v_{p+q-1}^{G})$ .

LEMMA 1. Suppose that $v_{i}^{G}=0$ for $1\leqq i\leqq p-1$ and that $X$ is integral. Then

$F \cong o_{p3}(c_{1}(F)+\sum_{i=1}^{p-1}d_{i})\oplus\bigoplus_{i=1}^{p-1}o_{p3}(-d_{i})$ or $G \cong\bigoplus_{i=p}^{p+q-1}o_{p3}(-d_{i})$ .

PROOF. Let $Y$ denote the closed subscheme of $P^{3}$ defined locally by the
maximal minors of $(v_{1}^{F}, \cdots , v_{p-1}^{F})$ . Clearly $Y\subset X$ by the hypothesis $v_{l}^{G}=0$

$(1\leqq i\leqq p-1)$ , therefore $Y$ is either empty or is a curve and in any case $\mathcal{I}_{Y}$ has
the locally free resolution

$v’$ $w’$

(2.2) $0 arrow\bigoplus_{i=1}^{p-1}o_{p3}(-d_{i})arrow Farrow \mathcal{I}_{Y}(c)arrow 0$

with $c=c_{1}(F)+\Sigma_{i=1}^{p-1}d_{i}$ (cf. [1; (2.10.5)]) where $v’$ and $w’$ are defined by
$(v_{1}^{F}, \cdots , v_{p-1}^{F})$ in the same way as above. If $Y$ is emPty, then $\mathcal{I}_{Y}=O_{p3}$ so that
(2.2) splits and we have $F\cong O_{p3}(c)\oplus\oplus_{i=1}^{p-1}\mathcal{O}_{p3}(-d_{i})$ . Now suppose that $Y$ is a
curve. In this case $Y=X$, since $X$ is integral. Let $\zeta$ be an element of
$H^{0}( \wedge G(\sum_{i=p}^{p+q-1}d_{i}))q$ given by $\det(v_{p}^{G}, \cdots , v_{p+q-1}^{G})$ and let $D$ denote the zero locus of $\zeta$ .
If $\zeta=0$ or $D$ is a divisor of positive degree, we take a point $x\in X\cap D$ and consider
the stalk of $\mathcal{I}_{X}$ at $x$ . Set $v’=(v_{1}^{F}, v_{p-1}^{F})$ , $u=(v_{p}^{G}, \cdots , v_{p+q-1}^{G})$ , $h=\det(u)$ ,

$g_{i}’=(-1)^{i-1}\det(v^{\prime(}i))(1\leqq i\leqq p)$ and $g_{i}=(-1)^{i-1}\det(v(j))(1\leqq i\leqq p+q)$ . Then it

follows from (2.1) and (2.2) that

(2.3) $\mathcal{I}_{X.x}=(g_{1}’, g_{p}’)\mathcal{O}_{P^{3}.x}=(g_{1},$ $g_{p+q_{\text{m}}}^{\backslash }O_{P^{3}.x}$ .
Since $h$ vanishes at $x$ , the rank $r$ of $u$ at $x$ is smaller than $q$ . We may assume
therefore that $v$ is of the form

$[---o_{1^{-----1}}-1’\iota_{I^{*\iota_{1}}}|\overline{1}^{-----]\}r}v’1’\prime i_{\dot{j}}’1’\iota_{1}|’,’ 0|’I^{-}|’|1_{11}u’o_{1}^{1}’|\prime 1$
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up to multiplication by $GL(P+q, O_{P^{3},x})$ on the left and $GL(p+q-1, O_{P^{3},x})$ on the
right, where all the components of $u’$ are contained in the maximal ideal $\mathfrak{m}_{x}$ of
$x$ . Consequently,

$\mathcal{I}_{X,x}\subset(g_{1}’, ’ g_{p}’)\mathfrak{m}_{x}+g_{p+1}\mathcal{O}_{P^{3}.x}$

by (2.3), which implies that $\mathcal{I}_{X.x}=g_{p+1}\mathcal{O}_{P^{3}.x}$ by Nakayama’s lemma. This
contradicts the fact that $X$ is a curve passing through $x$ . Hence $D=\emptyset$ and
$G\cong\oplus_{i=p}^{p+q-1}O_{p3}(-d_{i})$ . Q. E. D.

Let $A$ be a finitely generated regular k-algebra, $n(n\geqq 3)$ an integer and
$s= \{s_{ij}|1\leqq i\leqq\min(j+2, n), 1\leqq j\leqq n-1\}$ a set of indeterminates over $A$ . We
denote by $S$ the matrix of size $n\cross(n-1)$ whose $(i, j)$-component is $s_{ij}$ if
$1\leqq i\leqq j+2$ and $0$ otherwise. Given a $n\cross(n-1)$-matrix $H=(h_{ij})$ with components
in $A[s]$ such that
(2.4) all the components of $H-S$ lie in $A$ ,

let $Q(H)$ denote the closed subscheme of $V:=Spec(A[s])$ determined by the
maximal minors of $H$.

LEMMA 2. There is a closed subscheme $Z$ of codimension larger than or equal
to 5 in $V$ such that $Q(H)\backslash Z$ is smooth over $k$ .

PROOF. We first consider the case $n=3$ . Let $U_{ij}$ be the complement of
the divisor $h_{ij}=0$ for each $(i, j)(1\leqq i\leqq 3,1\leqq j\leqq 2)$ . Since

$h_{1j}\det(H(1))-h_{zj}\det(H(2))+h_{3j}\det(H(3))=0$

for $j=1,2$ , the scheme $Q(H)\cap U_{i_{1}}$ is isomorphic to

$Spec(A[s]_{h_{11}}/(h_{32}-h_{12}h_{31}/h_{11}, h_{22}-h_{12}h_{21}/h_{11}))$ ,

which is of codimension 2 in $U_{11}$ and smooth over $k$ . The same thing holds
also for the other $Q(H)\cap U_{ij}’ s$ . Therefore $Q(H)$ is smooth over $k$ in the out-
side of the closed subscheme $V\backslash (U_{i,j}U_{ij})$ of codimension 6 in $V$ . Now suppose
that $n\geqq 4$ and that the assertion holds for $n-1$ . Let $U_{i}(1\leqq i\leqq 5)$ be the com-
plements of the divisors $h_{i1}=0(1\leqq i\leqq 3),$ $h_{n.n-6+i}=0(4\leqq i\leqq 5)$ respectively. On
each open set $U_{i}(1\leqq i\leqq 5)$ , there are matrices $K_{t}\in GL(n, k[U_{i}])$ and $K_{i}’\in$

$GL(n-1, k[U_{i}])$ such that $K_{t}HK_{i}’$ takes the form $(\begin{array}{llll}1 0 \cdots 00 \vdots H_{i}’0 \end{array})$ , where $H_{i}’$ satisfies

the condition (2.4) with $A$ and $S$ replaced by $A[\{s_{lm}|l=i or m=1\}]_{h_{i1}}$ and
$S(\begin{array}{l}i1\end{array})(1\leqq i\leqq 3)$ or $A[\{s_{lm}|l=n or m=n-6+i\}]_{h_{n,n-6+i}}$ and $S(\begin{array}{l}nn-6+i\end{array})(4\leqq i\leqq 5)$ .
By the induction hypothesis there are closed subschemes $Z_{i}(1\leqq i\leqq 5)$ of $U_{\iota}$

such that $co\dim_{U_{i}}(Z_{t})\geqq 5$ and $Q(H_{t}’)\backslash Z_{t}$ are smooth over $k$ . We have only to
put $Z=(V\backslash U_{i=1}^{5}U_{i})\cup U_{i=1}^{5}\overline{Z}_{i}$ . Q. E. D.
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Let $a,$ $b,$ $m_{i}(1\leqq i\leqq a-2b)$ and $n_{\iota}(1\leqq i\leqq b)$ be positive integers such that
$a-2b\geqq 0,$ $a\leqq m_{1}\leqq m_{2}\leqq\ldots\leqq m_{a-2b}$ and $a\leqq n_{1}\leqq n_{2}\leqq\ldots\leqq n_{b}$ . We set

$B_{sh}=(a;m_{1}, m_{a-2b} ; n_{1}, \cdots n_{b})$ .
One knows that there exists an $a$ . B. curve $X$ in $P^{3}$ with short basic sequence
$B_{sh}$ (see Section 1). For each integer $n\geqq 0$ we put

$\{\alpha=\min(m_{1},n_{1}-1)e_{n}=\#\{i|m_{i}=n,1\leqq i\leqq a-2b\}$

, $e_{n}’=\#\{i|n_{i}=n, 1\leqq i\leqq b\}$ ,

$\beta=\max(m_{a-2b}, n_{b}-1)$ ,

where $\#$ denotes the number of the elements and $\alpha=n_{1}-1,$ $\beta=n_{b}-1$ if $a-2b=0$ .
Let $E$ denote the vector bundle of rank 3 on $P^{3}$ dePned by the exact sequence

$0arrow Earrow \mathcal{O}_{p3}(1)^{4}arrow O_{p3}(2)(x_{1}, x_{2}, x_{3}, x_{4})arrow 0$

,

namely $E=\Omega_{p3/k}(2)$ . One sees that $h^{0}(E(n))=0$ for $n<0$ and that $E$ is generated
over $O_{p3}$ by its global sections. Set

$F_{m}= \mathcal{O}_{p3}(-a)\oplus\bigoplus_{n=a}^{m}(O_{p3}(-n)^{e_{n}}\oplus E(-n-1)^{e_{n+1}’})$ ,

$G_{m}= \bigoplus_{n=m+1}^{\beta}(O_{p3}(-n)^{e_{n}}\oplus E(-n-1)^{e_{n+1}}’)$ ,

$L_{m}= \bigoplus_{n=\alpha}^{m}\mathcal{O}_{p3}(-n-1)^{e_{n}+3e_{n+1}}’$ ,

for $\alpha\leqq m\leqq\beta$ . It follows from [1; (2.10.5) and (3.4.1)] that $\mathcal{I}_{X}$ has a locally
free resolution of the form

(2.5) $0arrow L_{\beta}arrow^{v}F_{\beta}arrow^{w}\mathcal{I}_{X}arrow 0$ .
LEMMA 3. SuppOse that $X$ is reduced. Then $X$ is connected if and only if

$n_{1}\geqq 3$ .
PROOF. Since $X$ is connected if and only if $H^{1}(\mathcal{I}_{X})=0$ , the assertion follows

from (1.4).

LEMMA 4. Let $X’$ be another $a$ . B. curve whose ideal sheaf $\mathcal{I}_{X’}$ has a locally free
resolution of the form (2.5) with the same $L_{\beta}$ and $F_{\beta}$ . Then the short basic
sequence of $X’$ coincides with $B_{sh}$ .

PROOF. Since $M(X’)\cong M(X),$ $h^{0}(\mathcal{I}_{X’}(n))=h^{0}(\mathcal{I}_{X}(n))$ for all $n\geqq 0$ by (2.5),

it follows from (1.1), (1.2), (1.3) and (1.4) that $B_{sh}(X’)=B_{sh}$ .

THEOREM. i) If there is an integral $a$ . B. curve in $P^{3}$ with short basic
sequence $B_{sh}$ , then one of the following two conditions is satisfied.
(2.6.1) $a=2$ , $b=1$ , $n_{1}\geqq 3$ ,
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(2.6.2) $a\geqq 3$ , $a-2b\geqq n_{b}-n_{1}$ , $m_{1}\leqq n_{1}$ , $n_{b}-1\leqq m_{a-2b}$

and $m_{1},$
$\cdots$ , $m_{a-2b}$ is connected.

ii) In the case char$(k)=0$ , both these conditions are sufficient for the existenc
of an integral $a$ . B. curve with short basic sequence $B_{sh}$ .

PROOF. If the condition (2.6.1) or (2.6.2) is fulfilled, we have

(2.7) $\alpha=\beta$ or $e_{n+1}\neq 0$ for every integer $n(\alpha\leqq n\leqq\beta-1)$ .
Conversely if (2.7) is satisfied, we have (2.6.1), (2.6.2) or
(2.8) $a=2$ , $b=1$ , $n_{1}=2$ .

Let $X$ be an integral $a$ . B. curve in $P^{3}$ with short basic sequence $B_{sh}$ and
assume that neither (2.6.1) nor (2.6.2) is satisfied. Then, since the case (2.8)

cannot occur by Lemma 3, we have $\alpha<\beta$ and there is an integer $l(\alpha\leqq l\leqq\beta-1)$

such that $e_{l+1}=0$ by the remark above. One sees $H^{0}(G_{l}\otimes L_{l}^{\vee})=0$ , $F_{\beta}=F_{l}\oplus G_{l}$ ,

rank$(F_{l})=rank(L_{l})+1>1$ and rank$(G_{l})>0$ , therefore (2.5) satisfies the conditions
of Lemma 1 with $F=F_{l}$ and $G=G_{l}$ . Consequently $F_{l}\cong \mathcal{O}_{p3}(c_{1}(F_{l})-c_{1}(L_{l}))\oplus L_{l}$ or
$G_{l}\cong L_{\beta}/L_{l}$ . In the first case, since $h^{1}(E(-2))\neq 0$ , one has $l+1<n_{1}$ , $F_{l}=$

$O_{p3}(-a)\oplus\oplus_{n=\alpha}^{l}\mathcal{O}_{p3}(-n)^{e_{n}}$ and $L_{l}=\oplus_{n=\alpha}^{l}O_{p3}(-n-1)^{e_{n}}$ . Moreover, $c_{1}(F_{l})-c_{1}(L_{l})=$

$-a+rank(L_{l})>-a$ lmin $\{-n|e_{n}\neq 0(\alpha\leqq n\leqq l)\}>\min\{-n-1|e_{n}\neq 0(\alpha\leqq n\leqq l)\}$ .
Since the splitting of a vector bundle on $P^{3}$ as the direct sum of line bundles
is unique, if it exists, this cannot happen. In the second case, one has
$l+2>n_{b}$ , $G_{l}=\oplus_{n=l+1}^{\beta}\mathcal{O}_{p3}(-n)^{e_{n}}$ and $L_{\beta}/L_{\iota}=\oplus_{n=l+1}^{\beta}\mathcal{O}_{p3}(-n-1)^{e_{n}}$ by the same
reason as above, and again we are led to a contradiction. This proves i).

Now suppose that $B_{s\hslash}$ satisfies (2.7). Let $X$ be an arbitrary $a$ . B. curve
with short basic sequence $B_{sh}$ . Let $H_{1},$ $\cdots$ , $H_{\gamma}$ be the basis of $H^{0}(F_{\beta}\otimes L_{\beta}^{\vee})$ ,
$t=\{t_{i}|1\leqq i\leqq\gamma\}$ be a set of indeterminates over $R$ and $T:=Spec(k[t])$ . Set
$\tilde{H}=\Sigma_{i=1}^{\gamma}t_{i}H_{i}$ . Since $c_{1}(F_{\beta})-c_{1}(L_{\beta})=0$ by (2.5), we can construct the deformation
of the complex (2.5)

$\tilde{v}$ $\tilde{w}$

(2.9) $0arrow L_{\beta}\otimes_{k}O_{T}arrow F_{\beta}\otimes_{k}\mathcal{O}_{T}arrow\overline{\mathcal{I}}arrow 0$

in a natural way, where $\tilde{v}$ is defined by $\tilde{H}$ and 3 is the ideal sheaf in $0_{p_{T}^{3}}$

generated locally by the maximal minors of $\tilde{H}$. Let $\tilde{X}$ denote the closed sub-
scheme of $P_{T}^{3}$ determined by 3 and $\pi;P_{T}^{3}arrow T$ the natural projection. Since
$e_{m+1}\neq 0(\alpha\leqq m\leqq\beta-1)$ and $(F_{m}\oplus O_{p3}(-m-1)^{e_{m+1}})\otimes O_{p3}(m+1)$ is generated by its
global sections for every $m(\alpha\leqq m\leqq\beta)$ , each point of $P_{T}^{3}$ has a neighborhood
on which $\tilde{H}$ satisfies the condition (2.4) with suitable $A$ and $S$ . Here, observe
that $A$ is the quotient ring of a polynomial ring over $k$ with respect to a
multiplicative set of the form $\{\varphi^{j}|j\geqq 0\}$ . There exists therefore by Lemma 2
a closed subscheme $Z$ of $P_{T}^{3}$ such that $co\dim_{p_{T}^{3}}(Z)\geqq 5$ and $\tilde{X}\backslash Z$ is smooth over
$k$ . Since $\dim(\pi(Z))\leqq\dim(T)-2$ , general fibers of $\pi_{1\tilde{X}}$ are smooth curves if
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char$(k)=0$ . Besides, the restriction of the complex (2.9) to a general point of
$T$ is exact. Let $\pi^{-1}(0):=X_{o}(0\in T)$ be one of the general fibers of $\pi_{1\tilde{X}}$ . Since
the restriction of (2.9) to $0$ is exact, we see by Lemma 4 that the short basic
sequence of $X_{o}$ is $B_{sh}$ , and $X_{o}$ is connected except in the case (2.8) by Lemma
3. Therefore if char$(k)=0$ and $B_{sh}$ fulfills (2.6.1) or (2.6.2), it is realized by
smooth irreducible $a$ . B. curves in $P^{3}$ . Q. E. D.

REMARK 1. One can deduce the necessity of (2.6.1) or (2.6.2) also from [2;
Corollary 1.3], taking into account the explicit form of the matrix of relations
among the generators of $I_{X}$ associated with the basic sequence of $X$ (see [1;
(4.1.1), 2), 3) and 4)]).

COROLLARY 1. All the integral $a$ . B. curves in $P^{3}$ with the same short basic
sequence are parameterjzed by a smooth rational variety and the general members
are smooth in the case char$(k)=0$ .

PROOF. See [1; Remark 5.3].

COROLLARY 2 (cf. [1; Theorem 3.1]). Let $X$ be an integral $a$ . B. curve with
short basic sequence $B_{sh}$ . Then $a\geqq 2b+n_{b}-n_{1}$ , with equality if and only if
$a-2b=n_{b}-n_{1}=0$ or $a-2b=n_{b}-n_{1}>0,$ $m_{1}=n_{1},$ $m_{i}=m_{i-1}+1(2\leqq i\leqq a-2b)$ and
$m_{a-2b}=n_{b}-1$ .

COROLLARY 3. Let $X$ be as above. Put $\nu=\min(m_{1}, n_{1})$ and $\delta=\min\{m|I_{X.m}$

generates $\oplus_{n\geqq m}I_{X.n}$ over $R$ }. Then $\delta\leqq\max(a-2b+\nu-2, n_{b})$ .

PROOF. Let $B(X)=(a;\nu_{1}, \cdots , \nu_{a} ; \nu_{a+1}, \cdots , \nu_{a+b})$ be the basic sequence of
$X$ and $(f_{0} ; f_{1}, f_{a} ; f_{a+1}, \cdots , f_{a+b})$ the generators of IX associated with $B(X)$ ,

where $\deg(f_{0})=a,$ $\deg(f_{i})=\nu_{i}(1\leqq i\leqq a+b)$ . Then $(\nu_{1}, \cdots , \nu_{a})=(m_{1},$ $\cdots$ , $m_{a-2b}$ ,
$n_{1},$ $\cdots$ , $n_{b},$ $n_{1},$ $\cdots$ , $n_{b}$) up to permutatlon and $(\nu_{a+1}, \cdots , \nu_{a+b})=(n_{1}, \cdots , n_{b})$ (see

Section 1). By definition $\nu_{1}=\nu$ and $\nu_{a}=\max(m_{a-2b}, n_{b})$ . Clearly one sees
(2.10) $\delta\leqq\nu_{a}$ .
If $a-2b=0$ , then $B(X)=(2b;\nu^{2b} ; \nu^{b})$ and $\nu=n_{b}$ by (2.6.1) or (2.6.2), which implies
the assertion. In the case $a-2b>0$ , one has $\nu=m_{1},$ $n_{b}-1\leqq m_{a-2b}\leqq m_{1}+(a-2b-1)$

by (2.6.2). If $m_{a-2b}\leqq n_{b}$ , then $\delta\leqq n_{b}\leqq\max(a-2b+\nu-2, n_{b})$ by (2.10). Now
suppose $m_{a-2b}>n_{b}$ . Then $\nu_{a}=m_{a-2b}$ , $\delta\leqq m_{a-2b}\leqq m_{1}+(a-2b-1)$ . Since
$\max(a-2b+\nu-2, n_{b})=m_{1}+(a-2b-2)$ , we have only to show that the case
$\delta=m_{a-2b}=m_{1}+(a-2b-1)$ does not occur. If $m_{a-2b}=m_{1}+(a-2b-1)$ , then $m_{i}=$

$m_{1}+(i-1)$ for all $1\leqq i\leqq a-2b$ by (2.6.2). This implies that $\#\{i|\nu_{i}=\nu_{a}(1\leqq i\leqq a)\}$

$=1$ , $a<\nu_{a}$ and $\nu_{i}<\nu_{a}$ for all $i$ distinct from $a$ , therefore we find by [2;

Corollary 1.3] that $f_{a}\in I_{X.\nu_{a}-1}\cdot R$ . Consequently $\delta<\nu_{a}$ and the assertion follows.
Q. E. D.
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REMARK 2. 1) Note that $a= \min\{n|h^{0}(\mathcal{I}_{X}(n))\neq 0\},$ $\nu=\min\{n|(I_{X}/(f_{0}))_{n}\neq 0\}$ ,
$b=\Sigma_{n\in N}h^{1}(\mathcal{I}_{X}(n)),$ $n_{1}= \min(N)+2,$ $n_{b}= \max(N)+2$ , where $N=\{n|h^{1}(\mathcal{I}_{X}(n))\neq 0\}$ .

2) The inequality $a\geqq 2b+n_{b}-n_{1}$ is proved in [3; Theorem 2.12] by a
different method.

3) Since $\max(a-2b+\nu-2, n_{b})\leqq a-2b+\nu$ , one has $\delta\leqq a-2b+\nu$ . This in-
equality is proved in [5; Theorems 5.4 and 5.6] by a different method.
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Note added in proof. At the proofreading stage, the author made a minor
change in the choice of the open sets $U_{i}$ appearing in the proof of Lemma 2
and raised the lower bound of the codimension of $Z$ by one for future application.
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