Integral arithmetically Buchsbaum curves in \mathbf{P}^{3}

By Mutsumi Amasaki

(Received May 18, 1987)

Introduction.

When a curve X (not assumed to be smooth nor reduced) in \mathbf{P}^{3} has the property that its deficiency module $\oplus_{n} H^{1}\left(\mathcal{G}_{X}(n)\right)$ is annihilated by the homogeneous coordinates $x_{1}, x_{2}, x_{3}, x_{4}$ of \mathbf{P}^{3}, it is called an arithmetically Buchsbaum curve. In [1], we defined a numerical invariant "basic sequence" of a curve in \mathbf{P}^{3} (see [1; Definition 1.4]) and classified arithmetically Buchsbaum curves with nontrivial deficiency modules in terms of their basic sequences. But there, an important problem was left unconsidered; to find a necessary and sufficient condition for the existence of integral arithmetically Buchsbaum curves with a given basic sequence. The aim of this paper is to give a complete answer to this problem in the case where the base field has characteristic zero. The existence theorems for some special cases, e.g. [1; Theorem 4.4], [2; Corollary 2.6], [3; Proposition 4.7] and [4; pp. 125-126], are now corollaries to our general theorem.

Notation and Convention. The base field k is algebraically closed. We do not assume that char $(k)=0$ except in the main theorem. The word "curve" means an equidimensional complete scheme over k of dimension one without any embedded points. Given a matrix $\Phi, \Phi\binom{i}{j}$ denotes the matrix obtained by deleting the i-th row and the j-th column from Φ. We say that a sequence of integers z_{1}, \cdots, z_{n} is connected if $z_{i} \leqq z_{i+1} \leqq z_{i}+1$ for all $1 \leqq i \leqq n-1$ or $n=0$ (i. e. the sequence is empty). The ideal sheaf of a curve X in \mathbf{P}^{3} is denoted by \mathscr{I}_{X} and we set $I_{X, n}=H^{0}\left(\mathscr{G}_{X}(n)\right), I_{X}=\oplus_{n} I_{X, n} \subset R$, where $R=k\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$. For simplicity we abbreviate "arithmetically Buchsbaum" to "a. B.".

§ 1. Preliminaries.

Given a curve X in \mathbf{P}^{3}, we define the basic sequence of X to be the sequence of positive integers $\left(a ; \nu_{1}, \cdots, \nu_{a} ; \nu_{a+1}, \cdots, \nu_{a+b}\right)(b \geqq 0)$ which satisfies the conditions (1.1), (1.2), (1.3) below and denote it by $B(X)$ (see $[1 ; \S \S 1,2]$). Let $x_{1}, x_{2}, x_{3}, x_{4}$ be generic homogeneous coordinates of \mathbf{P}^{3} and set $R^{\prime}=k\left[x_{1}, x_{2}, x_{3}\right]$, $R^{\prime \prime}=k\left[x_{3}, x_{4}\right]$.
(1.1) $a \leqq \nu_{1} \leqq \cdots \leqq \nu_{a}, \nu_{1} \leqq \nu_{a+1} \leqq \cdots \leqq \nu_{a+b}$, where $\left(\nu_{a+1}, \cdots, \nu_{a+b}\right)$ is empty if $b=0$.
(1.2) There are generators $f_{0}, f_{1}, \cdots, f_{a}, f_{a+1}, \cdots, f_{a+b}$ of I_{X} such that $\operatorname{deg}\left(f_{0}\right)=a$, $\operatorname{deg}\left(f_{i}\right)=\nu_{i}(1 \leqq i \leqq a+b)$ and

$$
I_{X}=R f_{0} \oplus \bigoplus_{i=1}^{a} R^{\prime} f_{i} \oplus \bigoplus_{j=1}^{b} R^{\prime \prime} f_{a+j}
$$

(1.3) The deficiency module $M(X):=\bigoplus_{n} H^{1}\left(\mathcal{J}_{X}(n)\right)$ has a minimal free resolution of the form
$0 \longrightarrow \bigoplus_{j=1}^{b} R^{\prime \prime}\left(-\nu_{a+j}\right) \longrightarrow \bigoplus_{i=1}^{r_{1}} R^{\prime \prime}\left(-\varepsilon_{i}^{1}\right) \longrightarrow \bigoplus_{i=1}^{r_{0}} R^{\prime \prime}\left(-\varepsilon_{i}^{0}\right) \longrightarrow M(X) \longrightarrow 0$
as an $R^{\prime \prime}$-module, where $\varepsilon_{i}^{j}\left(1 \leqq i \leqq r_{j}, j=0,1\right)$ are integers.
The basic sequences of a. B. curves have some special properties. First of all, a sequence $\left(a ; \nu_{1}, \cdots, \nu_{a} ; \nu_{a+1}, \cdots, \nu_{a+b}\right)$ of positive integers satisfying (1.1) is the basic sequence of an a. B. curve if and only if $a \geqq 2 b$ and there are $\left(m_{1}, \cdots, m_{a-2 b}\right),\left(n_{1}, \cdots, n_{b}\right)\left(m_{1} \leqq \cdots \leqq m_{a-2 b}, n_{1} \leqq \cdots \leqq n_{b}\right)$ such that $\left(\nu_{a+1}, \cdots, \nu_{a+b}\right)$ $=\left(n_{1}, \cdots, n_{b}\right),\left(\nu_{1}, \cdots, \nu_{a}\right)=\left(m_{1}, \cdots, m_{a-2 b}, n_{1}, \cdots, n_{b}, n_{1}, \cdots, n_{b}\right)$ up to permutation (see [1; Theorem 3.1, Lemma 4.2]). Furthermore a. B. curves of the same basic sequence are parameterized by a Zariski open subset of an affine space over k. Let X be an a.B. curve. With the notation above the sequence $B_{s h}(X):=\left(a ; m_{1}, \cdots, m_{a-2 b} ; n_{1}, \cdots, n_{b}\right)$ is called the short basic sequence of X in [1] (cf. [1; Corollary 3.3, (4.1.4)]). It follows from (1.3) and the definition of a. B. curves that

$$
\begin{equation*}
M(X) \cong \bigoplus_{j=1}^{b} k\left(-n_{j}+2\right) \tag{1.4}
\end{equation*}
$$

Besides, examining the relation between I_{X} and $M(X)$ closely, we find that the R-module $\tilde{R}_{X}:=\bigoplus_{n} H^{0}\left(\mathcal{O}_{X}(n)\right)$ has a free resolution of the form
where

$$
\begin{align*}
& 0 \longrightarrow \bigoplus_{i=1}^{a-2 b} R\left(-m_{i}-1\right) \oplus\left(\bigoplus_{j=1}^{b} R\left(-n_{j}\right)\right)^{3} \\
& \xrightarrow{\tau} R(-a) \oplus \bigoplus_{i=1}^{a-2 b} R\left(-m_{i}\right) \oplus\left(\bigoplus_{j=1}^{b} R\left(-n_{j}+1\right)\right)^{4} \tag{1.5}\\
& \xrightarrow{\sigma} R \oplus\left(\bigoplus_{r=1}^{b} R\left(-n_{j}+2\right)\right) \xrightarrow{\rho} \tilde{R}_{X} \longrightarrow 0, \\
& \sigma=\left(\begin{array}{cc}
* \\
\hdashline 0 & x_{1} 1_{b}, x_{2} 1_{b}, x_{3} 1_{b}, x_{4} 1_{b}
\end{array}\right)
\end{align*}
$$

with a $b \times b$ unit matrix 1_{b} (see $[\mathbf{1} ;(3.4 .1)]$).

§2. Short basic sequences of integral a.B. curves.

In the following argument the results concerning a. B. curves will be stated in the language of their short basic sequences.

Let F and G be vector bundles on \mathbf{P}^{3} of rank p and q respectively ($p>1$, $q>0$) and let X be a curve in \mathbf{P}^{3} whose ideal sheaf \mathcal{J}_{X} has a locally free resolution of the form

$$
\begin{equation*}
0 \longrightarrow \bigoplus_{i=1}^{p+q-1} \mathcal{O}_{\mathbf{P} 3}\left(-d_{i}\right) \xrightarrow{v} F \oplus G \xrightarrow{w} \mathcal{I}_{X} \longrightarrow 0 \tag{2.1}
\end{equation*}
$$

(cf. [6; Lemma 1.1]). Here the map v is defined by the multiplication by global sections $\left(v_{i}^{F}, v_{i}^{G}\right) \in H^{0}\left((F \oplus G) \otimes \mathcal{O}_{\mathbf{P} 3}\left(d_{i}\right)\right)\left(v_{i}^{F} \in H^{0}\left(F\left(d_{i}\right)\right), v_{i}^{G} \in H^{0}\left(G\left(d_{i}\right)\right), 1 \leqq i \leqq p+q-1\right)$ and locally it is represented by the $(p+q) \times(p+q-1)$-matrix $\boldsymbol{v}=\binom{\boldsymbol{v}^{F}}{\boldsymbol{v}^{G}}$, where $\boldsymbol{v}^{F}=\left(v_{1}^{F}, \cdots, v_{p+q-1}^{F}\right)$ and $\boldsymbol{v}^{G}=\left(v_{1}^{G}, \cdots, v_{p+q-1}^{G}\right)$.

Lemma 1. Suppose that $v_{i}^{G}=0$ for $1 \leqq i \leqq p-1$ and that X is integral. Then

$$
F \cong \mathcal{O}_{\mathbf{P} 3}\left(c_{1}(F)+\sum_{i=1}^{p-1} d_{i}\right) \oplus \bigoplus_{i=1}^{p-1} \mathcal{O}_{\mathbf{P} 3}\left(-d_{i}\right) \quad \text { or } \quad G \cong \bigoplus_{i=p}^{p+q-1} \mathcal{O}_{\mathbf{P} 3}\left(-d_{i}\right)
$$

Proof. Let Y denote the closed subscheme of \mathbf{P}^{3} defined locally by the maximal minors of $\left(v_{1}^{F}, \cdots, v_{p-1}^{F}\right)$. Clearly $Y \subset X$ by the hypothesis $v_{i}^{G}=0$ ($1 \leqq i \leqq p-1$), therefore Y is either empty or is a curve and in any case \mathcal{J}_{Y} has the locally free resolution

$$
\begin{equation*}
0 \longrightarrow \bigoplus_{i=1}^{p-1} \mathcal{O}_{\mathbf{P} 3}\left(-d_{i}\right) \xrightarrow{v^{\prime}} F \stackrel{w^{\prime}}{\longrightarrow} \mathcal{I}_{Y}(c) \longrightarrow 0 \tag{2.2}
\end{equation*}
$$

with $c=c_{1}(F)+\sum_{i=1}^{p-1} d_{i}$ (cf. [1; (2.10.5)]) where v^{\prime} and w^{\prime} are defined by $\left(v_{1}^{F}, \cdots, v_{p-1}^{F}\right)$ in the same way as above. If Y is empty, then $\mathcal{I}_{Y}=\mathcal{O}_{\mathbf{p} 3}$ so that (2.2) splits and we have $F \cong \mathcal{O}_{\mathbf{P} 3}(c) \oplus \bigoplus_{i=1}^{p-1} \mathcal{O}_{\mathbf{P} 3}\left(-d_{i}\right)$. Now suppose that Y is a curve. In this case $Y=X$, since X is integral. Let ζ be an element of $H^{0}\left(\bigwedge^{q} G\left(\sum_{i=p}^{p+q-1} d_{i}\right)\right)$ given by $\operatorname{det}\left(v_{p}^{G}, \cdots, v_{p+q-1}^{G}\right)$ and let D denote the zero locus of ζ. If $\zeta=0$ or D is a divisor of positive degree, we take a point $x \in X \cap D$ and consider the stalk of \mathcal{I}_{X} at x. Set $\boldsymbol{v}^{\prime}=\left(v_{1}^{F}, \cdots, v_{p-1}^{F}\right), \quad \boldsymbol{u}=\left(v_{p}^{G}, \cdots, v_{p+q-1}^{G}\right), \quad h=\operatorname{det}(\boldsymbol{u})$, $g_{i}^{\prime}=(-1)^{i-1} \operatorname{det}\left(\boldsymbol{v}^{\prime}\left({ }^{i}\right)\right)(1 \leqq i \leqq p)$ and $g_{i}=(-1)^{i-1} \operatorname{det}\left(\boldsymbol{v}\left({ }^{i}\right)\right)(1 \leqq i \leqq p+q)$. Then it follows from (2.1) and (2.2) that

$$
\begin{equation*}
\mathcal{I}_{X}, x=\left(g_{1}^{\prime}, \cdots, g_{p}^{\prime}\right) \mathcal{O}_{\mathbf{P}^{3}, x}=\left(g_{1}, \cdots, g_{p+q}, \mathcal{O}_{\mathbf{P} 3, x}\right. \tag{2.3}
\end{equation*}
$$

Since h vanishes at x, the rank r of \boldsymbol{u} at x is smaller than q. We may assume therefore that v is of the form

up to multiplication by $G L\left(p+q, \mathcal{O}_{\mathbf{P} 3, x}\right)$ on the left and $G L\left(p+q-1, \mathcal{O}_{\mathbf{P}, x}\right)$ on the right, where all the components of \boldsymbol{u}^{\prime} are contained in the maximal ideal \mathfrak{m}_{x} of x. Consequently,

$$
\mathcal{J}_{X, x} \subset\left(g_{1}^{\prime}, \cdots, g_{p}^{\prime}\right) \mathfrak{m}_{x}+g_{p+1} \mathcal{O}_{\mathbf{P}^{3}, x}
$$

by (2.3), which implies that $\mathcal{I}_{X, x}=g_{p+1} \mathcal{O}_{\mathbf{p} 3, x}$ by Nakayama's lemma. This contradicts the fact that X is a curve passing through x. Hence $D=\varnothing$ and $G \cong \bigoplus_{i=p}^{p+q-1} \mathcal{O}_{\mathbf{P} 3}\left(-d_{i}\right)$.
Q.E.D.

Let A be a finitely generated regular k-algebra, $n(n \geqq 3)$ an integer and $s=\left\{s_{i j} \mid 1 \leqq i \leqq \min (j+2, n), 1 \leqq j \leqq n-1\right\}$ a set of indeterminates over A. We denote by S the matrix of size $n \times(n-1)$ whose (i, j)-component is $s_{i j}$ if $1 \leqq i \leqq j+2$ and 0 otherwise. Given a $n \times(n-1)$-matrix $H=\left(h_{i j}\right)$ with components in $A[s]$ such that
all the components of $H-S$ lie in A,
let $Q(H)$ denote the closed subscheme of $V:=\operatorname{Spec}(A[s])$ determined by the maximal minors of H.

Lemma 2. There is a closed subscheme Z of codimension larger than or equal to 5 in V such that $Q(H) \backslash Z$ is smooth over k.

Proof. We first consider the case $n=3$. Let $U_{i j}$ be the complement of the divisor $h_{i j}=0$ for each $(i, j)(1 \leqq i \leqq 3,1 \leqq j \leqq 2)$. Since

$$
h_{1 j} \operatorname{det}\left(H\left(^{1}\right)\right)-h_{2 j} \operatorname{det}\left(H\left(^{2}\right)\right)+h_{3 j} \operatorname{det}\left(H\left(^{3}\right)\right)=0
$$

for $j=1,2$, the scheme $Q(H) \cap U_{i 1}$ is isomorphic to

$$
\operatorname{Spec}\left(A[s]_{h_{11}} /\left(h_{32}-h_{12} h_{31} / h_{11}, h_{22}-h_{12} h_{21} / h_{11}\right)\right),
$$

which is of codimension 2 in U_{11} and smooth over k. The same thing holds also for the other $Q(H) \cap U_{i j}$'s. Therefore $Q(H)$ is smooth over k in the outside of the closed subscheme $V \backslash\left(\cup_{i, j} U_{i j}\right)$ of codimension 6 in V. Now suppose that $n \geqq 4$ and that the assertion holds for $n-1$. Let $U_{i}(1 \leqq i \leqq 5)$ be the complements of the divisors $h_{i 1}=0(1 \leqq i \leqq 3), h_{n, n-6+i}=0(4 \leqq i \leqq 5)$ respectively. On each open set $U_{i}(1 \leqq i \leqq 5)$, there are matrices $K_{i} \in G L\left(n, k\left[U_{i}\right]\right)$ and $K_{i}^{\prime} \in$ $G L\left(n-1, k\left[U_{i}\right]\right)$ such that $K_{i} H K_{i}^{\prime}$ takes the form $\left(\begin{array}{ccc}1 & 0 & \cdots \\ 0 & 0 \\ \vdots & H_{i}^{\prime} \\ 0 & \end{array}\right)$, where H_{i}^{\prime} satisfies the condition (2.4) with A and S replaced by $A\left[\left\{s_{l m} \mid l=i \text { or } m=1\right\}\right]_{h_{i 1}}$ and $S\binom{i}{1}(1 \leqq i \leqq 3)$ or $A\left[\left\{s_{l m} \mid l=n \text { or } m=n-6+i\right\}\right]_{h_{n, n-6+i}}$ and $S\binom{n}{n-6+i}(4 \leqq i \leqq 5)$. By the induction hypothesis there are closed subschemes $Z_{i}(1 \leqq i \leqq 5)$ of U_{i} such that $\operatorname{codim}_{U_{i}}\left(Z_{i}\right) \geqq 5$ and $Q\left(H_{i}^{\prime}\right) \backslash Z_{i}$ are smooth over k. We have only to put $Z=\left(V \bigcup_{i=1}^{5} U_{i}\right) \cup \bigcup_{i=1}^{5} \bar{Z}_{i}$.
Q.E.D.

Let $a, b, m_{i}(1 \leqq i \leqq a-2 b)$ and $n_{i}(1 \leqq i \leqq b)$ be positive integers such that $a-2 b \geqq 0, a \leqq m_{1} \leqq m_{2} \leqq \cdots \leqq m_{a-2 b}$ and $a \leqq n_{1} \leqq n_{2} \leqq \cdots \leqq n_{b}$. We set

$$
B_{s h}=\left(a ; m_{1}, \cdots, m_{a-2 b} ; n_{1}, \cdots, n_{b}\right) .
$$

One knows that there exists an a. B. curve X in \mathbf{P}^{3} with short basic sequence $B_{s n}$ (see Section 1). For each integer $n \geqq 0$ we put

$$
\left\{\begin{array}{l}
e_{n}=\#\left\{i \mid m_{i}=n, 1 \leqq i \leqq a-2 b\right\}, \quad e_{n}^{\prime}=\#\left\{i \mid n_{i}=n, 1 \leqq i \leqq b\right\}, \\
\alpha=\min \left(m_{1}, n_{1}-1\right), \quad \beta=\max \left(m_{a-2 b}, n_{b}-1\right),
\end{array}\right.
$$

where $\#$ denotes the number of the elements and $\alpha=n_{1}-1, \beta=n_{b}-1$ if $a-2 b=0$. Let E denote the vector bundle of rank 3 on \mathbf{P}^{3} defined by the exact sequence

$$
0 \longrightarrow E \longrightarrow \mathcal{O}_{\mathbf{P} 3}(1)^{4} \xrightarrow{\left(x_{1}, x_{2}, x_{3}, x_{4}\right)} \mathcal{O}_{\mathbf{P} 3}(2) \longrightarrow 0,
$$

namely $E=\Omega_{\mathbf{P}^{3 / k}}(2)$. One sees that $h^{0}(E(n))=0$ for $n<0$ and that E is generated over $\mathcal{O}_{\mathbf{P} 3}$ by its global sections. Set

$$
\begin{aligned}
& F_{m}=\mathcal{O}_{\mathbf{P} 3}(-a) \oplus \bigoplus_{n=\alpha}^{m}\left(\mathcal{O}_{\mathbf{P} 3}(-n)^{e_{n}} \oplus E(-n-1)^{e_{n+1}^{\prime}}\right), \\
& G_{m}=\stackrel{\beta}{\oplus_{n+1}}\left(\mathcal{O}_{\mathbf{P} 3}(-n)^{e} \cap \oplus E(-n-1)^{e_{n+1}^{\prime}}\right), \\
& L_{m}={\underset{n=\alpha}{m} \mathcal{O}_{\mathbf{P} 3}(-n-1)^{e_{n}+3 e_{n+1}^{\prime}}, ~}_{\text {, }}
\end{aligned}
$$

for $\alpha \leqq m \leqq \beta$. It follows from $\left[\mathbf{1}\right.$; (2.10.5) and (3.4.1)] that \mathcal{I}_{X} has a locally free resolution of the form

$$
\begin{equation*}
0 \longrightarrow L_{\beta} \xrightarrow{v} F_{\beta} \xrightarrow{w} \mathcal{I}_{x} \longrightarrow 0 \tag{2.5}
\end{equation*}
$$

Lemma 3. Suppose that X is reduced. Then X is connected if and only if $n_{1} \geqq 3$.

Proof. Since X is connected if and only if $H^{1}\left(\mathcal{g}_{X}\right)=0$, the assertion follows from (1.4).

Lemma 4. Let X^{\prime} be another a. B. curve whose ideal sheaf $\mathcal{I}_{X^{\prime}}$ has a locally free resolution of the form (2.5) with the same L_{β} and F_{β}. Then the short basic sequence of X^{\prime} coincides with $B_{s h}$.

Proof. Since $M\left(X^{\prime}\right) \cong M(X), h^{0}\left(\mathcal{G}_{X^{\prime}}(n)\right)=h^{0}\left(\mathcal{G}_{X}(n)\right)$ for all $n \geqq 0$ by (2.5), it follows from (1.1), (1.2), (1.3) and (1.4) that $B_{s h}\left(X^{\prime}\right)=B_{s h}$.

Theorem. i) If there is an integral a. B. curve in \mathbf{P}^{3} with short basic sequence $B_{s h}$, then one of the following two conditions is satisfied.

$$
\begin{equation*}
a=2, \quad b=1, \quad n_{1} \geqq 3, \tag{2.6.1}
\end{equation*}
$$

$$
\begin{align*}
& a \geqq 3, \quad a-2 b \geqq n_{b}-n_{1}, \quad m_{1} \leqq n_{1}, \quad n_{b}-1 \leqq m_{a-2 b} \tag{2.6.2}\\
& \text { and } m_{1}, \cdots, m_{a-2 b} \text { is connected. }
\end{align*}
$$

ii) In the case $\operatorname{char}(k)=0$, both these conditions are sufficient for the existenc. of an integral a. B. curve with short basic sequence $B_{s h}$.

Proof. If the condition (2.6.1) or (2.6.2) is fulfilled, we have

$$
\begin{equation*}
\alpha=\beta \text { or } e_{n+1} \neq 0 \text { for every integer } n(\alpha \leqq n \leqq \beta-1) \text {. } \tag{2.7}
\end{equation*}
$$

Conversely if (2.7) is satisfied, we have (2.6.1), (2.6.2) or

$$
\begin{equation*}
a=2, \quad b=1, \quad n_{1}=2 . \tag{2.8}
\end{equation*}
$$

Let X be an integral a. B. curve in \mathbf{P}^{3} with short basic sequence $B_{s h}$ and assume that neither (2.6.1) nor (2.6.2) is satisfied. Then, since the case (2.8) cannot occur by Lemma 3, we have $\alpha<\beta$ and there is an integer $l(\alpha \leqq l \leqq \beta-1)$ such that $e_{l+1}=0$ by the remark above. One sees $H^{0}\left(G_{l} \otimes L_{\imath}\right)=0, \quad F_{\beta}=F_{l} \oplus G_{l}$, $\operatorname{rank}\left(F_{l}\right)=\operatorname{rank}\left(L_{l}\right)+1>1$ and $\operatorname{rank}\left(G_{l}\right)>0$, therefore (2.5) satisfies the conditions of Lemma 1 with $F=F_{l}$ and $G=G_{l}$. Consequently $F_{l} \cong \mathcal{O}_{\mathbf{P} 3}\left(c_{1}\left(F_{l}\right)-c_{1}\left(L_{l}\right)\right) \oplus L_{l}$ or $G_{l} \cong L_{\beta} / L_{l}$. In the first case, since $h^{1}(E(-2)) \neq 0$, one has $l+1<n_{1}, F_{l}=$ $\mathcal{O}_{\mathbf{P} 3}(-a) \oplus \oplus_{n=\alpha}^{l} \mathcal{O}_{\mathbf{P} 3}(-n)^{e_{n}}$ and $L_{l}=\oplus_{n=\alpha}^{l} \mathcal{O}_{\mathbf{P} 3}(-n-1)^{e_{n}}$. Moreover, $c_{1}\left(F_{l}\right)-c_{1}\left(L_{l}\right)=$ $-a+\operatorname{rank}\left(L_{l}\right)>-a \geqq \min \left\{-n \mid \quad e_{n} \neq 0(\alpha \leqq n \leqq l)\right\}>\min \left\{-n-1 \mid \quad e_{n} \neq 0 \quad(\alpha \leqq n \leqq l)\right\}$. Since the splitting of a vector bundle on \mathbf{P}^{3} as the direct sum of line bundles is unique, if it exists, this cannot happen. In the second case, one has $l+2>n_{b}, \quad G_{l}=\oplus_{n=l+1}^{\beta} \mathcal{O}_{\mathbf{P} 3}(-n)^{e_{n}}$ and $L_{\beta} / L_{l}=\oplus_{n=l+1}^{\beta} \mathcal{O}_{\mathbf{P} 3}(-n-1)^{e_{n}}$ by the same reason as above, and again we are led to a contradiction. This proves i).

Now suppose that $B_{s h}$ satisfies (2.7). Let X be an arbitrary a. B. curve with short basic sequence $B_{s h}$. Let $H_{1}, \cdots, H_{\gamma}$ be the basis of $H^{0}\left(F_{\beta} \otimes L_{\beta}\right)$, $t=\left\{t_{i} \mid 1 \leqq i \leqq \gamma\right\}$ be a set of indeterminates over R and $T:=\operatorname{Spec}(k[t])$. Set $\tilde{H}=\sum_{i=1}^{r} t_{i} H_{i}$. Since $c_{1}\left(F_{\beta}\right)-c_{1}\left(L_{\beta}\right)=0$ by (2.5), we can construct the deformation of the complex (2.5)

$$
\begin{equation*}
0 \longrightarrow L_{\beta} \otimes_{k} \mathcal{O}_{T} \xrightarrow{\tilde{v}} F_{\beta} \otimes_{k} \mathcal{O}_{T} \xrightarrow{\tilde{w}} \tilde{\mathcal{I}} \longrightarrow 0 \tag{2.9}
\end{equation*}
$$

in a natural way, where \tilde{v} is defined by \tilde{H} and $\tilde{\mathscr{J}}$ is the ideal sheaf in $\mathcal{O}_{\mathbf{P}_{T}^{3}}$ generated locally by the maximal minors of \tilde{H}. Let \tilde{X} denote the closed subscheme of \mathbf{P}_{T}^{3} determined by \tilde{g} and $\pi: \mathbf{P}_{T}^{3} \rightarrow T$ the natural projection. Since $e_{m+1} \neq 0(\alpha \leqq m \leqq \beta-1)$ and $\left(F_{m} \oplus \mathcal{O}_{\mathbf{P} 3}(-m-1)^{e_{m+1}}\right) \otimes \mathcal{O}_{\mathbf{P} 3}(m+1)$ is generated by its global sections for every $m(\alpha \leqq m \leqq \beta)$, each point of \mathbf{P}_{T}^{3} has a neighborhood on which \tilde{H} satisfies the condition (2.4) with suitable A and S. Here, observe that A is the quotient ring of a polynomial ring over k with respect to a multiplicative set of the form $\left\{\varphi^{j} \mid j \geqq 0\right\}$. There exists therefore by Lemma 2 a closed subscheme Z of \mathbf{P}_{T}^{3} such that $\operatorname{codim}_{\mathbf{P}_{T}^{3}}(Z) \geqq 5$ and $\tilde{X} \backslash Z$ is smooth over k. Since $\operatorname{dim}(\pi(Z)) \leqq \operatorname{dim}(T)-2$, general fibers of $\pi_{\mid \tilde{X}}$ are smooth curves if
$\operatorname{char}(k)=0$. Besides, the restriction of the complex (2.9) to a general point of T is exact. Let $\pi^{-1}(o):=X_{o}(o \in T)$ be one of the general fibers of $\pi_{\mid \tilde{X}}$. Since the restriction of (2.9) to o is exact, we see by Lemma 4 that the short basic sequence of X_{o} is $B_{s h}$, and X_{o} is connected except in the case (2.8) by Lemma 3. Therefore if $\operatorname{char}(k)=0$ and $B_{s h}$ fulfills (2.6.1) or (2.6.2), it is realized by smooth irreducible a. B. curves in \mathbf{P}^{3}.
Q.E.D.

Remark 1. One can deduce the necessity of (2.6.1) or (2.6.2) also from [2; Corollary 1.3], taking into account the explicit form of the matrix of relations among the generators of I_{X} associated with the basic sequence of X (see [1; (4.1.1), 2), 3) and 4)].

Corollary 1. All the integral a. B. curves in \mathbf{P}^{3} with the same short basic sequence are parameterized by a smooth rational variety and the general members are smooth in the case $\operatorname{char}(k)=0$.

Proof. See [1; Remark 5.3].
Corollary 2 (cf. [1; Theorem 3.1]). Let X be an integral a. B. curve with short basic sequence $B_{s h}$. Then $a \geqq 2 b+n_{b}-n_{1}$, with equality if and only if $a-2 b=n_{b}-n_{1}=0$ or $a-2 b=n_{b}-n_{1}>0, m_{1}=n_{1}, \quad m_{i}=m_{i-1}+1(2 \leqq i \leqq a-2 b)$ and $m_{a-2 b}=n_{b}-1$.

Corollary 3. Let X be as above. Put $\nu=\min \left(m_{1}, n_{1}\right)$ and $\delta=\min \left\{m \mid I_{X, m}\right.$ generates $\oplus_{n \geq m} I_{X, n}$ over $\left.R\right\}$. Then $\delta \leqq \max \left(a-2 b+\nu-2, n_{b}\right)$.

Proof. Let $B(X)=\left(a ; \nu_{1}, \cdots, \nu_{a} ; \nu_{a+1}, \cdots, \nu_{a+b}\right)$ be the basic sequence of X and $\left(f_{0} ; f_{1}, \cdots, f_{a} ; f_{a+1}, \cdots, f_{a+b}\right)$ the generators of I_{X} associated with $B(X)$, where $\operatorname{deg}\left(f_{0}\right)=a, \operatorname{deg}\left(f_{i}\right)=\nu_{i}(1 \leqq i \leqq a+b)$. Then $\left(\nu_{1}, \cdots, \nu_{a}\right)=\left(m_{1}, \cdots, m_{a-2 b}\right.$, $n_{1}, \cdots, n_{b}, n_{1}, \cdots, n_{b}$) up to permutation and ($\left.\nu_{a+1}, \cdots, \nu_{a+b}\right)=\left(n_{1}, \cdots, n_{b}\right)$ (see Section 1). By definition $\nu_{1}=\nu$ and $\nu_{a}=\max \left(m_{a-2 b}, n_{b}\right)$. Clearly one sees

$$
\delta \leqq \nu_{a} .
$$

If $a-2 b=0$, then $B(X)=\left(2 b ; \nu^{2 b} ; \nu^{b}\right)$ and $\nu=n_{b}$ by (2.6.1) or (2.6.2), which implies the assertion. In the case $a-2 b>0$, one has $\nu=m_{1}, n_{b}-1 \leqq m_{a-2 b} \leqq m_{1}+(a-2 b-1)$ by (2.6.2). If $m_{a-2 b} \leqq n_{b}$, then $\delta \leqq n_{b} \leqq \max \left(a-2 b+\nu-2, n_{b}\right)$ by (2.10). Now suppose $\quad m_{a-2 b}>n_{b}$. Then $\nu_{a}=m_{a-2 b}, \quad \delta \leqq m_{a-2 b} \leqq m_{1}+(a-2 b-1)$. Since $\max \left(a-2 b+\nu-2, n_{b}\right)=m_{1}+(a-2 b-2)$, we have only to show that the case $\delta=m_{a-2 b}=m_{1}+(a-2 b-1)$ does not occur. If $m_{a-2 b}=m_{1}+(a-2 b-1)$, then $m_{i}=$ $m_{1}+(i-1)$ for all $1 \leqq i \leqq a-2 b$ by (2.6.2). This implies that $\#\left\{i \mid \nu_{i}=\nu_{a}(1 \leqq i \leqq a)\right\}$ $=1, a<\nu_{a}$ and $\nu_{i}<\nu_{a}$ for all i distinct from a, therefore we find by [2; Corollary 1.3] that $f_{a} \in I_{X, \nu_{a}-1} \cdot R$. Consequently $\delta<\nu_{a}$ and the assertion follows. Q.E.D.

Remark 2. 1) Note that $a=\min \left\{n \mid h^{0}\left(\mathcal{G}_{X}(n)\right) \neq 0\right\}, \nu=\min \left\{n \mid\left(I_{X} /\left(f_{0}\right)\right)_{n} \neq 0\right\}$, $b=\sum_{n \in N} h^{1}\left(\mathcal{G}_{X}(n)\right), n_{1}=\min (N)+2, n_{b}=\max (N)+2$, where $N=\left\{n \mid h^{1}\left(\mathcal{J}_{X}(n)\right) \neq 0\right\}$.
2) The inequality $a \geqq 2 b+n_{b}-n_{1}$ is proved in [3; Theorem 2.12] by a different method.
3) Since $\max \left(a-2 b+\nu-2, n_{b}\right) \leqq a-2 b+\nu$, one has $\delta \leqq a-2 b+\nu$. This inequality is proved in [5; Theorems 5.4 and 5.6] by a different method.

References

[1] M. Amasaki, On the structure of arithmetically Buchsbaum curves in \mathbf{P}_{k}^{3}, Publ. RIMS, Kyoto Univ., 20 (1984), 793-837.
[2] M. Amasaki, Examples of nonsingular irreducible curves which give reducible singular points of red $\left(\mathrm{H}_{d, g}\right)$, Publ. RIMS, Kyoto Univ., 21 (1985), 761-786.
[3] G. Bolondi and J. Migliore, Buchsbaum liaison classes, preprint (1987).
[4] D. Eisenbud and S. Goto, Linear free resolutions and minimal multiplicity, J. Algebra, 88 (1984), 89-133.
[5] A. Geramita and J. Migliore, On the ideal of arithmetically Buchsbaum curve, Queen's Mathematical Preprint, No. 1987-2 (1987).
[6] R. Lazarsfeld and P. Rao, Linkage of General Curves of Large Degree, Algebraic Geometry-Open Problems, Proceedings, Ravello 1982, Lecture Notes in Mathematics, 997, Springer, 1983, pp. 267-289.

Mutsumi Amasaki
Research Institute for Mathematical Sciences
Kyoto University
Kyoto 606
Japan

Note added in proof. At the proofreading stage, the author made a minor change in the choice of the open sets U_{i} appearing in the proof of Lemma 2 and raised the lower bound of the codimension of Z by one for future application.

