Integral arithmetically Buchsbaum curves in P³

By Mutsumi AMASAKI

(Received May 18, 1987)

Introduction.

When a curve X (not assumed to be smooth nor reduced) in \mathbf{P}^3 has the property that its deficiency module $\bigoplus_n H^1(\mathcal{J}_X(n))$ is annihilated by the homogeneous coordinates x_1, x_2, x_3, x_4 of \mathbf{P}^3 , it is called an arithmetically Buchsbaum curve. In [1], we defined a numerical invariant "basic sequence" of a curve in \mathbf{P}^3 (see [1; Definition 1.4]) and classified arithmetically Buchsbaum curves with nontrivial deficiency modules in terms of their basic sequences. But there, an important problem was left unconsidered; to find a necessary and sufficient condition for the existence of integral arithmetically Buchsbaum curves with a given basic sequence. The aim of this paper is to give a complete answer to this problem in the case where the base field has characteristic zero. The existence theorems for some special cases, e.g. [1; Theorem 4.4], [2; Corollary 2.6], [3; Proposition 4.7] and [4; pp. 125-126], are now corollaries to our general theorem.

NOTATION AND CONVENTION. The base field k is algebraically closed. We do not assume that $\operatorname{char}(k)=0$ except in the main theorem. The word "curve" means an equidimensional complete scheme over k of dimension one without any embedded points. Given a matrix Φ , $\Phi\begin{pmatrix}i\\j\end{pmatrix}$ denotes the matrix obtained by deleting the *i*-th row and the *j*-th column from Φ . We say that a sequence of integers z_1, \dots, z_n is connected if $z_i \leq z_{i+1} \leq z_i + 1$ for all $1 \leq i \leq n-1$ or n=0 (i.e. the sequence is empty). The ideal sheaf of a curve X in \mathbf{P}^3 is denoted by \mathcal{G}_X and we set $I_{X,n} = H^0(\mathcal{G}_X(n)), I_X = \bigoplus_n I_{X,n} \subset R$, where $R = k[x_1, x_2, x_3, x_4]$. For simplicity we abbreviate "arithmetically Buchsbaum" to "a. B.".

§1. Preliminaries.

Given a curve X in \mathbf{P}^3 , we define the basic sequence of X to be the sequence of positive integers $(a; \nu_1, \dots, \nu_a; \nu_{a+1}, \dots, \nu_{a+b})$ $(b \ge 0)$ which satisfies the conditions (1.1), (1.2), (1.3) below and denote it by B(X) (see [1; §§ 1, 2]). Let x_1, x_2, x_3, x_4 be generic homogeneous coordinates of \mathbf{P}^3 and set $R' = k[x_1, x_2, x_3]$, $R'' = k[x_3, x_4]$.

- (1.1) $a \leq \nu_1 \leq \cdots \leq \nu_a, \nu_1 \leq \nu_{a+1} \leq \cdots \leq \nu_{a+b}, where (\nu_{a+1}, \cdots, \nu_{a+b}) is empty if b=0.$
- (1.2) There are generators $f_0, f_1, \dots, f_a, f_{a+1}, \dots, f_{a+b}$ of I_X such that $\deg(f_0) = a$, $\deg(f_i) = \nu_i \ (1 \le i \le a+b)$ and

$$I_X = Rf_0 \oplus \bigoplus_{i=1}^a R'f_i \oplus \bigoplus_{j=1}^b R''f_{a+j}.$$

(1.3) The deficiency module $M(X) := \bigoplus_n H^1(\mathcal{G}_X(n))$ has a minimal free resolution of the form

$$0 \longrightarrow \bigoplus_{j=1}^{b} R''(-\nu_{a+j}) \longrightarrow \bigoplus_{i=1}^{r_1} R''(-\varepsilon_i^1) \longrightarrow \bigoplus_{i=1}^{r_0} R''(-\varepsilon_i^0) \longrightarrow M(X) \longrightarrow 0$$

as an R"-module, where ε_i^j $(1 \le i \le r_j, j=0, 1)$ are integers.

The basic sequences of a. B. curves have some special properties. First of all, a sequence $(a; \nu_1, \dots, \nu_a; \nu_{a+1}, \dots, \nu_{a+b})$ of positive integers satisfying (1.1) is the basic sequence of an a. B. curve if and only if $a \ge 2b$ and there are (m_1, \dots, m_{a-2b}) , (n_1, \dots, n_b) $(m_1 \le \dots \le m_{a-2b}, n_1 \le \dots \le n_b)$ such that $(\nu_{a+1}, \dots, \nu_{a+b}) = (n_1, \dots, n_b)$, $(\nu_1, \dots, \nu_a) = (m_1, \dots, m_{a-2b}, n_1, \dots, n_b, n_1, \dots, n_b)$ up to permutation (see [1; Theorem 3.1, Lemma 4.2]). Furthermore a. B. curves of the same basic sequence are parameterized by a Zariski open subset of an affine space over k. Let X be an a. B. curve. With the notation above the sequence $B_{sh}(X):=(a; m_1, \dots, m_{a-2b}; n_1, \dots, n_b)$ is called the short basic sequence of X in [1] (cf. [1; Corollary 3.3, (4.1.4)]). It follows from (1.3) and the definition of a. B. curves that

(1.4)
$$M(X) \cong \bigoplus_{j=1}^{b} k(-n_j+2).$$

Besides, examining the relation between I_X and M(X) closely, we find that the *R*-module $\tilde{R}_X := \bigoplus_n H^0(\mathcal{O}_X(n))$ has a free resolution of the form

(1.5)

$$0 \longrightarrow \bigoplus_{i=1}^{a-2b} R(-m_i-1) \oplus \left(\bigoplus_{j=1}^{b} R(-n_j) \right)^3$$

$$\xrightarrow{\tau} R(-a) \oplus \bigoplus_{i=1}^{a-2b} R(-m_i) \oplus \left(\bigoplus_{j=1}^{b} R(-n_j+1) \right)^4$$

$$\xrightarrow{\sigma} R \oplus \left(\bigoplus_{r=1}^{b} R(-n_j+2) \right) \xrightarrow{\rho} \widetilde{R}_X \longrightarrow 0,$$
where

$$\sigma = \left(\frac{*}{0 | x_1 1_b, x_2 1_b, x_3 1_b, x_4 1_b} \right)$$

with a $b \times b$ unit matrix 1_b (see [1; (3.4.1)]).

§2. Short basic sequences of integral a.B. curves.

In the following argument the results concerning a. B. curves will be stated in the language of their short basic sequences.

2

Let F and G be vector bundles on \mathbf{P}^3 of rank p and q respectively (p>1, q>0) and let X be a curve in \mathbf{P}^3 whose ideal sheaf \mathcal{I}_X has a locally free resolution of the form

(2.1)
$$0 \longrightarrow \bigoplus_{i=1}^{p+q-1} \mathcal{O}_{\mathbf{P}^3}(-d_i) \xrightarrow{\mathcal{V}} F \oplus G \xrightarrow{\mathcal{W}} \mathcal{J}_X \longrightarrow 0$$

(cf. [6; Lemma 1.1]). Here the map v is defined by the multiplication by global sections $(v_i^F, v_i^G) \in H^0(F \oplus G) \otimes \mathcal{O}_{\mathbf{P}^3}(d_i))$ $(v_i^F \in H^0(F(d_i)), v_i^G \in H^0(G(d_i)), 1 \leq i \leq p+q-1)$ and locally it is represented by the $(p+q) \times (p+q-1)$ -matrix $v = \begin{pmatrix} v^F \\ v^G \end{pmatrix}$, where $v^F = (v_1^F, \dots, v_{p+q-1}^F)$ and $v^G = (v_1^G, \dots, v_{p+q-1}^G)$.

LEMMA 1. Suppose that $v_i^{g}=0$ for $1 \leq i \leq p-1$ and that X is integral. Then

$$F \cong \mathcal{O}_{\mathbf{P}^3}\Big(c_1(F) + \sum_{i=1}^{p-1} d_i\Big) \oplus \bigoplus_{i=1}^{p-1} \mathcal{O}_{\mathbf{P}^3}(-d_i) \quad or \quad G \cong \bigoplus_{i=p}^{p+q-1} \mathcal{O}_{\mathbf{P}^3}(-d_i).$$

PROOF. Let Y denote the closed subscheme of \mathbf{P}^3 defined locally by the maximal minors of $(v_1^F, \cdots, v_{p-1}^F)$. Clearly $Y \subset X$ by the hypothesis $v_i^G = 0$ $(1 \leq i \leq p-1)$, therefore Y is either empty or is a curve and in any case \mathcal{J}_Y has the locally free resolution

(2.2)
$$0 \longrightarrow \bigoplus_{i=1}^{p-1} \mathcal{O}_{\mathbf{P}^3}(-d_i) \xrightarrow{v'} F \xrightarrow{w'} \mathcal{J}_{Y}(c) \longrightarrow 0$$

with $c=c_1(F)+\sum_{i=1}^{p-1}d_i$ (cf. [1; (2.10.5)]) where v' and w' are defined by $(v_1^F, \dots, v_{p-1}^F)$ in the same way as above. If Y is empty, then $\mathcal{J}_Y=\mathcal{O}_{P^3}$ so that (2.2) splits and we have $F\cong\mathcal{O}_{P^3}(c)\bigoplus_{i=1}^{p-1}\mathcal{O}_{P^3}(-d_i)$. Now suppose that Y is a curve. In this case Y=X, since X is integral. Let ζ be an element of $H^0(\bigwedge^q G(\sum_{i=p}^{p+q-1}d_i))$ given by $\det(v_p^G, \dots, v_{p+q-1}^G)$ and let D denote the zero locus of ζ . If $\zeta=0$ or D is a divisor of positive degree, we take a point $x\in X\cap D$ and consider the stalk of \mathcal{J}_X at x. Set $v'=(v_1^F, \dots, v_{p-1}^F)$, $u=(v_p^G, \dots, v_{p+q-1}^G)$, $h=\det(u)$, $g'_i=(-1)^{i-1}\det(v'\binom{i}{j})$ $(1\leq i\leq p)$ and $g_i=(-1)^{i-1}\det(v\binom{i}{j})$ $(1\leq i\leq p+q)$. Then it follows from (2.1) and (2.2) that

(2.3)
$$\mathcal{G}_{X,x} = (g'_1, \cdots, g'_p) \mathcal{O}_{\mathbf{P}^3, x} = (g_1, \cdots, g_{p+q}) \mathcal{O}_{\mathbf{P}^3, x}.$$

Since h vanishes at x, the rank r of u at x is smaller than q. We may assume therefore that v is of the form

up to multiplication by $GL(p+q, \mathcal{O}_{\mathbf{P}^3, x})$ on the left and $GL(p+q-1, \mathcal{O}_{\mathbf{P}^3, x})$ on the right, where all the components of u' are contained in the maximal ideal \mathfrak{m}_x of x. Consequently,

$$\mathcal{G}_{X,x} \subset (g'_1, \cdots, g'_p) \mathfrak{m}_x + g_{p+1} \mathcal{O}_{\mathbf{P}^3,x}$$

by (2.3), which implies that $\mathcal{J}_{X,x} = g_{p+1}\mathcal{O}_{\mathbf{P}^3,x}$ by Nakayama's lemma. This contradicts the fact that X is a curve passing through x. Hence $D = \emptyset$ and $G \cong \bigoplus_{i=p}^{p+q-1} \mathcal{O}_{\mathbf{P}^3}(-d_i)$. Q.E.D.

Let A be a finitely generated regular k-algebra, $n \ (n \ge 3)$ an integer and $s = \{s_{ij} | 1 \le i \le \min(j+2, n), 1 \le j \le n-1\}$ a set of indeterminates over A. We denote by S the matrix of size $n \times (n-1)$ whose (i, j)-component is s_{ij} if $1 \le i \le j+2$ and 0 otherwise. Given a $n \times (n-1)$ -matrix $H = (h_{ij})$ with components in A[s] such that

$$(2.4) all the components of H-S lie in A,$$

let Q(H) denote the closed subscheme of V := Spec(A[s]) determined by the maximal minors of H.

LEMMA 2. There is a closed subscheme Z of codimension larger than or equal to 5 in V such that $Q(H) \setminus Z$ is smooth over k.

PROOF. We first consider the case n=3. Let U_{ij} be the complement of the divisor $h_{ij}=0$ for each (i, j) $(1 \le i \le 3, 1 \le j \le 2)$. Since

$$h_{1j}\det(H\begin{pmatrix}1\\\end{pmatrix}) - h_{2j}\det(H\begin{pmatrix}2\\\end{pmatrix}) + h_{3j}\det(H\begin{pmatrix}3\\\end{pmatrix}) = 0$$

for j=1, 2, the scheme $Q(H) \cap U_{11}$ is isomorphic to

 $\operatorname{Spec}(A[s]_{h_{11}}/(h_{32}-h_{12}h_{31}/h_{11}, h_{22}-h_{12}h_{21}/h_{11})),$

which is of codimension 2 in U_{11} and smooth over k. The same thing holds also for the other $Q(H) \cap U_{ij}$'s. Therefore Q(H) is smooth over k in the outside of the closed subscheme $V \setminus (\bigcup_{i,j} U_{ij})$ of codimension 6 in V. Now suppose that $n \ge 4$ and that the assertion holds for n-1. Let U_i $(1 \le i \le 5)$ be the complements of the divisors $h_{i1}=0$ $(1 \le i \le 3)$, $h_{n,n-6+i}=0$ $(4 \le i \le 5)$ respectively. On each open set U_i $(1 \le i \le 5)$, there are matrices $K_i \in GL(n, k[U_i])$ and $K'_i \in$ $GL(n-1, k[U_i])$ such that $K_i H K'_i$ takes the form $\begin{pmatrix} 1 & 0 \cdots & 0 \\ 0 \\ \vdots & H'_i \\ 0 \end{pmatrix}$, where H'_i satisfies

the condition (2.4) with A and S replaced by $A[\{s_{lm}|l=i \text{ or } m=1\}]_{h_{i1}}$ and $S\binom{i}{1}(1 \le i \le 3)$ or $A[\{s_{lm}|l=n \text{ or } m=n-6+i\}]_{h_{n}, n-6+i}$ and $S\binom{n}{n-6+i}(4 \le i \le 5)$. By the induction hypothesis there are closed subschemes Z_i $(1 \le i \le 5)$ of U_i such that $\operatorname{codim}_{U_i}(Z_i) \ge 5$ and $Q(H'_i) \setminus Z_i$ are smooth over k. We have only to put $Z = (V \setminus \bigcup_{i=1}^5 U_i) \cup \bigcup_{i=1}^5 \overline{Z}_i$. Let a, b, m_i $(1 \le i \le a - 2b)$ and n_i $(1 \le i \le b)$ be positive integers such that $a-2b \ge 0$, $a \le m_1 \le m_2 \le \cdots \le m_{a-2b}$ and $a \le n_1 \le n_2 \le \cdots \le n_b$. We set

$$B_{sh} = (a; m_1, \cdots, m_{a-2b}; n_1, \cdots, n_b).$$

One knows that there exists an a.B. curve X in \mathbf{P}^3 with short basic sequence B_{sh} (see Section 1). For each integer $n \ge 0$ we put

$$\begin{cases} e_n = \#\{i | m_i = n, 1 \le i \le a - 2b\}, & e'_n = \#\{i | n_i = n, 1 \le i \le b\}, \\ \alpha = \min(m_1, n_1 - 1), & \beta = \max(m_{a-2b}, n_b - 1), \end{cases}$$

where # denotes the number of the elements and $\alpha = n_1 - 1$, $\beta = n_b - 1$ if a - 2b = 0. Let E denote the vector bundle of rank 3 on P³ defined by the exact sequence

$$0 \longrightarrow E \longrightarrow \mathcal{O}_{\mathbf{P}^3}(1)^4 \xrightarrow{(x_1, x_2, x_3, x_4)} \mathcal{O}_{\mathbf{P}^3}(2) \longrightarrow 0$$

namely $E = \mathcal{Q}_{\mathbf{P}^3/k}(2)$. One sees that $h^{\circ}(E(n)) = 0$ for n < 0 and that E is generated over $\mathcal{O}_{\mathbf{P}^3}$ by its global sections. Set

$$F_{m} = \mathcal{O}_{\mathbf{P}^{3}}(-a) \bigoplus_{n=\alpha}^{m} (\mathcal{O}_{\mathbf{P}^{3}}(-n)^{e_{n}} \bigoplus E(-n-1)^{e'_{n+1}}),$$

$$G_{m} = \bigoplus_{n=m+1}^{\beta} (\mathcal{O}_{\mathbf{P}^{3}}(-n)^{e_{n}} \bigoplus E(-n-1)^{e'_{n+1}}),$$

$$L_{m} = \bigoplus_{n=\alpha}^{m} \mathcal{O}_{\mathbf{P}^{3}}(-n-1)^{e_{n+3e'_{n+1}}},$$

for $\alpha \leq m \leq \beta$. It follows from [1; (2.10.5) and (3.4.1)] that \mathcal{G}_X has a locally free resolution of the form

(2.5)
$$0 \longrightarrow L_{\beta} \xrightarrow{v} F_{\beta} \xrightarrow{w} \mathcal{G}_{x} \longrightarrow 0.$$

LEMMA 3. Suppose that X is reduced. Then X is connected if and only if $n_1 \ge 3$.

PROOF. Since X is connected if and only if $H^1(\mathcal{J}_X)=0$, the assertion follows from (1.4).

LEMMA 4. Let X' be another a. B. curve whose ideal sheaf $\mathcal{J}_{X'}$ has a locally free resolution of the form (2.5) with the same L_{β} and F_{β} . Then the short basic sequence of X' coincides with B_{sh} .

PROOF. Since $M(X') \cong M(X)$, $h^0(\mathcal{G}_{X'}(n)) = h^0(\mathcal{G}_X(n))$ for all $n \ge 0$ by (2.5), it follows from (1.1), (1.2), (1.3) and (1.4) that $B_{sh}(X') = B_{sh}$.

THEOREM. i) If there is an integral a.B. curve in \mathbf{P}^3 with short basic sequence B_{sh} , then one of the following two conditions is satisfied.

$$(2.6.1) a = 2, b = 1, n_1 \ge 3,$$

 $(2.6.2) a \ge 3, \quad a-2b \ge n_b-n_1, \quad m_1 \le n_1, \quad n_b-1 \le m_{a-2b}$ and m_1, \cdots, m_{a-2b} is connected.

ii) In the case char(k)=0, both these conditions are sufficient for the existence of an integral a.B. curve with short basic sequence B_{sh} .

PROOF. If the condition (2.6.1) or (2.6.2) is fulfilled, we have

(2.7) $\alpha = \beta \text{ or } e_{n+1} \neq 0 \text{ for every integer } n \ (\alpha \leq n \leq \beta - 1).$

Conversely if (2.7) is satisfied, we have (2.6.1), (2.6.2) or

$$(2.8) a = 2, b = 1, n_1 = 2.$$

Let X be an integral a. B. curve in \mathbf{P}^{s} with short basic sequence B_{sh} and assume that neither (2.6.1) nor (2.6.2) is satisfied. Then, since the case (2.8) cannot occur by Lemma 3, we have $\alpha < \beta$ and there is an integer l ($\alpha \leq l \leq \beta - 1$) such that $e_{l+1}=0$ by the remark above. One sees $H^{0}(G_{l} \otimes L_{l}^{*})=0$, $F_{\beta}=F_{l} \oplus G_{l}$, rank $(F_{l})=\operatorname{rank}(L_{l})+1>1$ and rank $(G_{l})>0$, therefore (2.5) satisfies the conditions of Lemma 1 with $F=F_{l}$ and $G=G_{l}$. Consequently $F_{l} \cong \mathcal{O}_{\mathbf{P}^{3}}(c_{1}(F_{l})-c_{1}(L_{l}))\oplus L_{l}$ or $G_{l} \cong L_{\beta}/L_{l}$. In the first case, since $h^{1}(E(-2))\neq 0$, one has $l+1< n_{1}$, $F_{l}=$ $\mathcal{O}_{\mathbf{P}^{3}}(-a)\oplus \oplus_{n=\alpha}^{l}\mathcal{O}_{\mathbf{P}^{3}}(-n)^{e_{n}}$ and $L_{l}=\oplus_{n=\alpha}^{l}\mathcal{O}_{\mathbf{P}^{3}}(-n-1)^{e_{n}}$. Moreover, $c_{1}(F_{l})-c_{1}(L_{l})=$ $-a+\operatorname{rank}(L_{l})>-a\geq \min\{-n \mid e_{n}\neq 0 \ (\alpha\leq n\leq l\}\}>\min\{-n-1 \mid e_{n}\neq 0 \ (\alpha\leq n\leq l)\}$. Since the splitting of a vector bundle on \mathbf{P}^{3} as the direct sum of line bundles is unique, if it exists, this cannot happen. In the second case, one has $l+2>n_{b}$, $G_{l}=\oplus_{n=l+1}^{\beta}\mathcal{O}_{\mathbf{P}^{3}}(-n)^{e_{n}}$ and $L_{\beta}/L_{l}=\oplus_{n=l+1}^{\beta}\mathcal{O}_{\mathbf{P}^{3}}(-n-1)^{e_{n}}$ by the same reason as above, and again we are led to a contradiction. This proves i).

Now suppose that B_{sh} satisfies (2.7). Let X be an arbitrary a. B. curve with short basic sequence B_{sh} . Let H_1, \dots, H_7 be the basis of $H^0(F_\beta \otimes L_\beta^*)$, $t = \{t_i | 1 \le i \le \gamma\}$ be a set of indeterminates over R and $T := \operatorname{Spec}(k[t])$. Set $\widetilde{H} = \sum_{i=1}^{\gamma} t_i H_i$. Since $c_1(F_\beta) - c_1(L_\beta) = 0$ by (2.5), we can construct the deformation of the complex (2.5)

(2.9)
$$0 \longrightarrow L_{\beta} \otimes_{k} \mathcal{O}_{T} \xrightarrow{\tilde{\mathcal{V}}} F_{\beta} \otimes_{k} \mathcal{O}_{T} \xrightarrow{\tilde{\mathcal{W}}} \tilde{\mathcal{I}} \longrightarrow 0$$

in a natural way, where \tilde{v} is defined by \tilde{H} and $\tilde{\mathcal{J}}$ is the ideal sheaf in $\mathcal{O}_{\mathbf{P}_T^3}$ generated locally by the maximal minors of \tilde{H} . Let \tilde{X} denote the closed subscheme of \mathbf{P}_T^s determined by $\tilde{\mathcal{J}}$ and $\pi: \mathbf{P}_T^s \to T$ the natural projection. Since $e_{m+1} \neq 0$ ($\alpha \leq m \leq \beta - 1$) and $(F_m \oplus \mathcal{O}_{\mathbf{P}^3}(-m-1)^{e_{m+1}}) \otimes \mathcal{O}_{\mathbf{P}^3}(m+1)$ is generated by its global sections for every m ($\alpha \leq m \leq \beta$), each point of \mathbf{P}_T^s has a neighborhood on which \tilde{H} satisfies the condition (2.4) with suitable A and S. Here, observe that A is the quotient ring of a polynomial ring over k with respect to a multiplicative set of the form $\{\varphi^j | j \geq 0\}$. There exists therefore by Lemma 2 a closed subscheme Z of \mathbf{P}_T^s such that $\operatorname{codim}_{\mathbf{P}_T^s}(Z) \geq 5$ and $\tilde{X} \setminus Z$ is smooth over k. Since $\dim(\pi(Z)) \leq \dim(T) - 2$, general fibers of $\pi_{\perp}\tilde{x}$ are smooth curves if

6

char(k)=0. Besides, the restriction of the complex (2.9) to a general point of T is exact. Let $\pi^{-1}(o) := X_o$ $(o \in T)$ be one of the general fibers of $\pi_{\perp \hat{X}}$. Since the restriction of (2.9) to o is exact, we see by Lemma 4 that the short basic sequence of X_o is B_{sh} , and X_o is connected except in the case (2.8) by Lemma 3. Therefore if char(k)=0 and B_{sh} fulfills (2.6.1) or (2.6.2), it is realized by smooth irreducible a. B. curves in \mathbf{P}^3 . Q. E. D.

REMARK 1. One can deduce the necessity of (2.6.1) or (2.6.2) also from [2; Corollary 1.3], taking into account the explicit form of the matrix of relations among the generators of I_X associated with the basic sequence of X (see [1; (4.1.1), 2), 3) and 4)]).

COROLLARY 1. All the integral a. B. curves in \mathbf{P}^{3} with the same short basic sequence are parameterized by a smooth rational variety and the general members are smooth in the case char(k)=0.

PROOF. See [1; Remark 5.3].

COROLLARY 2 (cf. [1; Theorem 3.1]). Let X be an integral a. B. curve with short basic sequence B_{sh} . Then $a \ge 2b + n_b - n_1$, with equality if and only if $a-2b=n_b-n_1=0$ or $a-2b=n_b-n_1>0$, $m_1=n_1$, $m_i=m_{i-1}+1$ ($2\le i\le a-2b$) and $m_{a-2b}=n_b-1$.

COROLLARY 3. Let X be as above. Put $\nu = \min(m_1, n_1)$ and $\delta = \min\{m | I_{X, m}$ generates $\bigoplus_{n \ge m} I_{X, n}$ over R}. Then $\delta \le \max(a-2b+\nu-2, n_b)$.

PROOF. Let $B(X)=(a; \nu_1, \dots, \nu_a; \nu_{a+1}, \dots, \nu_{a+b})$ be the basic sequence of X and $(f_0; f_1, \dots, f_a; f_{a+1}, \dots, f_{a+b})$ the generators of I_X associated with B(X), where $\deg(f_0)=a$, $\deg(f_i)=\nu_i$ $(1 \le i \le a+b)$. Then $(\nu_1, \dots, \nu_a)=(m_1, \dots, m_{a-2b}, n_1, \dots, n_b, n_1, \dots, n_b)$ up to permutation and $(\nu_{a+1}, \dots, \nu_{a+b})=(n_1, \dots, n_b)$ (see Section 1). By definition $\nu_1=\nu$ and $\nu_a=\max(m_{a-2b}, n_b)$. Clearly one sees

$$(2.10) \qquad \qquad \delta \leq \nu_a$$

If a-2b=0, then $B(X)=(2b; \nu^{2b}; \nu^{b})$ and $\nu=n_{b}$ by (2.6.1) or (2.6.2), which implies the assertion. In the case a-2b>0, one has $\nu=m_{1}$, $n_{b}-1\leq m_{a-2b}\leq m_{1}+(a-2b-1)$ by (2.6.2). If $m_{a-2b}\leq n_{b}$, then $\delta\leq n_{b}\leq \max(a-2b+\nu-2, n_{b})$ by (2.10). Now suppose $m_{a-2b}>n_{b}$. Then $\nu_{a}=m_{a-2b}$, $\delta\leq m_{a-2b}\leq m_{1}+(a-2b-1)$. Since $\max(a-2b+\nu-2, n_{b})=m_{1}+(a-2b-2)$, we have only to show that the case $\delta=m_{a-2b}=m_{1}+(a-2b-1)$ does not occur. If $m_{a-2b}=m_{1}+(a-2b-1)$, then $m_{i}=m_{1}+(i-1)$ for all $1\leq i\leq a-2b$ by (2.6.2). This implies that $\#\{i|\nu_{i}=\nu_{a}\ (1\leq i\leq a)\}$ =1, $a<\nu_{a}$ and $\nu_{i}<\nu_{a}$ for all i distinct from a, therefore we find by [2; Corollary 1.3] that $f_{a}\in I_{X,\nu_{a}-1}\cdot R$. Consequently $\delta<\nu_{a}$ and the assertion follows. Q. E. D.

REMARK 2. 1) Note that $a = \min\{n \mid h^{0}(\mathcal{G}_{X}(n)) \neq 0\}, \nu = \min\{n \mid (I_{X}/(f_{0}))_{n} \neq 0\}, b = \sum_{n \in N} h^{1}(\mathcal{G}_{X}(n)), n_{1} = \min(N) + 2, n_{b} = \max(N) + 2, \text{ where } N = \{n \mid h^{1}(\mathcal{G}_{X}(n)) \neq 0\}.$

2) The inequality $a \ge 2b + n_b - n_1$ is proved in [3; Theorem 2.12] by a different method.

3) Since $\max(a-2b+\nu-2, n_b) \leq a-2b+\nu$, one has $\delta \leq a-2b+\nu$. This inequality is proved in [5; Theorems 5.4 and 5.6] by a different method.

References

- M. Amasaki, On the structure of arithmetically Buchsbaum curves in P³_k, Publ. RIMS, Kyoto Univ., 20 (1984), 793-837.
- [2] M. Amasaki, Examples of nonsingular irreducible curves which give reducible singular points of red(H_d,g), Publ. RIMS, Kyoto Univ., 21 (1985), 761-786.
- [3] G. Bolondi and J. Migliore, Buchsbaum liaison classes, preprint (1987).
- [4] D. Eisenbud and S. Goto, Linear free resolutions and minimal multiplicity, J. Algebra, 88 (1984), 89-133.
- [5] A. Geramita and J. Migliore, On the ideal of arithmetically Buchsbaum curve, Queen's Mathematical Preprint, No. 1987-2 (1987).
- [6] R. Lazarsfeld and P. Rao, Linkage of General Curves of Large Degree, Algebraic Geometry—Open Problems, Proceedings, Ravello 1982, Lecture Notes in Mathematics, 997, Springer, 1983, pp. 267-289.

Mutsumi AMASAKI Research Institute for Mathematical Sciences Kyoto University Kyoto 606 Japan

Note added in proof. At the proofreading stage, the author made a minor change in the choice of the open sets U_i appearing in the proof of Lemma 2 and raised the lower bound of the codimension of Z by one for future application.

8